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We propose an action of a certain motivic cohomology group on the coherent coho-

mology of Hilbert modular varieties, extending conjectures of Venkatesh, Prasanna, and

Harris. The action is described in two ways: on cohomology modulo p and over C, and we

conjecture that they both lift to an action on cohomology with integral coefficients. The

conjecture is supported by theoretical evidence based on Stark’s conjecture on special

values of Artin L-functions and by numerical evidence in base change cases.

1 Introduction

A surprising property of the cohomology of locally symmetric spaces is that Hecke

operators can act on multiple cohomological degrees with the same eigenvalues. One

can observe this by a standard dimension count, but this does little to explain the phe-

nomenon. In a series of papers, Venkatesh and his collaborators propose an arithmetic

reason for this: a hidden degree-shifting action of a certain motivic cohomology group.

Initially, Prasanna and Venkatesh [56] and Venkatesh [73] developed these

conjectures for singular cohomology of locally symmetric spaces. Later, Harris and

Venkatesh [29] observed a similar behavior for coherent cohomology of the Hodge

bundle on the modular curve. See also [15, 45] for more evidence for their conjecture.

Connections to derived Galois deformation theory and modularity lifting were also
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2 A. Horawa

explored by Galatius and Venkatesh [21]. For a general introduction to this subject, see

[71, 72].

In this paper, we propose analogous conjectures for coherent cohomology of the

Hodge bundle on Hilbert modular varieties. To give a more precise statement, we first

set up some notation.

Let F be a totally real extension of Q of degree d, and let f be a parallel weight

one, cuspidal, normalized Hilbert modular eigenform for F, with Fourier coefficients in

the ring of integers OE of a number field E. One can identify f with a section of the

Hodge bundle ω on a Hilbert modular variety X:

f ∈ H0(X, ω) ⊗ OE .

More specifically, we consider an integral model X of the toroidal compactification of

the open Hilbert modular variety with good reduction away from primes dividing the

discriminant of F and the conductor of f . While this choice is not canonical, the resulting

cohomology groups are independent of the choice of X.

The action of the Hecke algebra extends to higher cohomology groups Hi(X, ω)⊗
OE and we may consider the subspace on which the Hecke algebra acts with the same

eigenvalues as on f , which we denote by Hi(X, ω)f . It follows from [68] that

rank Hi(X, ω)f =
(

d

i

)
(1.1)

(cf. Corollary 4.3). There is a motivic cohomology group Uf associated with f , which

is an OE-module of rank d = [F : Q] (Corollary 2.13); explicitly, it is the Stark unit

group [67] for the trace zero adjoint representation of f . We conjecture that there

is a degree-shifting action of its dual U∨
f on the cohomology space H∗(X, ω)f that

makes H∗(X, ω)f a module of rank one over the exterior algebra
∧∗ U∨

f , generated by

f ∈ H0(X, ω)f .

We can describe this action in two ways: modulo p and over C. Let p be a prime

of OE , n ≥ 1 be an integer, and ι : E ↪→ C be an embedding. We show that there is

1. a map

d⊕

j=1

Upn

f ,j → U∨
f ⊗ OE/pn
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Motivic Action for Hilbert Modular Forms 3

for some free OE/pn-modules Upn

f ,j of rank one (Proposition 3.4) and

define an action of Upn

f ,j on H∗(X, ω)f ⊗ OE/pn by derived Hecke operators

(Definition 3.6);

2. an isomorphism

d⊕

j=1

UC
f ,j

∼=→ U∨
f ⊗ C

for some one-dimensional C-vector spaces UC
f ,j (Proposition 4.13) and define

an action of UC
f ,j on H∗(X, ω)f ⊗ C by partial complex conjugation zj 	→ zj

(Definition 4.15).

The following conjecture predicts that these actions come from a single “motivic”

action that is defined rationally or even integrally.

Conjecture 1.1 (Conjectures 3.7, 4.16). There is a graded action � of the exterior algebra
∧∗ U∨

f on H∗(X, ω)f such that

1. the action of
∧∗ U∨

f ⊗ OE/pn is the same as that in (1) above, up to GLd(OE)

ambiguity;

2. the action of
∧∗ U∨

f ⊗ C is the same as that in (2) above, up to GLd(E)

ambiguity.

Moreover, H∗(X, ω)f is generated by f ∈ H0(X, ω)f over
∧∗ U∨

f .

The conjectures will be stated precisely in the main body of the paper.

Part 1 is a generalization of the main conjecture of Harris and Venkatesh

[29, Conjecture 3.1]. It should be seen as a 1st step toward establishing a p-adic con-

jecture, similar to Venkatesh’s [73] conjecture. In fact, our original motivation to study

the Stark unit group Uf for Hilbert modular forms was to generalize the conjecture of

Darmon–Lauder–Rotger [14] to elliptic curves over totally real fields. A p-adic version of

Conjecture 1.1 may explain the appearance of p-adic logarithms of Stark units therein.

Part 2 is similar to the main conjecture of Prasanna and Venkatesh

[56, Conjecture 1.2.1] but in the coherent (as opposed to singular) cohomology setting. We

discuss the precise relationship in Appendix A. As far as we know, it is new even when

F = Q. In the Hilbert case, it is also closely related to the study of period invariants

attached to Hilbert modular forms at the infinite places. Such period invariants had

previously been defined by Shimura [64, 66], Harris [26–28], and Ichino and Prasanna

[35] in cases where the weight of f is at least two at some of the infinite places. The
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4 A. Horawa

parallel weight one case is different because the form does not transfer to a quaternion

algebra ramified at any infinite place, so the periods at infinite places do not admit a

simple interpretation as periods of a holomorphic differential form on a Shimura curve,

or even as ratios of periods of holomorphic forms on quaternionic Shimura varieties.

Instead, we give specific linear combinations of the higher coherent cohomology

classes that we expect to be rational in coherent cohomology. The expressions involve

logarithms of units, which is natural because the adjoint L-value is noncritical at s = 1

in this case, so one should expect the periods to be of “Beilinson-type”.

Part 2 of the conjecture admits a natural generalization to partial weight one

Hilbert modular forms, which we discuss in Appendix A. In that case, however, the

motivic cohomology group in question does not admit an interpretation as a unit group.

These conjectures lead to many interesting questions about potential general-

izations to other reductive groups that we are currently pursing elsewhere. We were

also recently made aware of the forthcoming work of Gyujin Oh on this topic.

Next, we give a more explicit versions of Conjecture 1.1 in the cases [F : Q] = 1

and [F : Q] = 2 and summarize our evidence for them. For simplicity, we assume that

the automorphic representation associated with f is not supercuspidal at p = 2 (this

assumption avoids a potential factor of
√

2 and we expect it to be unnecessary; see

Remark 5.10).

The case [F : Q] = 1: modular curves. When [F : Q] = 1, X is a modular curve and

f is a classical modular form of weight one. This is the situation considered by Harris

and Venkatesh [29] and Conjecture 1.1 (1) specializes to their conjecture. Conjecture 1.1

(2) is its archimedean version and follows from Stark’s conjecture on special values of

Artin L-functions.

Theorem 1.2 (Corollary 5.4). Let f be a modular form of weight one. If f does not have

CM or the Fourier coefficients of f are not rational, assume Stark’s conjecture 2.9. Then

part 2 of Conjecture 1.1 is true and has the following explicit form: there is an action �

of
∧∗ U∨

f ⊗ E on H∗(X, ω)f such that given u∨
f ∈ U∨

f , the action

H0(X, ω)f

u∨
f �

−→ H1(X, ω)f

is given by

f 	→
ω∞

f

log |uf |
,
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Motivic Action for Hilbert Modular Forms 5

where uf ∈ UL is a unit in the splitting field L of the adjoint Artin representation of f ,

associated with u∨
f .

In fact, the rationality of
ω∞

f

log |uf | is equivalent to Stark’s conjecture for the trace 0

adjoint representation of f .

The case [F : Q] = 2: Hilbert modular surfaces. When [F : Q] = 2, X is a Hilbert

modular surface and f is a Hilbert modular form in two variables z1, z2. We give an

explication of part 2 of Conjecture 1.1 in this case and summarize our evidence for it.

Corollary 4.3 gives an explicit basis for H∗(X, ω)f ⊗ C:

f ∈ H0(X, ω)f

ω
σ1

f , ω
σ2

f ∈ H1(X, ω)f ⊗ C

ω
σ1,σ2

f ∈ H2(X, ω)f ⊗ C,

where we choose a fundamental unit ε such that ε1 < 0, ε2 > 0 and let

ω
σ1

f = f (ε1z1, ε2z2)y1

dz1 ∧ dz1

y2
1

, (1.2)

ω
σ2

f = f (ε2z1, ε1z2)y2

dz2 ∧ dz2

y2
2

, (1.3)

ω
σ1,σ2

f = f (−z1, −z2)y1y2

dz1 ∧ dz1

y2
1

dz2 ∧ dz2

y2
2

. (1.4)

Conjecture 1.1 (2) gives explicit linear combinations of these cohomology

classes that should be E-rational in cohomology. Specifically, there are four units

u11, u12, u21, u22 ∈ UL in the splitting field L of the adjoint Artin representation of f , and

we can form the Stark regulator matrix:

Rf =
(

log |τ(u11)| log |τ(u12)|
log |τ(u21)| log |τ(u22)|

)
, (1.5)

where τ : L ↪→ C is a complex embedding of L. We show that there is an explicit basis

u∨
1 , u∨

2 of U∨
f ⊗ E such that the action of u∨

1 and u∨
2 is given by

u∨
1 � f =

log |τ(u22)| · ω
σ1

f − log |τ(u21)| · ω
σ2

f

det Rf
∈ H1(X, ω)f ⊗ C, (1.6)

u∨
2 � f =

− log |τ(u12)| · ω
σ1

f + log |τ(u11)| · ω
σ2

f

det Rf
∈ H1(X, ω)f ⊗ C (1.7)
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6 A. Horawa

and the action of u∨
1 ∧ u∨

2 is given by

(u∨
1 ∧ u∨

2 ) � f =
ω

σ1,σ2

f

det Rf
∈ H2(X, ω)f ⊗ C. (1.8)

We then have the following explicit version of part 2 of Conjecture 1.1 for

[F : Q] = 2.

Conjecture 1.3 (Conjecture 4.17).

(a) A basis of H1(X, ω)f is given by

log |τ(u22)| · ω
σ1

f − log |τ(u21)| · ω
σ2

f

det Rf
,

− log |τ(u12)| · ω
σ1

f + log |τ(u11)| · ω
σ2

f

det Rf
.

(b) A basis of H2(X, ω)f is given by

ω
σ1,σ2

f

det Rf
.

A previous version of the manuscript incorrectly assumed that the matrix of the

isomorphism U∨
f ⊗C ∼=

d⊕
j=1

UC
f ,j is diagonal in certain natural bases. This led to a different

rationality statement, namely that some multiples of ω
σ1

f and ω
σ2

f are rational. We would

like to thank the anonymous referee for the previous version and Gyujin Oh for pointing

out that this claim may be false in general.

We next summarize our evidence for this conjecture. The theoretical evidence in

the case [F : Q] = 2 is summarized in the following theorem.

Theorem 1.4 (Corollary 5.16, Corollary 5.3). If the Fourier coefficients of f are not

rational, assume Stark’s Conjecture 2.9.

(a) The determinant of the basis u∨
1 � f , u∨

2 � f is E-rational, that is,

(u∨
1 � f ) ∧ (u∨

2 � f ) ∈ ∧2H1(X, ω)f ⊆ ∧2H1(X, ω)f ⊗ C.

(b) The cohomology class (u∨
1 ∧u∨

2 )�f is E-rational, that is, belongs to H2(X, ω)f .
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Motivic Action for Hilbert Modular Forms 7

In fact, the rationality of (u∨
1 ∧ u∨

2 ) � f is equivalent to Stark’s conjecture for

the trace 0 adjoint representation of f . Therefore, we may think of Conjecture 1.3 as a

refinement of Stark’s conjecture for this representation. We thank Samit Dasgupta for

suggesting this phrasing.

See Section 5 for generalizations of these results and further evidence in the case

[F : Q] > 2.

Numerical evidence. The next goal of the paper is to verify the rationality of the

classes

u∨
1 � f , u∨

2 � f ∈ H1(X, ω)f ⊗ C (1.9)

numerically. These cohomology classes are a linear combination of ω
σ1

f , ω
σ2

f , which are

defined in equations (1.2) and (1.3) as Dolbeault classes. We identify them with sheaf

cohomology classes via the Dolbeault and the GAGA theorems. To check that they are

E-rational is to show that the resulting sheaf cohomology classes come from base

change of cohomology classes in H1(X, ω)f . The translation between Dolbeault and sheaf

cohomology is not explicit enough to yield a satisfactory criterion for rationality. Worse

yet, there seems to be no natural automorphic criterion to verify rationality. Indeed, the

integral representations of Rankin and Selberg or triple product L-functions for Hilbert

modular forms only involve cohomology classes ωJ
f where J is the set of places where f

is dominant (see [26] for details). Since parallel weight one forms are never dominant at

any place, the cohomology classes we are interested in do not feature in these integral

representations.

Instead, we consider an embedded modular curve ι : C ↪→ X and check computa-

tionally in some cases that the restriction of u∨
i � f for i = 1, 2 to C is rational, that is,

ι∗
(
u∨

i � f
)

∈ H1(C, ι∗ω) ⊗ E. (1.10)

The drawback of this approach is that this restriction is nonzero only if the Hilbert

modular form f is the base change of a modular form over Q (see, e.g., Proposition 6.12).

Let us hence assume that f is the base change of a weight one modular form f0. Then

Conjecture 1.3 (a) can be restated in the simpler form (Conjecture 6.7): the classes

ω
σ1

f + ω
σ2

f

log |uf0
| ∈ H1(X, ω)f ⊗ C, (1.11)

ω
σ1

f − ω
σ2

f

log |uF
f0

|
∈ H1(X, ω)f ⊗ C (1.12)
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8 A. Horawa

belong to the rational structure H1(X, ω)f , where uf0
is the unit associated with the

adjoint representation of f0 and uF
f0

is a unit associated with a twist of the adjoint

representation of f0. Finally, we check that this conjecture is equivalent to the single

rationality statement:

ι∗(ωσ1

f )

log |uf0
| ∈ H1(C, ι∗ω) ⊗ E ⊆ H1(C, ι∗ω) ⊗ C (1.13)

as long as ι∗(ωσ1

f ) �= 0 (cf. Conjecture 6.11 and Proposition 6.14).

We develop an algorithm to compute the trace of this cohomology class, that is,

an integral on the modular curve C(C) (see Conjecture 6.11). We use results of Nelson

[52] to derive an expression for this integral (Theorem 6.20) that may be of independent

interest. To use it, we give explicit formulas for the q-expansion of f at other cusps when

the level of f is square-free (Theorem 6.25), generalizing results of Asai [2]. Finally, we

compute the integral numerically up to at least fifteen digits of accuracy to give evidence

for equation (1.12) in several cases (Tables 1 and 2).

The paper is organized as follows.

• Section 2 briefly discusses Stark’s conjecture, introduces the unit group Uf ,

computes its rank, and gives a relation to a motivic cohomology group.

• Section 3 introduces the derived Hecke action and the generalization of

the conjecture of Harris and Venkatesh [29] to the Hilbert modular case

(Conjecture 1.1 (1)).

• Section 4 introduces partial complex conjugation operators on cohomology

and the archimedean conjectures (Conjectures 1.1(2) and 1.3).

• Section 5 discusses how the results of Stark and Tate give evidence for the

archimedean conjecture, proving Theorems 1.2 and 1.4.

• Section 6 discusses base change cases, proves Theorems 6.20 and 6.25, and

provides numerical evidence for the archimedean conjecture.

• Appendix A explains how Conjecture 1.1 (2) fits in the framework of Prasanna

and Venkatesh [56] and gives a version of this conjecture for partial weight

one Hilbert modular forms.

Sections 3 and 4 are independent of one another and hence may be read in any

order. The reader who wants to understand the full statements of the two conjectures

as fast as possible may just skim Section 2.3 and proceed directly to these two

sections.
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Motivic Action for Hilbert Modular Forms 9

2 Stark Units and Stark’s Conjecture

The goal of this section is to introduce the unit group Uf mentioned in the introduction,

compute its rank, and discuss its relation to motivic cohomology. We start by briefly

recalling the definition of Stark units and Stark’s conjecture. We then compute the unit

group explicitly in the case of Hilbert modular forms.

2.1 Stark units

We follow [67] to introduce the group of Stark units associated with an Artin representa-

tion. We caution the reader that the representations in loc. cit. are right representations,

whereas we consider left representations, which leads to some discrepancies in nota-

tion. See also Dasgupta’s excellent survey [16].

Consider any Artin representation, that is, a representation of the absolute

Galois group GQ that factors through a finite Galois extension L of Q:

where M is a free OE-module of rank n and E is a finite extension of Q. We often write

G for the Galois group GL/Q and UL for the group of units of OL.

Definition 2.1. The group of Stark units associated with 	 : GL/Q → GL(M) is

UL[	] = HomOE [G](M, UL ⊗Z OE).

We will soon check that UL[	] depends only on 	 and not on the choice of L. To

describe the group UL[	] in more detail, we first need to understand the structure of UL

as a GL/Q-module.

Fix an embedding τ : L ↪→ C that induces a complex conjugation c0 of L. Note

that rank UL + 1 = #(G/〈c0〉) by Dirichlet’s units theorem.

Lemma 2.2 (Minkowski’s unit theorem, [67, Lemma 2]). There is a unit ε of L, fixed by

c0, such that there is only one relation among the rank UL + 1 units εσ−1
for σ ∈ G/〈c0〉,
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10 A. Horawa

and this relation is

∏

σ∈G/〈c0〉
εσ−1 = ±1.

Definition 2.3. A unit whose existence is guaranteed by Lemma 2.2 is called a

Minkowski unit of L with respect to τ : L ↪→ C.

Corollary 2.4. The log map induces a G-equivariant isomorphism:

UL/Utors
L

∼=−→ Z[log(|τ(εσ−1
)|) | σ ∈ G/〈c0〉]〈

∑
σ∈G/〈c0〉

log(|τ(εσ−1
)|)
〉 ,

(the numerator on the right-hand side is the free abelian group in those variables) and

there is also a G-equivariant isomorphism:

IndG
〈c0〉 Z

∼=→ Z[log(|τ(εσ−1
)|) | σ ∈ G/〈c0〉],

(f : G/〈c0〉 → Z) 	→
∑

σ∈G/〈c0〉
f (σ 〈c0〉)[log(|τ(εσ−1

)|)].

In particular,

UL/Utors
L

∼= IndG
〈c0〉 Z − Z as a representation of G = GL/Q.

We now compute the rank of UL[	] and find a natural basis for UL[	]⊗OE
E, given

a basis of ME = M ⊗OE
E. Let

a = dimE M〈c0〉
E . (2.1)

Note that a = (Tr	(1) + Tr	(c0))/2, so since any two complex conjugations of L are

conjugate, this number is independent of the choice of c0. We write b = n − a where

n = dimE ME .

