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Abstract— Motivated by recent (semi-global practical) fixed-
time convergence results in time-invariant model-free opti-
mization problems, in this paper we introduce new tracking
bounds and guidelines for the design of extremum seeking con-
trollers in model-free optimization problems with dynamic cost
functions. Using semi-global practical input-to-state stability
characterizations, we show that the proposed non-smooth ES
dynamics are able to significantly reduce the tracking error
compared to the traditional smooth algorithms studied in the
literature. Moreover, under a suitable tuning of the gains of
the algorithm, the nominal average dynamics of the controller
are able to achieve global fixed-time tracking for a general
class of dynamic cost functions. For tuning parameters that
do not completely eliminate the tracking error in the nominal
average dynamics, but which preserve the continuity of the
vector field, we show that “almost complete” error rejection is
achieved whenever the gain of the algorithm passes a particular
threshold. Numerical results are presented to illustrate the
performance of the algorithms.

I. INTRODUCTION

Time-varying, or online, optimization has received signif-

icant attention in recent years due to successful applications

in areas such as online decision making [1], machine learning

[2], and reinforcement learning [3], as well as validations in

power systems [4] and transportation systems [5], to name

just a few. In this setting, exogenous (sometimes adversarial)

time-variation can be induced by dynamic parameters that

characterize the cost function or the environment where

the system operates. When a model of the time depen-

dency is unavailable for the optimization algorithm, feed-

forward control, so useful in robotic motion planning and

set-point tracking, is not feasible anymore. Instead, online

time-varying model-free optimization needs, in general, to

be formulated as an approximate tracking problem, with

some residual error accepted due to the unknown variation

in the sought optimizer. Since the error is caused by the

time-variation in the optimizer, and it is proportional to the

size of the optimizer’s time derivative, it is natural to treat

this derivative as a disturbance and to quantify the residual

error using notions such as uniform ultimate boundedness

(UUB) [6] or input-to-state stability (ISS) [7], [8]. Examples

of applications of ISS tools in optimization problems using

continuous-time smooth and hybrid gradient flows have been

studied in [9], [10], and [11].

On the other hand, when it comes to model-free optimiza-

tion problems, (averaging-based) extremum seeking control
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(ES) has become a well-established sub-field in the area of

adaptive control and self-optimizing control; see [12]–[16].

Yet, in the context of tracking problems with time-varying

cost functions, ES has received limited attention. One notable

exception is the tracking of optimizers of known functional

shapes but unknown coefficients, which was studied in [17,

Sec. 5] using the internal model principle. For the traditional

gradient descent-based ES, tracking results were studied in

[18] using Lie bracket averaging theory and (semi-global

practical) UUB tools. A similar smooth ES algorithm for

tracking of well-behaved time-varying cost function was also

studied in [19].

Contributions: All the existing results in the literature

of time-varying optimization via averaging-based ES have

relied on controllers whose nominal average systems corre-

spond to smooth (i.e., Lipschitz continuous) gradient flows,

typically gradient descent. Thus, such controllers are inher-

ently limited by the tracking properties of their nominal aver-

age dynamics, e.g., finite-time or fixed-time perfect tracking

is in general not possible. To overcome these limitations,

in this paper we introduce a new class of non-smooth ES

controllers that are particularly well-suited for the solution of

model-free tracking problems. These algorithms are obtained

by particular instantiations of the generalized ES introduced

in [20] for time-invariant cost functions, and, as we will show

in this paper, their nominal average dynamics have the ability

to achieve fixed-time tracking using discontinuous vector

fields, and approximate fixed-time tracking using continuous

vector fields. We formalize these properties by borrowing

tools from UUB and ISS in singularly perturbed non-smooth

dynamics with well-defined average systems [16], [21], [22].

Our theoretical results also provide design guidelines that

highlight the effect of the parameters of the ES on the

attenuation of the tracking error, characterized by the ISS

gain. To the best knowledge of the authors, such results are

completely new in the literature of ES.

