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We propose an action of a certain motivic cohomology group on the coherent coho-
mology of Hilbert modular varieties, extending conjectures of Venkatesh, Prasanna, and
Harris. The action is described in two ways: on cohomology modulo p and over C, and we
conjecture that they both lift to an action on cohomology with integral coefficients. The
conjecture is supported by theoretical evidence based on Stark’'s conjecture on special

values of Artin L-functions and by numerical evidence in base change cases.

1 Introduction

A surprising property of the cohomology of locally symmetric spaces is that Hecke
operators can act on multiple cohomological degrees with the same eigenvalues. One
can observe this by a standard dimension count, but this does little to explain the phe-
nomenon. In a series of papers, Venkatesh and his collaborators propose an arithmetic
reason for this: a hidden degree-shifting action of a certain motivic cohomology group.

Initially, Prasanna and Venkatesh [56] and Venkatesh [73] developed these
conjectures for singular cohomology of locally symmetric spaces. Later, Harris and
Venkatesh [29] observed a similar behavior for coherent cohomology of the Hodge
bundle on the modular curve. See also [15, 45] for more evidence for their conjecture.

Connections to derived Galois deformation theory and modularity lifting were also
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2 A.Horawa

explored by Galatius and Venkatesh [21]. For a general introduction to this subject, see
[71, 72].

In this paper, we propose analogous conjectures for coherent cohomology of the
Hodge bundle on Hilbert modular varieties. To give a more precise statement, we first
set up some notation.

Let F be a totally real extension of QQ of degree d, and let f be a parallel weight
one, cuspidal, normalized Hilbert modular eigenform for F, with Fourier coefficients in
the ring of integers Oy of a number field E. One can identify f with a section of the

Hodge bundle w on a Hilbert modular variety X:
feH (X, 0) ® O.

More specifically, we consider an integral model X of the toroidal compactification of
the open Hilbert modular variety with good reduction away from primes dividing the
discriminant of F and the conductor of f. While this choice is not canonical, the resulting
cohomology groups are independent of the choice of X.

The action of the Hecke algebra extends to higher cohomology groups H:(X, w) ®
O and we may consider the subspace on which the Hecke algebra acts with the same

eigenvalues as on f, which we denote by Hi(X, w)f. It follows from [68] that

rank H'(X,0); = (‘f) (1.1)
(cf. Corollary 4.3). There is a motivic cohomology group U, associated with f, which
is an Ox-module of rank d = [F : Q] (Corollary 2.13); explicitly, it is the Stark unit
group [67] for the trace zero adjoint representation of f. We conjecture that there
is a degree-shifting action of its dual UJY on the cohomology space H*(X,w); that
makes H*(X,w); a module of rank one over the exterior algebra N* UJY , generated by
feHYX, ).

We can describe this action in two ways: modulo p and over C. Let p be a prime

of Og, n > 1 be an integer, and ¢: E — C be an embedding. We show that there is

1. amap

d
DY}~ 0} 0 0slp"
j=1
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Motivic Action for Hilbert Modular Forms 3

for some free Of/p*-modules UJE; of rank one (Proposition 3.4) and
define an action of U}’; on H*(X,w)r ® Og/p»™ by derived Hecke operators
(Definition 3.6);

2. an isomorphism

U/ ®C

b

d
Dy,
j=1

for some one-dimensional C-vector spaces U}:j (Proposition 4.13) and define
an action of U}:j on H*(X,w); ® C by partial complex conjugation z; — z;
(Definition 4.15).

The following conjecture predicts that these actions come from a single “motivic”

action that is defined rationally or even integrally.

Conjecture 1.1 (Conjectures 3.7,4.16). There is a graded action x of the exterior algebra
A" UJY on H*(X, w)s such that
1. the action of A* UJX ® Of/p" is the same as that in (1) above, up to GL;(OF)
ambiguity;
2. the action of A* UJY ® C is the same as that in (2) above, up to GL4(E)
ambiguity.
Moreover, H*(X, w)f is generated by f € HO(X, w)f OVer A" UJY.

The conjectures will be stated precisely in the main body of the paper.

Part 1 is a generalization of the main conjecture of Harris and Venkatesh
[29, Conjecture 3.1]. It should be seen as a 1st step toward establishing a p-adic con-
jecture, similar to Venkatesh's [73] conjecture. In fact, our original motivation to study
the Stark unit group Uy for Hilbert modular forms was to generalize the conjecture of
Darmon-Lauder—Rotger [14] to elliptic curves over totally real fields. A p-adic version of
Conjecture 1.1 may explain the appearance of p-adic logarithms of Stark units therein.

Part 2 is similar to the main conjecture of Prasanna and Venkatesh
[56, Conjecture 1.2.1] but in the coherent (as opposed to singular) cohomology setting. We
discuss the precise relationship in Appendix A. As far as we know, it is new even when
F = Q. In the Hilbert case, it is also closely related to the study of period invariants
attached to Hilbert modular forms at the infinite places. Such period invariants had
previously been defined by Shimura [64, 66], Harris [26-28], and Ichino and Prasanna

[35] in cases where the weight of f is at least two at some of the infinite places. The
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4 A. Horawa

parallel weight one case is different because the form does not transfer to a quaternion
algebra ramified at any infinite place, so the periods at infinite places do not admit a
simple interpretation as periods of a holomorphic differential form on a Shimura curve,
or even as ratios of periods of holomorphic forms on quaternionic Shimura varieties.
Instead, we give specific linear combinations of the higher coherent cohomology
classes that we expect to be rational in coherent cohomology. The expressions involve
logarithms of units, which is natural because the adjoint L-value is noncritical at s = 1
in this case, so one should expect the periods to be of “Beilinson-type”.

Part 2 of the conjecture admits a natural generalization to partial weight one
Hilbert modular forms, which we discuss in Appendix A. In that case, however, the
motivic cohomology group in question does not admit an interpretation as a unit group.

These conjectures lead to many interesting questions about potential general-
izations to other reductive groups that we are currently pursing elsewhere. We were
also recently made aware of the forthcoming work of Gyujin Oh on this topic.

Next, we give a more explicit versions of Conjecture 1.1 in the cases [F: Q] =1
and [F : Q] = 2 and summarize our evidence for them. For simplicity, we assume that
the automorphic representation associated with f is not supercuspidal at p = 2 (this
assumption avoids a potential factor of /2 and we expect it to be unnecessary; see
Remark 5.10).

The case [F : Q] = 1: modular curves. When [F : Q] = 1, X is a modular curve and
f is a classical modular form of weight one. This is the situation considered by Harris
and Venkatesh [29] and Conjecture 1.1 (1) specializes to their conjecture. Conjecture 1.1
(2) is its archimedean version and follows from Stark’s conjecture on special values of

Artin L-functions.

Theorem 1.2 (Corollary 5.4). Let f be a modular form of weight one. If f does not have
CM or the Fourier coefficients of f are not rational, assume Stark’s conjecture 2.9. Then
part 2 of Conjecture 1.1 is true and has the following explicit form: there is an action
of \* UJY ® E on H*(X, )¢ such that given uJY e UY, the action

uy*
HO(X, 0); > H (X, 0);

is given by
o

>
108|uf|
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Motivic Action for Hilbert Modular Forms 5
where uy € Uy is a unit in the splitting field L of the adjoint Artin representation of f,
associated with u}

is equivalent to Stark’s conjecture for the trace 0

In fact, the rationality of —— 1og|u ]

adjoint representation of f.

The case [F : Q] = 2: Hilbert modular surfaces. When [F : Q] = 2, X is a Hilbert
modular surface and f is a Hilbert modular form in two variables z;,z,. We give an
explication of part 2 of Conjecture 1.1 in this case and summarize our evidence for it.

Corollary 4.3 gives an explicit basis for H*(X, »); ® C:

feH X, w)
of' 0 e H (X, 0); ®C

w}rl'gz € H*(X, w)f @ C,

where we choose a fundamental unit € such thate; <0, ¢, > 0 and let

_ dz; ndz;
ot = f(€121, €225y, — (1.2)
1
dz, A dz,
a);z = f(€921,€125)¥5 %, (1.3)
2

o dz; Adzy dz, Adz,
a);l"’z :f(_zll_ZZ)YIyz : 2 : : 2
)41 Y2

(1.4)

Conjecture 1.1 (2) gives explicit linear combinations of these cohomology
classes that should be E-rational in cohomology. Specifically, there are four units
Ujq, Uyg, Uy, Ugy € Uy in the splitting field L of the adjoint Artin representation of f, and

we can form the Stark regulator matrix:

Ry — (log [Tl log |r(u12)|), s
log |t (uyy)|l loglt(ugy)l

where 7: L — C is a complex embedding of L. We show that there is an explicit basis

uy,uy of UJ\! ® E such that the action of uy and u, is given by

log |t (uyy)l -w}" —log |t (uy;)| -w}’z
uy »f = eHl(X,a))f®(C, (1.6)
detRf
—log|t(ujy)l - +10g|r(u )| -
uy «f = 12 1 eHl(X,a))f®(C (1.7)

det Rf
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6 A.Horawa

and the action of uy A uy is given by

01,02

Wy AuY) +f = dgtR € H*(X,w); ® C. (1.8)
£

We then have the following explicit version of part 2 of Conjecture 1.1 for

[F:Ql=2.

Conjecture 1.3 (Conjecture 4.17).

(a) A basis of H (X, )y is given by

(21

log |t (uyy)l F 0y log |t (uy)l ~a)}r2

’

detRf
—loglt(uyp)l - of! +1loglt(uyy)l - wf
detRf
(b) A basis of H2(X, )y is given by
w“l:“’Z

A previous version of the manuscript incorrectly assumed that the matrix of the

d
isomorphism UJY RC=6h U}Cj is diagonal in certain natural bases. This led to a different
j=1 "
rationality statement, namely that some multiples of w]? and w}’z are rational. We would

like to thank the anonymous referee for the previous version and Gyujin Oh for pointing
out that this claim may be false in general.
We next summarize our evidence for this conjecture. The theoretical evidence in

the case [F : Q] = 2 is summarized in the following theorem.

Theorem 1.4 (Corollary 5.16, Corollary 5.3). If the Fourier coefficients of f are not

rational, assume Stark’s Conjecture 2.9.

(a) The determinant of the basis u; = f, uy » f is E-rational, that is,
Wy ) A (uy +f) € NH' (X, 0)p € A*H' (X, 0)¢ ® C.

(b) The cohomology class (uy Auy)«f is E-rational, that is, belongs to H%(X, W)f-
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Motivic Action for Hilbert Modular Forms 7

In fact, the rationality of (uy A uy) » f is equivalent to Stark’s conjecture for
the trace 0 adjoint representation of f. Therefore, we may think of Conjecture 1.3 as a
refinement of Stark’s conjecture for this representation. We thank Samit Dasgupta for
suggesting this phrasing.

See Section 5 for generalizations of these results and further evidence in the case
[F:Q] > 2.

Numerical evidence. The next goal of the paper is to verify the rationality of the

classes
uy «f uy »f e H' (X, 0); ®C (1.9

numerically. These cohomology classes are a linear combination of 3!, a);z, which are
defined in equations (1.2) and (1.3) as Dolbeault classes. We identify them with sheaf
cohomology classes via the Dolbeault and the GAGA theorems. To check that they are
E-rational is to show that the resulting sheaf cohomology classes come from base
change of cohomology classes in H! (X, ). The translation between Dolbeault and sheaf
cohomology is not explicit enough to yield a satisfactory criterion for rationality. Worse
yet, there seems to be no natural automorphic criterion to verify rationality. Indeed, the
integral representations of Rankin and Selberg or triple product L-functions for Hilbert
modular forms only involve cohomology classes a)]{ where J is the set of places where f
is dominant (see [26] for details). Since parallel weight one forms are never dominant at
any place, the cohomology classes we are interested in do not feature in these integral
representations.