Proposition 2.5. Suppose 	 does not contain a copy of the trivial representation. Then,

UL[	] ⊗ E ∼= (M〈c0〉
E )∨

and hence rank UL[	] = a.
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Motivic Action for Hilbert Modular Forms 11

Moreover, if m1, . . . , ma is a basis of M〈c0〉
E and we complete it to a basis

m1, . . . , mn of ME such that 	(c0) =
(

Ia 0

0 −Ib

)
in this basis, then the corresponding

basis of UL[	] ⊗OE
E consists of the homomorphisms ϕ1, . . . , ϕa defined by

ϕi(mj) =
∏

σ∈G

(εσ−1
)aij(σ ) ∈ UL ⊗ E, (2.2)

where

	(σ) = (aij(σ ))i,j in the basis m1, . . . , mn.

Proof. We have that

UL[	] ⊗OE
E = HomE[G](ME , UL ⊗Z E)

= HomE[G]

(
ME , IndG

〈c0〉 E − E
)

Corollary 2.4

= HomE[G]

(
ME , IndG

〈c0〉 E
)

	 does not contain the trivial rep.

= HomE[〈c0〉](ME , E) Frobenius reciprocity

= (M〈c0〉
E )∨.

Now, pick a basis m1, . . . , mn of M such that 	(c0) =
(

Ia 0

0 −Ib

)
in it. By definition of the

matrix (aij(σ ))i,j,

	(σ)mj =
n∑

k=1

akj(σ )mk.

Hence, a map ϕ ∈ HomOE
(M, UL ⊗Z OE) is G-equivariant if and only if

(ϕ(mj))
τ = ϕ(	(τ)mj) = ϕ

(
n∑

k=1

akj(τ )mk

)
=

n∏

k=1

ϕ(mk)akj(τ ) (2.3)

(where the group of units is written multiplicatively).

We check that each ϕi defined above satisfies this equation. Let

uij =
∏

σ∈G

(εσ−1
)aij(σ ) ∈ UL ⊗ OE .
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12 A. Horawa

Then,

uτ
ij =

(
∏

σ∈G

(εσ−1
)aij(σ )

)τ

=
∏

σ∈G

(ετσ−1
)aij(σ )

=
∏

σ ′∈G

(ε(σ ′)−1
)aij(σ

′τ) for σ ′ = στ−1

=
∏

σ ′∈G

(ε(σ ′)−1
)

n∑
k=1

aik(σ ′)akj(τ )

=
n∏

k=1

(
∏

σ∈G

(εσ−1
)aik(σ )

)

︸ ︷︷ ︸
uik

akj(τ )

for σ ′ = σ

=
n∏

k=1

u
akj(τ )

ik .

This shows that the functions ϕi given by ϕi(mj) = uij are G-equivariant (2.3). Indeed,

ϕi(mj)
τ = uτ

ij =
n∏

k=1

u
akj(τ )

ik =
n∏

k=1

ϕi(mk)akj(τ ).

Hence, ϕ1, . . . , ϕa ∈ UL[	].

Tracing through the isomorphism

UL[	] ⊗OE
E ∼= (M〈c0〉

E )∨

established above, we see that

ϕi 	→ m∨
i for i = 1, . . . , a,

where m∨
i is a basis of M∨

E dual to the basis mi of ME . Since this is an isomorphism and

m1, . . . , ma is a basis of M〈c0〉
E , ϕ1, . . . , ϕa is a basis of UL[	] ⊗ E. �

Corollary 2.6. Suppose 	 : GQ → GL(M) is an Artin representation. Then UL[	] ⊗ E is

independent of the choice of splitting field L/Q.
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Motivic Action for Hilbert Modular Forms 13

Proof. For an extension L′/L, the natural inclusion UL ↪→ UL′ induces an inclusion

UL[	] → UL′ [	′]. By Proposition 2.5, dim UL[	] ⊗ E = dim UL′ [	′] ⊗ E, which completes the

proof. �

We will later be interested in the reduction of UL[	] modulo pn for a prime p of E.

For now, we just remark that the following follows from Proposition 2.5.

Corollary 2.7. Let t = #Utors
L and p be a prime not dividing t . Then UL[	] ⊗Z Zp[1

t ] is a

free OE ⊗Z Zp[1
t ]-module of rank d. Hence, for a prime p of E above p, UL[	] ⊗ OE/pn is a

free (OE/pn)-module of rank d.

Proof. This follows immediately from Proposition 2.5 and the structure theorem for

modules over PIDs. �

2.2 Stark’s conjecture [67, 69]

We give a brief summary of the results and conjectures on special values of Artin

L-functions.

For any Artin representation 	 : GL/Q → GL(M) where M is an n-dimensional

E-vector space and an embedding E ↪→ C, we consider the L-function L(s, 	) of 	. If we

need to make the embedding ι : E ↪→ C explicit, we write L(s, 	, ι) for L(s, 	).

The completed L-function is then

�(s, 	) =
(

f	

πn

)s/2


(s/2)a
((s + 1)/2)bL(s, 	), (2.4)

where

f	 = Artin conductor of 	, (2.5)

a = dimE M〈c0〉
E , (as above) (2.6)

b = n − a. (2.7)

It satisfies a functional equation of the form

�(1 − s, 	) = W(	)�(s, 	),

where |W(	)| = 1.
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14 A. Horawa

Stark gives a formula for the special value of L at s = 1 (or, equivalently, the

residue of the pole at s = 0). Associated with the units uij in Proposition 2.5 is a

regulator defined in terms of their logarithms.

Fix an embedding τ : L ↪→ C, and let c0 be the complex conjugation associated

with τ . Define

log: C ∼= L ⊗τ C → R

z 	→ log |z|,

and extend it linearly to

log: (L ⊗τ C) ⊗ (E ⊗ι C) → C

z ⊗ λ 	→ λ log |z|.

Thus, for x ⊗ y ∈ L ⊗ E, we write

log |τ ⊗ ι(x ⊗ y)| = ι(y) · log |τ(x)| ∈ C. (2.8)

We often make the choice of embeddings ι and/or τ implicit in the notation and write

simply log |τ(−)| or log |(−)| for log |τ ⊗ ι(−)|.

Definition 2.8. The Stark regulator matrix associated with 	 (and the embeddings

τ : L ↪→ C and ι : E ↪→ C) is

R(	) = (| log(τ ⊗ ι(uij))|)1≤i,j≤a.

Abstractly, there is a perfect pairing

UL[	] × Mc0 → C

(ϕ, m) 	→ log(|τ ⊗ ι(ϕ(m))|)

via Proposition 2.5 and R(	) is the matrix of this pairing.

Conjecture 2.9 (Stark [67, 69]). If 	 does not contain the trivial representation, then

L(1, 	) = W(	)2aπb

f 1/2
	

· θ(	) · det R(	),

for some θ(	) ∈ Q(Tr 	)×, where Q(Tr 	) is the field generated by the values of the

character of 	.
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Motivic Action for Hilbert Modular Forms 15

Remark 2.10. The assumption that 	 does not contain the trivial representation is

completely innocuous. Indeed, L(s, χ1,L) = ζL(s), so the value at s = 1 is given by the

class number formula for L. Moreover, L(s, 	1 ⊕ 	2) = L(s, 	1) · L(s, 	2).

Stark’s conjecture is known for representations with rational characters.

Theorem 2.11 (Stark [67, Theorem 1], Tate [69, Corollary II.7.4]). Conjecture 2.9 is true

for representations 	 whose characters take rational values.

2.3 Stark units for Hilbert modular forms

We now discuss Stark units for Artin representations associated with weight one Hilbert

modular forms. Let F be a totally real field. By [58], normalized weight one Hilbert

modular eigenforms f with Fourier coefficients in OEf
correspond to 2-dimensional odd

irreducible Artin representations

where M is a OE-module of rank 2 and E is a finite extension of Ef . By enlarging L if

necessary, we may assume that L is Galois over Q. We write G = GL/Q and G′ = GL/F for

simplicity.

As in the previous section, fix an embedding τ : L ↪→ C that induces a complex

conjugation c0 of L. Note that c0 necessarily lies in G′ because F is totally real. Since 	f

is an odd representation,

	f (c0) is conjugate to

(
1 0

0 −1

)
.

Consider the adjoint representation of 	, that is,

Ad 	f : GL/F → GL(End(M))

σ 	→ (T 	→ 	(σ)T	(σ)−1).
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16 A. Horawa

We note that if T has trace 0, then so does 	(σ)T	(σ)−1. The representation is hence

reducible, and we define the trace zero adjoint representation as

Ad0 	f : GL/F → GL(End0(M)),

where End0(M) = {T : M → M | Tr T = 0}. This is a 3-dimensional representation.

Choosing a basis of ME such that 	(c0) =
(

1 0

0 −1

)
, we see that

(Ad 	)(c0)

(
a b

c −a

)
=
(

1 0

0 −1

)(
a b

c −a

)(
1 0

0 −1

)
=
(

a −b

−c −a

)
.

Hence, rank
(
(Ad0 	f )

〈c0〉
)

= 1.

Definition 2.12. Let UL be the units of L and O = OE be the ring over which 	f is

defined. The group of Stark units associated with f is

Uf = HomO[GL/F ](Ad0 	f , UL ⊗Z O).

We sometimes write Ad∗ 	 = HomO[GL/F ](Ad0 	f ,O), so that Uf = Ad∗ 	 ⊗Z[GL/F ] UL.

Write σ1, . . . , σd ∈ G for representatives of G/G′. Having fixed an embedding

τ : L ↪→ C, we have embeddings τj = τσj : L ↪→ C. We sometimes identify σj with the

embedding τj|F : F ↪→ R. We write cj = σjc0σ−1
j for the complex conjugation associated

with τj.

Corollary 2.13. Suppose that 	f is irreducible. Then,

Uf = UL

[
IndG

G′ Ad0 	f

]

is the group of Stark units associated with the 3d-dimensional Artin representation

IndG
G′ Ad0 	f . Therefore,

Uf
∼= ((IndG

G′ Ad0 	f )
〈c0〉)∨ ∼=

d⊕

j=1

((Ad0 	f )
〈cj〉)∨,
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Motivic Action for Hilbert Modular Forms 17

and hence,

rank Uf = d.

Moreover, for each j = 0, . . . , d, fix a basis m1,j, m2,j, m3,j of Ad0 	f such that

	(cj) =
(

I1 0

0 −I2

)
in this basis, and consider the basis

{σjmi,j | j = 1, . . . , d, i = 1, 2, 3} of IndG
G′ Ad0 	.

Let a0(σ ) be the matrix of Ad0 	f (σ ) in the basis {m0,i}, and write Pj for the change

of basis matrix from {mi,0} to {mi,j}. Then there is a basis ϕ1, . . . , ϕd of Uf defined by

Proposition 2.5 such that

ϕj(σkm1,k) =
∏

σ ′∈G′

(
ε
(σkσ ′σ−1

j )−1
)(Pka0(σ ′)P−1

j )11

Proof. We have that

Uf = HomO[G′](Ad0 	f , UL ⊗Z O)

= HomO[G](IndG
G′ Ad0 	f , UL ⊗Z O) Frobenius reciprocity

= UL[IndG
G′ Ad0 	f ].

Since 	f is irreducible, Ad0 	f does not contain a copy of the trivial representa-

tion. We may hence apply Proposition 2.5 to the Artin representation IndG
G′ Ad0 	f to get

the result. Finally,

(IndG
G′ Ad0 	f )

c0 =
d⊕

j=1

(
σj Ad0 	f

)c0

=
d⊕

j=1

(
Ad0 	f

)cj
,

completing the proof of the 1st part.
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18 A. Horawa

It remains to prove the final assertion. To compute the action of an element

σ ∈ G on σj Ad0 	, we find σk and σ ′ ∈ G′ such that σσj = σkσ ′ and send

σjm 	→ σk(σ ′m) ∈ σj′ Ad0 	f .

By Proposition 2.5, for 1 ≤ j, k ≤ d,

ϕj(σkm1,k) = ujk =
∏

σ∈G

(εσ−1
)ajk(σ ),

where ajk(σ ) is the matrix of IndG
G′ Ad0 	(σ) in the chosen basis. Then, for 1 ≤ j, k ≤ d,

ajk(σ ) =

⎧
⎨
⎩

(Pka0(σ ′)P−1
j )11 if σ−1

k σσj = σ ′ for some σ ′ ∈ G′,

0 otherwise.

Therefore,

ujk =
∏

σ ′∈G′

(
ε
(σkσ ′σ−1

j )−1
)ajk(σkσ ′σ−1

j )

=
∏

σ ′∈G′

(
ε
(σkσ ′σ−1

j )−1
)(Pka0(σ ′)P−1

j )11

,

as claimed. �

Remark 2.14. The decomposition in Corollary 2.13 generalizes to any plectic Artin

representation [51], that is, an Artin representation of GF for a totally real field F. We

have not used anything specific to Hilbert modular forms.

Remark 2.15. There is also a description of Uf similar to [14]. For a chosen prime

p of F, for each ϕσ , we may consider the component of ϕσ (Ad0 	f ) ⊆ UL on which a

chosen Frobenius Frobp ∈ GL/F acts by α/β where α and β are the ordered eigenvalues

	f (Frobp). As in loc. cit., this space should be one-dimensional under extra assumptions;

for example, that α �= −β. This description may be useful when considering a p-adic

analogue of the conjecture, but we omit this here entirely.

2.4 Stark’s conjecture for Hilbert modular forms

We now state Stark’s conjecture for the trace zero adjoint representation associated with

a Hilbert modular form of parallel weight one.
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Motivic Action for Hilbert Modular Forms 19

Definition 2.16. The Stark regulator matrix associated with (the trace zero adjoint

representation of) f is

Rf = (log(|ujk|))1≤j,k≤d,

with

ujk =
∏

σ ′∈G′

(
ε
(σkσ ′σ−1

j )−1
)(Pka0(σ ′)P−1

j )11

(notation as in Corollary 2.13). If we need to specify f , we write u
f
jk for ujk.

Proposition 2.17. Stark’s conjecture 2.9 for Ad0 	f is equivalent to the following

statement:

L(1, Ad0 	f ) ∼E×
π2d

f 1/2
	

· det Rf ,

where f	 is the conductor of 	 = IndG
G′ Ad0 	f .

Remark 2.18. In Section 5, we will relate the adjoint L-function to the Petersson inner

product of f . This will give evidence for our archimedean conjecture (Conjecture 4.16).

2.5 Examples

The Stark unit group can be determined explicitly in many cases. We provide a few

illustrative examples.

Example 2.19 (Heegner units). The 1st example of Stark units comes from the theory

of elliptic units.

Let F = Q and K/Q be an imaginary quadratic extension. For any Dirichlet

character χ : GH/K → C× of K, where H/K is an abelian extension, there is an associated

weight one form f = θχ , the theta function of χ , such that

L(s, χ) = L(s, f ).

The Artin representation 	 associated with f is the 2D representation:

	f = Ind
GH/Q

GH/K
χ = {φ : GH/Q → C | φ(στ) = χ(σ)φ(τ) for σ ∈ GH/K}.
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20 A. Horawa

For the nontrivial element c ∈ GK/Q, we can define a character χc(σ ) = χ(cσc). Writing 1

for the trivial representation and χ0 for χ · (χc)−1, we see that

Ad0 	f
∼= 1 ⊕ Ind

GH/Q

GH/K
χ0.

Since the unit group does not contain a copy of the trivial representation, this shows

that

Uf
∼= UH [χ0],

the χ0-isotypic component of the units of H. For a Minkowski unit ε ∈ O
×
H , the unit

associated with f is

uf = uχ0
=

∏

σ∈GH/K

(εσ−1
)χ0(σ ).

In the literature, this unit is often written additively as uχ0
=

∑
σ∈GH/K

χ0(σ )−1uσ ∈ UH [χ0].

Elliptic units, constructed using singular values of modular functions, provide an

explicit construction of Minkowski units u ∈ O
×
H , and hence of Stark units uf .

The logarithms of these units appear as special values of the L-function of χ0,

via Kronecker’s 2nd limit formula. This also has a p-adic analogue: the p-adic logarithm

of uχ0
accounts for the special value of the Katz p-adic L-function evaluated at the finite

order character χ−1
0 , which is outside of the range of interpolation [40, 10.4, 10.5]. More

generally, Darmon et al. [14, Conjecture ES] conjecture that p-adic logarithms of other

Stark units associated with weight one modular forms appear in a formula for values of

triple product p-adic L-functions outside the range of interpolation.

The following example is suitable for computations in the case F = Q. In fact, it

is the example where Harris and Venkatesh [29] perform their computations. It is also

a simple example where our archimedean conjecture (Conjecture 4.16) can be proved

(Corollary 5.4).

Example 2.20 (Units in cubic fields, F = Q). This example is discussed in [29, Sec. 5.6],

but we recall it here in detail to provide context for the generalizations to [F : Q] = 2 we

make below.
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Motivic Action for Hilbert Modular Forms 21

Let K be a cubic field of signature [1, 1], and write L for the Galois closure of K.

Then GL/Q
∼= S3 and we may assume that K is the fixed field L(12) of the action of the

cycle (12) ∈ S3 on L.

To give a 2-dimensional representation of GL/Q, we need to give a 2-dimensional

representation of S3. There is a unique irreducible 2-dimensional representation: the

regular representation 	 : GQ � S3 → GL(M) ∼= GL2(Z), obtained by considering the

action of S3 on

M =
{
(x1, x2, x3) ∈ Z3

∣∣∣
∑

xi = 0
}

by permuting the coordinates.

In the basis e1 = (1, 0, −1), e2 = (0, 1, −1) of M, we have that

σ = (12) 	→ S =
(

0 1

1 0

)
,

τ = (123) 	→ T =
(

−1 −1

1 0

)
.

Note that 	 is an odd Galois representation since det S = −1. Therefore, there is a weight

one modular form f corresponding to 	.

Recall that

Uf = HomGL/Q
(Ad0 	, UL).

Lemma 5.7 in [29] shows that

Uf ⊗ Z

[
1

6

]
∼=→ U(1)

K ⊗ Z

[
1

6

]
(2.9)

(ϕ : Ad0 	 → UL) 	→ ϕ(S),

where U(1)
K are the norm 1 units of K.

We recall the proof here. By definition,

Ad0 	 ∼= End0(M),

with the action of S3 on the right-hand side given by conjugation. Note that each element

of S3 gives an element of End(M) and we may use the S3-invariant projection

End(M) → End0(M)

A 	→ A − (1/2)Tr(A)
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22 A. Horawa

to get a spanning set for Hom0(M, M) this way. Since the lengths of cycles are

conjugation-invariant, we see that

Hom0(M, M) ∼= span(images of (123), (132)) ⊕ span(images of (12), (13), (23)).

One checks that span(images of (123), (132)) = Z[e], where e ∈ Hom0(M, M) is the

common image of (123) and (132). We write W = span(images of (12), (13), (23)). Hence,

Ad0 	 ∼= Z[e] ⊕ W.

Now, for any S3-representation V,

• HomS3
(Z[e], V) = Vsgn, the sgn-isotypic part of V,

• HomS3
(W, V) ∼= {v ∈ V(12) | v + (123)v + (132)v = 0} via ϕ 	→ ϕ(S).

This shows that

Uf
∼= U

sgn
L ⊕ U(1)

K .