Organization: The rest of this paper is organized as

follows. Section II presents some preliminary definitions

and stability notions. Section III characterizes the tracking

problem under study in this paper. Section IV presents our

main results. Section V presents numerical examples, and

finally Section VI ends with some conclusions.

II. PRELIMINARIES

In this paper, we will model our algorithms using the

framework of constrained dynamical systems [23], where

x ∈ R
n is the state of the system evolving according to

x ∈ C, ẋ = F (x), (1)



where C ⊂ R
n is a closed set, and F : R

n → R
n is a

measurable bounded function that is, in general, continuous

for all x ∈ R
n\{0}. For functions F that are discontin-

uous at the origin, system (1) should be replaced by its

Krasovskii regularization [23, Def. 4.13]. A solution of (1)

is an absolutely continuous function x : dom(x) → R
n

that satisfies: a) x(0) ∈ C; b) x(t) ∈ C, ∀ t ∈ dom(x);
and c) ẋ(t) = F (x(t)) for almost all t ∈ dom(x). A

solution is said to be complete if dom(x) = [0,∞). System

(1) is said to render a compact set A uniformly globally

asymptotically stable (UGAS) if there exists a (generalized)

class KL function β such that every solution of (1) satisfies

|x(t)|A ≤ β(|x(0)|A, t), ∀ t ∈ dom(x). When ∃ T ∗ > 0
such that β(r, s) = 0 for all r > 0 and s > T ∗ we say that

A is fixed-time stable.

We also consider ε-perturbed or parameterized dynamical

systems of the form x ∈ C, ẋ = Fε(x), where Fε is param-

eterized by a positive constant ε > 0. For these systems, we

say that the compact set A ⊂ C is Semi-Globally Practically

Asymptotically Stable (SGPAS) as ε → 0+, if there exists a

class KL function β such that ∀ δ > ν > 0, ∃ ε∗ > 0 such

that ∀ ε ∈ (0, ε∗) every solution x with |x(0)|A ≤ δ satisfies

|x(t)|A ≤ β(|x(0)|A, t) + ν, ∀ t ∈ dom(x). The notion of

SGPAS can be extended to systems that depend on multiple

parameters ε = [ε1, ε2, . . . , εℓ]
⊤. In this case, and with some

abuse of notation, we say that the system renders the set A
SGPAS as (εℓ, . . . , ε2, ε1) → 0+, where the parameters are

tuned in order starting from ε1. We use S
1 ⊂ R

2 to denote

the unit circle centered at the origin, and T
n = S

1 × . . . S1

as the nth-Cartesian product of S1.

III. PROBLEM STATEMENT

Our goal is to solve the time-varying optimization problem

min
u∈Rn

φ(u, θ), (2)

where φ is unknown but measurable, and θ is a time-varying

parameter that evolves according to some unknown dynamics

of the form:

θ̇ = εoΠ(θ), θ ∈ Θ, (3)

where εo > 0. We make the following qualitative assump-

tions on (3).

Assumption 1: The set Θ ⊂ R
p is compact, the mapping

Π(·) is Lipschitz continuous, and the dynamics (3) render

forward invariant the set Θ. �

Remark 1: We stress that Assumption 1 is made only to

impose enough regularity on the time-variations of the cost

function. Knowledge of the explicit forms of the mapping

Π(·) or the set Θ is not needed in our algorithms. Similarly,

the parameter εo > 0 is used only to conveniently model

how fast the parameter θ changes over time. �

The class of cost functions φ considered in this paper are

characterized by the following assumption.

Assumption 2: The function φ satisfies the following:

1) φ(·, ·) is continuously differentiable.

2) There exists L > 0 such that

|∇uφ(u1, θ)−∇uφ(u2, θ)| ≤ L|u1 − u2|, (4)

for all u1, u2 ∈ R
n and all θ ∈ Θ.