Instead, we consider an embedded modular curve ¢: C <— X and check computa-

tionally in some cases that the restriction of ulv x f fori=1,2 to C is rational, that is,
F(w)f «f) e HY(C,*w) @ E. (1.10)

The drawback of this approach is that this restriction is nonzero only if the Hilbert
modular form f is the base change of a modular form over Q (see, e.g., Proposition 6.12).
Let us hence assume that f is the base change of a weight one modular form f;,. Then

Conjecture 1.3 (a) can be restated in the simpler form (Conjecture 6.7): the classes

o' + w?
W cH'(X,0); ®C, (1.11)
fo
0P — w}?
L cH'(X,0),;®C (1.12)

F
log luf |
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8 A. Horawa

belong to the rational structure H I(x, a))f, where uy, is the unit associated with the
adjoint representation of f;, and u}‘; is a unit associated with a twist of the adjoint
representation of f;,. Finally, we check that this conjecture is equivalent to the single

rationality statement:

C@ e Lo
———eH (C,"w)®ECH (C,l"w) ® C (1.13)

log |ug|
as long as t*(w}”) # 0 (cf. Conjecture 6.11 and Proposition 6.14).

We develop an algorithm to compute the trace of this cohomology class, that is,
an integral on the modular curve C(C) (see Conjecture 6.11). We use results of Nelson
[52] to derive an expression for this integral (Theorem 6.20) that may be of independent
interest. To use it, we give explicit formulas for the g-expansion of f at other cusps when
the level of f is square-free (Theorem 6.25), generalizing results of Asai [2]. Finally, we
compute the integral numerically up to at least fifteen digits of accuracy to give evidence
for equation (1.12) in several cases (Tables 1 and 2).

The paper is organized as follows.

e Section 2 briefly discusses Stark’s conjecture, introduces the unit group Uy,
computes its rank, and gives a relation to a motivic cohomology group.

e Section 3 introduces the derived Hecke action and the generalization of
the conjecture of Harris and Venkatesh [29] to the Hilbert modular case
(Conjecture 1.1 (1)).

e Section 4 introduces partial complex conjugation operators on cohomology
and the archimedean conjectures (Conjectures 1.1(2) and 1.3).

e Section 5 discusses how the results of Stark and Tate give evidence for the
archimedean conjecture, proving Theorems 1.2 and 1.4.

e Section 6 discusses base change cases, proves Theorems 6.20 and 6.25, and
provides numerical evidence for the archimedean conjecture.

e Appendix A explains how Conjecture 1.1 (2) fits in the framework of Prasanna
and Venkatesh [56] and gives a version of this conjecture for partial weight

one Hilbert modular forms.

Sections 3 and 4 are independent of one another and hence may be read in any
order. The reader who wants to understand the full statements of the two conjectures
as fast as possible may just skim Section 2.3 and proceed directly to these two

sections.
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Motivic Action for Hilbert Modular Forms 9
2 Stark Units and Stark’s Conjecture

The goal of this section is to introduce the unit group U, mentioned in the introduction,
compute its rank, and discuss its relation to motivic cohomology. We start by briefly
recalling the definition of Stark units and Stark’s conjecture. We then compute the unit

group explicitly in the case of Hilbert modular forms.

2.1 Stark units

We follow [67] to introduce the group of Stark units associated with an Artin representa-
tion. We caution the reader that the representations in loc. cit. are right representations,
whereas we consider left representations, which leads to some discrepancies in nota-
tion. See also Dasgupta’s excellent survey [16].

Consider any Artin representation, that is, a representation of the absolute

Galois group G, that factors through a finite Galois extension L of Q:

GL(M)

Gr/

where M is a free Op-module of rank n and E is a finite extension of Q. We often write

G for the Galois group G and Uy, for the group of units of O,

Definition 2.1.  The group of Stark units associated with o: Gy, — GL(M) is
Uplel = Homp,(6(M, Uy, ®7 Op).

We will soon check that U;[o] depends only on ¢ and not on the choice of L. To
describe the group U, [o] in more detail, we first need to understand the structure of U;
as a Gy p-module.

Fix an embedding r: L — C that induces a complex conjugation ¢, of L. Note
that rank U; 4+ 1 = #(G/(c,)) by Dirichlet’s units theorem.

Lemma 2.2 (Minkowski’'s unit theorem, [67, Lemma 2]). There is a unit ¢ of L, fixed by

Co, such that there is only one relation among the rank U; + 1 units e foro e G/(cy),
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10 A. Horawa

and this relation is

H =41,

oeG/{co)

Definition 2.3. A unit whose existence is guaranteed by Lemma 2.2 is called a

Minkowski unit of L with respect to r: L — C.

Corollary 2.4. The log map induces a G-equivariant isomorphism:

UL/U}:‘OTS i) Z[log(|r(e“ )|) | 0 € G/(C())]
< > 1og(|r(e“>|)>

o€G/(co)

’

(the numerator on the right-hand side is the free abelian group in those variables) and

there is also a G-equivariant isomorphism:

mdf,) Z 5 Zllog(Ir(e” ) | o € G/ico)l,

(f: G/lco) = L) > D flolchllog(lz(e” HDI.

0€G/{co)

In particular,
U,/ Ue™ = Ind(cé0> Z — Z as a representation of G = Gy q.

We now compute the rank of Uy [o] and find a natural basis for Uy [o]®¢, E, given
a basis of My = M ®(,, E. Let

a = dimg M\, (2.1)

Note that a = (Tro(1) + Tro(cy))/2, so since any two complex conjugations of L are
conjugate, this number is independent of the choice of c,. We write b = n — a where

n = dimg M.
Proposition 2.5. Suppose ¢ does not contain a copy of the trivial representation. Then,
Uplol ® E = (M)

and hence rank U; [o] = a.
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Motivic Action for Hilbert Modular Forms 11

)

Moreover, if m,,...,m, is a basis of M]ifo and we complete it to a basis

I 0
my,...,m, of My such that o(cy) = (g L ) in this basis, then the corresponding
b
basis of Uy [o] ®,, E consists of the homomorphisms ¢y, ..., ¢, defined by

pi(m;) = H(e"_l)“if(‘” €U, ®E, (2.2)
oeG
where
0(0) = (a;;(0));; in the basis my, ..., m,.

Proof. We have that

UL[Q] ®(9E E = HOIIIE[G] (Mg, Uy, @z E)

= Homgyg (ME, Indgo) E - E) Corollary 2.4
= Homygyg, (ME, Ind(GC0> E) o does not contain the trivial rep.
= Homgy e,y (Mg, E) Frobenius reciprocity
_ (Méco))v'

I 0
Now, pick a basis m;, ..., m,, of M such that o(cy) = (g ) in it. By definition of the

_Ib

matrix (aij(a))i'j,

Q(U)m] = Z akj(O')mk.
k=1

Hence, a map ¢ € Hom, (M, Uy, ®; Of) is G-equivariant if and only if
n n
((m)* = plo(t)m)) = ¢ (Z ak,-(wmk) =[] etmp®® (2.3)
k=1 k=1

(where the group of units is written multiplicatively).

We check that each ¢; defined above satisfies this equation. Let

u; = [ H% e U, ® Op.

oeG
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12 A. Horawa

Then,

(e )

oeG
— H(e'm’l)aij(a)
oeG
— H (E(G/)—l)aij(g/‘r) for U/ — O"L'_l

o'eG

1 2 aik(o’)ag(t)

= H (E(G/)_ )k:l

o'eG
ayi(t)
Ul)aik(a)) foro' = o

[
=
R
=

This shows that the functions ¢; given by ¢;(m;) = u;; are G-equivariant (2.3). Indeed,

n n
ag;(t) .
oty = = [T = [T ot
k=1 k=1

Hence, ¢y,...,¢, € U;lol.

Tracing through the isomorphism
U,lol ®p, E = (M)
established above, we see that
;> m; fori=1,...,aq,

where m;’ is a basis of M;; dual to the basis m; of M. Since this is an isomorphism and

my,..., m, is a basis ofM]ifO), ®1,--.,9, is a basis of U;[0] ® E. [ ]

Corollary 2.6. Suppose ¢: Gy — GL(M) is an Artin representation. Then Uplo] ® E is
independent of the choice of splitting field L/Q.
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Motivic Action for Hilbert Modular Forms 13

Proof. For an extension L'/L, the natural inclusion U; — U, induces an inclusion
U, lo]l — Uy lo’]l. By Proposition 2.5, dim U, [o] ® E = dim Uy, [¢’] ® E, which completes the
proof. |

We will later be interested in the reduction of U;[o] modulo p” for a prime p of E.

For now, we just remark that the following follows from Proposition 2.5.

Corollary 2.7. Let ¢t = #U}°™ and p be a prime not dividing ¢ . Then Uy [o] ®y, Zp[%] isa

free Op ®, Zp[%

free (Og/p™)-module of rank d.

I-module of rank d. Hence, for a prime p of E above p, U;lo]l ® Oz /p" is a

Proof. This follows immediately from Proposition 2.5 and the structure theorem for

modules over PIDs. |

2.2 Stark’s conjecture [67, 69]

We give a brief summary of the results and conjectures on special values of Artin
L-functions.

For any Artin representation ¢: G, — GL(M) where M is an n-dimensional
E-vector space and an embedding E < C, we consider the L-function L(s, ¢) of o. If we
need to make the embedding (: E — C explicit, we write L(s, o, t) for L(s, 0).

The completed L-function is then

A(s,0) = (:—Qn)S/Z I(s/2)°T((s + 1)/2)°L(s, 0), (2.4)
where
fg = Artin conductor of g, (2.5)
a = dim; M\, (as above) (2.6)
b=n-a. (2.7)

It satisfies a functional equation of the form

A(l —=s,0) = W(Q)A(s, 0),

where |[W(p)| = 1.
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14 A. Horawa

Stark gives a formula for the special value of L at s = 1 (or, equivalently, the

residue of the pole at s = 0). Associated with the units u; in Proposition 2.5 is a

regulator defined in terms of their logarithms.
Fix an embedding 7: L — C, and let ¢, be the complex conjugation associated

with 7. Define
log:C=L®, C—R

z — log|z|,

and extend it linearly to
log: L®, O)®ER®,C —C

zQ® )\ +— Alog|z|.

Thus, for x @ y € L ® E, we write
loglt ® 1(x®y)| = t(y) -log|r(x)| € C. (2.8)

We often make the choice of embeddings : and/or 7 implicit in the notation and write

simply log |7(—)| or log |(—)| for log |t ® t(—)].

Definition 2.8. The Stark regulator matrix associated with ¢ (and the embeddings
7: L Cand:: E— C)is

R(o) = (I1og(t ® t(ui))1<jj<q-
Abstractly, there is a perfect pairing
Uplol x M — C

(¢, m) = log(|t ® t(p(m)))

via Proposition 2.5 and R(p) is the matrix of this pairing.

Conjecture 2.9 (Stark [67, 69]). If o does not contain the trivial representation, then

W(9)2%x?
L(,0) = — j5—
o

-0(0) - detR(p),

for some 6(p) € Q(Tro)*, where Q(Trp) is the field generated by the values of the

character of g.
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Motivic Action for Hilbert Modular Forms 15

Remark 2.10. The assumption that ¢ does not contain the trivial representation is
completely innocuous. Indeed, L(s, x; 1) = ¢;(s), so the value at s = 1 is given by the

class number formula for L. Moreover, L(s, 0; ® 05) = L(s,01) - L(s, 05)-
Stark’s conjecture is known for representations with rational characters.

Theorem 2.11 (Stark [67, Theorem 1], Tate [69, Corollary 11.7.4]). Conjecture 2.9 is true

for representations ¢ whose characters take rational values.

2.3 Stark units for Hilbert modular forms

We now discuss Stark units for Artin representations associated with weight one Hilbert
modular forms. Let F be a totally real field. By [58], normalized weight one Hilbert
modular eigenforms f with Fourier coefficients in OEf correspond to 2-dimensional odd

irreducible Artin representations

Gy o GL(M)

Grr

where M is a Og-module of rank 2 and E is a finite extension of E;. By enlarging L if
necessary, we may assume that L is Galois over Q. We write G = G, and G’ = Gy for
simplicity.

As in the previous section, fix an embedding 7: L — C that induces a complex
conjugation ¢, of L. Note that ¢, necessarily lies in G’ because F is totally real. Since or

is an odd representation,

1 0
o0r(cp) is conjugate to (0 1).

Consider the adjoint representation of o, that is,

Adoy: Gpjp — GL(End(M))

o+ (T 0(0)To(0)™).
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16 A. Horawa

We note that if T has trace 0, then so does o(0)To(o)~!. The representation is hence

reducible, and we define the trace zero adjoint representation as
Ad° gf: Gpjp — GL(End’(M)),

where End®(M) = {T: M — M | Tr T = 0}. This is a 3-dimensional representation.