Since Q(
√

disc(L)) = L〈(123)〉, U
sgn
L = UQ(

√
disc(L)) is a finite group of order at most 6.

Hence,

Uf ⊗ Z

[
1

6

]
∼= U(1)

K ⊗ Z

[
1

6

]
.

The following is the simplest example of explicit Stark units over real quadratic

fields. It is the base change of Example 2.20 to a real quadratic field and one of the

examples in which we will do the numerical computations later on.

Example 2.21 (Units in cubic extensions of F for [F : Q] = 2). Consider K as in Example

2.20, and consider a quadratic extension F of Q. Then KF is a cubic extension of F of

signature [2, 2]:
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Motivic Action for Hilbert Modular Forms 23

As above, we consider the Galois representation 	 : GLF/F
∼= S3 → GL(M). If f is the

weight one Hilbert modular form associated with 	, then one can check that

Uf ⊗ Z[1/6] ∼= HomGLF/F
(Ad0 	, ULF) ⊗ Z[1/6]

∼= U
sgn
LF ⊗ Z[1/6] ⊕ {u ∈ UKF | NKF

F u = 1} ⊗ Z[1/6]

∼= ({u ∈ UK | NK
Qu = 1} ⊕ {u ∈ UKF | uσ = u−1, NKF

F u = 1}) ⊗ Z[1/6],

where we write GF/Q = 〈σ 〉. The Hilbert modular form f is the base change of the

modular form f0 associated with K in the previous example. We will later prove a more

general result of this form in Corollary 6.5.

Finally, we present the “simplest” nonbase change example where explicit Stark

units are available over real quadratic fields. It is a direct analogue of Example 2.20,

but the Galois theory is more complicated.

Example 2.22 (Units in cubic extensions of F for [F : Q] = 2, nonbase change). We

generalize Example 2.20 to the case [F : Q] = 2 and a cubic extension K of F of signature

[2, 2]:

We may assume that K = LS3×〈(12)〉. Consider the representation

	 = sgn�reg: S2
3 → GL2(Z),

(σ , (12)) 	→ sgn(σ ) ·
(

0 1

1 0

)
,

(σ , (123)) 	→ sgn(σ ) ·
(

−1 1

−1 0

)
.

Then 	 corresponds to a Hilbert modular form f of parallel weight one.
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24 A. Horawa

As before,

Ad0 	 ∼= Z[e] ⊕ W

and for any S2
3-representation V,

• HomS2
3
(Z[e], V) ∼= Vsgn� sgn,

• HomS2
3
(W, V) ∼= {v ∈ VS3×(12) | v + (1, (123))v + (1, (132))v = 0} with the

isomorphism given by sending ϕ : W → V to ϕ(S).

Therefore,

Uf = HomS2
3
(Ad0 	, UL)

= Hom(Z[e], UL) ⊕ Hom(W, UL)

= (U
sgn� sgn
L ) ⊕ {u ∈ UK | NK

F u = 1}.

We claim that the group U
sgn� sgn
L is torsion. If u ∈ U

sgn� sgn
L , then u is fixed

by a subgroup H ⊆ S2
3 of order 18 of elements (σ , σ ′) such that sgn(σ ) = sgn(σ ′).

One can check that LH = F(
√

disc(L/F)), which is a CM extension of F. Therefore, if

Gal(F(
√

disc(L/F)/F)) ∼= 〈τ 〉

U
sgn� sgn
L

∼= (UF(
√

disc(L/F)))
τ=−1.

Since F(
√

disc(L/F))/F is CM, the ranks of the two unit groups are equal. On the other

hand, if u ∈ UF(
√

disc(L/F)))
τ=−1 was a non-torsion element, then u would generate an

infinite subgroup of UF(
√

disc(L/F)))
τ=−1 that does not belong to UF . This is a contradiction.

Finally, let N be the order of the torsion group U
sgn� sgn
L . Then,

Uf ⊗ Z[1/N] ∼= {u ∈ UK | NK
F u = 1} ⊗ Z[1/N]. (2.10)

As expected by Corollary 2.13 this is a group of rank 2. In terms of the notation of

Definition 2.16, the units u11, u12 give a basis of the last space. Identifying the units

u21, u22 seems more difficult.

2.6 Comparison with motivic cohomology

This section is not used in the remainder of this paper. The general conjectures of

Venkatesh [73] predict the action of the dual of a motivic cohomology group associated
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Motivic Action for Hilbert Modular Forms 25

with the coadjoint motive of f . We identify this motivic cohomology group with the

group of Stark units Uf , analogously to [29, Sec. 2.8]. Some of this section is based on

standard conjectures.

2.6.1 Motivic cohomology

Let k be any number field and Ok be its ring of integers. (In general, Ok could be any

Dedekind domain and k its field of fractions). Let E be a field of characteristic 0.

For any Chow motive M defined over k with coefficients in E, we may define

motivic cohomology groups (cf. [5] or [47, Definition 3.4])

Hr
Mk

(M, E(n)),

which are equipped with specialization maps to various cohomology theories, including

étale cohomology:

Hr
Mk

(M, E(n)) ⊗ Ep → Hr
ét(M, Ep(n)).

Scholl [60, Theorem 1.1.6] proved that these have a subspace of integral classes

Hr
MOk

(M, E(n)) ⊆ Hr
Mk

(M, E(n)).

We will be concerned with the case r = 1, n = 1. For the trivial motive M = k,

conjecturally,

H1
MOk

(k, E(1)) ∼= Uk ⊗ E. (2.11)

This statement is certainly true in all realizations; see, for example, [50, 4.3] or

[47, Corollary 4.2].

2.6.2 Motivic cohomology of the coadjoint motive

Conjecturally, there is a 3-dimensional Chow motive Mcoad with coefficients in E, the

coadjoint motive of f , associated with the dual of the trace zero adjoint representation,

Ad∗ 	f . By definition, for any prime p of E, its p-adic étale realization is isomorphic to

H•
λ(Mcoad ×Q Q, Ep)

∼= Ad∗ 	f ⊗E Ep
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26 A. Horawa

(concentrated in cohomological degree 0). Without loss of generality, we assume that

Mcoad is defined over F (and not just Fλ).

Remark 2.23. Motives associated with Hilbert modular forms were constructed in [4]

in some cases where the weights are cohomological. Since weight one Hilbert modular

forms are not cohomological, there is no known construction of the motive, but we

assume that (at least) the coadjoint motive exists.

According to [56, 73], we should consider the motivic cohomology group

H1
MOF

(Mcoad, E(1)).

There is a natural map

H1
MOF

(Mcoad, E(1)) → H1
MOL

(Mcoad, E(1))GL/F

and we will work with the codomain instead. According to [29, (2.8)], this map should

be an isomorphism. In the proof of Proposition 2.24 below, we check this in the étale

realization (the induced map is denoted by i).

For a prime p of E, the p-adic étale realization map:

H1
MOF

(Mcoad, E(1)) ⊗ Op → H1
f (F, (Ad∗ 	f ⊗ Op)(1))

is conjecturally an isomorphism [6, 5.3(ii)]. Here, H1
f denotes the Bloch–Kato [6] Selmer

group. (We apologize for the clash of notation with the Hilbert modular form f and hope

that this does not cause confusion.) We compute the last group.

Proposition 2.24. We have that

H1
f (F, (Ad∗ 	f ⊗ Op)(1)) ∼= Uf ⊗ Q ⊗ Op

for all p such that Np is coprime to [L : F].

Proof. This argument is adapted from [29, Lemma 4.5]. We claim that

H1
f (GF , Ad∗ 	f ⊗ Op)

∼= (UL ⊗ Q ⊗ Ad∗ 	f ⊗ Op)
GL/F .
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Motivic Action for Hilbert Modular Forms 27

Recall that (UL ⊗ Ad∗ 	f )
GL/F = Uf by definition, so this will prove the proposition.

We write Ad∗ 	p for Ad∗ 	f ⊗ Op for simplicity. The (global) Bloch–Kato Selmer

group H1
f is defined by the short exact sequence:

where H1
f (Fv, Ad∗ 	p(1)) are the local Bloch–Kato Selmer groups. The restriction maps to

the subgroup GL/L ⊆ GF/F give a commutative diagram

with exact rows. Since Ad∗ 	p(1) is trivial as a GL/L-representation, we have that

(
H1

f (L, Ad∗ 	p(1))
)GL/F ∼=

(
Ad∗ 	p ⊗Op

H1(L,Op(1))
)GL/F

∼=
(
Ad∗ 	p ⊗Op

UL ⊗ Op ⊗ Q

)GL/F
,

so we just need to show that the map i is an isomorphism.

Since Np is coprime to [L : F], the restriction map j is an isomorphism by a

general group cohomology result [62, I.2.4]. By the snake lemma, this shows that i is

also injective.

To show that it is surjective, we must show that k is injective. In fact, for a place

w of L above a place v of F, the restriction map

H1(Fv, Ad∗ 	p(1))

H1
f (Fv, Ad∗ 	p(1))

→
H1(Lw, Ad∗ 	p(1))

H1
f (Lw, Ad∗ 	p(1))

is split by the corestriction map divided by [Lw : Fv] (since [Lw : Fv] is invertible in Op).

�
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28 A. Horawa

3 Derived Hecke Operators on the Special Fiber

Let

• f be a normalized Hilbert modular eigenform of parallel weight one, new of

level N, with coefficients in the ring OEf
;

• 	 = 	f be the associated Artin representation, defined over O = OE where E

is a finite extension of Ef ;

• Uf be the group of Stark units, which has rank d = [F : Q] over O;

• p be a prime of OE such that (p) = p ∩ Q has good reduction in F and p is

coprime to N, and let k = OE/pn.

We consider a smooth, compact, integral model X = X1(N) for the Hilbert

modular variety associated with F and the level 
1(N) (the level of f ). Such integral

models for the toroidal compactifications with the level structures considered here were

developed in [18], following the standard methods of Rapoport [57]. They are defined

over Z[1/NF/QN], where NF/Q denotes the norm from F to Q. See also [10], [17], or [24] for

surveys on Hilbert modular varieties and Hilbert modular forms.

Let ω be the Hodge bundle on the integral Hilbert modular surface XZ[1/NF/QN],

so that

f ∈ H0(XZ[1/NF/QN], ω) ⊗Z OEf
.

In this section, we construct an action of U∨
f ⊗OE

k on the cohomology space

(H∗(XZ[1/NF/QN], ω) ⊗Z OE)f ⊗OE
k ∼= H∗(Xk, ω)f

via derived Hecke operators on the special fiber and conjecture that it lifts to OE . This

is an analogue of the Harris–Venkatesh [29] conjecture for the coherent cohomology of

the Hodge bundle on Hilbert modular varieties.

Recall (cf. Section 2.3) that the Artin representation associated with f factors

through a finite Galois extension L/F and has coefficients in the integers OE of a number

field E, that is, 	f : Gal(L/F) → GL2(OE). Let q > 5 be a prime and q be a prime of F

above it such that Nq ≡ 1 (pn). We fix a choice of a prime ideal Q of L above q. We write

G′ = Gal(L/F) and G = Gal(L/Q).
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Motivic Action for Hilbert Modular Forms 29

This configuration is summarized by the following diagram:

We will describe

• a map

θ∨
q :

⊕

σ∈G/G′
U∨

f ,σ → U∨
f ⊗ k

in Section 3.1 (Proposition 3.4);

• an action of the domain via derived Hecke operators:

Tσq,z : Hq(Xk, ω)f → Hq+1(Xk, ω)f

associated with z ∈ U∨
f ,σ in Sections 3.2 and 3.3 (Definition 3.6);

and conjecture that the resulting action of U∨
f ⊗ k lifts to characteristic 0 in Section 3.4

(Conjecture 3.7).

3.1 Dual Stark units mod pn

We start by describing the group U∨
f ⊗OE

k. The description will depend on a choice of a

Taylor–Wiles prime q of F.

3.1.1 Taylor–Wiles primes

Suppose p is a prime of E above p and for any n, consider

k = OE/pn.

Definition 3.1. A Taylor–Wiles prime for f of level n ≥ 1 consists of the following

data:

1. a prime q of F, relatively prime to the level of f , such that Nq ≡ 1 (pn);
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30 A. Horawa

2. a choice (α, β) ∈ F2
p with α �= β such that

	(Frobq) =
(

α 0

0 β

)
,

where 	 is the reduction of 	 modulo p.

If q is a Taylor–Wiles prime, (OF/q)× contains a subgroup � ∼= Z/pnZ of size pn.

We frequently denote it by (OF/q)×pn .

We also write

k〈1〉q = k ⊗ (OF/q)×pn , k〈−1〉q = Hom((OF/q)×pn , k), (3.1)

both noncanonically isomorphic to k. When the underlying prime q is clear, we drop it

from the notation.

Finally, for any Z-module M, we write

M〈m〉 = M ⊗Z k〈m〉 for m = ±1. (3.2)

For example, Fp〈1〉 is canonically identified with a quotient of (OF/q)× of size p.

3.1.2 Reduction of dual Stark units at a Taylor–Wiles prime

Let Q be a prime of L above a Taylor–Wiles prime q of F. Let

FrobQ = FrobQ/q ∈ GL/F ⊆ GL/Q

be the Frobenius automorphism associated with the prime Q above q.

Lemma 3.2. For any Artin representation 	0 : GL/Q → GL(M0) where M0 is an

OE-module, there is a natural pairing

(UL[	0] ⊗ k) × (M
FrobQ

0 ⊗ k) → k〈1〉

(ϕ, m) 	→ reduction of ϕ(m).

Proof. For ϕ ∈ UL[	0] and m ∈ M
FrobQ

0 , we have

ϕ(m) ∈ (UL ⊗ k)FrobQ .

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/im

rn
/rn

a
c
1
2
6
/6

5
9
4
9
7
3
 b

y
 g

u
e
s
t o

n
 2

9
 J

u
n
e
 2

0
2
2



Motivic Action for Hilbert Modular Forms 31

The composition

UL ↪→ ULQ
� ULQ

/(1 + Q) ∼= F×
Q

induces a reduction map

(UL ⊗ k)FrobQ → (F×
Q ⊗ k)FrobQ ∼= k〈1〉,

where we recall that k〈1〉 = k ⊗ (OF/q)×pn . �

Remark 3.3. We think of the reduction map as a discrete logarithm. Then this lemma

is the discrete analogue of Lemma 4.12, where the actual logarithm will be used. To

generalize this result p-adically, one would use a p-adic logarithm.

Proposition 3.4. Let 	 : G′ = GL/F → GL(M) be the Artin representation associated

with f . Recall the notation G = GL/Q. Then there is a natural map

θ∨
q :

⊕

σ∈G/G′
(Ad0 M ⊗ k)FrobσQ/σq ⊗ k〈−1〉 → U∨

f ⊗ k,

where the domain is a direct sum of free k-modules of rank 1.

We will later use the shorthand U∨
f ,σ = (Ad0 M⊗k)FrobσQ/σq⊗k〈−1〉. In the notation

of the introduction, U∨
f ,σi

= Upn

f ,i if we label the representatives of G/G′ by σ1, . . . , σd.

Proof. Applying Lemma 3.2 to 	0 = IndG
G′ Ad0 	, we see that there is a pairing

(Uf ⊗ k) × (MFrobQ
0 ⊗ k〈−1〉) → k,

which induces a map

(MFrobQ
0 ⊗ k〈−1〉) → (U∨

f ⊗ k).
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32 A. Horawa

Then,

MFrobQ
0 = (IndG

G′ Ad0 M)FrobQ

=

⎛
⎝
⊕

σ∈G/G′
σ Ad0 M

⎞
⎠

FrobQ

=
⊕

σ∈G/G′
(Ad0 M)FrobσQ/σq

because σ FrobQ/q σ−1 = FrobσQ/σq ∈ G′.

Finally, using the basis such that 	(FrobQ) =
(

α

β

)
for α �= β, we have that

Ad0 	(FrobQ) =

⎛
⎜⎜⎝

α
β

β
α

1

⎞
⎟⎟⎠ .

Since α �= β, this shows that (Ad0 M)FrobσQ/σq has rank 1. �

We finally recast this in the language of [29, Section 2.9]. For any Q, we may

consider the element

eQ = 	(FrobQ) − (1/2)Tr	(FrobQ) ∈ Ad0 	.

Note that for all g ∈ GL/F ,

egQ = Ad(	(g))eQ.

Therefore,

Ad0(FrobQ)eQ = eFrobQ Q = eQ,

showing that

eQ ∈ (Ad0 	)FrobQ .

By Proposition 3.4, this choice defines a map

θ∨
q :

⊕

σ∈G/G′
k〈−1〉 → U∨

f ⊗ k. (3.3)
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Motivic Action for Hilbert Modular Forms 33

When F = Q, this recovers the map θ∨
q from [29, Section 2.9].

3.2 The Shimura class

We consider two level structures: for an ideal N ⊆ OF ,


0(N) =
{(

a b

c d

)
∈ GL(OF ⊕ D−1)

∣∣∣∣∣ c ∈ N

}
,


1(N) =
{(

a b

c d

)
∈ GL(OF ⊕ D−1)

∣∣∣∣∣ c, a − 1 ∈ N

}
,

where D is the different ideal of F. Note that 
1(N) ⊆ 
0(N) and the quotient is

isomorphic to (O/N)×. We let

X0(N), X1(N) = Hilbert modular variety with 
0(N), 
1(N)-level structure, respectively.

For N large enough, both of these are schemes over Z[1/NF/QN] (cf. [18]) and they have

good reduction modulo primes p not dividing NF/QN. The covering

X1(N) → X0(N)

descends to a covering

X1(N)k → X0(N)k

with Galois group (O/N)×.

Let q > 5 be a prime and q be a prime of F above it. Then,

X1(q) → X0(q)

is a (O/q)×-covering. We may pass to the unique subcovering with Galois group

� = (O/q)×pn :

X1(q)� → X0(q).

This extends to an étale covering of schemes over Z[1/q] and hence induces an étale

covering

X1(q)�k → X0(q)k
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34 A. Horawa

(cf. [46, Corollary 2.3] for [F : Q] = 1 and [17, Prop. 3.4] for [F : Q] > 1; the assumption

that q > 5 is needed to avoid elliptic points).

We hence get a class

Sk ∈ H1
ét(X0(q)k, k〈1〉), (3.4)

where we recall that k〈1〉 ∼= k ⊗ �. Using the natural map k → Ga of étale sheaves over

X0(q)k, we obtain a class

SGa
∈ H1

ét(X0(q)k,Ga〈1〉). (3.5)

Finally, using Zariski–étale comparison, we have an isomorphism

H1(X0(q)k,O〈1〉) → H1(X0(q)k,Ga〈1〉)

and hence SGa
defines a class

S ∈ H1(X0(q)k,O〈1〉). (3.6)

Definition 3.5. The Shimura class is the cohomology class S ∈ H1(X0(q)k,O〈1〉)
obtained above (3.6).

We will use it next to construct a mod pn derived Hecke operator.

3.3 Construction of derived Hecke operators

Let N be the level of f , and recall that we consider X = X1(N) over Z[1/NF/QN].

Write X0,1(q,N) for X with added 
0(q)-level structure at q. This is a Hilbert

modular variety for the group 
1(q,N) in the notation of [18] and hence also has a

smooth, projective, integral model.