3) There exists a unique continuously differentiable func-

tion h : R
p → R

n, such that, for each fixed θ the

solution of (2) is given by

u∗ := h(θ) = arg min
u∈Rn

φ(u, θ). (5)

4) There exists κ > 0 such that

φ(u2, θ) ≥ φ(u1, θ) +∇uφ(u1, θ)
⊤(u2 − u1) (6)

+
κ

2
|u2 − u1|2,

for all u1, u2 ∈ R
n and all θ ∈ Θ. �

Remark 2: The conditions of Assumption 2 are rather

standard in the literature of time-varying optimization [1],

[2], particularly when one is interested in establishing expo-

nential (or superlinear) convergence results. Indeed, since θ
evolves in a compact set, conditions (4) and (6) will hold

for functions φ that are (for each θ ∈ Θ) globally Lipschitz

and strongly convex in u. On the other hand, condition 4)

guarantees that problem (2) is well-posed and has a unique

solution for each θ ∈ Θ. �

Under Assumption 2, the condition number of the cost

function φ is denoted as cond(φ) := L/κ.

The following lemma, which follows directly by Assump-

tion 1 and item 3) of Assumption 2, provides some useful

constants that will emerge in our tracking bounds.

Lemma 1: Suppose that Assumptions 1-2 hold. Then,

there exist constants mh,mΠ > 0 such that |Π(θ)| ≤ mΠ

and |∇h(θ)| ≤ mh for all θ ∈ Θ. �

IV. TRACKING BOUNDS IN EXTREMUM SEEKING

To track the solutions of problem (2) in a model-free way,

i.e., using only measurements of φ, we consider a class

of generalized gradient-based ES, shown in Figure 1, and

characterized by the dynamics

˙̂u = −k

(
ξ

|ξ|α +
ξ

|ξ|−α

)

, û ∈ R
n, (7a)

ξ̇ =
1

εf
(−ξ + φ(u, θ)M(µ)) , ξ ∈ R

n, (7b)

µ̇ =
1

εp
Rκµ, µ ∈ T

n, (7c)

where the right-hand side of (7a) is defined to be zero when

ξ = 0. The parameter α satisfies α ∈ [0, 1], the input u and

the mapping M are defined as

u = û+ εaDµ, M(µ) := 2ε−1
a Dµ, (8)

and Dµ = [µ1, µ3, µ5, . . . , µ2n−1]
⊤. As in [24] and [20], the

matrix Rκ is block diagonal with skew symmetric blocks

given by Ri = 2π[0, κi;−κi, 0] ∈ R
2×2, i ∈ {1, 2, . . . , n},

where κ = [κ1, . . . , κn] ∈ R
n, with κi > 0. The tunable

parameters of (7) satisfy the following qualitative properties.



Assumption 3: For each i ∈ {1, 2, . . . , n} the parameter

κi > 0 is a rational number, κi 6= κj and κi 6= 2κj for all

i 6= j, and 0 < εo, k < 1
εf

< 1
εa

< 1
εp

. �

Note that when α = 0, the ES dynamics (7) are similar

to those studied in [12], [13]. In particular, since the odd

components of the solutions of the constrained linear os-

cillator (7c) are given by µi(t) = µi(0) cos
(

2πt
εp

κ i+1

2

)

+

µi+1(0) sin
(

2πt
εp

κ i+1

2

)

, with initial conditions satisfying

µi(0)
2 + µi+1(0)

2 = 1, it follows that if µ(0) =
[0, 1, 0, 1, . . . , 0, 1]⊤ and α = 0, then (7) becomes:

˙̂u = −2kξ,

ξ̇ =
1

εf

(

−ξ + φ(û+ εa sin(2πκt), θ)
2

εa
sin(2πκt)

)

,

which is the standard gradient descent-based extremum seek-

ing (GDES) algorithm studied in [12], [13] and [25] for

time-invariant cost functions. On the other hand, as shown in

[20], the choices α ∈ (0, 1] lead to different ES algorithms,

termed Fixed-Time ES (FxTES), with substantially different

convergence properties.

Note that the interconnection of (3) and (7) leads to a time-

invariant system. Therefore, the following definition will be

instrumental to characterize the tracking properties of the ES

dynamics.