1 0
Choosing a basis of My such that o(cy) = (O 1), we see that

R RO 0 R R

Hence, rank ((Ad0 gf)<00)) =1.

Definition 2.12. Let Uy be the units of L and O = Og be the ring over which oy is
defined. The group of Stark units associated with f is

Uf = HomO[GL/F] (Ado Qf, UL ®Z O)

We sometimes write Ad* ¢ = HomO[GL/F](AdO 05, 0), so that Uy = Ad* o ®716,/p UL

Write o,,...,04 € G for representatives of G/G. Having fixed an embedding

t: L — C, we have embeddings 7; = t%: L < C. We sometimes identify o; with the

embedding 7;|p: F < R. We write ¢; = ajcooj_l for the complex conjugation associated

Corollary 2.13.  Suppose that of is irreducible. Then,
Up = Uy[ Indg, Ad® of]

is the group of Stark units associated with the 3d-dimensional Artin representation
Indg, Ad° of- Therefore,

d
Up = ((Indg, Ad® )" = (P((Ad° 0 )Y,
j=1

220z aunp gz uo 1senb Aq £/676S59/92 L OBUL/UIWI/EE0 | 01 /10P/2[0IB-80UBAPE/UILI/WOD dno™olWwapese//:sdjy Wol) papeojumoq



Motivic Action for Hilbert Modular Forms 17

and hence,
rank Up = d.

Moreover, for each j = 0,...,d, fix a basis myj, My My of Ad° of such that

I 0
Q(Cj) = ((; L ) in this basis, and consider the basis
)

{fojm;;1j=1,...,d,i=1,2,3} of Ind§ Ad .

Let a®(0) be the matrix of Ad°® or(o) in the basis {m;}, and write P; for the change
of basis matrix from {m;,} to {m;;}. Then there is a basis ¢,,..., ¢4 of Uy defined by

Proposition 2.5 such that

(oxo'o 1)1 (Pea®(@")F
pi(ogmy p) = H (e ko %5 )

o'eG
Proof. We have that
Uf = HomO[G/](AdO Qf, UL ®Z O)

= Homg(Indg, Ad° 07, Up ®7 0) Frobenius reciprocity

= U [Indg, Ad® gfl.

Since oy is irreducible, Ad° or does not contain a copy of the trivial representa-
tion. We may hence apply Proposition 2.5 to the Artin representation Ind% Ad° or to get
the result. Finally,

(aj Ad° Qf) “

@m.

(Indg/ Ado Qf)CO =

j=1

@a.

()"
1

J

completing the proof of the 1st part.
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18 A. Horawa

It remains to prove the final assertion. To compute the action of an element

o €Gono; Ad® o, we find o} and o’ € G’ such that o0j = oyo’ and send

ajm = O'k(O'/m) (S} Uj/ Ado Qf

By Proposition 2.5, for 1 <j, k <d,

-1 .
pjlogmy ) = Uy, = H(EO ) 4@,
oeG

where aj (o) is the matrix of Ind¢% Ad° o(o) in the chosen basis. Then, for1 <j, k <d,

(Pkao(a’)ijl)11 if a,;loaj = o’ for some o’ € G,

ajk (O') = ]
0 otherwise.

Therefore,

’

_ ajr(ogo’o; )
. (oxo’o 1 J J
wie= |1 (6 ’

)(Pka%’)le)u
o'eG

o’eG
as claimed. [ |

Remark 2.14. The decomposition in Corollary 2.13 generalizes to any plectic Artin
representation [51], that is, an Artin representation of Gy for a totally real field F. We

have not used anything specific to Hilbert modular forms.

Remark 2.15. There is also a description of Uy similar to [14]. For a chosen prime
p of F, for each ¢, we may consider the component of ¢, (Ad° o¢) S Up on which a
chosen Frobenius Frob, € Gpr acts by o/ where « and g are the ordered eigenvalues
Qf(FI‘Obp). As in loc. cit., this space should be one-dimensional under extra assumptions;
for example, that « # —p. This description may be useful when considering a p-adic

analogue of the conjecture, but we omit this here entirely.

2.4 Stark’s conjecture for Hilbert modular forms

We now state Stark’s conjecture for the trace zero adjoint representation associated with

a Hilbert modular form of parallel weight one.
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Motivic Action for Hilbert Modular Forms 19

Definition 2.16. The Stark regulator matrix associated with (the trace zero adjoint
representation of) f is

Re = (log(luj D)1 <jk<a
with

(Pra®(c")P; iy
(Uko/o_fl)—l J
ujk = H (E J )
o’'eG

(notation as in Corollary 2.13). If we need to specify f, we write ujfk for uy.

Proposition 2.17. Stark’s conjecture 2.9 for Ad° or is equivalent to the following
statement:

2d

L(1,Ad° gf) ~p~ - det Ry,

1/2
f!

where f, is the conductor of ¢ = Indé, Ad° 0.

Remark 2.18. In Section 5, we will relate the adjoint L-function to the Petersson inner

product of f. This will give evidence for our archimedean conjecture (Conjecture 4.16).

2.5 Examples

The Stark unit group can be determined explicitly in many cases. We provide a few

illustrative examples.

Example 2.19 (Heegner units). The 1st example of Stark units comes from the theory
of elliptic units.

Let F = Q and K/Q be an imaginary quadratic extension. For any Dirichlet
character x : Gy /g — C* of K, where H/K is an abelian extension, there is an associated

weight one form f = 6, , the theta function of x, such that
L(s, x) = L(s, f).
The Artin representation ¢ associated with f is the 2D representation:

o =Tndge x = (#: Gyyq — C 1 $(07) = x(@)$(1) foro € Gyy).

Ga/x
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20 A. Horawa

For the nontrivial element ¢ € Gg/q, We can define a character x°(o) = x(coc). Writing 1

for the trivial representation and x, for x - (x°)~!, we see that

12

0 Gu/Q
Ador=1@ IndGH/K Xo-
Since the unit group does not contain a copy of the trivial representation, this shows
that

Uf g UH[XO]I

the x,-isotypic component of the units of H. For a Minkowski unit ¢ € Oy, the unit

associated with f is

_ _ o~ xo0(0)
up =1, = [] e,

O'GGH/K

In the literature, this unit is often written additively as u, = %: X0(0) 71Ul € Uglxl.
oeGH/K
Elliptic units, constructed using singular values of modular functions, provide an

explicit construction of Minkowski units u € O}, and hence of Stark units Up.

The logarithms of these units appear as special values of the L-function of yg,
via Kronecker’s 2nd limit formula. This also has a p-adic analogue: the p-adic logarithm
of u, accounts for the special value of the Katz p-adic L-function evaluated at the finite
order character y, ! which is outside of the range of interpolation [40, 10.4, 10.5]. More
generally, Darmon et al. [14, Conjecture ES] conjecture that p-adic logarithms of other
Stark units associated with weight one modular forms appear in a formula for values of

triple product p-adic L-functions outside the range of interpolation.

The following example is suitable for computations in the case F = Q. In fact, it
is the example where Harris and Venkatesh [29] perform their computations. It is also
a simple example where our archimedean conjecture (Conjecture 4.16) can be proved
(Corollary 5.4).

Example 2.20 (Units in cubic fields, F = Q). This example is discussed in [29, Sec. 5.6],
but we recall it here in detail to provide context for the generalizations to [F : Q] = 2 we

make below.
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Motivic Action for Hilbert Modular Forms 21

Let K be a cubic field of signature [1, 1], and write L for the Galois closure of K.
Then G;,q = S; and we may assume that K is the fixed field L!? of the action of the
cycle (12) € S on L.

To give a 2-dimensional representation of G; /Qr We need to give a 2-dimensional
representation of S;. There is a unique irreducible 2-dimensional representation: the
regular representation o: Gy — S3 — GL(M) = GL,(Z), obtained by considering the

action of S; on
M= {(XI,XZ,X3) YA ‘ > x= 0}

by permuting the coordinates.
In the basis e; = (1,0,—1), e, = (0,1, —1) of M, we have that

0 1
oc=(12)> S= ,
1 0
-1 -1
T=(123)~ T = .
1 0

Note that o is an odd Galois representation since det S = —1. Therefore, there is a weight
one modular form f corresponding to .
Recall that

Up = Homg,  (Ad% 0, Up).
Lemma 5.7 in [29] shows that
1 = (1) 1
(p: Ad® 0 — Up) > 0(S),

where UI((1 ) are the norm 1 units of K.

We recall the proof here. By definition,
Ad° o = End® (M),

with the action of S; on the right-hand side given by conjugation. Note that each element

of S5 gives an element of End(M) and we may use the S;-invariant projection

End(M) — End° (M)

A A—(1/2)Tr(A)
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22 A. Horawa

to get a spanning set for Hom®(M, M) this way. Since the lengths of cycles are

conjugation-invariant, we see that
Hom®(M, M) = span(images of (123), (132)) @ span(images of (12), (13), (23)).

One checks that span(images of (123),(132)) = Zlel, where e € Hom®(M, M) is the
common image of (123) and (132). We write W = span(images of (12), (13), (23)). Hence,

Ad® o = Zlel o W.

Now, for any S;-representation V,

e Homyg, (Zlel, V) = V°8", the sgn-isotypic part of V/,
o Homg (W, V) = {ve V1 | v+ (123)v + (132)v = 0} via ¢ — ¢(S).

This shows that

sgn

U= U e Uy

Since Q(v/disc(L)) = L2, U7 = Ug(vaisem) is a finite group of order at most 6.

Hence,

1 ~ (1) 1
Uf®Z|:€] =~y ®Z[E]
The following is the simplest example of explicit Stark units over real quadratic

fields. It is the base change of Example 2.20 to a real quadratic field and one of the

examples in which we will do the numerical computations later on.

Example 2.21 (Units in cubic extensions of F for [F : Q] = 2). Consider K as in Example

2.20, and consider a quadratic extension F of Q. Then KF is a cubic extension of F of

.

signature [2, 2]:

L
A

Q
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Motivic Action for Hilbert Modular Forms 23

As above, we consider the Galois representation ¢: Gyp/p = S3 — GL(M). If f is the

weight one Hilbert modular form associated with o, then one can check that

Ur ® ZI1/6] = Homg, , . (Ad° 0, Upp) ® ZI[1/6]
= U ® ZI1/6] @ {u € Ugp | NEFu =1} ® Z[1/6]
= ((ueUg INju=1}@{ucUg | u’ =u" Niu =1}) ® Z[1/6],

where we write Gg,g = (o). The Hilbert modular form f is the base change of the
modular form f;, associated with K in the previous example. We will later prove a more

general result of this form in Corollary 6.5.

Finally, we present the “simplest” nonbase change example where explicit Stark
units are available over real quadratic fields. It is a direct analogue of Example 2.20,

but the Galois theory is more complicated.

Example 2.22 (Units in cubic extensions of F for [F: Q] = 2, nonbase change). We
generalize Example 2.20 to the case [F : Q] = 2 and a cubic extension K of F of signature
[2,2]:

L

P
K
S3%x8S3
3
53202

F

S

(12)) Consider the representation

We may assume that K = L93(

o = sgnXreg: Sg — GL,(Z),

(0 1)
(0,(12)) > sgn(o) - '
10

(0, (123)) > sgn(o) - (_1 1).
-1 0

Then ¢ corresponds to a Hilbert modular form f of parallel weight one.
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As before,
Ad®o = Zlelo W

and for any S%—representation v,

° Homsg (Zlel, V) = ngn&sgn,
o Homgp(W,V) = {v € vS3>x(2) | v 4 (1,(123))v + (1,(132))v = 0} with the
isomorphism given by sending ¢: W — V to ¢(S).

Therefore,
Uy = Homg; (Ad® o, U;)
= Hom(Zlel, U;) ® Hom(W, U;)
= (USEHSE) @ (y € Uy | NEu =1).
We claim that the group Uzgn&sgn is torsion. If u € Uzgngsgn, then u is fixed

by a subgroup H C S% of order 18 of elements (o,0’) such that sgn(c) = sgn(s’).
One can check that L¥ = F(./disc(L/F)), which is a CM extension of F. Therefore, if
Gal(F(+/disc(L/F)/F)) = (1)

sgnXsgn ~

=1
UL (Up(vaisemm)”

Since F(+/disc(L/F))/F is CM, the ranks of the two unit groups are equal. On the other

hand, if u € UF( m))’:_l was a non-torsion element, then u would generate an

infinite subgroup of UF(JW))T:_I that does not belong to Uy. This is a contradiction.