Then the Shimura class S pulls back to a class

SX ∈ H1(X0,1(q,N)k,O〈1〉).

Cupping with this class gives a map

H0(X0,1(q,N)k, ω)
∪SX−→ H1(X0,1(q,N)k, ω)〈1〉. (3.7)
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Motivic Action for Hilbert Modular Forms 35

Classically, Hecke operators are defined as operators on cohomology induced by

certain correspondences:

We define the derived Hecke operator by the same push-pull procedure but

cupping with SX in the middle:

Finally, for any z ∈ k〈−1〉, we define

Tq,z : H0(Xk, ω) → H1(Xk, ω) (3.8)

by composing the above map with multiplication by z.

More generally, for each z ∈ k〈−1〉, there is an operator

Tq,z : Hq(Xk, ω) → Hq+1(Xk, ω), (3.9)

defined analogously.

Recall that equation (3.3) defines a map:

θ∨
q :

⊕

σ∈G/G′
k〈−1〉 → U∨

f ⊗ k.

We may hence define an action of the codomain on coherent cohomology of the special

fiber as follows.

Definition 3.6. For each σ ∈ G/G′ and z ∈ k〈−1〉, we define the action of z in the

σ -component of
⊕

σ∈G/G′
k〈−1〉 by

Tσq,z : H∗(Xk, ω)f → H∗+1(Xk, ω)f .

This naturally extends to an action of
∧∗ ⊕

σ∈G/G′
k〈−1〉 on H∗(Xk, ω)f .
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36 A. Horawa

3.4 The conjecture

We conjecture there is an action of U∨
f on the f -isotypic component of the cohomology

space H∗(X, ω)f that reduces modulo pn to the action of the operators Tq,z.

For h ∈ H∗(XO[1/N(N)], ω), we write h ∈ H∗(Xk, ω) for its reduction. Equation (3.3)

defines a map

θ∨
q :

⊕

σ∈G/G′
k〈−1〉 → U∨

f ⊗ k

associated with a Taylor–Wiles primes q of F and a prime Q above it. In Definition 3.6,

we defined an action of the domain by derived Hecke operators. We conjecture that the

resulting action of U∨
f ⊗ k on the special fiber lifts to an integral action of U∨

f .

Conjecture 3.7. There is an action � of the exterior algebra
∧∗

(U∨
f ) on H∗(XO[1/N(N)], ω)f

such that the induced action of
∧∗

(U∨
f ) ⊗ k on H∗(XO[1/N(N)], ω)f ⊗ k is the one described

above. More specifically, fix a quadruple (p, n, σ , q) with

• p a prime of E satisfying the above conditions;

• n ≥ 1 an integer;

• σ ∈ G/G′;

• q > 5 a prime and q a Taylor–Wiles primes of level n above it; in particular,

Nq ≡ 1 (pn).

For an element u∨ ∈ U∨
f , consider its reduction u∨ ∈ U∨

f ⊗ k, and suppose that

u∨ =
∑

σ∈G/G′
θ∨
q (zσ ) for some zσ ∈ k〈−1〉.

Then,

α · u∨ � ωf =
∑

σ∈G/G′
Tσq,zσ

ωf

for some constant α.

Remark 3.8. Harris and Venkatesh [29] and Marcil [45] provide numerical evidence for

this conjecture for F = Q and n = 1. To do that, they first perform an explication [29,

Section 5], putting the conjecture in a more computable form. They relate it to a question

about a pairing considered by Mazur [46] and then rely on a computation of this pairing
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Motivic Action for Hilbert Modular Forms 37

due to Merel [48]. While the initial steps of the explication can be performed in our case,

putting Conjecture 3.7 in a similar framework, the analogue of Merel’s computation is

currently not available in the literature.

In dihedral cases, the conjecture of Harris and Venkatesh has since been proved

by Darmon–Harris–Rotger–Venkatesh [15].

When F = Q and n = 1, Harris and Venkatesh [29, Section 4] prove the following

result:

vanishing of Tq,zf �⇒ vanishing of the map θ∨
q : k〈−1〉 → U∨

f ⊗ k,

assuming an “R = T” theorem. It would be interesting to obtain a similar result in our

case. We expect that the rank r of the map

θ∨
q :

⊕

σ∈G/G′
k〈−1〉 → U∨

f ⊗ k

from equation (3.3) can be any number 0 ≤ r ≤ d. Hence, the strongest analogue of the

above result should be

rank〈Tσq,zf | σ ∈ G/G′〉 = rank(θ∨
q ).

A weaker version simply states

vanishing of Tσq,zf for all σ ∈ G/G′ �⇒ vanishing of the map θ∨
q .

Note that the proof in the case F = Q relies on the approach of Calegari and

Geraghty [9] to modularity lifting. Since their results apply to general F, one could hope

to prove the above results in a similar way, but we have not explored this further yet.

Since we expect that the map θ∨
q may sometimes have rank d, we want to make

sure that we can produce a rank d group of operators Tq,z in order to pin down the

conjectural action.

Lemma 3.9. For any p and n, there is a prime q ≡ 1 (pn) that splits completely in F

and the primes q1, . . . , qd above q are Taylor–Wiles primes for f of level n.

Proof. We first show that there exists a positive density of primes q of Q that split

completely in F such that q ≡ 1 (pn). Consider the field F(ζpn) for a primitive pnth root
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38 A. Horawa

of unity and a prime q of Q in the field diagram:

Since we assume that p has good reduction in F, the fields Q(ζpn) and F have disjoint

ramification, and hence we have isomorphisms:

via the restriction map. By Cheboratev density theorem, there is a positive density of

primes q of Q that split completely in F(ζpn). These q also split completely in F and in

Q(ζpn), which shows that

q ≡ 1 mod pn

using the above diagram.

Since there is a positive density of primes q with the above property, there exists

a positive density for which q1, . . . , qd are Taylor–Wiles primes for f of level n. �

In this case, we have d derived Hecke operators Tq1,z1
, . . . , Tqd,zd

and we expect

that if they are linearly independent, then the map θ∨
q is an isomorphism.

4 Archimedean Realization of the Motivic Action

We continue using the notation of Section 2.3: the Artin representation 	f associated

with f factors through a finite Galois extension L/F and has coefficients in a number

field E, that is, 	f : Gal(L/F) → GL2(E).

Fix embeddings τ : L ↪→ C and ι : E ↪→ C. We will describe
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Motivic Action for Hilbert Modular Forms 39

• an isomorphism

θ∨
C :

d⊕

j=1

UC
f ,j

∼=→ U∨
f ⊗ι C

for some one-dimensional spaces UC
f ,j in Proposition 4.13;

• an action of the codomain via partial complex conjugation operators:

Hq(XC, ω)f → Hq+1(XC, ω)f

ωf 	→ ω
σj

f

for a chosen element of UC
f ,j in Sections 4.1 and 4.2 (Definition 4.15);

and conjecture that the resulting action of U∨
f ⊗ E ⊆ U∨

f ⊗ι C preserves the rational

structure on coherent cohomology in Section 4.3 (Conjecture 4.16).

4.1 Partial complex conjugation and Harris’ periods

Following [26, 64], we briefly recall the definition of partial complex conjugation

operators on Hilbert modular forms. We encourage the reader to consult [25, 26, 68]

for details.

Let Y be an open Hilbert modular variety of level 
1(N), and write X for a smooth

toroidal compactification of Y defined over Q. Associated with a weight (k, r) where

k ∈ Zd and kj ≡ r mod 2 for 1 ≤ j ≤ d is an automorphic sheaf Ek,r over Y whose sections

are weight (k, r) Hilbert modular forms. We normalize the isomorphism between the

sections H0(YC, Ek,r) and Hilbert modular forms of weight (k, r) so that Hilbert modular

forms with Fourier coefficients in E give sections of H0(Y, Ek,r) ⊗ E. In particular, this

differs from Harris’ normalization by a factor of (2π i)

1
2 (dr+

∑
j

kj)

; see [26, (1.6.4)]. For

simplicity, we assume that r ∈ {0, 1} according to the parity of kj.

The automorphic sheaf Ek,r can be extended to X in two ways, denoted Ecan
k,r

and Esub
k,r . The cohomology of these sheaves is independent of the choice of toroidal

compactification. Following Harris, we will be interested in the space

Hq(X, Ek,r) = im(Hq(X, Esub
k,r ) → Hq(X, Ecan

k,r )),

which is a vector space over F(k) = F
(k) where 
(k) = {σ ∈ GQ | kσ = k}.
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40 A. Horawa

Let f be a normalized Hilbert modular eigenform f of weight (k, r) and level


1(N) such that T(p)f = apf and ap ∈ Ef . Hecke operators act on the higher cohomology

groups and we write

Hq(X, Ek,r)f = {ω ∈ Hq(X, Ek,r) ⊗ Ef | T(p)ω = apω} (4.1)

for the f -isotypic component under the action of the Hecke algebra.

For any subset J of the infinite places �∞ = {σ1, . . . , σd} of F, we assume that

there exists a unit εJ ∈ O
×
F such that

⎧
⎨
⎩

σ(εJ) > 0 if σ �∈ J,

σ(εJ) < 0 if σ ∈ J.
(4.2)

When d = 2, this amounts to the standard assumption (e.g., [54]) that OF has a

fundamental unit of negative norm.

Given f and a subset J of �∞, we can apply complex conjugation to variables

corresponding to places in J:

f J(z) = f (zJ) ·
∏

j∈J

Im(zj)
kj , (4.3)

where

(zJ)j =

⎧
⎨
⎩

(εJ)jzj if σj �∈ J,

(εJ)jzj if σj ∈ J.
(4.4)

This defines a C∞-function on Hd that has weight −kj at places σj ∈ J and kj at places

σj �∈ J. We can then define a Dolbeault class associated with f and J:

ωJ
f =

⎡
⎣f J(z) ·

∧

j∈J

dzj ∧ dzj

y2
j

⎤
⎦ ∈ H0,|J|(YC, Ek(J),r)

∼= H |J|(YC, Ek(J),r), (4.5)

where

k(J) =

⎧
⎨
⎩

kj σj �∈ J,

2 − kj σj ∈ J.
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Motivic Action for Hilbert Modular Forms 41

Remark 4.1. These cohomology classes ωJ
f are independent of the choice of the unit εJ

above. Moreover, if f corresponds to the automorphic function ϕ, the function f J defined

in equation (4.3) corresponds to the automorphic function

ϕJ(g) = ϕ(g · gJ),

where gJ ∈ GL2(F ⊗ R) is

(gJ)j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝1 0

0 −1

⎞
⎠ σj ∈ J,

⎛
⎝1 0

0 1

⎞
⎠ σj ∈ J.

This gives a definition of partial complex conjugation even in cases where the unit εJ

does not exist. See [26, Section 1.4] for details.

Theorem 4.2 (Harris, Su).

1. The cohomology classes ωJ
f extend to toroidal compactifications:

ωJ
f ∈ H |J|(XC, Ek(J),r)f .

2. Let J ⊆ �∞ be any subset. Then a basis of H |J|(XC, Ek(J),r)f is given by

{ωI
f | |I| = |J| and k(I) = k(J)}.

In particular, if we write J1 = {σj ∈ �∞ | kj = 1}, then

dim H |J|(XC, Ek(J),r)f =
( |J1|

|J ∩ J1|

)
.

Proof. For kj ≥ 2, see [26, Lemmas 1.4.3 and 2.4.5]. When kj = 1 for some j, this follows

from the main theorem of [68] and an analogous computation of (P, K)-cohomology. �

We are particularly interested in the case (k, r) = (1, 1). In this case, E1,1 is

identified with Hodge bundle ω used in the previous section.
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42 A. Horawa

Corollary 4.3. Suppose (k, r) = (1, 1). Then a basis of Hj(XC, E1,1)f is given by

{ωJ
f | J ⊆ �∞ and |J| = j}.

In particular,

dim Hj(XC, E1,1)f =
(

d

j

)
.

It is also important to note when the cohomology spaces are one-dimensional.

Corollary 4.4. For any J ⊆ �∞, dim H |J|(XC, Ek(J),r)f > 1 if and only if both J and �∞ \J

contain a place at which f has weight one.

Proof. For the “if” implication, take σ ∈ J ∩ J1 and σ ′ ∈ (�∞ \ J) ∩ J1, and define

J ′ = (J \ {σ }) ∪ {σ ′}.

Then |J ′| = |J| and k(J ′) = k(J), so ωJ
f , ωJ ′

f ∈ H |J|(XC, Ek(J),r)f are linearly independent.

Conversely, suppose dim H |J|(XC, Ek(J),r)f > 1. Then there exists J ′ �= J such that

ωJ ′
f ∈ H |J|(XC, Ek(J),r)f , that is, |J ′| = |J| and (J ∪ J ′) \ (J ∩ J ′) ⊆ J1. Then σ ∈ J \ J ′ belongs

to J ∩ J1 and σ ′ ∈ J ′ \ J belongs to (�∞ \ J) ∩ J1. �

This leads to the definition of Harris’ period invariants when the cohomology

space is one-dimensional.

Lemma 4.5 ([26, Lemma 1.4.5]). Let J be a set of infinite places that contains either all

or none of the weight one places of f . Then there is a number νJ(f ) ∈ C×, well defined

up to multiplication by elements in Ef (J)× where Ef (J) = Ef F(k(J)), such that

ωJ
f

νJ(f )
∈ H |J|(X, Ek,r)f ⊆ H |J|(XC, Ek,r)f .

Clearly, when J = ∅, we may take νJ(f ) = 1.

Definition 4.6. Let J be a set of infinite places that contains either all or none of the

weight one places of f . Then the complex number νJ(f ) defined by Lemma 4.5 is the

period or period invariant associated with f and J. It is well defined up to Ef (J)×.
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Motivic Action for Hilbert Modular Forms 43

Remark 4.7. Despite of the difference in trivializations of the line bundles, the

above period invariants νJ(f ) agree with Harris’ period invariants νJ(πf ), where πf

is the automorphic representation associated to f . Indeed, note that both of the

normalizations result in ν∅(f ) = ν∅(πf ) = 1.

Shimura defines periods by considering Petersson inner products on Shimura

varieties associated with quaternion algebras over F. Harris’ definition is much less

explicit, but it is related to Petersson inner products as follows.

Proposition 4.8 ([26, Prop. 1.5.6]). For any J ⊆ �∞, we have that

νJ(f ) · ν�∞\J(f 	) ∼E(J)× 〈f , f 〉, (4.6)

where f 	(z) = f (−z) is Shimura’s complex conjugation and

〈f , g〉 =
∫


\Hd

f (z)g(z)

d∏

j=1

y
kj

j

dzj ∧ dzj

y2
j

. (4.7)

Therefore, we may think of νJ(f ) as a certain factor of the Petersson inner

product 〈f , f 〉.

Remark 4.9. Here and elsewhere we use the above normalization of Petersson inner

products. This is consistent with [32, 33], which we refer to later. This differs from

Shimura’s normalization of Petersson inner products [64, (2.27, 2.28)]:

〈f , g〉Shimura = 1

μ(
\Hd)
〈f , g〉,

where μ(
\Hd) is the volume of the fundamental domain. It also differs from Harris’

normalization, since

〈f , f 〉Harris ∼Q× (2π i)−dr〈f , f 〉Shimura (4.8)

[26, (1.6.3)].
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44 A. Horawa

Remark 4.10. The proof in loc. cit. is based on the rationality of (a Tate twist of) the

Serre duality pairing [26, (1.5.4)]:

∪ : H |J|(X, Ek(J),r)f × H |�∞\J|(X, Ek(�∞\J),r)f 	 → E(J) (4.9)

induced by the cup product and the identity [26, (1.5.5.2)]

ωJ
f ∪ ω

�∞\J
f 	 = ±〈f , f 〉. (4.10)

Remark 4.11. In this extended remark, we discuss the relation of Harris’ periods to

other periods attached to Hilbert modular forms. The study of period invariants was

initiated by Shimura [65, 66], who studied the case when the weights at all places are at

least two. In this case, Shimura conjectured the existence of a set of period invariants

cσ , one attached to each infinite place σ of F; moreover, he conjectured that if B is any

quaternion algebra over F such that f transfers to a form fB on B×, then the Petersson

norm of fB (if fB is chosen to be algebraic) is essentially a product of some of the cσ up

to algebraic factors. More precisely, defining

qB(f ) := 〈fB, fB〉,

Shimura conjectured that

qB(f ) ∼
Q

×
∏

σ∈�B,∞

cσ , (4.11)

where �B,∞ is the set of infinite places where B is split. This conjecture was proved by

Harris [27], using the theta correspondence for unitary groups. In this work, the periods

cσ are essentially defined as suitable ratios of periods on quaternion algebras. The fact

that the definition of the periods does not depend on choices of quaternion algebras

boils down to proving relations between periods on different quaternion algebras,

which provides the main thread of Harris’ argument. This work admits an integral

refinement that is studied in the ongoing work of Ichino–Prasanna (e.g., [35]).

In related work [26, 28], Harris gave another definition of such period invariants

using rational structures on coherent cohomology. This is what was recalled in

Definition 4.6. The advantage of this definition is that it does not require working

with quaternion algebras; rather, everything happens on the Hilbert modular variety

attached to the group GL2,F . This also makes it easy to see the relations between
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Motivic Action for Hilbert Modular Forms 45

these periods and the transcendental factors of Rankin–Selberg and triple product

L-functions attached to two (respectively, three) Hilbert modular forms.

The point of our work is to define periods attached to parallel weight one forms,

and relate them to rational structures on coherent cohomology. For dimension reasons,

one cannot simply use these rational structures directly to define periods. Indeed, the

proof of Lemma 4.5 relies on higher cohomology groups being one-dimensional, whereas

the dimensions are greater than one for weight one forms (cf. Corollary 4.3). Instead, we

give an ad hoc definition using logarithms of units and conjecture (Conjecture 4.17) a

relationship to rational structures.

4.2 The action

To define the action of U∨
f ⊗ C on coherent cohomology via partial complex conjugation

operators, we first give an identification of this group with the trace zero adjoint

representation of f .

Lemma 4.12. For any Artin representation 	0 : GL/Q → GL(M0) where M0 is an E-vector

space, there is a natural perfect pairing

(UL[	0] ⊗ι C) × (Mc0
0 ⊗ι C) → C

(ϕ, m) 	→ log(|(τ ⊗ ι)(ϕ(m))|),

which induces an isomorphism

UL[	0]∨ ⊗ C
∼=→ Mc0

0 ⊗ C.

Proof. This is a paraphrase of Proposition 2.5. �

Proposition 4.13. Let 	 : G′ = GL/F → GL(M) be the Artin representation associated

with a Hilbert modular newform of parallel weight one. We then have an isomorphism

θ∨
C :

d⊕

j=1

(Ad0 M ⊗ι C)cj
∼=→ U∨

f ⊗ι C.

For each j, consider the element m1,j in (Ad0 M)cj as in Corollary 2.13, and let {ϕj} be

the corresponding basis of Uf ⊗ E. Finally, let {u∨
j } be the dual basis of U∨

f ⊗ E. Then
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46 A. Horawa

the matrix of the map θ∨
C

in these bases is the Stark regulator matrix Rf = (log |ujk|)j,k

(cf. Definition 2.16).