Definition 1: System (7) is said to have the (β, γ)-
tracking property with respect to (3) if ∃ β ∈ KL and

∃ γ ∈ K such that: ∀ k, εo > 0 and ∀ ∆ > ν > 0, ∃
ε∗f > 0 such that ∀ εf ∈ (0, ε∗f ), ∃ ε∗a > 0 such that ∀
εa ∈ (0, ε∗a), ∃ ε∗p > 0 such that ∀ εp ∈ (0, ε∗p) all solutions

of (3) and (7) with initial conditions satisfying:

|û(0)− u∗(0)| ≤ ∆, |ξ(0)| ≤ ∆, µ(0) ∈ T
n, θ(0) ∈ Θ,

also induce the following bound on the input u for all t ≥ 0:

|u(t)− u∗(t)| ≤ β(|û(0)− u∗(0)|, kt) + γ
(εo
k

)

+ ν, (9)

and lim supt→∞ |ξ(t)| ∈ O(γ(εo/k) + ν + εa). �

Definition 1 resembles a semi-global practical ISS bound

with respect to the constant “input” ε0/k [26, Eq. (49)],

where we emphasized the transient properties of u, and we

divided the residual term of (9) into two terms: the unavoid-

able “precision error” ν, which can be made arbitrarily small

by tuning the parameters (εp, εa, εf ); and the additional

“tracking error” γ(εo/k), which vanishes as εo → 0+ or

k → ∞. Borrowing terminology from the UUB and ISS

literature [7], [8], [26], we call the function γ the ISS gain,

and we note that the ratio εo/k quantifies how fast θ changes

over time compared to the time-variation of û in (7a).

Remark 3: For the closed-loop system with dynamics (3)

and (7), the states (θ, µ) are restricted to evolve on the

compact sets Θ and T
n, which are forward invariant by

assumption, and by design, respectively. Similarly, by the

stability and linearity of the low-pass filter in (7b), for a

given compact set of initial conditions the trajectories ξ will

stay uniformly bounded under bounded inputs u. �

εpµ̇ = Rκµ

+ ×

εaDµ

−k
s +

ξ
|ξ|−α

ξ
|ξ|α 1

εfs+1

M(µ)

y = φ(u, θ)
u

û

yθ̇ = ε0Π(θ), θ ∈ Θ

Fig. 1: Scheme of Generalized ES with Time-Varying Costs.

A. Main Result 1: Model-Free Tracking with α = 0

Our first result characterizes the pair (β, γ) for the case

when α = 0 in (7), i.e., for the GDES algorithm. Due to

space limitations, in this paper we present only a sketch of

the proof.

Theorem 1: Suppose that Assumptions 1-3 hold, and α =
0. Then, the ES (7) has the (β0, γ0)-tracking property with

respect to (3) with β0(r, s) := re−kκ(1−λ)s, and γ0(ℓ) :=
(
2mhmH

λκ

)
ℓ, where λ ∈ (0, 1). �

Sketch of the Proof: Using a Taylor expansion, leveraging

Assumption 3, and computing the nominal average dynamics

of system (7) in the slowest time scale, we obtain

˙̃u = −k∇uφ(ũ+ h(θ), θ)−
˙︷︸︸︷

h(θ), (10)

where ũ := u−h(θ). Using the following smooth Lyapunov

function

V (ũ) :=
1

4
(ũ⊤ũ)2, (11)

it can be shown that V̇ satisfies

V̇ ≤ −2(1− λ)kκV, ∀ |ũ| > 2mhmΠ

λκ
·
(εo
k

)

,

for any λ ∈ (0, 1). By using the Comparison Lemma

and standard arguments [6, Ch. 4], it can be shown that

system (10) satisfies an ISS-like bound. Using this bound,

and similar steps to those in [20], we can apply singular

perturbation theory and averaging theory [8] to establish the

bound (9). �

The above result establishes exponential transient via β0,

and a linear gain ℓ 7→ γ0(ℓ) that maps the ratio εo/k to the

first residual term of (9). This result is similar to tracking

bounds established in [18] and [19] for ES dynamics based

on Lie bracket averaging.