Finally, let V be the order of the torsion group Uzgn&sgn. Then,

U ® ZI1/N1 = {u € Ug | Nyu = 1} ® ZI[1/N]. (2.10)

As expected by Corollary 2.13 this is a group of rank 2. In terms of the notation of
Definition 2.16, the units u,;, u;, give a basis of the last space. Identifying the units

Uy, Uy, seems more difficult.

2.6 Comparison with motivic cohomology

This section is not used in the remainder of this paper. The general conjectures of

Venkatesh [73] predict the action of the dual of a motivic cohomology group associated
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Motivic Action for Hilbert Modular Forms 25

with the coadjoint motive of f. We identify this motivic cohomology group with the
group of Stark units U, analogously to [29, Sec. 2.8]. Some of this section is based on

standard conjectures.

2.6.1 Motivic cohomology
Let k be any number field and O be its ring of integers. (In general, O; could be any
Dedekind domain and k its field of fractions). Let E be a field of characteristic 0.

For any Chow motive M defined over k with coefficients in E, we may define

motivic cohomology groups (cf. [5] or [47, Definition 3.4])
er\/lk(M,E(n)),

which are equipped with specialization maps to various cohomology theories, including

étale cohomology:
H), (M,E(n)) ® E, — H} (M, E,(n)).
Scholl [60, Theorem 1.1.6] proved that these have a subspace of integral classes
H/r\AOk(M,E(n)) c H/r\/(k(M,E(n))-

We will be concerned with the case r = 1, n = 1. For the trivial motive M = k,

conjecturally,
H}Vlok(k,E(l)) U, QE. (2.11)

This statement is certainly true in all realizations; see, for example, [50, 4.3] or
[47, Corollary 4.2].

2.6.2 Motivic cohomology of the coadjoint motive
Conjecturally, there is a 3-dimensional Chow motive M,

coadjoint motive of f, associated with the dual of the trace zero adjoint representation,

q with coefficients in E, the

Ad* 0f- By definition, for any prime p of E, its p-adic étale realization is isomorphic to

HY (Mpaq Xg Q E,) = Ad* gf ®p E,,
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(concentrated in cohomological degree 0). Without loss of generality, we assume that
M

0ad 18 defined over F (and not just F,).

Remark 2.23. Motives associated with Hilbert modular forms were constructed in [4]
in some cases where the weights are cohomological. Since weight one Hilbert modular
forms are not cohomological, there is no known construction of the motive, but we

assume that (at least) the coadjoint motive exists.
According to [56, 73], we should consider the motivic cohomology group
H)vto, Mooad, B(1):
There is a natural map
H/l\/loF (Mcoaq,E(1)) — H/l\/loL (McoadrE(l))GL/F
and we will work with the codomain instead. According to [29, (2.8)], this map should
be an isomorphism. In the proof of Proposition 2.24 below, we check this in the étale

realization (the induced map is denoted by i).

For a prime p of E, the p-adic étale realization map:
H}\ o, Meoad, E)) ® O, — Hi(F, (Ad" gr ® Op)(1)
is conjecturally an isomorphism [6, 5.3(ii)]. Here, H} denotes the Bloch—Kato [6] Selmer

group. (We apologize for the clash of notation with the Hilbert modular form f and hope

that this does not cause confusion.) We compute the last group.

Proposition 2.24. We have that
Hi(F,(Ad" 0y ® 0,)(1) ZU; ®Q® O,
for all p such that Np is coprime to [L : FI.

Proof. This argument is adapted from [29, Lemma 4.5]. We claim that

H; (Gp, Ad* 0r ® O,) = (U ® Q ® Ad* 0 ® O,) V",
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Recall that (U; ® Ad* Qf)GL/F = Uy by definition, so this will prove the proposition.
We write Ad* o, for Ad* o ® O, for simplicity. The (global) Bloch-Kato Selmer
group H]} is defined by the short exact sequence:

H'(Fy,Ad* gp(1))
H}(Fy,Ad” 0p(1)’

0 —— H}(F,Ad"0,(1)) —— H'(F,Ad"¢,(1)) )

14

where H} (F,, Ad* 0,(1)) are the local Bloch—Kato Selmer groups. The restriction maps to

the subgroup Gz, € G5 give a commutative diagram

1 N 1 % . H'(Fy,Ad* gp (1))
0 — Hp(F,Ad"0,(1)) —— H (F,Ad"¢,(1)) ’ EVBH}(FV,Ad*Qp(I))

i b L

G/r GL/p H (Lo Ad* 0y (1)) \ THF
1 * 1 * \ wr 9p
0—— (Hf(L,Ad Qp(l))) - (H (L, Ad Qp(l))) ) (@ AL AT 1)

with exact rows. Since Ad* 0,(1) is trivial as a G3 /L—representation, we have that

(8} @ a0 0,10) ™" = (ad* o, @0, H' @, 0,10) ™"

y * G/F
= (ad*0, ®0, U; ®0,®Q) ",

so we just need to show that the map i is an isomorphism.

Since Np is coprime to [L : F], the restriction map j is an isomorphism by a
general group cohomology result [62, I.2.4]. By the snake lemma, this shows that i is
also injective.

To show that it is surjective, we must show that k is injective. In fact, for a place

w of L above a place v of F, the restriction map

H'(F, Ad"0,(1))  H'(L,, Ad"0,(1)
HI(F, AQ 0,(1))  H} (L, Ad" 0, (1))

is split by the corestriction map divided by [L,, : F,] (since [L,, : F,] is invertible in O,).
|
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3 Derived Hecke Operators on the Special Fiber

Let

e f be a normalized Hilbert modular eigenform of parallel weight one, new of
level 91, with coefficients in the ring Ok,

* 0 = of be the associated Artin representation, defined over O = O where E
is a finite extension of Ef;

° Uf be the group of Stark units, which has rank d = [F : Q] over O;

e p be a prime of Oy such that (p) = p N Q has good reduction in F and p is
coprime to N, and let k = Og/p™.

We consider a smooth, compact, integral model X = X;(91) for the Hilbert
modular variety associated with F and the level I';(0N) (the level of f). Such integral
models for the toroidal compactifications with the level structures considered here were
developed in [18], following the standard methods of Rapoport [57]. They are defined
over Z[l/NF/Q‘)"(], where NF/Q denotes the norm from F to Q. See also [10], [17], or [24] for
surveys on Hilbert modular varieties and Hilbert modular forms.

Let  be the Hodge bundle on the integral Hilbert modular surface X700 /N o7
so that

0
f e B Xy np g @) Oz O,

In this section, we construct an action of UJX ® @, k on the cohomology space

(H*(XZ[l/NF/QY_)’I]rw) Q7 OE)f ®0p k= H*(Xk,a))f

via derived Hecke operators on the special fiber and conjecture that it lifts to Op. This
is an analogue of the Harris—Venkatesh [29] conjecture for the coherent cohomology of
the Hodge bundle on Hilbert modular varieties.

Recall (cf. Section 2.3) that the Artin representation associated with f factors
through a finite Galois extension L/F and has coefficients in the integers Oy of a number
field E, that is, ¢of: Gal(L/F) — GL,(Op). Let ¢ > 5 be a prime and q be a prime of F
above it such that Nq =1 (p™). We fix a choice of a prime ideal 9 of L above gq. We write
G' = Gal(L/F) and G = Gal(L/Q).

220z aunp gz uo 1senb Aq £/676S59/92 L OBUL/UIWI/EE0 | 01 /10P/2[0IB-80UBAPE/UILI/WOD dno™olWwapese//:sdjy Wol) papeojumoq



Motivic Action for Hilbert Modular Forms 29

This configuration is summarized by the following diagram:

Q L
N\
Ng=1 (" q F E P
NN~
q p

We will describe
e amap
V. V V
0): P Ui, > Uiek
0eG/G

in Section 3.1 (Proposition 3.4);

e an action of the domain via derived Hecke operators:
Tyqz: HIXp 0)p > H (X, 0);

associated with z € UJYU in Sections 3.2 and 3.3 (Definition 3.6);

and conjecture that the resulting action of UJY ® k lifts to characteristic 0 in Section 3.4

(Conjecture 3.7).

3.1 Dual Stark units mod p"

We start by describing the group U}/ ®@, k- The description will depend on a choice of a
Taylor-Wiles prime q of F.

3.1.1 Taylor-Wiles primes

Suppose p is a prime of E above p and for any n, consider

Definition 3.1. A Taylor-Wiles prime for f of level n > 1 consists of the following
data:

1. aprime q of F, relatively prime to the level of f, such that Nq =1 (p");
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2. achoice (o, f) € F; with o # g such that

a 0
0(Frob,) = ,
o(Frob,) (0 ﬂ)

where p is the reduction of ¢ modulo p.

If q is a Taylor-Wiles prime, (Of/q)* contains a subgroup A = Z/p™Z of size p".
We frequently denote it by ((’)F/q);n.

We also write

both noncanonically isomorphic to k. When the underlying prime q is clear, we drop it
from the notation.

Finally, for any Z-module M, we write
M(m)=M ®, k(m) form ==£l1. (3.2)
For example, Fp(1) is canonically identified with a quotient of (Op/q)* of size p.

3.1.2 Reduction of dual Stark units at a Taylor-Wiles prime
Let 9 be a prime of L above a Taylor—-Wiles prime q of F. Let

be the Frobenius automorphism associated with the prime 9 above g.

Lemma 3.2. For any Artin representation ¢y: Gy, — GL(M,) where M, is an

Og-module, there is a natural pairing

(Ulog]l ® k) x (Mg ® k) — k(1)

(¢, m) — reduction of ¢(m).
Frobg
Proof. For ¢ € Ulogl and m € M, , we have

p(m) € (U, ® k)Froba,
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The composition
U, = Uy, — Uy, /1 +9Q) =F)
induces a reduction map
(U, ® P2 — (FF @ k)2 = k(1)

where we recall that k(1) = k ® (OF/q);n. [ |

Remark 3.3. We think of the reduction map as a discrete logarithm. Then this lemma
is the discrete analogue of Lemma 4.12, where the actual logarithm will be used. To

generalize this result p-adically, one would use a p-adic logarithm.

Proposition 3.4. Let o: G' = G — GL(M) be the Artin representation associated
with f. Recall the notation G = Gy . Then there is a natural map

0y P Ad°MekTPar@k(-1) > U @k,
oceG/G

where the domain is a direct sum of free k-modules of rank 1.

We will later use the shorthand UJX y = (Ad° M®k)Froboo/ca @ k(—1). In the notation
of the introduction, UJX o = U}’Z if we label the representatives of G/G’ by oy,...,0,4.

Proof. Applying Lemma 3.2 to gg = Indg, Ad® o, we see that there is a pairing
U @ k) x (Mg "2 @ k(~1)) - k,
which induces a map

WM™ @ k(~1)) — (U} ® k).
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Then,

MFron _ (IndG/ Ad° M)Frobg

Frobgn

= @ o Ad° M

0eG/G

@ (Ado M)Frobgg/gq
c€G/G

because o Frobg 0! = Frob, g, € G'.

Finally, using the basis such that o(Frobg) = (a ,6) for o # B, we have that

™IR

Ad® o(Frobgy) =

ISY =

Since a # B, this shows that (Ad® M)F°Ps2/eq has rank 1. [ |

We finally recast this in the language of [29, Section 2.9]. For any £, we may

consider the element
eq = o(Froby) — (1/2)Tro(Frobg) € Ad° .

Note that for all g € G/,

egn = Ad(e(9))eqy.
Therefore,

AdO(Fron)eQ = €Frobg 0 = €0

showing that

eq € (Ad° p)Froba

By Proposition 3.4, this choice defines a map

OF QB k(-1) > Uy ® k. (3.3)
oceG/G
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When F = Q, this recovers the map qu from [29, Section 2.9].