Proof. The result is obtained by applying Lemma 4.12 to 	0 = IndG
G′ Ad0 	 and recalling

that Mc0
0

∼=
⊕

σ∈G/G′

(
Ad0 M

)σc0σ−1

by the proof of Corollary 2.13. The explicit description

of the map is given by the 2nd part of Corollary 2.13. �

Remark 4.14. Note that both U∨
f ⊗ι C and (Ad0 M ⊗ι C)σc0σ−1

have natural E-rational

structures U∨
f ⊗ Ef and (Ad0 M ⊗ Ef )

σc0σ−1
but the above isomorphism does not respect

them. The rational structures differ by the Stark regulator matrix.

Definition 4.15. We define the action of
d⊕

j=1

(Ad0 M ⊗ι C)cj on H∗(XC, E1,1)f by letting

m1,j act by

Hj(XC, E1,1)f → Hj+1(XC, E1,1)f

ωJ
f 	→

⎧
⎨
⎩

ωJ∪{σj} σj �∈ J

0 σj ∈ J.

This defines a graded action of
∧∗ d⊕

j=1

(Ad0 M ⊗ι C)
σjc0σ−1

j on H∗(XC, E1,1)f such that

H∗(XC, E1,1)f is generated in degree 0 by f ∈ H0(X, ω)f .

4.3 The conjectures

Recall that Proposition 4.13 defined an isomorphism

θ∨
C :

d⊕

j=1

(Ad0 M ⊗ι C)cj
∼=→ U∨

f ⊗ι C (4.12)

and Definition 4.15 described an action of the latter group on coherent cohomology. We

conjecture that the resulting action of U∨
f ⊗ E is rational.

Conjecture 4.16. Fix embeddings τ : L → C and ι : E → C. Then the action of U∨
f ⊗ E ⊆

U∨
f ⊗ι C on H∗(XC, E1,1)f via equation (4.10) and Definition 4.15 preserves the rational

structure H∗(X, E1,1)f ⊗Ef
E.
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Motivic Action for Hilbert Modular Forms 47

This is the analogue of the main conjecture of Prasanna and Venkatesh [56].

In Appendix A, we discuss the specific relation to their conjecture and justify why the

definition of the action is natural.

Next, we give a more explicit statement of rationality of cohomology classes, via

Proposition 4.13.

Conjecture 4.17. Let A = (aij) = R−1
f be the inverse of the Stark regulator matrix.

Then, for j = 1, . . . , d, the cohomology classes

u∨
i � f =

n∑

i=1

aijω
σi
f ∈ H1(XC, E1,1)f

belong to the rational subspace H1(X, E1,1)f ⊗E. More generally, the rational cohomology

classes in Hj(XC, E1,1)f are given by the entries of the vector:

(∧j A
)
⎛
⎜⎜⎜⎝

ω
J1

f
...

ω

J
(d

j )

f

⎞
⎟⎟⎟⎠

where J1, . . . , J
(d

j)
are the subsets of �∞ of order j. In particular, the cohomology class

ω
�∞
f

det Rf
∈ Hd(XC, E1,1)f

is rational.

The final statement is equivalent to Stark’s Conjecture 2.9 for Ad0 	f

(Theorem 5.1). Therefore, this conjecture may be interpreted as a refinement of Stark’s

conjecture in this case.

Remark 4.18. A previous version of this manuscript incorrectly assumed that the

Stark regulator matrix Rf is diagonal, which lead to a different rationality statement.

Example 4.19 (d = 1). Suppose d = 1, that is, f is a modular form of weight one. Then

the conjecture simply asserts that

ω∞
f

log |τ(uf )|
∈ H1(X, E1,1) ⊗ E, (4.13)
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48 A. Horawa

where uf ∈ UL is a unit associated with f . As far as we know, this conjecture is new

in this case. It gives an archimedean analogue of the main conjecture of Harris and

Venkatesh [29]. As we will see (Corollary 5.4), it is equivalent to Stark’s Conjecture 2.9

for Ad0 	f and hence is true when the Fourier coefficients of f are rational or when f

has CM.

Example 4.20 (d = 2). Suppose d = 2, that is, f is a Hilbert modular form of parallel

weight one for a real quadratic field F. Then there are four units u11, u12, u21, u22 ∈ UL

associated with f and

Rf =
(

log |τ(u11)| log |τ(u12)|
log |τ(u21)| log |τ(u22)|

)
. (4.14)

Its inverse is

A = 1

det Rf

(
log |τ(u22)| − log |τ(u12)|

− log |τ(u21)| log |τ(u11)|

)
. (4.15)

Therefore, the rational classes in H1(XC, E1,1)f should be

u∨
1 � f =

log |τ(u22)| · ω1
f − log |τ(u21)| · ω2

f

det Rf
∈ H1(X, E1,1)f ⊗ E, (4.16)

u∨
2 � f =

− log |τ(u12)| · ω1
f + log |τ(u11)| · ω2

f

det Rf
∈ H1(X, E1,1)f ⊗ E. (4.17)

We will give the following evidence for this:

1. the determinant of this basis of H1(XC, E1,1)f is rational, assuming Stark’s

Conjecture 2.9 (Section 5);

2. in base change cases, we give numerical evidence that the restrictions

of these cohomology classes to an embedded modular curve is rational

(Section 6).

Finally, we expect the following class in H2(XC, E1,1)f to be rational:

(u∨
1 ∧ u∨

2 ) � f =
ω

σ1,σ2

f

det Rf
∈ H2(X, E1,1)f ⊗ E. (4.18)

We prove this assertion in Corollary 5.3.
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Motivic Action for Hilbert Modular Forms 49

The goal of the next two sections is to present our evidence for Conjecture 4.16.

5 Evidence: Stark Conjecture

In this section, we present the theoretical evidence for Conjecture 4.17. These follow

from results of Stark and Tate presented in Section 2.2.

5.1 Action of top degree elements

We show that Stark’s Conjecture 2.9 for Ad0 	f is equivalent to the following conse-

quence of Conjecture 4.17. In particular, Theorem 2.11 implies this consequence when f

has rational Fourier coefficients.

Theorem 5.1. Let f be a parallel weight one Hilbert modular form and 	f be the

associated Artin representation. Stark’s Conjecture 2.9 for Ad0 	f is equivalent to the

statement

〈f , f 〉 ∼E× f 1/2
	,2 det Rf , (5.1)

where f	,2 = 2a(	,2) is the Artin conductor at p = 2 of the trace 0 adjoint representation.

In particular, equation (5.1) is true unconditionally if f has rational Fourier coefficients.

Remark 5.2. We expect that the factor f 1/2
	,2 is rational; see Remark 5.10 for more

details. If we could prove this, we could remove “up to a possible factor of
√

2” in the

corollaries below.

Before presenting the proof of Theorem 5.1, we give two corollaries.

Corollary 5.3. Stark’s Conjecture 2.9 for the Artin representation Ad0 	f is equivalent

to the assertion that top degree elements, that is, elements in
∧d U∨

f ⊗ E, act rationally,

up to a possible factor of
√

2. In particular, the latter is true if f has rational Fourier

coefficients.

Proof. Recall from Conjecture 4.17 that top degree elements act by

f 	→
ω

�∞
f

det Rf
.
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50 A. Horawa

Then,

〈
f 	,

ω
�∞
f

det Rf

〉

SD

= 〈f , f 〉
det Rf

.

Since Hd(X, E1,1)f is one-dimensional and the Serre duality pairing is rational, the

rationality of
ω

�∞
f

det Rf
is equivalent to equation (5.1). �

Corollary 5.4. Conjecture 4.16 is equivalent to Stark’s Conjecture 2.9 for Ad0 	f when

F = Q, up to a possible factor of
√

2. Hence, Conjecture 4.16 is true unconditionally

when f has rational Fourier coefficients or complex multiplication.

Remark 5.5. We checked computationally (using the method of Collins [12]) that for a

few modular forms f of weight one from Example 2.20, we have that 〈f , f 〉 = 3 log(|ι(uf )|).
This was already observed by Stark [67, pp. 91].

The proof of Theorem 5.1 requires 2 steps:

1. relating L(1, Ad0 	f ) to 〈f , f 〉;
2. showing that f	 is a square when 	 = Ind

GQ

GF
Ad0(	f ), so that f 1/2

	 ∈ Q× (away

from 2).

We will then conclude Theorem 5.1 from Proposition 2.17.

The relation of the adjoint L-value to the Petersson inner product was first

observed by Hida, based on the work of Shimura [63]. He also related the prime factors

of the quotient
L(1,Ad(f ))

〈f ,f 〉 to congruence primes of the modular form f [30, 30, 31]. This

work was later generalized to Hilbert modular forms [23, 32, 33]. An integral refinement

of Conjecture 4.17 would hence have to account for congruence primes.

Theorem 5.6 ([33, Theorem 7.1]). Let f is a primitive Hilbert modular form of weight

(k, r), level N. Then,

〈f , f 〉 = |DF |m−1
F(k)NF/Q(N)2−2{k}+1π−d−{k}LS(1, f , Ad),

where

LS(s, f , Ad) =
∏

q∈S

Lq(NF/Q(q)−s)L(s, f , Ad),
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Motivic Action for Hilbert Modular Forms 51

S is a set of bad places, Lq(NF/Q(q)−s) are bad local factors, {k} =
∑
j

kj, and m is an

explicit integer that accounts for Hida’s unitarization [32, (4.2a), (7.1)].

For an automorphic proof relating L(1, Ad(f )) to 〈f , f 〉, see [35, Prop. 6.6].

For parallel weight one Hilbert modular forms, this specializes to the following

result we will use.

Corollary 5.7. Suppose (k, r) = (1, 1). Then,

〈f , f 〉 ∼E× π−2dL(1, f , Ad).

To finish the proof of Theorem 5.1, we need to check that f	 is a square (away

from p = 2).

Proposition 5.8. Let πv be the local representation of GL2(Fv) associated with f at a

finite place v of F. When v lies above 2, assume that πv is not a theta lift from a ramified

quadratic extension. Then the adjoint conductor of πv is a square.

Proof. It is enough to prove that the analytic conductors of the Rankin–Selberg

L-functions L(πv⊗π∨
v , s) are squares. When πv is not supercuspidal, Jacquet’s [36] results

give explicit formulas for the local conductors (see, e.g., [12, Section 4.2]) and they are

visibly squares.

We hence just need to show the conductor is a square at places v where πv is

supercuspidal. Suppose throughout the rest of the proof that F is a finite extension of

Qp and π is a supercuspidal representation of GL(2, F). We write a(−) for the valuation

of the conductor of a representation and prove that a(π × π∨) is even.

Since π is supercuspidal, it is a theta lift of a character ξ of a quadratic extension

K/F [22, Theorem 7.4]. Then,

a(π × π∨) = 2vF(dK/F) + fK/F · a(ξ(ξ	)−1), (5.2)

where dK/F is the discriminant of K/F, fK/F is the residue degree of K/F, and 	 is the

nontrivial element of Gal(K/F). Indeed, if 	 is the Galois representation corresponding

to π via the local Langlands correspondence, then 	 = IndF
K(χ) where χ corresponds

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/im

rn
/rn

a
c
1
2
6
/6

5
9
4
9
7
3
 b

y
 g

u
e
s
t o

n
 2

9
 J

u
n
e
 2

0
2
2



52 A. Horawa

to ξ via class field theory, and hence

a(π × π∨) = a(	 ⊗ 	∨)

= a(IndF
Kχ ⊗ IndF

Kχ−1)

= a(IndF
K1⊕ IndF

Kχ(χ	)−1)

= a(IndF
K1) + a(IndF

Kχ(χ	)−1)

= 2vF(dK/F) + fK/F · a(χ(χ	)−1) [61, pp. 101]

= 2vF(dK/F) + fK/F · a(ξ(ξ	)−1).

When K/F is unramified, fK/F = 2, so a(π ×π∨) is even by equation (5.2). Suppose

that K/F is ramified and has residue characteristic different than 2. Let � = �K , �F

be uniformizers of K, F, respectively. Then �
	

K = −�K . Also, since fK/F = 1, OK/�K
∼=

OF/�F . There is a filtration on the unit group UK

U0
K = UK , Ui

K = 1 + � i
KOK for i ≥ 1

with quotients:

U0
K/U1

K
∼= (OK/�K)×, Ui

K/Ui+1
K

∼= OK/�K . (5.3)

We show that if ξ(ξ	)−1|Ui
K

= 1 for i odd, then ξ(ξ	)−1|Ui−1
K

= 1.

For i = 1, if ξ(ξ	)−1|U1
K

= 1, then ξ(ξ	)−1(x) for x ∈ UK depends only on the

residue class of x (equation (5.3)). We may hence assume x ∈ OF since OK/�K
∼= OF/�F .

Then,

ξ(ξ	)−1(x) = ξ(x)ξ(x	)−1 = 1.

Similarly, for i > 1 odd, if (ξ(ξ	)−1)|Ui
K

= 1, then ξ(ξ	)−1(1 + � i−1x) for x ∈ OK

depends only on the residue class of x (equation (5.3)). We may hence assume x ∈ OF

since OK/�K
∼= OF/�F . Then,

ξ(ξ	)−1(1 + ωi−1
K x) = ξ(1 + ωi−1

K x)ξ(1 + (−ωK)i−1x	)−1 = 1.

Therefore, a(ξ(ξ	)−1) is even, which completes the proof. �
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Motivic Action for Hilbert Modular Forms 53

Remark 5.9. The strategy in the proof of Proposition 5.8 gives an explicit formula for

a(π × π∨) in terms of a(ξ) when p �= 2. For example, when K/F is ramified,

a(π × π∨) =

⎧
⎨
⎩

a(ξ) + 2 if a(ξ) is even

a(ξ) + 1 if a(ξ) is odd.

A similar result was obtained by Nelson–Pitale–Saha [53, Proposition 2.5] when F = Q

and the central character of πv is trivial.

It would be interesting to compare these formulas with the ones given in [8], but

we have not attempted to do this.

Remark 5.10. In fact, Nelson–Pitale–Saha [53] prove that the adjoint conductor is

always a square when F = Q and f has trivial Nebentypus. We expect that the adjoint

conductor is a square also in our more general setting. However, proving this would

require a careful analysis of dyadic representations [7, Chapter 12] and we decided not

to pursue it here.

We are finally ready to prove Theorem 5.1.

Proof of Theorem 5.1. By construction of 	f [58],

L(1, f , Ad) = L(1, Ad0 	f ).

Then, by Corollary 5.7, we have that

〈f , f 〉 = 〈f 	, f 	〉 ∼E× π−2dL(1, Ad(f ), ι) = π−2dL(1, Ad0 	f , ι).

By Proposition 2.17, Stark’s conjecture for Ad0 	f is equivalent to the statement:

L(1, Ad0 	f , ι) ∼E×
π2d

f 1/2
	

· det Rf .

Putting these together and noting that W(	) = ±1 and f	 is a square away from p = 2

(Proposition 5.8) gives the result. �
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54 A. Horawa

5.2 Further evidence

We now present further evidence for the conjecture that may be deduced from Stark’s

Conjecture 2.9.

We first observe that we have an algebraic operation given by complex conju-

gation. Recall that the vector space H |J|(X, Ek(J),r) is defined over the field F(k(J)) ⊆ F

which is totally real, and hence H |J|(X, Ek(J),r) ⊗F(J) C
∼= H |J|(XC, Ek(J),r) has an action of

complex conjugation F∞. By definition, it preserves the rational structure H |J|(X, Ek(J),r).

Lemma 5.11. The complex conjugation F∞ : H |J|(XC, Ek(J),r) → H |J|(XC, Ek(J),r) is given

on the basis ωI
f where |I| = |J| and k(I) = k(J) by

ωI
f 	→ ωI

f 	 ,

where f 	(z) = f (−z) is Shimura’s complex conjugation. In particular, on f -isotypic

subspaces, it defines a map:

F∞ : H |J|(X, Ek(J),r)f → H |J|(X, Ek(J),r)f 	 .

Proof. This is a paraphrase of an observation of Harris [26, pp. 164]. �

Proposition 5.12. There is an E-linear isomorphism Uf
∼= Uf 	 . In particular, Conjecture

4.17 for f is equivalent to Conjecture 4.17 for f 	.

Proof. The 1st assertion follows from the observation that 	∨
f

∼= 	f = 	f 	 , so we can

realize Ad0 	f ⊆ 	f ⊗ 	f 	 . Since 	f ⊗ 	f 	
∼= 	f 	 ⊗ 	f , we have that Ad0 	f

∼= Ad0 	f 	 . This

induces an isomorphism Uf
∼= Uf 	 . �

Next, recall that we have a Serre duality pairing (4.7):

〈−, −〉SD : H |J|(X, Ek(J),r)f ⊗ H
|�∞\J|

(X, Ek(�∞\J),r)f 	 → E(J), (5.4)

which is E(J)-rational. We modify it slightly to replace f 	 with f via Lemma 5.11.

Definition 5.13. We define a pairing

〈−, −〉 : Hj(X, E1,1)f × Hd−j(X, E1,1)f → E×

by 〈−, −〉 = 〈−, F∞(−)〉SD.
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Motivic Action for Hilbert Modular Forms 55

Proposition 5.14. Assume Stark’s Conjecture 2.9. Conjecture 4.17 in cohomological

degree j if equivalent to Conjecture 4.17 in cohomological degree d − j (up to a factor of
√

2).

Proof. Recall that Conjecture 4.17 in cohomological degree j states that the elements:

(∧j A
)
⎛
⎜⎜⎜⎝

ω
J1

f
...

ω

J
(d

j )

f

⎞
⎟⎟⎟⎠

give a rational basis of Hj(X, E1,1)f . Let us assume that this is true and prove that the

elements

(∧d−j A
)
⎛
⎜⎜⎜⎝

ω
J1

f
...

ω

J
( d
d−j)

f

⎞
⎟⎟⎟⎠

are rational in Hd−j(X, E1,1)f . It is enough to check that each of these classes pair

rationally with the classes in Hj(X, E1,1)f using the pairing 〈−, −〉. Note that the pairing

〈−, −〉 is induced by cup product and

〈ωJ
f , ωJ ′

f 〉 =

⎧
⎨
⎩

±〈f , f 〉 if J ′ = �∞ \ J,

0 otherwise.

Since A = R−1
f and 〈f , f 〉 ∼E× f 1/2

	,2 det Rf by Theorem 5.1, this completes the proof. �

Now, suppose that j = d − j, that is, d = 2j is even and we consider the middle

degree sheaf cohomology. Definition 5.13 then gives a nondegenerate bilinear pairing

〈−, −〉 : Hj(X, E1,1)f ⊗ Hj(X, E1,1)f → E,

which satisfies

〈ω1, ω2〉 = (−1)j〈ω2, ω2〉.
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56 A. Horawa

Proposition 5.15. Suppose d = 2j is even. Consider the basis of Hj(XC, E1,1)f given by

the entries of the vector

(∧j A
)
⎛
⎜⎜⎜⎝

ω
J1

f
...