B. Main Result 2: Model-Free Tracking with α = 1

The form of γo in Theorem 1 indicates a natural limitation

of the GDES dynamics. Namely, given a constant gain

k > 0, the residual tracking error grows linearly as the time-

variation of θ increases (i.e., as ε0 increases in (3)). On the

other hand, the next theorem shows that the choice α = 1
can effectively annihilate the term γ(ε0/k) in (9) whenever

the gain k passes a particular threshold relative to εo.



Theorem 2: Suppose that Assumptions 1-3 hold, and α =
1. Then, for all

k > 4mhmΠcond(φ)εo,

the ES (7) has the (β1, γ1)-tracking property with respect to

(3) with γ1 := 0 and

β1(r, s) := c1 tan
(

max
{

0,−c2s+ arctan
(

c3r
2
α

)})α
2

,

(12)

where c1, c2, c3 > 0. �

Sketch of the Proof: As in Theorem 1, we compute the

nominal average dynamics of the ES algorithm. In this case,

we obtain:

˙̃u = −k

( ∇uφ(ũ+ h(θ), θ)

|∇uφ(ũ+ h(θ), θ)|α +
∇uφ(ũ+ h(θ), θ)

|∇uφ(ũ+ h(θ), θ)|−α

)

−
˙︷︸︸︷

h(θ). (13)

Using again the Lyapunov function (11), leveraging the co-

coercivity and monotonicity properties of ∇φ, and setting

α = 1, we can obtain

V̇ ≤ − k

L
c1V

3
4 − 2k

L
c2V

5
4 +

(

εoc3 −
k

L
c1

)

V
3
4 ,

where

c1 =
κ

2
1
2

, c2 =
κ3

2
3
2

, c3 = 2
3
2mhmΠ. (14)

Therefore, if k satisfies

k >
ε0c3L

c1
= 4ε0mhmΠ

(
L

κ

)

, (15)

then V̇ ≤ − k
L

(

c1V
3
4 + c2V

5
4

)

, which establishes uniform

global fixed-time stability of the origin ũ = 0 via [27, Lem.

2], with fixed-time convergence bound T ∗ = 4πL
kκ2 . The class

KL function β1 follows by [20, Lem. 3]. From here, we

follow similar steps as those in [20]. �

In Theorem 2, the function β1 satisfies β1(r, s) = 0 for

all r > 0 and s > T ∗
F = 4πL

kκ2 [27, Lemma 2], where the

constants (κ, L) come from Assumption 2. In other words,

β1 has the fixed-time convergence property, and the bound

(9) establishes a semi-global practical fixed-time tracking

property for the ES algorithm. To our knowledge, this is the

first bound of this form established for ES in time-varying

optimization problems.

Remark 4: The result of Theorem 2 shows that the choice

α = 1 can effectively eliminate the effect of θ̇ in the residual

term of the bound (9). However, while this property is

appealing, it comes at the price of obtaining an ES algorithm

with a discontinuous right-hand side, which might induce

undesirable chattering near the optimal trajectory u∗. Indeed,

a closer look to the proof of Theorem 2, reveals that -on

average- the ES algorithm shares similarities to sliding mode

controllers. �

Next, to avoid the chattering phenomenon induced by the

choice α = 1, we consider a selection of α that preserves the

continuity of the vector field, and provides a balance between

the results of Theorems 1 and 2.

C. Main Result 3: Model-Free Tracking with α ∈ (0, 1)

When α ∈ (0, 1), the tracking properties of system (7)

are characterized by the following theorem, which provides

desirable structures for the pair (β, γ).