3.2 The Shimura class

We consider two level structures: for an ideal 91 € Oy,

() = [(a b) € GL(O & DY)
0 - c d F

r (m)—{(a b)eGL(O o9
1 - c d F

where © is the different ideal of F. Note that I';(91) € T'((91) and the quotient is
isomorphic to (O/91)*. We let

ce‘ﬁ],

c,a—le‘ﬁ},

X, (9D, X; (M) = Hilbert modular variety with I'y(97), I'; (91)-level structure, respectively.
For 91 large enough, both of these are schemes over Z[1/Ng,91l (cf. [18]) and they have
good reduction modulo primes p not dividing Ng,. The covering
X, () — X,(N)
descends to a covering
X1 (M) — Xo(Mg

with Galois group (O/M)*.

Let g > 5 be a prime and q be a prime of F above it. Then,

X, (q) = Xo(q)

is a (O/q)*-covering. We may pass to the unique subcovering with Galois group

X ()® = Xo(9).

This extends to an étale covering of schemes over Z[1/q] and hence induces an étale

covering

X, (@) — Xo(@g
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(cf. [46, Corollary 2.3] for [F : Q] = 1 and [17, Prop. 3.4] for [F : Q] > 1; the assumption
that g > 5 is needed to avoid elliptic points).

We hence get a class
Sy € H}(Xo (), k(1)), (3.4)

where we recall that k(1) = k ® A. Using the natural map k — G, of étale sheaves over

X,(q)%, we obtain a class
S¢, € H},(Xo(@)r, G, (1)). (3.5)
Finally, using Zariski—étale comparison, we have an isomorphism
H' (X5 (@), O(1)) — H' Xo(@g, Ga (1)
and hence & defines a class
S e H (Xy(q)g, O(1)). (3.6)

Definition 3.5. The Shimura class is the cohomology class & € H!(X,(q);, O(1)
obtained above (3.6).

We will use it next to construct a mod p” derived Hecke operator.

3.3 Construction of derived Hecke operators

Let 91 be the level of f, and recall that we consider X = X; () over Z[1/Ng,oNl.

Write X ,(q,9) for X with added TI'y(q)-level structure at q. This is a Hilbert
modular variety for the group I';(q,97) in the notation of [18] and hence also has a
smooth, projective, integral model.

Then the Shimura class & pulls back to a class
Sy € H' (Xy,1(q, My, O(1)).
Cupping with this class gives a map

HO(Xg,1 (0, My, ) —F H' (X 1 (q, My, 0)(1). (3.7)
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Classically, Hecke operators are defined as operators on cohomology induced by

certain correspondences:

XO,I(qI m)

X X

We define the derived Hecke operator by the same push-pull procedure but
cupping with Gy in the middle:

HOX M HOX, (a0 UOx H(X ((q, M 1) 22 HYU(X, w)(1
Xy, 0) —— Xo,1@ Mg, 0) — (X0,1 (4, My, 0)(1) —— (X, 0)(1).

Finally, for any z € k(—1), we define
Ty, H (X, 0) — H' (X, 0) (3.8)

by composing the above map with multiplication by z.

More generally, for each z € k(—1), there is an operator
T, . HI(Xy, 0) > H' (X, 0), (3.9)

defined analogously.

Recall that equation (3.3) defines a map:

0): P k(-1)— Uy ®k.
0eG/G

We may hence define an action of the codomain on coherent cohomology of the special

fiber as follows.

Definition 3.6. For each 0 € G/G' and z € k{(—1), we define the action of z in the

o-component of @ k(—1) by
0€G/G

Tyqz: H (X 0)p = HH (X, 0)p.

This naturally extends to an action of A* & k(—1) on H* Xg, )
oceG/G
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3.4 The conjecture

We conjecture there is an action of UJY on the f-isotypic component of the cohomology
space H*(X, w); that reduces modulo p™ to the action of the operators Ty .z
For h € H* (XOH/N(m)],a)), we write h € H* Xy, w) for its reduction. Equation (3.3)

defines a map

0 P k(-1) > Uy ®k
c€G/CG

associated with a Taylor—-Wiles primes q of F and a prime £ above it. In Definition 3.6,
we defined an action of the domain by derived Hecke operators. We conjecture that the

resulting action of UJY ® k on the special fiber lifts to an integral action of U}/-

Conjecture 3.7. There is an action x of the exterior algebra /\*(U}/) on H* Xou/nen @©)f
such that the induced action of /\*(UJY) ® k on H*Xon moy @5 ® k is the one described

above. More specifically, fix a quadruple (p, n, o, q) with

e p a prime of E satisfying the above conditions;

e n > 1 an integer;

o 0cG/G,;
e ¢ > 5 a prime and q a Taylor—-Wiles primes of level n above it; in particular,
Ng=1 (p").

For an element u" € U]Y, consider its reduction uv e UJY ® k, and suppose that

u = Z 6y (z,)  forsomez, € k(—1).
0eG/G

Then,

-~ __
o U xwp = Z Taq,zgwf
oceG/G

for some constant «.

Remark 3.8. Harris and Venkatesh [29] and Marcil [45] provide numerical evidence for
this conjecture for F = Q and n = 1. To do that, they first perform an explication [29,
Section 5], putting the conjecture in a more computable form. They relate it to a question

about a pairing considered by Mazur [46] and then rely on a computation of this pairing
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due to Merel [48]. While the initial steps of the explication can be performed in our case,
putting Conjecture 3.7 in a similar framework, the analogue of Merel's computation is
currently not available in the literature.

In dihedral cases, the conjecture of Harris and Venkatesh has since been proved

by Darmon-Harris—Rotger—Venkatesh [15].

When F = Q and n = 1, Harris and Venkatesh [29, Section 4] prove the following

result:
vanishing of quzf = vanishing of the map 6, : k(-1) — UJY ®k,

assuming an “R = T” theorem. It would be interesting to obtain a similar result in our

case. We expect that the rank r of the map

0): P k(1) > Uy ®k
0eG/G

from equation (3.3) can be any number 0 < r < d. Hence, the strongest analogue of the

above result should be
rank(T,, .f | 0 € G/G') = rank(9,).
A weaker version simply states
vanishing of qu’zj_" forallo € G/G' = vanishing of the map 9;.

Note that the proof in the case F = Q relies on the approach of Calegari and
Geraghty [9] to modularity lifting. Since their results apply to general F, one could hope
to prove the above results in a similar way, but we have not explored this further yet.

Since we expect that the map qu may sometimes have rank d, we want to make
sure that we can produce a rank d group of operators T, , in order to pin down the

conjectural action.

Lemma 3.9. For any p and n, there is a prime g = 1 (p™) that splits completely in F

and the primes ¢, ..., q, above g are Taylor-Wiles primes for f of level n.

Proof. We first show that there exists a positive density of primes g of Q that split
completely in F such that g = 1 (p"). Consider the field F(¢y,») for a primitive p"th root
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of unity and a prime g of Q in the field diagram:

F(gpn)
/

Since we assume that p has good reduction in F, the fields Q({,») and F have disjoint

I

Q(Cp")

/
\

ramification, and hence we have isomorphisms:

Grimyr —— Gaumyo —— @/p"D)*

o1

D(Q/q) —— D NQEpm)/q) ——— (q)

via the restriction map. By Cheboratev density theorem, there is a positive density of
primes g of Q that split completely in F({,.). These g also split completely in F and in
Q(¢pn), which shows that

using the above diagram.
Since there is a positive density of primes g with the above property, there exists

a positive density for which q;, ..., q, are Taylor-Wiles primes for f of level n. |

In this case, we have d derived Hecke operators Tq1,21""'qu,Zd and we expect

that if they are linearly independent, then the map 9‘;/ is an isomorphism.

4 Archimedean Realization of the Motivic Action

We continue using the notation of Section 2.3: the Artin representation ¢ associated
with f factors through a finite Galois extension L/F and has coefficients in a number
field E, that is, o: Gal(L/F) — GLy(E).

Fix embeddings 7: L — C and ¢: E < C. We will describe
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e an isomorphism

d
V. C = ;v
j=1

for some one-dimensional spaces U}?j in Proposition 4.13;

e an action of the codomain via partial complex conjugation operators:

HI X, 0)p — H‘HI(X(C,a))f

a)f = w;j

for a chosen element of Ufj in Sections 4.1 and 4.2 (Definition 4.15);

and conjecture that the resulting action of U]Y ®E C UJY ®, C preserves the rational

structure on coherent cohomology in Section 4.3 (Conjecture 4.16).

4.1 Partial complex conjugation and Harris' periods

Following [26, 64], we briefly recall the definition of partial complex conjugation
operators on Hilbert modular forms. We encourage the reader to consult [25, 26, 68]
for details.

Let Y be an open Hilbert modular variety of level I'; (1), and write X for a smooth
toroidal compactification of Y defined over Q. Associated with a weight (k,r) where
ke 7% and kj =rmod 2 for 1 <j < d is an automorphic sheaf 51;,r over Y whose sections
are weight (k,r) Hilbert modular forms. We normalize the isomorphism between the
sections HO(Y(C, S,S,r) and Hilbert modular forms of weight (k, r) so that Hilbert modular

forms with Fourier coefficients in E give sections of HOy, 5k,r) ® E. In particular, this
2(dr+3kp
differs from Harris’ normalization by a factor of (2r1i) 7 ; see [26, (1.6.4)]. For

simplicity, we assume that r € {0, 1} according to the parity of k;.
The automorphic sheaf &, can be extended to X in two ways, denoted &5
and 5;‘;}3. The cohomology of these sheaves is independent of the choice of toroidal

compactification. Following Harris, we will be interested in the space
HY(X, & ,) = imHIX, EWP) — HIX, EB)),

which is a vector space over F(k) = F'® where I'(k) = {0 € Gy | k” = k}.
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Let f be a normalized Hilbert modular eigenform f of weight (k,r) and level
'y (M) such that T(p)f = a,f and a, € E;. Hecke operators act on the higher cohomology

groups and we write
HYX, & ) = {0 € HI(X, & ,) @ Er | T(p)o = a,0) (4.1)

for the f-isotypic component under the action of the Hecke algebra.
For any subset J of the infinite places X, = {0;,...,04} of F, we assume that

there exists a unit €, € Oy such that

o0 if J,
o(ey) > o¢ @.2)
o(e;) <0 ifo el

When d = 2, this amounts to the standard assumption (e.g., [54]) that O has a
fundamental unit of negative norm.
Given f and a subset J of X, we can apply complex conjugation to variables

corresponding to places in J:

@ =7 [[me)", (4.3)

jeJ
where

(GJ)]'ZJ' if O'J ¢J,

(EJ)]ZJ if Uj elJ.

;= (4.4)

This defines a C®-function on #¢ that has weight —k; at places o; € J and k; at places

o; ¢ J. We can then define a Dolbeault class associated with f and J:

dz: A dz;
of = | M@ \N——5—

jeJ J

e H*VI(Ye, &y ) = HY (Y, Egy ) (4.5)

where

k] O-j¢‘]'
2—k] O'jEJ.

kW) =
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Remark 4.1. These cohomology classes a)J{ are independent of the choice of the unit ¢

above. Moreover, if f corresponds to the automorphic function ¢, the function f/ defined

in equation (4.3) corresponds to the automorphic function

¢ (9) =99y,

where g; € GL,(F @ R) is

1 0 J
o; €
J 14

0 -1

(gJ)j=

1 0 ;
o;eJ.
J

0 1

This gives a definition of partial complex conjugation even in cases where the unit ¢;

does not exist. See [26, Section 1.4] for details.

Theorem 4.2 (Harris, Su).

1. The cohomology classes w}l extend to toroidal compactifications:
2. LetJ C %, be any subset. Then a basis of H”I(X¢, &, ,)f is given by
{wf | 1| = || and k(1) = k(J])}.

In particular, if we write J; = {oj € 25 | kj = 1}, then

. 1Jq 1
dim BV (X, E),1)5 = (|J mlJll)'

Proof. For kj > 2, see [26, Lemmas 1.4.3 and 2.4.5]. When k]- = 1 for some j, this follows

from the main theorem of [68] and an analogous computation of (3, K)-cohomology. H

We are particularly interested in the case (k,r) = (L, 1). In this case, & ; is

identified with Hodge bundle » used in the previous section.
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Corollary 4.3. Suppose (k,r) = (1,1). Then a basis of Hf(XC,SLl)f is given by
{f | J S By, and 1] = j}.
In particular,
dim B (X, €, 1) = (jl)
It is also important to note when the cohomology spaces are one-dimensional.