ω

J
(d

j )

f

⎞
⎟⎟⎟⎠ ,

ordered so that the pairs ωJ
f and ω

�∞\J
f are consecutive. Then the of the pairing 〈−, −〉⊗C

is block-diagonal with 2 × 2 blocks given by

(
0 ∗

(−1)j∗ 0

)
.

Moreover, assuming Stark’s Conjecture 2.9, we have that ∗ ∈ E[
√

2]×.

Proof. This follows from the same argument as the proof of Proposition 5.14. �

Corollary 5.16. When d = 2, we showed in Example 4.20 that Conjecture 4.17 predicts

that

u∨
1 � f =

log |τ(u22)| · ω1
f − log |τ(u21)| · ω2

f

det Rf
∈ H1(X, E1,1)f ⊗ E,

u∨
2 � f =

− log |τ(u12)| · ω1
f + log |τ(u11)| · ω2

f

det Rf
∈ H1(X, E1,1)f ⊗ E.

Assuming Stark’s Conjecture 2.9, the determinant of this basis lies in E[
√

2]×.

Proof. Suppose that ω1, ω2 is a rational basis of H1(X, E1,1)f ⊗ E and

ω1 = au∨
1 � f + bu∨

2 � f

ω2 = cu∨
1 � f + du∨

2 � f

for some a, b, c, d ∈ C. Then,

〈ω1, ω2〉 = 〈au∨
1 � f + bu∨

2 � f , cu∨
1 � f + du∨

2 � f 〉

= (ad − bc)〈u∨
1 � f , u∨

2 � f 〉,

showing that ad − bc ∈ E[
√

2]× by Proposition 5.15, assuming Stark’s Conjecture 2.9.

Finally, this shows that (u∨
1 � f ) ∧ (u∨

2 � f ) = ω1∧ω2
ad−bc is E[

√
2]×-rational. �
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Motivic Action for Hilbert Modular Forms 57

6 Evidence: Base Change Forms

Let F0 be a totally real number field, and consider a totally real extension F of F0. Any

Galois representation of GQ/F0
may be restricted to a Galois representation GQ/F . Hence,

according to Langlands’ functoriality conjecture, for any automorphic representation

π0 of ResF0/Q GL2,F0
, there exists an associated base change representation π of

ResF/Q GL2,F , written π = BCF
F0

π0. This is discussed in detail and proved when F/F0

is a cyclic Galois extension in [43]. See also [1].

We now make the following definition.

Definition 6.1. A Hilbert modular form f for F is a base change form from F0, if

the associated automorphic representation π is equal to BCF
F0

π0 for some automorphic

representation π0.

Of course, this leaves the following question: given a Hilbert modular form

f0 ∈ π0, how to choose an explicit Hilbert modular form f ∈ π = BCF
F0

π0? As far as

we know, there is no canonical choice of f in this generality.

When F is a real quadratic extension of F0 = Q and the weight of f0 is at least

two, one can define f as a theta lift of f0, called the Doi–Naganuma lift. The reader

can consult [19, 49, 74] for the original results and [54, Ch. III] or [70, Ch. VI.4] for an

overview. In examples below, we will primarily be interested in cases where the level of

f0 is coprime to the discriminant of F; such cases were treated by Kumar and Manickam

[42]. When f0 has weight one, we are not aware of an explicit construction of the base

change of f0 to a real quadratic extension in the literature. We expect these forms can

be constructed using the theta correspondence as above.

We will instead satisfy ourselves with the fact that these forms exist according

to the strong Artin conjecture, which is known in several relevant cases [38, 39].

Definition 6.2. Let f0 be a normalized parallel weight one Hilbert modular eigenform

for F0 and 	0 be the associated Artin representation. The base change of f0 to F is the

normalized parallel weight one Hilbert modular eigenform f whose associated Galois

representation is 	f = ResG
Q/F

	0.

The goal of this section is to consider Conjecture 4.17 for base change forms. We

compute Stark units for base change forms, give a more explicit from of the conjecture in

this case, and provide numerical evidence for it in the case of real quadratic extensions.
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58 A. Horawa

6.1 Stark units for base change forms

For a Hilbert modular form f that is the base change of f0, we want to relate the unit

groups Uf and Uf0
. We fix a common splitting field L that is Galois over Q. We denote

the three Galois groups by

G = GL/Q ⊇ G′
0 = GL/F0

⊇ G′ = GL/F .

If 	0 : G′
0 → GL2(E) is the Artin representation associated with f0, then the Artin

representation 	 associated with f is 	 = Res
G′

0

G′ 	0 by our definition of base change

forms (Definition 6.2).

The goal of this section is to discuss the relation between the Stark unit groups

and regulators for f and f0.

Proposition 6.3.

1. We have a natural isomorphism:

Uf
∼= UL[Ad0 	0 ⊗ P],

where P is the permutation representation of G′
0 on the cosets G′

0/G′.

2. In particular, if we consider the G′
0-invariant subrepresentation

P0 = span

⎧
⎨
⎩

∑

σG′∈G′
0/G′

σG′

⎫
⎬
⎭ ⊆ P,

then

Uf0
∼= UL[Ad0 	0 ⊗ P0] ⊆ Uf .

Proof. Part 2 clearly follows from part 1, so we just prove part 1. We have that

Uf = HomG′(Ad0 	, ResG
G′ UL)

= HomG′(Res
G′

0

G′ Ad0 	0, ResG
G′ UL)

= HomG(IndG
G′ Res

G′
0

G′ Ad0 	0, UL)

= HomG(IndG
G′

0
(Ad0 	0 ⊗ P), UL),

= HomG′
0
(Ad0 	0 ⊗ P, UL)
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Motivic Action for Hilbert Modular Forms 59

as claimed. The penultimate equality follows form the following fact from representa-

tion theory: if K ⊆ H ⊆ G and V is a representation of H, then

IndG
K ResH

K V ∼=
⊕

g∈G/K

g(ResH
K V) ∼=

⊕

g∈G/H

⊕

h∈H/K

gh(ResH
K V) ∼=

⊕

g∈G/H

g(V ⊗ P) ∼= IndG
H(V ⊗ P)

g(hv) 	→ g(h · v ⊗ hK),

where P is a permutation representation of H on the cosets H/K. �

Suppose now that F0 = Q for simplicity.

Proposition 6.4.

1. Let f be the base change of a modular form f0 of weight one. Then the units

u
f
jk associated with f as in Definition 2.16 are given by

u
f
jk =

∏

σ ′∈G′
(ε

(σkσ ′σ−1
j )−1

)
a0(σkσ ′σ−1

j )11 ,

where a0(σ ) is the matrix of Ad0 	0(σ ) in the basis mi,0.

2. For any j, we have that

d∏

k=1

u
f
jk = uf0

.

In particular,

Rf

⎛
⎜⎜⎝

1

...

1

⎞
⎟⎟⎠ = log |uf0

|

⎛
⎜⎜⎝

1

...

1

⎞
⎟⎟⎠ .

Proof. For part 1, we may take Mj = Ad0 	0(σj) for j = 1, . . . , d in Corollary 2.13 to get

this expression for u
f
jk. Part 2 then follows from part 2 of Proposition 6.3. �

Corollary 6.5. Suppose [F : Q] = 2. Let uf0
be the unit associated with f0 and uF

f0
be the

unit associated with the Artin representation Ad0 	0 ⊗ωF/Q, where ωF/Q is the quadratic
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60 A. Horawa

character associated with the extension F/Q. Then,

u11 · u12 = uf0
, (6.1)

u21 · u22 = uf0
, (6.2)

u11 · u−1
12 = uF

f0
, (6.3)

u−1
21 · u22 = uF

f0
. (6.4)

In particular,

Rf =
(

log |u11| log |u12|
log |u21| log |u22|

)
=
(

1 −1

1 1

)(
log |uf0

| 0

0 log |uF
f0

|

)(
1 −1

1 1

)−1

. (6.5)

Proof. Fix representatives σ1, σ2 of G/G′, and assume that σ1 ∈ G′. Then the permuta-

tion representation P of G on G′/G decomposes as

P ∼= Q(σ1 + σ2) ⊕ Q(σ1 − σ2).

Therefore,

Uf
∼= Uf0

⊕ UL[Ad0 	0 ⊗ ωF/Q]

by Proposition 6.3. Tracing through this isomorphism under the chosen bases, we obtain

equations (6.1)–(6.4) and the resulting equation (6.5). �

6.2 Consequences of Conjecture 4.17

Recall that we can use the matrix R−1
f to predict that cohomology classes in H1(XC, E1,1)

are rational. When f is the base change of a modular form f0, Proposition 6.4 (2) implies

that

R−1
f

⎛
⎜⎜⎝

1

...

1

⎞
⎟⎟⎠ = 1

log |uf0
|

⎛
⎜⎜⎝

1

...

1

⎞
⎟⎟⎠ .

Therefore, the following is a consequence of Conjecture 4.17.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/im

rn
/rn

a
c
1
2
6
/6

5
9
4
9
7
3
 b

y
 g

u
e
s
t o

n
 2

9
 J

u
n
e
 2

0
2
2



Motivic Action for Hilbert Modular Forms 61

Conjecture 6.6. Suppose f is the base change of a modular form f0 of weight one. Then

the cohomology class

1

log |uf0
|

d∑

j=1

ω
σj

f ∈ H1(X, E1,1)f

is rational.

When [F : Q] = 2, Corollary 6.5 gives the following stronger rationality

statement.

Conjecture 6.7. Suppose [F : Q] = 2 and f is the base change to F of a modular form

f0 of weight one. Then a rational basis for H1(X, E1,1)f is given by

ω
σ1

f + ω
σ2

f

log |uf0
| ,

ω
σ1

f − ω
σ2

f

log |uF
f0

|
.

In light of Corollary 5.3, this is equivalent to Conjecture 4.16.

6.3 Embedded Hilbert modular varieties

To check if Conjecture 4.17 is compatible with base change, we consider the Hilbert

modular variety for F0 embedded in the Hilbert modular variety for F.

We will write d = [F : F0] and d′ = [F0 : Q]. Let τ1, . . . , τd′ be the infinite places of

F0. Above each place τi, there are d infinite places σi,j for j = 1, . . . , d of F. We write ζi,

i = 1, . . . , d′, for the variables on H⊗F0 and zi,j, i = 1, . . . , d′, j = 1, . . . , d for the variables

on H ⊗ F. Here, ζi corresponds to τi and zi,j corresponds to σi,j.

We write X0 and X for the Hilbert modular varieties associated with F0 and F,

respectively. There is a natural embedding

ι : X0 ↪→ X.

Over C, it descends from the map

H ⊗ F0 ↪→ H ⊗ F

(ζ1, . . . , ζd′) 	→ (ζ1, . . . , ζ1, ζ2, . . . , ζ2, ζd′ , . . . , ζd′),
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62 A. Horawa

that is, the subvariety is given by the equation zi,j = ζi for all i, j.

We are interested in the restriction map

Hi(X, E1,1)
ι∗→ Hi(X0, Ed,d).

Particularly, we defined a class ωJ
f ∈ HI(X, E1,1) associated with f ∈ H0(X, E1,1), which is

represented by

ωJ
f (z) = f (zJ) · yJ ·

∧

σi,j∈J

dzi,j ∧ dzi,j

y2
i,j

(6.6)

as a Dolbeault class, and we consider ι∗(ωJ
f ).

Lemma 6.8. If J contains σi,j and σi,j′ for j �= j′,

ι∗(ωJ
f ) = 0.

Proof. This follows immediately from the expression (6.6) and the identity zi,j = ζi

on X0. �

Let us assume that J only contains at most one σi,j for each i, so that it is possible

that ι∗(ωJ
f ) is nonzero.

The following conjecture is a consequence of Conjecture 4.17.

Conjecture 6.9. Let A = (aij) = R−1
f be the inverse of the Stark regulator matrix. Then

for all j = 1 . . . , d,

n∑

i=1

aijι
∗(ωσi

f ) ∈ H |I|(X0, Ed,d) ⊗ E ⊆ H |I|((X0)C, Ed,d) ⊗ E.

Note that it is possible that ι∗(ω
σj

f ) = 0 for all j in which case this conjecture

is void. In fact, we expect that ι∗(ω
σj

f ) = 0 if f is not a base change form from F0 (see

Proposition 6.12 for an example of this phenomenon).
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6.4 The case of real quadratic extensions

We finally restrict our attention to real quadratic extensions F/Q. In the previous

notation, F0 = Q and d = 2. We denote by z1, z2 (instead of z1,1, z1,2) the variables on

XC and by z (instead of ζ1) the variable on (X0)C.

Let f be a holomorphic Hilbert modular form of parallel weight (k, k) and

consider ω
σ1

f ∈ H1(Xan
C

, Ean
(2−k,k)

), given by

ω
σ1

f (z1, z2) = f (ε1z1, ε2z2)yk
1

dz1 ∧ dz1

y2
1

. (6.7)

There are embedded modular curves ι : C ↪→ X in the Hilbert modular surface,

studied extensively by Hirzebruch and Zagier [34]. We only consider the simplest

example, which is obtained by considering the map

ι : Can
C ↪→ Xan

C

z 	→ (z, z)

over C that descends to varieties over Q. Via this map,

ι∗(Ean
(2−k,k))

∼= E
an
2

∼= �
1,an
C (∞)

by the Kodaira–Spencer isomorphism, where (∞) indicates that differentials are allowed

to have poles of orders at most one at the cusps. Hence,

ι∗(ωσ1

f )(z) = f (ε1z, ε2z)yk dz ∧ dz

y2

defines a class in H1(Can
C

, �1,an
C (∞)). Via the trace map, we have

Tr: H1(Can
C , �1,an

C (∞))
∼=→ C,

ι∗(ωσ1

f )(z) 	→
∫

Can
C

f (ε1z, ε2z)yk dz ∧ dz

y2
,

and the isomorphism respects rational structures.

Lemma 6.10. For a Hilbert modular form of weight (k, k), ι∗(ωσ1

f ) = (−1)k+1ι∗(ωσ2

f ).
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64 A. Horawa

Proof. It suffices to check that Tr(ι∗(ωσ1

f )) = Tr(ι∗(ωσ2

f )). This follows by a change of

variables:

Tr(ι∗(ωσ1

f )) =
∫

Can
C

f (ε1z, ε2z)yk dz ∧ dz

y2

= −
∫

Can
C

f (−ε1z, −ε2z)yk dz ∧ dz

y2

= (−1)k+1

∫

Can
C

f ((−ε−1
1 )z, (−ε−1

2 )z)yk dz ∧ dz

y2

(
1

ε2

)
∈ 
, N(ε) = −1

= (−1)k+1 Tr(ι∗(ωσ2

f )),

as claimed. �

Putting this together with Conjectures 6.7 and 6.9, we get the following

conjecture.

Conjecture 6.11. Let f be the base change of a weight one modular form f0. Then,

∫

Can
C

f (ε1z, ε2z)yk dz ∧ dz

y2
∼E× log |uf0

|.

For k ≥ 2 and full level, these integrals were considered by Asai [3]. The following

result was also obtained by Oda [54]. See also [70, Proposition (VI.7.9)].

Proposition 6.12 ([54, Theorem 16.5]). Suppose f is a Hilbert modular form of parallel

weight k ≥ 2 and level one. If f is not a base change form, then

∫

Can
C

f (ε1z, ε2z)yk dz ∧ dz

y2
= 0.

Otherwise, if f is the Doi–Naganuma lift of a modular form g of weight k ≥ 2, level

D = disc(F/Q), and character ωF/Q, then there is a constant c ∈ Q× such that

∫

Can
C

f (ε1z, ε2z)yk dz ∧ dz

y2
= c

〈f , f 〉
〈g, g〉 . (6.8)
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Motivic Action for Hilbert Modular Forms 65

Remark 6.13. The proof of Proposition 6.12 in loc. cit. uses the explicit realization of

f as a Doi–Naganuma lift of a modular form g, which is currently not available in the

literature for weight one forms. If an appropriate analogue of Proposition 6.12 holds for

a weight one forms f0 of arbitrary weight, level, and character, then we expect that

Stark’s Conjecture 2.9 implies Conjecture 6.11 for base change forms of f0 to a real

quadratic fields.

Verifying the details of this would take us too far afield, so we will pursue

this elsewhere. Instead, in the next section, we describe some explicit numerical

computations that support Conjecture 6.11.

We end this section by proving that Conjectures 6.7 and 6.11 are equivalent for

base change forms, as long as ι∗(ωσ1

f ) �= 0.

Proposition 6.14. Let f be the base change of a weight one modular form f0. Assume

1. Stark’s conjecture for the adjoint representation associated with f ,

2. ι∗(ωσ1

f ) �= 0,

Then Conjecture 6.7 for f is equivalent to Conjecture 6.11 for f , up to a potential factor

of
√

2.

Proof. Clearly, Conjecture 6.7 implies Conjecture 6.11. We will prove the converse.

Consider the algebraic map ϕ : X → X given on XC → XC by (z1, z2) 	→ (z2, z1). By

examining the proof of Theorem 4.2, one can deduce that if f is a base change form, then

ϕ preserves f -isotypic components of coherent cohomology and hence induces a map:

ϕ∗ : H1(X, E1,1)f → H1(X, E1,1)f .

Clearly, ϕ∗
C
(ω

σ1

f ) = ω
σ2

f and ϕ∗
C
(ω

σ2

f ) = ω
σ1

f . Letting

ω± = ω
σ1

f ± ω
σ2

f ,

we see that ϕ∗
C
(ω±

f ) = ±ω±
f . Hence, ω±

f are eigenvectors for the linear map ϕ∗
C

with

distinct eigenvalues, and so there exist λ± ∈ C such that

λ±ω± ∈ H1(X, E1,1)f .
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66 A. Horawa

We have a rational functional Tr ◦ι : H1(X, E1,1)f ⊗ E → E such that

(Tr ◦ι)(λ+ω+) ∼E× λ+
∫

Can
C

ι∗(ωσ1

f ), (Tr ◦ι)(λ−ω−) = 0

by Lemma 6.10. Conjecture 6.11 then shows that we may take

λ+ = 1

log |uf0
| .

Finally, by Corollary 5.16, we know that the determinant of the basis

ω+

log |uf0
| ,

ω−

log |uF
f0

|

is E[
√

2]-rational, and hence

λ+ · λ− ∼E[
√

2]×
1

log |uf0
| · log |uF

f0
|
,

showing that we may take λ− = 1
log |uF

f0
| . �

Remark 6.15. The idea to use the map ϕ was communicated to us by the referee for a

previous version for this manuscript. We thank them for this suggestion.

Remark 6.16. We expect that the condition 2 in Proposition 6.14 (i.e., ι∗(ωσ1

f ) �= 0) is

equivalent to the character χ0 of f0 being quadratic. One implication is clear: ι∗(ωσ1

f )

transforms by the character χ2
0 under the action of 
0(N), and hence Tr(ι∗(ωσ1

f )) = 0

unless χ2
0 = 1. Conversely, if χ2

0 = 1, then the global analogue of Jacquet’s conjecture

[37, 55] implies that the automorphic representation π generated by f contains a nonzero

GL2(AQ)-invariant functional. We predict that f 	→ ι∗(ωσ1

f ) is this functional, that is,

ι∗(ωσ1

f ) �= 0.