Theorem 3: Suppose that Assumptions 1-3 hold, and α ∈
(0, 1). Then, the ESC (7) has the (β01, γ01)-tracking property

with respect to (3) with the same β01 (12), and

γ01

(εo
k

)

:= ρ−1
(εo
k

· w
)

, (16)

where w > 0 is a positive constant, and ρ−1(·) is the inverse

of the function ρ : R≥0 → R≥0 defined as

ρ(s) = ǫ1s
1−α + ǫ2s

1+α, (17)

with ǫ1 = (1/4)
1−α
4 and ǫ2 = (1/4)

1+α
4 . �

Sketch of the Proof: As in the proof of Theorems 1 and 2,

we use the Lyapunov function (11) to study the behavior of

the nominal average dynamics of the ES algorithm, which

are given by (13). When α ∈ (0, 1), the time-derivative of

V now satisfies

V̇ ≤ − k

L
c̃1V

1−α
4 − k

L
c̃2V

1+α
4 + σ(ũ),

where σ(ũ) := −kc

L

(
V 1−α

4 + V 1+α
4

)
+εoc3V

3
4 . When ũ 6=

0, the term σ(ũ) is non-positive whenever

εoc3 ≤ kc

L

((
1

4

) 1−α
4

|ũ|1−α +

(
1

4

) 1+α
4

|ũ|1+α

)

.

Defining ρ(|ũ|) :=
(

1

4
1−α
4

|ũ|1−α + 1

4
1+α
4

|ũ|1+α
)

, which

satisfies ρ ∈ K∞ because α ∈ (0, 1), we obtain:

V̇ ≤ − k

L
c̃1V

1−α
4 − k

L
c̃2V

1+α
4 , ∀ |ũ| ≥ ρ−1

(
εo
k

· c3L
c

)

which establishes uniform global fixed-time ISS of the origin

ũ = 0 with ε0/k as “input”, via [28, Thm. 4]. From here,

we can follow similar steps as in [20], using averaging tools

for nonsmooth systems with ISS bounds [8]. �

To study the structure of the gain γ01 given by (16), we

show in Figure 2 (solid line) different plots of the mapping

ℓ 7→ ρ−1(ℓ) for three different values of α ∈ (0, 1). First,

we can start by considering only the first term in (17), which

leads to the gain

γL

(εo
k

)

=
√
2
(εo
k

· w
) 1

1−α

.

The function γL(·) is shown in Figure 2, in red color for

different values of α. It can be seen that γL(s) ≈ 0 whenever

s ≪ 1 and α ≈ 1. Thus, for any εo > 0, if k is such that

εo
k

· w < 1, (18)

then, “almost” perfect tracking is achieved.

On the other hand, if we consider only the second term in

(17) the resulting gain is

γH

( ε

k

)

=
√
2
(εo
k

· w
) 1

1+α

,
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Fig. 2: ISS gain ρ−1 (solid black line) when α = 0.01, 0.5, 0.99. Dotted red lines and blues lines show the gains obtained

by considering only each of the individual components of (17).

Fig. 3: Left: Comparison between GDES and FxTES with α = 0.99 in a scalar tracking problem. Center and Right: Evolution

of inputs u1 and u2 in a multivariable tracking problem. In this case, the FxTESC implements α = 0.95. The black dashed

line corresponds to the optimal trajectory.

which is shown in Figure 2, in blue color, for different values

of α. As α → 1 the function γH(s) converges to a square

root function. Therefore, it provides a suitable attenuation

(better than linear) whenever s ≫ 1.

The actual function ρ−1, shown in black color, incorpo-

rates the advantages of both γL and γH . As shown in the

inset of the right plot of Figure 2, for α = 0.99 and small

ratios εo/k, the gain approximately eliminates the tracking

error. This qualitative structure provides a guideline for the

choice of α in the non-smooth ESC algorithm in time-

varying optimization problems.

D. Further technical considerations

The complete proofs of Theorems 1-3, omitted due to

space limitations, are based on averaging theory for non-

smooth systems, and uniform ultimate bounds similar to

those obtained in [18], [19], [22], [29], in the context of ISS

for systems with multiple time scales. However, we do not

directly use standard ISS results since in our case the time-

variation of the cost, embedded on θ, is not driven by an

arbitrary input but rather by the exosystem (3). This allows

us to impose enough regularity on θ and its time derivatives

to avoid situations where fast variations of the cost interfere

with the computation of the average system; see [22, pp.