Corollary 4.4. ForanyJ C %, dim HV(X¢, &, ,)r > 1 if and only if both J and =, \J

contain a place at which f has weight one.

Proof. For the “if” implication, take o0 € JNJ; and ¢’ € (X, \ J) NJ;, and define
J = \{oehUfo'}

Then |J'| = |J| and k(J") = k(J), so w?, wj{/ € HYI(X¢, € ) are linearly independent.
Conversely, suppose dim H! X Exy,r > 1. Then there exists J' # J such that

wJ{’ € HYI(X¢, €y »)ps that is, |J'| = |[J] and (JUJ) \ (J NJ') CJ;. Then o € J \ J' belongs

toJNJ, and ¢’ € J'\ J belongs to (X, \J) NJ;. |

This leads to the definition of Harris’ period invariants when the cohomology

space is one-dimensional.

Lemma 4.5 ([26, Lemma 1.4.5]). Let J be a set of infinite places that contains either all
or none of the weight one places of f. Then there is a number v/ (f) € C*, well defined
up to multiplication by elements in Ef(J)X where Ep(J) = EfF(l_c(J)), such that

J
w
f 7] 171
])J—(f) e H"'(X, g’ilr)f CH (X(C’ gk:r)f

Clearly, when J = @, we may take v/ (f) = 1.

Definition 4.6. Let J be a set of infinite places that contains either all or none of the
weight one places of f. Then the complex number 1/ (f) defined by Lemma 4.5 is the

period or period invariant associated with f and J. It is well defined up to Ep(J)*.
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Remark 4.7. Despite of the difference in trivializations of the line bundles, the
above period invariants v’/(f) agree with Harris’ period invariants v’ (7r¢), where mp
is the automorphic representation associated to f. Indeed, note that both of the

normalizations result in v/ (f) = v@(nf) =1.

Shimura defines periods by considering Petersson inner products on Shimura
varieties associated with quaternion algebras over F. Harris’ definition is much less

explicit, but it is related to Petersson inner products as follows.

Proposition 4.8 ([26, Prop. 1.5.6]). For any J C X, we have that

Vj(f) : VZOQ\J(fQ) ~EU)* ., (4.6)

where f?(z) = f(—Zz) is Shimura’s complex conjugation and

;A dz;
/ f(29@ Hyj — (4.7)

r\H4 f

Therefore, we may think of v/(f) as a certain factor of the Petersson inner
product {f, f).

Remark 4.9. Here and elsewhere we use the above normalization of Petersson inner
products. This is consistent with [32, 33], which we refer to later. This differs from

Shimura’s normalization of Petersson inner products [64, (2.27, 2.28)]:

{f, 9)Shimura = — (9,

(F\Hd)

where w(I'\H%) is the volume of the fundamental domain. It also differs from Harris’

normalization, since

(f'f>Harris ~Qx (Zﬂi)_dr(f'f)Shimura (4.8)

[26, (1.6.3)].
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Remark 4.10. The proof in loc. cit. is based on the rationality of (a Tate twist of) the

Serre duality pairing [26, (1.5.4)]:
u: HV(x, Exyr)f X HP=V(x, Exzarn e = EW) (4.9)

induced by the cup product and the identity [26, (1.5.5.2)]

ijpUa)?QOO\Jzzt(f,f). (4.10)

Remark 4.11. In this extended remark, we discuss the relation of Harris’ periods to
other periods attached to Hilbert modular forms. The study of period invariants was
initiated by Shimura [65, 66], who studied the case when the weights at all places are at
least two. In this case, Shimura conjectured the existence of a set of period invariants
c,, one attached to each infinite place o of F; moreover, he conjectured that if B is any
quaternion algebra over F such that f transfers to a form f; on B>, then the Petersson
norm of f3 (if f; is chosen to be algebraic) is essentially a product of some of the c, up

to algebraic factors. More precisely, defining

ag() :== (fp. f5)
Shimura conjectured that
)~ 1] < (4.11)
(TEZB,OO

where X . is the set of infinite places where B is split. This conjecture was proved by
Harris [27], using the theta correspondence for unitary groups. In this work, the periods
c, are essentially defined as suitable ratios of periods on quaternion algebras. The fact
that the definition of the periods does not depend on choices of quaternion algebras
boils down to proving relations between periods on different quaternion algebras,
which provides the main thread of Harris’ argument. This work admits an integral
refinement that is studied in the ongoing work of Ichino-Prasanna (e.g., [35]).

In related work [26, 28], Harris gave another definition of such period invariants
using rational structures on coherent cohomology. This is what was recalled in
Definition 4.6. The advantage of this definition is that it does not require working
with quaternion algebras; rather, everything happens on the Hilbert modular variety

attached to the group GL,r. This also makes it easy to see the relations between
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these periods and the transcendental factors of Rankin-Selberg and triple product
L-functions attached to two (respectively, three) Hilbert modular forms.

The point of our work is to define periods attached to parallel weight one forms,
and relate them to rational structures on coherent cohomology. For dimension reasons,
one cannot simply use these rational structures directly to define periods. Indeed, the
proof of Lemma 4.5 relies on higher cohomology groups being one-dimensional, whereas
the dimensions are greater than one for weight one forms (cf. Corollary 4.3). Instead, we
give an ad hoc definition using logarithms of units and conjecture (Conjecture 4.17) a

relationship to rational structures.

4.2 The action

To define the action of UJY ® C on coherent cohomology via partial complex conjugation
operators, we first give an identification of this group with the trace zero adjoint

representation of f.

Lemma 4.12. For any Artin representation o: Gy, — GL(M,) where M, is an E-vector

space, there is a natural perfect pairing

(Ulopl ®, C) x (M° ®, C) - C

(¢, m) = log(I(r ® )(e(m))),

which induces an isomorphism

~

Uglogl” ® C > My° ® C.

Proof. This is a paraphrase of Proposition 2.5. |

Proposition 4.13. Let 0: G' = G,z — GL(M) be the Artin representation associated

with a Hilbert modular newform of parallel weight one. We then have an isomorphism

d
0 P@Bd’°M e, 0)9 > Uy ,C.
j=1

For each j, consider the element my in (Ad° M)% as in Corollary 2.13, and let {o;} be
the corresponding basis of Uy ® E. Finally, let {ujv} be the dual basis of UJY ® E. Then
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the matrix of the map 95 in these bases is the Stark regulator matrix Ry = (log Wik i
(cf. Definition 2.16).

Proof. The resultis obtained by applying Lemma 4.12 to gy = Indg, Ad® ¢ and recalling

-1

that Mgo = &6 (Ad0 M)UCOJ by the proof of Corollary 2.13. The explicit description
0eG/G

of the map is given by the 2nd part of Corollary 2.13. |

Remark 4.14. Note that both Uj¥ ®, C and (Ad°M ®, C)° " have natural E-rational
structures UJY ® Ef and (Ad°M ® Ef)”CO" ~ but the above isomorphism does not respect

them. The rational structures differ by the Stark regulator matrix.

d
Definition 4.15. We define the action of @ (Ad° M ®, C)9 on H* (Xc, €1,1)5 by letting
j=1 -
m, ; act by

H (X, &y )p = HV (X, &)y
a)JU{Oj} O_j ¢J

J
wf|—>
0 O'jEJ.

d B

This defines a graded action of A\* @(Ad°M ®, C)7®%  on H*(Xc,€1,1)¢ such that
= -

H*(Xc, & 1)y is generated in degree 0 by f € HO(X, w)y.

4.3 The conjectures

Recall that Proposition 4.13 defined an isomorphism

d
0 Pad° M, 0)% > U ®,C (4.12)
j=1

and Definition 4.15 described an action of the latter group on coherent cohomology. We

conjecture that the resulting action of UJX ® E is rational.

Conjecture 4.16. Fix embeddings 7: L — C and ¢: E — C. Then the action of UJY QEC
va ®, C on H* (X, & ,1)r via equation (4.10) and Definition 4.15 preserves the rational
structure H*(X, &, )¢ ®g, E.
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This is the analogue of the main conjecture of Prasanna and Venkatesh [56].
In Appendix A, we discuss the specific relation to their conjecture and justify why the
definition of the action is natural.

Next, we give a more explicit statement of rationality of cohomology classes, via

Proposition 4.13.

Conjecture 4.17. Let A = (a;) = R;l be the inverse of the Stark regulator matrix.
Then, forj=1,...,d, the cohomology classes

n
uf «f = ayof € H'(X¢, &)y
i=1

belong to the rational subspace H! (X, &1,1)f®E. More generally, the rational cohomology

classes in Hj(XC,é'l,l)f are given by the entries of the vector:

J)
“f
(W4)
Jd
;)
“f
where Jj, ... ,J(q) are the subsets of X of order j. In particular, the cohomology class
J
W
f d
eH (X(C’gl,l)f
det Ry =

is rational.

The final statement is equivalent to Stark’s Conjecture 2.9 for Ad° of
(Theorem 5.1). Therefore, this conjecture may be interpreted as a refinement of Stark’s

conjecture in this case.

Remark 4.18. A previous version of this manuscript incorrectly assumed that the

Stark regulator matrix R, is diagonal, which lead to a different rationality statement.

Example 4.19 (d = 1). Suppose d = 1, that is, f is a modular form of weight one. Then

the conjecture simply asserts that

o0
“r

—J e H'(X,& ,) QE, (4.13)
log | (uyp)| l
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where uy € Up is a unit associated with f. As far as we know, this conjecture is new
in this case. It gives an archimedean analogue of the main conjecture of Harris and
Venkatesh [29]. As we will see (Corollary 5.4), it is equivalent to Stark’s Conjecture 2.9
for Ad° o and hence is true when the Fourier coefficients of f are rational or when f
has CM.

Example 4.20 (d = 2). Suppose d = 2, that is, f is a Hilbert modular form of parallel
weight one for a real quadratic field F. Then there are four units u;;, U5, Uy, Ugy € U

associated with f and

. (log T(w;p)| log |r(u12>|)' @14
log |T(Uqp)l log [T (Ugs)l
Its inverse is
. log|t(uyy)| —log |t(u12)|). @15)
detRe \ —log|t(uy)| loglt(upy)l
Therefore, the rational classes in H! (X(C'gl,l)f should be
log |7 (ugy)| - wf —loglt(ug))| - wf |
uf *f: detRf cH (X,E'Ll)f@E, (416)
—log|t(uyy)| - @k +log|t(uyy)| - w?
uy xf = 127 f L cH'x,6,,); ®F. (4.17)

det Rf

We will give the following evidence for this:

1. the determinant of this basis of H! (Xc. &1,1)r is rational, assuming Stark’s
Conjecture 2.9 (Section 5);

2. in base change cases, we give numerical evidence that the restrictions
of these cohomology classes to an embedded modular curve is rational
(Section 6).

Finally, we expect the following class in H?(X, &1,1)¢ to be rational:

01,02
w
f

€ H*(X,&,))s ®E. (4.18)

We prove this assertion in Corollary 5.3.
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The goal of the next two sections is to present our evidence for Conjecture 4.16.

5 Evidence: Stark Conjecture

In this section, we present the theoretical evidence for Conjecture 4.17. These follow

from results of Stark and Tate presented in Section 2.2.

5.1 Action of top degree elements

We show that Stark’s Conjecture 2.9 for Ad° o is equivalent to the following conse-
quence of Conjecture 4.17. In particular, Theorem 2.11 implies this consequence when f

has rational Fourier coefficients.

Theorem 5.1. Let f be a parallel weight one Hilbert modular form and ¢f be the
associated Artin representation. Stark’s Conjecture 2.9 for Ad° o is equivalent to the

statement

(f f) ~gx fgl,/zz det Ry, (5.1)

where f, , = 2%(@?) is the Artin conductor at p = 2 of the trace 0 adjoint representation.

In particular, equation (5.1) is true unconditionally if f has rational Fourier coefficients.

Remark 5.2. We expect that the factor fgl/z2 is rational; see Remark 5.10 for more
details. If we could prove this, we could remove “up to a possible factor of +/2” in the

corollaries below.
Before presenting the proof of Theorem 5.1, we give two corollaries.