Finally, we expect that Proposition 6.14 has a refinement when χ2
0 �= 1. If ω0 is

the character of A×
Q

corresponding to χ0 by class field theory and ω̃0 is its extension

to A×
F (which always exists), then Jacquet’s conjecture predicts that the representation

π ⊗ ω̃0
−1 has a nonzero GL2(AQ)-invariant functional. One could hope to translate this

to a classical statement analogous to Conjecture 6.11.
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Motivic Action for Hilbert Modular Forms 67

6.5 Computing the integrals numerically

The next goal is to provide numerical evidence of Conjecture 6.11, that is, check that

∫

Can
C

f (ε1z, ε2z)y
dz ∧ dz

y2
∼E× log |uf0

|. (6.9)

We will assume that χ2
0 = 1 (cf. Remark 6.16), and hence the integral may be taken over


0(N)\H instead of 
1(N)\H. Indeed, equation (6.9) is equivalent to

∫


0(N)\H

f (ε1z, ε2z)y
dz ∧ dz

y2
∼E× log |uf0

| (6.10)

because the two integrals differ by a factor of ϕ(N).

We first derive a formula (Theorem 6.20) for the integral on the left-hand side

using Nelson’s technique [52] for evaluating integrals on modular curves.

Let 
 ⊆ SL2(Z) be a finite index subgroup, and let F : 
\H → C be a 
-invariant

function on the upper half plane H. Suppose we have its q-expansions, that is, for all

τ ∈ SL2(Z), we have

F(τz) =
∑

n∈Q
aF(n, y; τ)e(nx), (6.11)

where e(nx) = e2π inx.

Theorem 6.17 ([52, Theorem 5.6]). Suppose F is bounded, measurable, and satisfies

F(τz) � y−α for some fixed α > 0, almost all z = x + iy with y ≥ 1, and all τ ∈ SL2(Z).

Then, for 0 < δ < α, we have that

∫


\H

F(z)
dxdy

y2
=
∫

(1+δ)

(2s − 1)2ξ(2s)
∑

τ∈
\ SL2(Z)

aF(0, ·; τ)∧(1 − s)
ds

2π i

where

ξ(2s) = 
(s)

πs
ζ(2s),

aF(0, ·; τ)∧(1 − s) =
∞∫

0

aF(0, y; τ)ys−1 dy

y
.
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68 A. Horawa

Applying this to F(z) = f0(z) · f0(z) · yk gives an explicit expression for the

Petersson inner product 〈f0, f0〉.

Corollary 6.18 (Nelson [12, Theorem 4.2]). Suppose f0 is a cusp form in Sk(N, χ). For

a cusp s, let
∑
n

an,sq
n be the q-expansion at ∞ of f0|[τs,h]k, where τs,h = τs

(
hs 0

0 1

)
and

τs∞ = s. Then we have that

〈f0, f0〉= 4

vol(
\H)

∑

s∈
\P1(Q)

hs,0

hs

∞∑

m=1

|am,s|2

mk−1

∞∑

n=1

( x

8π

)k−1
(xKk−2(x)−Kk−1(x)), x=4πn

√
m

hs
,

where Kv is a K-Bessel function, hs,0 is the classical width of the cusp s, and hs is the

width described in [12, Lemma 2.1].

Remark 6.19. An algorithm to compute these Petersson inner products was developed

and implemented by Collins [12, Algorithm 4.3].

The goal for this section is to prove the following theorem, which is an explicit

form of Theorem 6.17 in our case.

Recall that for α ∈ SL2(OF), we write αi = σi(α) and

f |[α]k(z1, z2) = f (α1z1, α2z2)j(α1, z1)−k1j(α2, z2)−k2 ,

where

j(g, z) = det(g)−1/2(cz + d).

By definition, if f is a Hilbert modular form of weight (k1, k2) and level 
 and

character χ , then f |[α]k = χ(d) · f for α =
(

a b

c d

)
∈ 
.

Theorem 6.20. Let f be a normalized parallel weight k Hilbert modular newform of

level N and character χ . For each cusp s ∈ P1(Q)/
0(N), let τ ∈ SL2(Z) satisfy τ∞ = s.
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Motivic Action for Hilbert Modular Forms 69

Let hs be the width of the cusp as described in [12, Lemma 2.1], and

τ ε =
(

ε 0

0 1

)
τ

(
ε 0

0 1

)−1

,

τ ε
h = τ ε

(
hs 0

0 1

)
.

If
∑

m�0

a(m),sq
m is the q-expansion of f |[τ ε

h]k at ∞, then

∫


0(N)\H

f (ε1z, ε2z)yk dz∧dz

y2
=4

∑

s

hs,0

hs

∞∑

m=1

a(m),s

(m/
√

d)k−1

∞∑

n=1

(
x

23−iπ

)k−1(
xKk−2(x)−Kk−1(x)

)
,

where x = 22−i/2πn
√

m
hs

√
d

and hs,0 is the classical width of the cusp s, and i = 0 if

d ≡ 1 (4) or i = 1 if d ≡ 3 (4).

Remark 6.21. This formula is very similar to the formula for 〈f0, f0〉 in Corollary 6.18.

We can hence adapt the algorithm [12, Algorithm 4.3] to compute the integral. The

computation of q-expansions of f at other cusps given the q-expansion at ∞ is discussed

in the next section (6.6).

We devote the rest of this section to the proof of this theorem. We want to apply

Theorem 6.17 to the function

F(z) = Fσ1

f (z) = f (ε1z, ε2z) · yk, (6.12)

where f is a Hilbert modular form of parallel weight k.

We will need q-expansions of F(z) at other cusps, that is, q-expansions of F(τz)

for τ ∈ SL2(Z), as in equation (6.11). The idea is to express them in terms of q-expansions

at ∞ of another Hilbert modular form.

Lemma 6.22. Suppose f is a Hilbert modular form of weight (k, k). For a cusp s, let

τ ∈ SL2(OF) be such that τ∞ = s, and set

τ ε =
(

ε 0

0 1

)
τ

(
ε 0

0 1

)−1

.
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70 A. Horawa

Then we have that

Fσ1

f (τz) = Fσ1

f |[τ ε ]k
(z).

Proof. For τ ∈ SL2(Z), we have that

f (ε1(τz1), ε2(τz2)) = f

∣∣∣∣

[(
ε 0

0 1

)
τ

]

k

(z1, z2) · (NF/Q(ε))−k/2 · j(τ , z1)kj(τ , z2)k

= f

∣∣∣∣

[
τ ε

(
ε 0

0 1

)]

k

(z1, z2) · (NF/Q(ε))−k/2 · j(τ , z1)kj(τ , z2)k

= f |[τ ε ]k(ε1z1, ε2z2) · j(τ , z1)kj(τ , z2)k.

Therefore,

Fσ1

f (τz) = f (ε1(τz), ε2(τz)) · (Im(τz))k

= f |[τ ε ]k(ε1z, ε2z) · |j(τ , z)|2k · (Im(τz))k

= f |[τ ε ]k(ε1z, ε2z) · Im(z)k

= Ff |[τ ε ]k
(z),

since Im(τz) = |j(τ , z)|−2y. �

Lemma 6.23. For a cusp s, consider τ ∈ SL2(Z) such that τ∞ = s. Let hs be the width

of cusp s (as in [12, Lemma 2.1]) and

τ ε
h = τ ε

(
hs 0

0 1

)
.

The q-expansion coefficients of F(τz) (as in equation (6.11)) are given by

aF(n/hs, y; τ) = (y/hs)
k ·

∑

m�0
Tr(εm)=n

a(m),s · e−2π(ε2m2/δ2−ε1m1/δ1)y/hs ,

where a(m),s are Fourier coefficients of f |[τ ε
h]k. In particular,

aF(0, y; τ) = (y/hs)
k ·

∞∑

m=1

a(m),s · e
−2π 21−im√

d
(y/hs)

,

where i = 0 if d ≡ 1 (4) and i = 1 if d ≡ 3 (4).
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Motivic Action for Hilbert Modular Forms 71

Proof. We write h = hs for simplicity. Suppose the q-expansion of f |[τ ε
h]k is

f |[τ ε
h]k(z1, z2) =

∑

m�0

a(m),sq
m/δ.

Then,

f |[τ ε ]k(z1, z2) = h−k
∑

m�0

a(m),sq
m/(δh).

By Lemma 6.22,

F(τz) = f |[τ ε ]k(ε1z, ε2z) · yk

= (y/h)k
∑

m∈O+
F

a(m),s · e2π i(ε1m1/δ1(z/h)+ε2m2/δ2(z/h))

= (y/h)k
∑

m∈O+
F

a(m),s · e−2π(ε2m2/δ2−ε1m1/δ1)(y/h)e2π i(Trεm/δ)(x/h)

= (y/h)k
∑

n∈Z

⎛
⎜⎜⎜⎝

∑

m∈O+
F

Tr(εm/δ)=n

a(m),s · e−2π(ε2m2/δ2−ε1m1/δ1)(y/h)

⎞
⎟⎟⎟⎠ e((n/h)x).

Hence,

aF(n/h, y; τ) = (y/h)k ·
∑

m�0
Tr(εm/δ)=n

a(m),s · e−2π(ε2m2/δ2−ε1m1/δ1)(y/h),

and in particular,

aF(0, y; τ) = (y/h)k ·
∑

m�0
Tr(εm/δ)=0

a(m),se
−2π(ε2m2/δ2−ε1m1/δ1)(y/h).

To make this last formula more explicit, we write m = α + β
√

d. We may choose

δ = 2i
√

d · ε to be the totally positive generator of the different ideal. Then,

εm/δ = β

2i
+ α

2id

√
d.
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72 A. Horawa

If Tr(εm/δ) = 0, then β = 0, so m = α ∈ Z>0. Moreover,

ε2m2/δ2 − ε1m1/δ1 = 21−im√
d

.

We may hence rewrite the above sum as

aF(0, y; τ) = (y/h)k ·
∞∑

m=1

a(m),s · e
−2π 21−im√

d
(y/h)

,

proving the lemma. �

We finally complete the proof of Theorem 6.20.

Proof of Theorem 6.20. We will apply Theorem 6.17 to the invariant function

F(z) = Fσ1

f (z). By Lemma 6.23,

aF(0, y; τ) = (y/hs)
k ·

∞∑

m=1

a(m),s · e
−2π 21−im√

d
(y/hs)

.

Hence,

aF(0, ·; τ)∧(1 − t) =
∞∫

0

aF(0, y; τ) yt−1 dy

y
.

=
∞∑

m=1

a(m),s

∞∫

0

e
−2π 21−im√

d
(y/hs) yt−1 (y/hs)

k dy

y

=
∞∑

m=1

a(m),sh
−k
s

∞∫

0

e
−2π 21−im

hs
√

d
y

yt+k−1 dy

y

=
∞∑

m=1

a(m),sh
−k
s


(t + k − 1)

(2π 21−im
hs

√
d

)t+k−1

=
∞∑

m=1

a(m),s

(22−iπm/
√

d)k−1hs


(t + k − 1)

(22−iπ m
hs

√
d
)t

.
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Motivic Action for Hilbert Modular Forms 73

According to [52, Lemma A.4],

∫

(1+δ)

(t − 1/2)

(t)
(t + ν)

(x/2)2t+ν

dt

2π i
= xKν−1(x) − Kν(x)

for ν ∈ C with Re(ν) ≥ 0.

By Theorem 6.17,

∫


\H

F(z)
dxdy

y2
=
∫

(1+δ)

(2t −1)2ξ(2t)
∑

τ

aF(0, ·; τ)∧(1−t)
dt

2π i

= 4
∑

s

hs,0

∞∑

m=1

a(m),s

(22−iπm/
√

d)k−1hs

∞∑

n=1

∫

(1+δ)

(t − 1/2)

(t)
(t + k − 1)

(22−iπ2 m
hs

√
d
)t

1

n2t

dt

2π i

= 4
∑

s

hs,0

hs

∞∑

m=1

a(m),s

(22−iπm/
√

d)k−1

∞∑

n=1

∫

(1+δ)

(t − 1/2)

(t)
(t + k − 1)

(22−iπ2 mn2

hs
√

d
)t

ds

2π i

= 4
∑

s

hs,0

hs

∞∑

m=1

a(m),s

(m/
√

d)k−1hs

∞∑

n=1

(
x

23−iπ

)k−1

(xKk−2(x) − Kk−1(x)),

where we set x = 22−i/2πn
√

m/hs

√
d in the last line. �

In order to use Theorem 6.20, we need to compute the q-expansions of the Hilbert

modular form f at other cusps, that is, q-expansions of f |[α]k at ∞ for a matrix α. We

discuss this problem in the next section.

6.6 q-Expansions at other cusps

In this section, we address the following question: given the q-expansion of a Hilbert

modular form f (z) at the cusp ∞, what is the q-expansion of f (z) at any cusp of


0(N)\H2?

We take two methods available for modular forms and discuss their generaliza-

tion to Hilbert modular forms:

• Asai’s explicit formula [2] (Theorem 6.25),

• Collins computational method based on a least-squares algorithm [12]

(Algorithm 6.27).
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74 A. Horawa

The 1st one is much faster in practice but only works for square-free level. The

2nd one works for any level, but our implementation is too slow in practice to compute

the above integrals. We include it here since it might be of independent interest.

Collins also introduced an improved computational method for modular forms

using twists of eigenforms [12, Algorithm 2.6]. This is also discussed in Chen’s thesis

[11, Chapter 4].

An alternative approach is to use the adelic language. The Fourier coefficients

of a modular form are given by value of the Whittaker newform of f at certain matrices.

Loeffler and Weinstein [44] give an algorithm to compute the local representations,

so one just needs an algorithm to compute the local newforms. For more details, see

[13, Section 3].

6.6.1 Explicit formula, following [2]

Let F be a totally real field of narrow class number 1 (of arbitrary degree d). Suppose

f is a Hilbert modular eigenform of level N with character χ : (OF/N)× → C× and

parallel weight k. Suppose the level N is square-free. We write 
 = 
0(N) throughout

this section.

The goal is to prove an explicit formula (Theorem 6.25) for the q-expansion of

a Hilbert modular form f at a cusp C = a/b ∈ F in terms of the q-expansion at ∞,

generalizing the main result of [2] to the Hilbert modular case.

Since N is square-free, the cusps C = a/b of 
\H2 are in bijection with

decompositions N = A · B, where B = ((b),N). For each divisor A, we consider the

matrix

WA =
(

Aα β

Nγ Aδ

)
=
(

α β

Bγ Aδ

)(
A 0

0 1

)

such that

• A, N are totally positive generators of A, N, respectively; then B = N/A is a

totally positive generator of B;

• det WA = A;

• α, β, γ , δ ∈ OF .

Such a matrix always exists: since A = (A) and B = (B) are coprime, we have

that 1 = λA + μB, for some λ, μ ∈ OF , so A = λA2 + μN, and we may take α = β = 1 and
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Motivic Action for Hilbert Modular Forms 75

γ = −μ, δ = λ to obtain such a matrix:

WA =
(

A 1

−Nμ Aλ

)
.

Conversely, for a matrix WA,

W−1
A ∞ = δ

−Bγ

is a cusp with ((Bγ ),N) = B because

1 = Aαδ − Bβγ ≡ −Bβγ mod A,

so (γ ) is coprime to A.

Such a matrix WA associated with A is well defined up multiplication by

elements of 
. Moreover, WA normalizes 
 and A−1W2
A ∈ 
.

The q-expansion of f at the cusp corresponding to N = AB is the q-expansion of

the Hilbert modular form fA = f |WA at ∞.

For a prime ideal p = (�) of OF , coprime to N, with totally positive generator � ,

the action of the Hecke operator T(p) on the space of cusp forms Sk(N, χ) is given by

f |T(p) = NF/Q(p)k/2−1

⎛
⎝χ(�)f

∣∣∣∣
k

(
� 0

0 1

)
+

∑

ν∈OF/p

f

∣∣∣∣
k

(
1 ν

0 �

)⎞
⎠ . (6.13)

For example, when d = 2, this simplifies to the more familiar expression:

f |T(p) = NF/Q(p)k−1

⎛
⎝χ(�)f (�1z1, �2z2) + NF/Qp

−k
∑

ν∈OF/p

f

(
z1 + ν1

�1

,
z2 + ν2

�2

)⎞
⎠ .

We will write T(p, χ) for the action of the Hecke operator T(p) on Sk(N, χ).

Remark 6.24. This normalization of Hecke operators is consistent with T ′(p) in [64].

For simplicity, whenever we write down a generator of an ideal, it is assumed to

be totally positive. The main result of this section is the following.
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76 A. Horawa

Theorem 6.25. Let f be a newform in Sk(N, χ) and f |T(p, χ) = apf . For each

decomposition N = AB, let fA = f |WA. Then fA is a newform in Sk(N, Aχ) and

fA|T(p, Aχ) = a(A)
p fA

for every prime p = (�), where

a(A)
p =

⎧
⎨
⎩

χA(�)ap if p � | A,

χB(�)ap if p � | B,

and

χA : (OF/AOF)× → C×,

m 	→ χ((−Bβγ )m + (Aαδ)),

χB : (OF/BOF)× → C×,

m 	→ χ((Aαδ)m + (−Bβγ )),

Aχ : (OF/NOF)× → C×,

m 	→ χ((Aαδ)m + (−Bβγ )m−1).

Proof. The proof is a straightforward generalization of [2, Theorem 1], so we just give

a sketch.

We first check that fA has character Aχ described above. Write

d : 
 = 
0(N) → (OF/N)×,

(
a b

c d

)
	→ d mod N.

Then we just need to check that

d
(
WAgW−1

A

)
= Aχ(d(g)),

where

Aχ(m) ≡ (Aαδ)m + (−Bβγ )m−1 mod N.
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Motivic Action for Hilbert Modular Forms 77

For g =
(

a b

c d

)
, we have that

WAγ W−1
A =

(
Aα β

Nγ Aδ

)(
a b

c d

)(
δ −β/A

−Bγ α

)

=
(

Aα β

Nγ Aδ

)(
aδ − bBγ −aβ/A + bα

cδ − dBγ −cβ/A + dα

)

so

d(WAγ W−1
A ) = −aβγ B + bNαγ − cβδ + dAαδ

≡ (−βγ B)a + (Aαδ)d mod N since c ≡ 0 mod N,

which proves the above result, since ad ≡ 1 mod N.

One then computes a formula for how the Hecke operator T(p, χ) commutes with

WA using the above expression for Hecke operators (cf. [2, Lemma 2]). To check that fA

is a newform, one shows that WA preserves oldforms (cf. [2, Lemma 1]). �

The Hecke eigenvalues an of T(n) may be computed from the eigenvalues ap of

T(p) in the standard way [64, (2.26)]. For n coprime to m, we have that

anm = an · am

and for n = pr, we have that

∞∑

r=0

apr N(p)−rs = [1 − apN(p)−s + χ(p)N(p)k0−1−2s]−1, (6.14)

where k0 = max{k1, . . . , kn}.
We can then recover the q-expansion of fA, up to a constant λ, from the Hecke

eigenvalues a(A)
p given by Theorem 6.25. There is an explicit expression for λ, described

in the next theorem.
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78 A. Horawa

Theorem 6.26. Let f be a normalized Hilbert newform with character χ and level N.