233]. Indeed, our Definition 1 is somehow similar to the

notion of semi-global practical derivative ISS [22, Def. 10].

V. NUMERICAL EXAMPLES

To illustrate the results of Theorems 1-3, we present two

numerical examples.

A. Scalar Fixed-Time Model-Free Tracking

Consider a parameterized cost function given by φ(θ, u) =
(u−θ)2, where the time-varying parameter θ satisfies θ(t) =
sin(εot) for all t ≥ 0. Thus, we can take Θ = [−1, 1].
This sinusoidal variation can be generated by a time-invariant

oscillator of the form (7c) with suitable initial conditions.

The gradient of the cost function satisfies

|∇uφ(u1, θ)−∇uφ(u2, θ)| = |2(u1 − θ)− 2(u2 − θ)|
≤ 2|u1 − u2|, ∀ θ ∈ Θ,

and also |2(u1−θ)|2 = 4|u1−θ|2 = 2φ(θ, u), for all θ ∈ Θ.

Thus, inequalities (4) and (6) hold with L = 2 and κ =
1. Moreover, since the unique minimizer of φ is given by

h(θ) = θ, Assumption 2 is satisfied. We implemented the

generalized ES (7) with parameters k = 1, εp = 5 × 10−4,

εa = 1×10−2, and εf = 1×10−1. The trajectories generated

by the algorithm with α ∈ {0, 0.99} are shown in Figure 3.

For α = 0, the ES algorithm corresponds to the GDES,

whose trajectories are shown with red color. On the other

hand, the trajectories associated with α = 0.9 are shown in

blue color. The dashed black line corresponds to the optimal

trajectory. Since the value of k guarantees that the argument

of γ10 in (16) is less than one, the tracking error is essentially

removed, which is consistent with the behavior observed in

Figure 3.

B. Multivariable Fixed-Time Model-Free Tracking

To test the tracking performance of the ES (7) in a

multivariable optimization problem, we now consider the

cost function φ(θ, u) = 1
2u

⊤Q(θ)u+ b⊤u, where b = [1, 1]



and Q is given by:

Q(θ) :=

[
2 + θ1 0.5
0.5 3 + θ2

]

, (19)

where the parameters θ1 and θ2 are again generated by

oscillators of the form (7c), such that θ1(t) = sin(2εot),
and θ2(t) = 2 sin(5εot), for all t ≥ 0. Thus, in this

case θ = [θ1, θ2]
⊤ ∈ Θ := [−1, 1] × [−2, 2]. For each

t ≥ 0, the minimizer of φ is well-defined, and given by

u∗(t) = −Q(θ(t))−1b. Indeed, the time-varying matrix Q
is uniformly positive definite, and Assumption 1 holds with

κ = 0.5 and L = 5.11. The ES (7) is implemented with

parameters k = 0.25, εp = 1 × 10−2, εa = 1 × 10−2,

and εf = 1 × 10−1. The center and right plots of Figure

3 show the trajectories of the ES with α = 0.99 (FxTES)

and α = 0 (GDES). Given that inequality (18) is satisfied,

the FxTES greatly reduces the residual term γ01 in (16),

leading to almost perfect tracking.

VI. CONCLUSIONS

We introduced several new results in the context of time-

varying optimization and tracking using extremum seeking

control. In particular, we proposed a class of non-smooth

ES algorithms able to significantly reduce the tracking error

under appropriate tuning of the parameters of the algorithm.

The tracking error reduction was characterized by class K
functions that map the “speed” of the time-varying optimizer

to the size of the residual ball where the trajectories of the ES

algorithm converge. A qualitative study of these functions (or

gains) can provide design guidelines for the ES controllers

in problems with dynamic cost functions.
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