Corollary 5.3. Stark’s Conjecture 2.9 for the Artin representation Ad° of is equivalent
to the assertion that top degree elements, that is, elements in /\d UJY ® E, act rationally,
up to a possible factor of /2. In particular, the latter is true if f has rational Fourier

coefficients.

Proof. Recall from Conjecture 4.17 that top degree elements act by

a)2°°

f

f— .
detRf
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Then,

Zoo
fQ wf — (flf>
' detRf D detRf ’

Since HY(X, SLl)f is one-dimensional and the Serre duality pairing is rational, the

Zoo
w.
_r

rationality of g R

is equivalent to equation (5.1). |

Corollary 5.4. Conjecture 4.16 is equivalent to Stark’s Conjecture 2.9 for Ad° o when
F = Q, up to a possible factor of /2. Hence, Conjecture 4.16 is true unconditionally

when f has rational Fourier coefficients or complex multiplication.

Remark 5.5. We checked computationally (using the method of Collins [12]) that for a
few modular forms f of weight one from Example 2.20, we have that (f, f) = 3log(|lc(us)]).
This was already observed by Stark [67, pp. 91].

The proof of Theorem 5.1 requires 2 steps:

1. relating L(1,Ad0 Qf) to (f,f);
2. showing that f, is a square when ¢ = Indgg Ado(gf), so that Q1/2 e Q* (away

from 2).

We will then conclude Theorem 5.1 from Proposition 2.17.

The relation of the adjoint L-value to the Petersson inner product was first
observed by Hida, based on the work of Shimura [63]. He also related the prime factors
of the quotient %f})@) to congruence primes of the modular form f [30, 30, 31]. This
work was later generalized to Hilbert modular forms [23, 32, 33]. An integral refinement

of Conjecture 4.17 would hence have to account for congruence primes.

Theorem 5.6 ([33, Theorem 7.1]). Let f is a primitive Hilbert modular form of weight
(k, 1), level 91. Then,

(f.f) = IDp ™ Tp(k)Np ()27 2B ==L (1, £, Ad),
where

Ls(s.f,Ad) = [ | LWV (@ ~*)L(s.f, Ad),
qes
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S is a set of bad places, Lq(NF/Q(q)_S) are bad local factors, {k} = ij, and m is an
J

explicit integer that accounts for Hida's unitarization [32, (4.2a), (7.1)].

For an automorphic proof relating L(1, Ad(f)) to (f,f), see [35, Prop. 6.6].
For parallel weight one Hilbert modular forms, this specializes to the following

result we will use.

Corollary 5.7. Suppose (k,r) = (1,1). Then,
(f.f) ~px 7 24L(1, f, Ad).

To finish the proof of Theorem 5.1, we need to check that f, is a square (away

from p = 2).

Proposition 5.8. Let 7, be the local representation of GL,(F,) associated with f at a
finite place v of F. When v lies above 2, assume that =, is not a theta lift from a ramified

quadratic extension. Then the adjoint conductor of 7, is a square.

Proof. It is enough to prove that the analytic conductors of the Rankin-Selberg
L-functions L(w,®7,/, s) are squares. When r,, is not supercuspidal, Jacquet's [36] results
give explicit formulas for the local conductors (see, e.g., [12, Section 4.2]) and they are
visibly squares.

We hence just need to show the conductor is a square at places v where x, is
supercuspidal. Suppose throughout the rest of the proof that F is a finite extension of
Qp and 7 is a supercuspidal representation of GL(2, F). We write a(—) for the valuation
of the conductor of a representation and prove that a(r x 7V) is even.

Since 7 is supercuspidal, it is a theta lift of a character & of a quadratic extension
K/F [22, Theorem 7.4]. Then,

a(r x V) = 2vp(dg ) + fxp - AEE) ), (5.2)

where dg p is the discriminant of K/F, fx p is the residue degree of K/F, and ¢ is the
nontrivial element of Gal(K/F). Indeed, if ¢ is the Galois representation corresponding

to 7 via the local Langlands correspondence, then o = Indg(x) where x corresponds
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to & via class field theory, and hence

ar xn¥)=ale®0")

a(ndf x ® mdf x ™)

= a(Indk1 ® Indgx (x©)™)

a(Ind%1) + a(ndg x (x)™)
= 2vp(dgp) + fieyp - X (x)™H (61, pp. 101]
= 2vp(dg p) + fir - AEED ).
When K/F is unramified, fg,/r = 2, s0 a(r x V) is even by equation (5.2). Suppose
that K/F is ramified and has residue characteristic different than 2. Let w = wy, @y

be uniformizers of K, F, respectively. Then @ = —wy. Also, since Jep =1, Ox/og =

Op/wg. There is a filtration on the unit group Uy
US=Ug, Uk=1+woL0; fori>1
with quotients:
U2 /UL = (Og/og)*, Uk/UL = Oy joy. (5.3)
We show that ifé(ég)*1|U}< =1 for i odd, then 5(59)71|U271 =1.
For i = 1, if 5(59)‘1|U}{ = 1, then £(&°)71(x) for x € Uy depends only on the

residue class of x (equation (5.3)). We may hence assume x € Oy since Oy /wr = Op/wp.
Then,

§EO)TI0 =EEED) T = 1.
Similarly, for i > 1 odd, if (g(g@)—1)|UIi{ = 1, then £(£9)"1(1 + @' 1x) for x € O
depends only on the residue class of x (equation (5.3)). We may hence assume x € Oy
since Ok /wy = Op/wy. Then,

EEDTIA 4 0 lx) = £(1 4+ 0L 081+ (—op) x0T = 1.

Therefore, a(£(£9)~1) is even, which completes the proof. |
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Remark 5.9. The strategy in the proof of Proposition 5.8 gives an explicit formula for

a(r x 7¥) in terms of a(§) when p # 2. For example, when K/F is ramified,

g a(e) +2 if a¢) is even
a(r xmw’) =

a)+1 if a(®)is odd.

A similar result was obtained by Nelson-Pitale-Saha [53, Proposition 2.5] when F = Q
and the central character of 7, is trivial.
It would be interesting to compare these formulas with the ones given in [8], but

we have not attempted to do this.

Remark 5.10. In fact, Nelson-Pitale-Saha [53] prove that the adjoint conductor is
always a square when F = QQ and f has trivial Nebentypus. We expect that the adjoint
conductor is a square also in our more general setting. However, proving this would
require a careful analysis of dyadic representations [7, Chapter 12] and we decided not

to pursue it here.
We are finally ready to prove Theorem 5.1.

Proof of Theorem 5.1. By construction of g [58],
L(1,f,Ad) = L(1,Ad° gy).
Then, by Corollary 5.7, we have that
(o) = (FO.f0) ~g« 77201, Ad(), D = 7 2L(1, Ad” 07, D).

By Proposition 2.17, Stark’s conjecture for Ad® or is equivalent to the statement:

2d

1/2
£/

L(1,Ad° g, 1) ~px - det Ry.

Putting these together and noting that W(¢) = +1 and f, is a square away from p = 2
(Proposition 5.8) gives the result. |
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5.2 Further evidence

We now present further evidence for the conjecture that may be deduced from Stark’s
Conjecture 2.9.

We first observe that we have an algebraic operation given by complex conju-
gation. Recall that the vector space HY!(X, 5,£(J)’r) is defined over the field F(k(J)) C F
which is totally real, and hence H”!(X, &, ;) ®p(;) C = HY!(X¢, & ;),,) has an action of

complex conjugation F,_. By definition, it preserves the rational structure HV/(X, Eryr)-

Lemma 5.11. The complex conjugation F : HY!(X¢, &5 ) = HYI(Xc, &y ) is given
on the basis a)]IC where |I| = |J| and k(I) = k(J) by

' '
Cl)f = C()fg,

where f(z) = f(—z) is Shimura’s complex conjugation. In particular, on f-isotypic

subspaces, it defines a map:

Foo: HY\(X, &) ) p — HYX, E gy pe-
Proof. This is a paraphrase of an observation of Harris [26, pp. 164]. |

Proposition 5.12. There is an E-linear isomorphism Up = Up,. In particular, Conjecture

4.17 for f is equivalent to Conjecture 4.17 for f©.
Proof. The 1st assertion follows from the observation that va- = 0f = 0f0, SO We can
realize Ad° 0f € 0 ® 050 Since 0f ® 0ro = 0po ® 0f, We have that Ad° of = Ad° 0fo. This
induces an isomorphism Uy = Ug,. ]
Next, recall that we have a Serre duality pairing (4.7):

g 27l Zoo\J|

(— —)sp: HY'(X, EK(J),r)f ®H X, 5&(200\_]),;«)]"@ — E(J), (5.4)
which is E(J)-rational. We modify it slightly to replace f¢ with f via Lemma 5.11.
Definition 5.13. We define a pairing

(— —): H(X, E1)p X HY(x, E)p — E*

by (= =) = (= Foo(—))sp-
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Proposition 5.14. Assume Stark’s Conjecture 2.9. Conjecture 4.17 in cohomological

degree j if equivalent to Conjecture 4.17 in cohomological degree d — j (up to a factor of

V2).
Proof. Recall that Conjecture 4.17 in cohomological degree j states that the elements:

J1
@

(4

Jd
)
@

give a rational basis of H(X, 5;,1)f' Let us assume that this is true and prove that the
elements
J1
“r
(A7a)
J(d(ij)
“f

are rational in H?7/(X, &11)p- It is enough to check that each of these classes pair
rationally with the classes in H/(X, &1,1)r using the pairing (-, —). Note that the pairing
(—, —) is induced by cup product and

whaty = | FOD T =20
0 otherwise.

Since A = R]ZI and (f, f) ~gx f;,/zz det Ry by Theorem 5.1, this completes the proof. |

Now, suppose that j = d — j, that is, d = 2j is even and we consider the middle

degree sheaf cohomology. Definition 5.13 then gives a nondegenerate bilinear pairing
(= =) H(X,E 1) @H (X, & )f — E,
which satisfies

(w1, wy) = (—l)i(wz,a)z).
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Proposition 5.15. Suppose d = 2j is even. Consider the basis of Hj(X(C, &1,1) given by
the entries of the vector

wl!
i

wa)| ¢ |
Ja
()
“f
ordered so that the pairs »?’ and ==\ are consecutive. Then the of the pairing (—, —)®C
f f

is block-diagonal with 2 x 2 blocks given by
0 *
(-1Yx 0)
Moreover, assuming Stark’s Conjecture 2.9, we have that * € E[V2]%.

Proof. This follows from the same argument as the proof of Proposition 5.14. |

Corollary 5.16. When d = 2, we showed in Example 4.20 that Conjecture 4.17 predicts
that

log|t(upy)| - wf —loglt(ug)l-wf |

uy «f = dR; cH'(X,& )f®F,
—log|t(uy,)| - wk +log|t(uy;y)| - w?

uy «f = 27y L eH'x,6,),®F.

det Rf

Assuming Stark’s Conjecture 2.9, the determinant of this basis lies in E[V/2]%.

Proof. Suppose that w,,w, is a rational basis of H! (X, &1 ®E and
w; = auy *xf +buy xf
wy =cuy *xf +duy xf
for some a, b, c,d € C. Then,
(w1, wy) = (auy «f + buy xf,cuy «f + duy »f)
= (ad — bo)(uy «f, uy «f),

showing that ad — bc € E[/2]* by Proposition 5.15, assuming Stark’s Conjecture 2.9.
Finally, this shows that (uy * f) A (uy » f) = Z’(lifzzc is E[+/2]* -rational. |
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6 Evidence: Base Change Forms

Let F, be a totally real number field, and consider a totally real extension F of F,. Any
Galois representation of Gg/r, May be restricted to a Galois representation Gg,r- Hence,
according to Langlands’ functoriality conjecture, for any automorphic representation
ny of Resp ,qGLyp, there exists an associated base change representation n of
Resp g GLy p, written 7 = BCII:ZOJTO. This is discussed in detail and proved when F/F,
is a cyclic Galois extension in [43]. See also [1].

We now make the following definition.

Definition 6.1. A Hilbert modular form f for F is a base change form from F;, if
the associated automorphic representation = is equal to BCII;ONO for some automorphic

representation .

Of course, this leaves the following question: given a Hilbert modular form
fo € mp, how to choose an explicit Hilbert modular form f € = = BC;OJTO? As far as
we know, there is no canonical choice of f in this generality.