Then there is a constant λ such that

fA = λ ·
∑

ν�0

a(A)
(ν) qν

︸ ︷︷ ︸
f (A)

where we define

a(A)
(1) = 1

a(A)
(ν) = χA(ν)a(ν) if ((ν),A) = OF ,

a(A)
(ν) = χB(ν)a(ν) if ((ν),B) = OF ,

a(A)
(νμ) = a(A)

(ν) a(A)
(μ) if (ν, μ) = OF .

Moreover, there is an explicit formula for λ, analogous to [2, Theorem 2]. First,

for a decomposition N = pB for a prime ideal p = (�), let

Wp =
(

� 1

Nγ �δ

)

be a matrix of determinant � with γ , δ ∈ OF . Then,

f |Wp = λpf (p)

with

λp =

⎧
⎨
⎩

C(χp) · Np−k/2 · ap if p divides cond(χ),

−Np1−k/2 · ap otherwise,

where

C(χp) =
∑

h mod p

χp(h) · e2π iTr(h/�)

is a Gauss sum associated with χp.
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Motivic Action for Hilbert Modular Forms 79

In general, for any N = AB with an associated matrix WA =
(

Aα β

Nγ Aδ

)
, we have

that

λ = χ(Aδ − Bγ )
∏

(�)=p|A
χp(A/�)λp.

Proof. Once again, the proof generalizes the proof of [3, Theorem 2]. Since for A

coprime to A′, we may take WAA′ = WAWA′ , it is enough to check the assertion for a

prime ideal A = p.

By definition of a(p)

(ν) and λp, we have that

f |T(p) ◦ Wp = apf |Wp = apλp

∑

ν�0

a(p)

(ν)q
ν/δ. (6.15)

We compute the left-hand side in another way to get the result.

Since det Wp = � , we have that

Bγ ≡ Bγ − �δ = −1 mod p.

Hence, for j �≡ 1 mod p,

1 + Bγ j ≡ 1 − j �≡ 0 mod p,

so there exists � �≡ 0 mod p such that

(1 + Bγ j)� ≡ 1 mod p.

Moreover, this defines a bijection

{j ∈ OF/p | j �≡ 1 mod p} ↔ {� ∈ OF/p | j �≡ 0 mod p}.

One can then check that for j �≡ 1 mod p

(
1 j

�

)
Wp = σ1

(
1 �

�

)(
�

1

)

for some σ1 ∈ 
0(N) such that χ(d(σ1)) = χp(�).
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80 A. Horawa

For j = 1, we have that

(
1 1

�

)
Wp = σ2Wp

(
�

1

)

for some σ2 ∈ 
0(N) such that χ(d(σ2)) = χB(�).

Using the expression (6.13) for T(p),

f |T(p) ◦ Wp = (NF/Qp)
k/2−1

⎛
⎝
∑

j∈OF/p

f

∣∣∣∣
k

(
1 j

�

)
Wp

⎞
⎠

= (NF/Qp)
k/2−1

⎛
⎝
∑

� �≡0

χp(�)f

∣∣∣∣
k

(
1 �

�

)(
�

1

)⎞
⎠+ χB(�)f

∣∣∣∣
k
Wp

(
�

1

)
.

Using the q-expansions,

f =
∑

ν�0

a(ν)q
ν/δ, f |kWp = λp

∑

ν�0

a(p)

(ν)q
ν/δ,

we have that

f

∣∣∣∣
k

(
1 �

�

)(
�

1

)
=
∑

ν�0

a(ν)e
2π i Tr(ν�/δ�)qν/δ,

f

∣∣∣∣
k
Wp

(
�

1

)
= (NF/Qp)

k/2λp

∑

ν�0

a(p)

(ν)q
ν�/δ.

Hence,

f |T(p) ◦ Wp = (NF/Qp)
k/2−1

∑

ν�0

a(ν)

⎛
⎝
∑

� �≡0

χp(�)e
2π i Tr(ν�/δ�)

⎞
⎠qν/δ

+ (NF/Qp)
k−1χB(�)λp

∑

ν�0

a(p)

(ν)q
ν�/δ.

If χp is primitive, then

∑

� �≡0

χp(�)e
2π i Tr(ν�/δ�) = χp(ν)χp(δ)C(χp)
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Motivic Action for Hilbert Modular Forms 81

since δ is coprime to � , and hence

f |T(p) ◦ Wp = (NF/Qp)
k/2−1χp(δ)C(χp)

∑

ν�0

χp(ν)a(ν)q
ν/δ + (NF/Qp)

k−1χB(�)λp

∑

ν�0

a(p)

(ν)q
ν�/δ.

If χp is not primitive, then χp = 1p is the trivial character modulo p. Then, since

� is coprime to δ,

∑

� �≡0

χp(�)e
2π i Tr(ν�/δ�) =

∑

� �≡0

e2π i Tr(ν�/δ�) =

⎧
⎨
⎩

N(q) − 1 p|(ν),

−1 otherwise.

Hence,

f |T(p)◦Wp=−(NF/Qp)
k/2−1

∑

ν�0

a(ν)q
ν/δ+

∑

ν�0

(
(Np)k/2a(ν�)+(NF/Qp)

k−1χB(�)λpa(p)

(ν)

)
qν�/δ.

Comparing the expression for f |T(p) ◦ Wp in each case with equation (6.15) gives

the result. �

6.6.2 Numerical method, following [12]

The explicit formulas above only apply to Hilbert modular forms of square-free level.

We discuss how one could generalize a method of Collins to compute q-expansions at

other cusps for general levels.

As in [12, Section 2], we consider a matrix α that takes infinity to the cusp and

αh =
(

a b

c d

)(
h 0

0 1

)
.

For f ∈ Sk(
0(N)),

f |[αh]k ∈ Sk(
0(Nh))

and we want to compute its q-expansion

f |[αh]k =
∑

ν�0

a(ν),αqm =
∑

n

an,α

(
∑

m∈Z
qumν

)
, (6.16)

where qm = e2π iTr(m/δ) and u ∈ (OF)×+ is a fundamental unit.
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82 A. Horawa

The idea of Collins [12, Section 2.3] is to sample points z1, . . . , zM ∈ H2 and use

the q-expansion at ∞ of f to compute f [αh]k(z) for these values. Then to use a least

squares algorithm to approximate the constants an,α that satisfy

f [αh]k ≈
∑

n

an,α

(
∑

m∈Z
qumν

)
.

Algorithm 6.27 (q-Expansion at other cusps, adapted from [12, Algorithm 2.3]). Given

• a Hilbert modular form f of level N, weight (k, k), with an algorithm to

compute its Fourier coefficients an for arbitrarily large n;

• a cusp a/c ∈ Q of width h;

• a maximal norm K of Fourier coefficients needed;

• a desired accuracy 10−E ;

• an exponential decay factor e−C0 ,

we can compute the Fourier coefficients for , accurate up to as follows.

1. Either increase K = K0 or decrease C = C0 so that KC ≈ log(10)E and work

with interpolating

∑

n
Nn≤K

an,α

(
∑

m∈Z
qumν

)
.

2. Choose M (e.g., 2K0), and pick points z1, . . . , zM ∈ H2 with both imaginary

parts equal to C/2π and Re(zj) randomly in (−d/ch − 1/2, −d/ch + 1/2)2.

3. Numerically compute the values f |[αh](zj) = hk/2(ch(zj,1) + d)−k(ch(zj,2) +
d)−kf (αhzj) using the q-expansion of f , truncating until we have reached an

accuracy a little greater than 10−E , and fill these into a vector b.

4. Numerically compute the values
∑

m∈Z
qumν for each z = z1, . . . , zM with an

accuracy a little greater than 10−E , and store them in a matrix A.

5. Numerically find the least squares solution to Ax = b as the exact solution

to (A∗A)x = A∗b. The solution vector is our approximation to the coefficients

an,α for each n of norm at most K.

We implemented this algorithm, but step (3) is very slow in practice. Since we

need a lot of Fourier coefficients in our case, it is not realistic to apply this algorithm

for our purposes.
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6.7 Numerical evidence

We can use Theorems 6.20, 6.25, and 6.26 to compute the integral and verify that

∫


0(N)\H

f (ε1z, ε2z)y
dz ∧ dz

y2
= c · log |uf0

| (6.17)

for some c ∈ E×. This numerically verifies Conjecture 6.9 that we showed is equivalent

to Conjecture 4.16 in base change cases.

6.7.1 Modular forms associated with cubic extensions

In Example 2.21, the unit group UfF
is described explicitly, so this is the 1st case

we consider. This is the base change of Example 2.20 to a real quadratic extension

F = Q(
√

d) of Q.

We briefly recall Example 2.20 to set up the notation. Let K = Q(α) be a cubic

field of signature [1, 1], obtained by adjoining a root α of a cubic polynomial P(x). The

splitting field L of P(x) is the Galois closure of K and GL/Q
∼= S3. We consider the

irreducible odd Artin representation

GL/Q
∼= S3 → GL2(Z).

It has an associated modular form f0 and we consider its base change f to F = Q(
√

d).

The associated unit group is Uf0
∼= U(1)

K , the norm 1 units of K, and we consider a

generator u = uf0
of this group.

Table 1 shows constants c ∈ Q such that the equality (6.17) holds up to at least

fifteen digits. The computations were performed on the high-performance computing

cluster Great Lakes at the University of Michigan.

It is quite remarkable that all the constants c are even integers and not just

rational numbers. Rubin’s integral refinement of Stark’s conjecture [59] could provide

an explanation. Understanding this phenomenon may also be related to studying

congruence numbers for f [20] and a potential integral refinement of Conjecture 4.17

would have to take them into account.
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Table 1 This table presents constants c such that equation (6.17) holds for the unit u and the

base change to Q(
√

d) of the modular form of level N associated with the polynomial P(x)

d Polynomial P(x) lmfdb.org label Level N Unit u Constant c Time taken

5 x3 − x2 + 1 23.1.b.a 23 α2 − α 2 00:09:34

5 x3 + x − 1 31.1.b.a 31 α −4 00:13:36

5 x3 + 2x − 1 59.1.b.a 59 α2 −8 01:56:22

5 x3 − x2 + 2x + 1 87.1.d.b 87 α −2 04:15:09

13 x3 − x2 + 1 23.1.b.a 23 α2 − α 8 00:10:19

13 x3 + x − 1 31.1.b.a 31 α −2 00:49:47

13 x3 + 2x − 1 59.1.b.a 59 α2 −22 29:47:44

13 x3 − x2 + 2x + 1 87.1.d.b 87 α −4 04:23:13

17 x3 − x2 + 1 23.1.b.a 23 α2 − α 14 00:16:52

17 x3 + x − 1 31.1.b.a 31 α −18 01:01:15

17 x3 − x2 + 2x + 1 87.1.d.b 87 α −14 19:40:11

29 x3 − x2 + 1 23.1.b.a 23 α2 − α 4 00:32:08

29 x3 + x − 1 31.1.b.a 31 α −14 02:38:12

37 x3 − x2 + 1 23.1.b.a 23 α2 − α 10 00:25:45

37 x3 + x − 1 31.1.b.a 31 α −6 01:41:38

We give the lmfdb.org label of the modular form. The time taken to perform the computation with at least

fifteen digits of accuracy is displayed in the format hh:mm:ss.

6.7.2 Weight one form of level 47

We give an example where the coefficients of f0 are not rational and hence Stark’s

Conjecture 2.9 is not known for the base change form f . Let f0 be the modular form

of weight one, level 47, label 47.1.b.a in lmfdb.org, and q-expansion:

f0 = q + (−1 + β)q2 − βq3 + (1 − β)q4 + · · · ,

where β = 1
2 (1 +

√
5).
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The associated Galois representation is

	 : Gal(L/Q) ∼= D5 = 〈s, r | s2 = 1, r5 = 1, srs = r4〉 → GL2(Z[ζ5])

s 	→
(

0 1

1 0

)
,

r 	→
(

ζ5 0

0 ζ 4
5

)
,

where we choose s ∈ D5 corresponding to the complex conjugation c0 ∈ Gal(L/Q)

associated with L ↪→ C. For the basis

(
0 1

1 0

)
,

(
0 1

−1 0

)
,

(
1 0

0 −1

)
of Ad0 	, the adjoint

representation is

	 : Gal(L/Q) ∼= D5 → GL3(Z[ζ5])

s 	→

⎛
⎜⎜⎝

1

−1

−1

⎞
⎟⎟⎠ ,

r 	→

⎛
⎜⎜⎝

(ζ 2
5 + ζ−2

5 )/2 (ζ 2
5 − ζ−2

5 )/2 0

(ζ 2
5 − ζ−2

5 )/2 (ζ 2
5 + ζ−2

5 )/2 0

0 0 1

⎞
⎟⎟⎠ .

Finally, this shows that

u = uf0
=

4∏

i=0

(εr−i
)ζ

2i+ζ−2i
, (6.18)

where ε is the Minkowski unit (Definition 2.3) for the embedding τ : L ↪→ C such that s

is the complex conjugation associated with τ .

Note that β = ζ 2 + ζ−2, so the coefficients ζ 2i + ζ−2i lie in the coefficient field

Q(
√

5) of f .

Interestingly, in this case, the right-hand side seems to always be an integer

multiple of 1 −
√

5
5 . Once again, this may be related to congruence numbers for f .
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TABLE 2 This table presents constants c such that equation (6.17) holds for the unit uf0
and the

base change to Q(
√

d) of the modular form f0 of level 47

d lmfdb.org label Level N Unit uf0
Constant c ∈ Q(

√
5) Time taken

5 47.1.b.a 47 (6.18) 1 −
√

5
5 04:44:15

13 47.1.b.a 47 (6.18) 5 −
√

5 09:20:12

17 47.1.b.a 47 (6.18) 8 − 8
√

5
5 02:04:28

29 47.1.b.a 47 (6.18) 3 − 3
√

5
5 15:47:31

The time taken to perform the computation with at least fifteen digits of accuracy is displayed in the format

hh:mm:ss.

A Comparison to Prasanna and Venkatesh [56]

Prasanna and Venkatesh [56, Definition 4.2.1] gave a conjectural definition of the adjoint

motive. Beilinson’s regulator defines a map

H1
M

(Mcoad,Q(1)) → HB(Mcoad,C,R)WR ∼= ĝWR . (A.1)

For a cohomological, tempered automorphic representation, they define an action of
∧∗

(ĝWR) on Betti cohomology of the associated symmetric space and conjecture that the

action is rational for the rational structure given by motivic cohomology.

In this appendix, we explain that Conjecture 4.16 is the natural analogue of this

for coherent cohomology. In our case,

ĝ ∼=
d⊕

j=1

sl2,C.

The archimedean Langlands parameter associated with a Hilbert modular form f of

weight (k, r) is given by

ϕ : WR = C× ∪ C×j →
d⊕

j=1

GL2(C)

C× ! seiθ 	→
(

s2rei(kj−1)θ

s2re−i(kj−1)θ

)

j 	→
(

0 (−1)kj−1

1 0

)

(see [41]).

A simple computation of the adjoint action gives the following lemma.
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Lemma A.1. For a Hilbert modular form of weight (k, r), we have that

ĝWR ∼=
⊕

j s.t. kj=1

R

(
1 0

0 −1

)

j

(A.2)

This allows us to define the action of this Deligne cohomology group on coherent

cohomology.

Definition A.2. Let f be a Hilbert modular form of weight (k, r). We define an action �

of
∧∗ ĝWR on H∗(XC, Ek,r)f by letting

(
1 0

0 −1

)

j

for j such that kj = 1 act by

Hj(XC, Ek,r)f → Hj+1(XC, Ek,r)f

ωJ
f 	→

⎧
⎨
⎩

ω
J∪{σj}
f σj �∈ J

0 σj ∈ J.

Here, we use the bases of cohomology groups given in Corollary 4.3.

This is precisely the action we defined in Definition 4.15.

Remark A.3. Recall from Remark 4.1 that the cohomology class ωJ
f is associated with

the action of right translation by the matrix gJ ∈ G(R) where

(gJ)j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝1 0

0 −1

⎞
⎠ σj ∈ J,

⎛
⎝1 0

0 1

⎞
⎠ σj �∈ J.

Although the elements in equation (A.2) belong to the Lie algebra ĝ and not G(R), this

seems like a natural way to define this action.

In the case (k, r) = (1, 1), we expect from Proposition 2.24 that U∨
f

∼=
H1
M

(Mcoad,Q(1)). Proposition 4.13 gives an explicit expression for the (inverse of the)

Beilinson regulator (A.1). Therefore, Conjecture 4.16 amounts to the fact that the action

of H1
M

(Mcoad,Q(1)) preserves the rational structure on coherent cohomology.

Finally, we briefly discuss the motivic action conjecture for partial weight one

Hilbert modular forms. Suppose f is a Hilbert modular form of weight (k, r), and let
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M = Mcoad be the conjectural coadjoint motive of weight zero associated with f . The

Beilinson short exact sequence for M is

0 → F1(HdR(M)) ⊗Q R → HB(MR,R) → H1
D

(MR,R(1)) → 0. (A.3)

A simple calculation using the Hodge decomposition of HB(M) gives

dim F1(HdR(M)) = #{j | kj > 1},

and hence,

dim H1
D

(MR,R(1)) = #{j | kj = 1}.

The last assertion is consistent with Lemma A.1.

Consider the rational structure on H1
D

(MR,R(1)) given by the motivic coho-

mology group H1
M

(M,Q(1)) via Beilinson’s regulator (A.1). This gives an action � of

H1
M

(M,Q(1)) on coherent cohomology H∗(XC, Ek,r)f via Definition A.2.

Conjecture A.4. The action � of
∧∗ H1

M
(M,Q(1)) on H∗(XC, Ek,r)f preserves the rational

structure H∗(X, Ek,r)f .

The action of top-degree elements, that is, the group
∧� H1

M
(M,Q(1)) where

� = #{j | kj = 1}, has a particularly nice description in terms of Beilinson’s conjecture

for the adjoint L-function. For m ∈
∧� H1

M
(M,Q(1)), we have that

m � f =
ω

J1

f

rD(m)
∈ H�(XC, Ek,r)f ,

where J1 = {j | kj = 1}. This final space is one-dimensional according to Theorem 4.2

(2) and hence we may check the rationality of m � f using Serre duality. We consider the

rational element

ω
�∞\J1

f

ν�∞\J1(f )
∈ Hd−�(X, E2−k,r)f

(see Definition 4.6). Then,

〈
ω

J1

f

rD(m)
,

ω
�∞\J1

f

ν�∞\J1(f )

〉
∼Ef (k)×

〈f , f 〉
rD(m) · ν�∞\J1(f )

by Proposition 4.8. Using Theorem 5.6, this amounts to the statement

L(1, f , Ad) ∼Ef (k)× rD(m)ν�∞\J1(f ),

up to appropriate powers of π .
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Finally, Beilinson’s conjecture implies that

rD(det H1
M

(M,Q(1))) = L(1, f , Ad) det HB(MR,Q)

as rational structures on H1
D

(MR,R(1)). Assuming this, Conjecture A.4 is equivalent to

the statement

ν�∞\J1(f ) = det HB(MR,Q),

which we would expect to be true. It would be interesting to verify this final equality,

but we decided to pursue this problem elsewhere.
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