When F is a real quadratic extension of F; = Q and the weight of f; is at least
two, one can define f as a theta lift of f;), called the Doi-Naganuma lift. The reader
can consult [19, 49, 74] for the original results and [54, Ch. III] or [70, Ch. VI.4] for an
overview. In examples below, we will primarily be interested in cases where the level of
fo is coprime to the discriminant of F; such cases were treated by Kumar and Manickam
[42]. When f; has weight one, we are not aware of an explicit construction of the base
change of f; to a real quadratic extension in the literature. We expect these forms can
be constructed using the theta correspondence as above.

We will instead satisfy ourselves with the fact that these forms exist according

to the strong Artin conjecture, which is known in several relevant cases [38, 39].

Definition 6.2. Let f;, be a normalized parallel weight one Hilbert modular eigenform
for F, and ¢, be the associated Artin representation. The base change of f; to F is the
normalized parallel weight one Hilbert modular eigenform f whose associated Galois

representation is g = ResG@/F 0o-

The goal of this section is to consider Conjecture 4.17 for base change forms. We
compute Stark units for base change forms, give a more explicit from of the conjecture in

this case, and provide numerical evidence for it in the case of real quadratic extensions.
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6.1 Stark units for base change forms

For a Hilbert modular form f that is the base change of f;;, we want to relate the unit
groups Uy and Uy, We fix a common splitting field L that is Galois over Q. We denote
the three Galois groups by

If 0o: G; — GL,(E) is the Artin representation associated with f;, then the Artin
representation o associated with f is o = Resgé’ 0o by our definition of base change
forms (Definition 6.2).

The goal of this section is to discuss the relation between the Stark unit groups

and regulators for f and f;,.

Proposition 6.3.

1. We have a natural isomorphism:
Up = U,[Ad° gy ® P,

where P is the permutation representation of G; on the cosets G;/G’.

2. In particular, if we consider the Gj-invariant subrepresentation
P, = span Z oGt CP,
0G'eGy/G

then

Uy, = UL1Ad° 0y ® Pyl € Uy.

Proof. Part 2 clearly follows from part 1, so we just prove part 1. We have that

Uy = Homg (Ad° o, Resg, Uy)
= Hom, (Resgé) Ad° o, Resg, U;)
— Homy(IndS, Reso? Ad® gy, Uy)
= HomG(IndgE) (Ad° 00 ®P), Up),

= Homg, (Ad° o, ® P, Uy)
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as claimed. The penultimate equality follows form the following fact from representa-

tion theory: if K C H C G and V is a representation of H, then

Ind$ Res¥ v = EB g(Resi V) = @ EB gh(Resi V) = EB g(V®P) =Ind%(V ® P)
geG/K geG/H heH/K geG/H

g(hv) — g(h-v ® hK),

where P is a permutation representation of H on the cosets H/K. |
Suppose now that F, = Q for simplicity.

Proposition 6.4.

1. Let f be the base change of a modular form f;, of weight one. Then the units

uj.ck associated with f as in Definition 2.16 are given by

_ -1
l)ao(ﬂkﬂ/aj )11
’

fo_ (oxo'a;" )
wp = [

o'eG

where a%(0) is the matrix of Ad® gy(o) in the basis m; -

2. For any j, we have that

2 f
H ujk = ufO'
k=1

In particular,

Proof. For part 1, we may take M; = Ad° 0o(oy) for j=1,...,d in Corollary 2.13 to get

this expression for ufk. Part 2 then follows from part 2 of Proposition 6.3. |

Corollary 6.5. Suppose [F : Q] = 2. Let ug, be the unit associated with f; and ug) be the

unit associated with the Artin representation Ad® oy ® wp /- Where og q is the quadratic
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character associated with the extension F/Q. Then,

Uy - Upp = Uy, (6.1)
Uy - Upy = Ug, (6.2)
U - ul_z1 = uJIZ;, (6.3)
ugll “Ugy = uj’fo. (6.4)

In particular,

-1
1 1 1 —1\[loglu 0 1 -1
Rf=(°g|u“| °g|u12'):( )( B lup! v )( ) . (65
logluy | loglug,l 1 1 0 loglug|J\1 1
Proof. Fix representatives 0,0, of G/G’, and assume that o; € G'. Then the permuta-

tion representation P of G on G'/G decomposes as

P = Q(oy + 05) ® Qo; — 0y).
Therefore,

Up = Uy, @ U[Ad° 0 ® wpq]

by Proposition 6.3. Tracing through this isomorphism under the chosen bases, we obtain

equations (6.1)-(6.4) and the resulting equation (6.5). |

6.2 Consequences of Conjecture 4.17

Recall that we can use the matrix R;l to predict that cohomology classes in H' (X¢, &) ;)
are rational. When f is the base change of a modular form f;), Proposition 6.4 (2) implies
that

1

R;! = —
f log |uy, |

1

Therefore, the following is a consequence of Conjecture 4.17.
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Conjecture 6.6. Suppose f is the base change of a modular form f;, of weight one. Then
the cohomology class
1 d
9j 1
_— w/ e H (X, &)
f LUf
log lug, | o

is rational.

When [F : Q] = 2, Corollary 6.5 gives the following stronger rationality

statement.

Conjecture 6.7. Suppose [F : Q] = 2 and f is the base change to F of a modular form
fo of weight one. Then a rational basis for H!(X, &1,1)r s given by

a1 (21

o9 09
wp o wp —op

loglus| " log uf | '
In light of Corollary 5.3, this is equivalent to Conjecture 4.16.

6.3 Embedded Hilbert modular varieties

To check if Conjecture 4.17 is compatible with base change, we consider the Hilbert
modular variety for F, embedded in the Hilbert modular variety for F.

We will write d = [F : Fyl and d’' = [F; : QI. Let 74, ..., 7y be the infinite places of
F,. Above each place t;, there are d infinite places ojjforj=1,... ,d of F. We write ¢,

i=1,...,d, forthevariableson H®F,andz;;,,i=1,...,d',j=1,...,d for the variables

ijr
on H ® F. Here, ¢; corresponds to 7; and z; ; corresponds to oy ;.
We write X, and X for the Hilbert modular varieties associated with F, and F,

respectively. There is a natural embedding
t: Xg — X.
Over C, it descends from the map

HQF,— HQF

(§11~'-/§d’) = (§11~~!{1/52/"-ré‘Zr;d’r--'lgd’)/
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that is, the subvariety is given by the equation z; ; = ¢; for all i, j.

We are interested in the restriction map
H'(X, & 1) > H' (Xg, Eg.9)-

Particularly, we defined a class a)f € H(X, &, ) associated with f € H°(X, £, ;), which is
represented by

of@=f) -y \ 5

2
ojj€J yirj

as a Dolbeault class, and we consider L*(wJ{).

Lemma 6.8. If J contains o;; and o; ; forj #J,
L*(w]{) =0.

Proof. This follows immediately from the expression (6.6) and the identity z;; = ¢;
on X. n

Let us assume that J only contains at most one o; ; for each i, so that it is possible
that L*(wJ{) is nonzero.

The following conjecture is a consequence of Conjecture 4.17.

Conjecture 6.9. Let A = (a;) = Ry ! be the inverse of the Stark regulator matrix. Then
forallj=1...,d,

n
>t @) e H (X, €4 9) ® E € HY(Xg), Eg.q) ® .

i=1

Note that it is possible that L*(w;j) = 0 for all j in which case this conjecture
is void. In fact, we expect that t*(a)}’j) = 0 if f is not a base change form from F, (see

Proposition 6.12 for an example of this phenomenon).
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6.4 The case of real quadratic extensions

We finally restrict our attention to real quadratic extensions F/Q. In the previous
notation, F; = Q and d = 2. We denote by zj, z, (instead of z; ,z, ,) the variables on
X and by z (instead of ¢;) the variable on (X;)¢.

Let f be a holomorphic Hilbert modular form of parallel weight (k, k) and
consider wjﬁ‘ € H'(x2, EGrp)» given by

dz, ndz;
(Z1rzz) —f(flzlrezzz)yk # (6.7)
1

There are embedded modular curves ¢: C — X in the Hilbert modular surface,
studied extensively by Hirzebruch and Zagier [34]. We only consider the simplest

example, which is obtained by considering the map

. an an
L C(C —> X(C

zZw— (z,2)
over C that descends to varieties over Q. Via this map,
~ ol
l (szn kk)) =gt = Qcan(oo)

by the Kodaira-Spencer isomorphism, where (c0) indicates that differentials are allowed

to have poles of orders at most one at the cusps. Hence,

v, o1 dZ/\dz
(') (2) = f(e 2, 2y ———

defines a class in H!(C2®, Qé’an(oo)). Via the trace map, we have

Tr: H'(C2, QL% (c0)) S C,

o dZ/\dZ
l (0) )(2) — /f(ﬂz 6QZ)Y

Ce

and the isomorphism respects rational structures.

Lemma 6.10. For a Hilbert modular form of weight (k, k), L*(a)}”) = (—l)k“z*(a);z).
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Proof. It suffices to check that Tr(z*(a);‘)) = TI‘([*(Q);Z)). This follows by a change of

variables:

d/\dz

TI'(L*(Q);I)) = /f(elz ezz)y
can
rdzAdz
Y

/f( €,2, —€,2)y
can

= (D! / f(=e7Hz, (= Hz)y" dZYAZdZ (1 62) el N =~

Ce

= (=DF Tr(* (@),
as claimed. [ |

Putting this together with Conjectures 6.7 and 6.9, we get the following

conjecture.

Conjecture 6.11. Let f be the base change of a weight one modular form f,. Then,

de/\dz

/f(élz €2)y ~gx loglug|.

an
CC

For k > 2 and full level, these integrals were considered by Asai [3]. The following
result was also obtained by Oda [54]. See also [70, Proposition (VI.7.9)].

Proposition 6.12 ([54, Theorem 16.5]). Suppose f is a Hilbert modular form of parallel

weight k > 2 and level one. If f is not a base change form, then

/\dz
dz —0.

/f(elz ezz)y

an
C(C

Otherwise, if f is the Doi-Naganuma lift of a modular form g of weight k£ > 2, level

D = disc(F/Q), and character OF ) then there is a constant ¢ € Q* such that
rdzAndz (f )

zZ, = 6.8
/f(flz €,2)Y /2 (g 9 (6.8)

an
Cc
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Remark 6.13. The proof of Proposition 6.12 in loc. cit. uses the explicit realization of
f as a Doi-Naganuma lift of a modular form g, which is currently not available in the
literature for weight one forms. If an appropriate analogue of Proposition 6.12 holds for
a weight one forms f;, of arbitrary weight, level, and character, then we expect that
Stark’'s Conjecture 2.9 implies Conjecture 6.11 for base change forms of f;, to a real
quadratic fields.

Verifying the details of this would take us too far afield, so we will pursue
this elsewhere. Instead, in the next section, we describe some explicit numerical

computations that support Conjecture 6.11.

We end this section by proving that Conjectures 6.7 and 6.11 are equivalent for

base change forms, as long as L*(a)}’l) # 0.

Proposition 6.14. Let f be the base change of a weight one modular form f;,. Assume

1. Stark’s conjecture for the adjoint representation associated with f,
2. L*(w]‘?) #0,

Then Conjecture 6.7 for f is equivalent to Conjecture 6.11 for f, up to a potential factor

of V2.

Proof. Clearly, Conjecture 6.7 implies Conjecture 6.11. We will prove the converse.
Consider the algebraic map ¢: X — X given on X — X by (z,,2,) — (2;,2,). By
examining the proof of Theorem 4.2, one can deduce that if f is a base change form, then

¢ preserves f-isotypic components of coherent cohomology and hence induces a map:
9" H'(X,€ )y — H' (X, &, )y
Clearly, go(’[":(w]?) = a)]‘fz and go(*é(wjfz) = w;‘. Letting
ot = a);l + w?z,

we see that (pé(a)?) = :twjf. Hence, wfi are eigenvectors for the linear map ¢f with

distinct eigenvalues, and so there exist ¥ € C such that

Vot e H (X, € )y
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We have a rational functional Tro:: H!(X, ng)f ® E — E such that

(Tro)(A T ™) ~gx A+/t*(w}71), (Tro)(A"w™) =0

ca
by Lemma 6.10. Conjecture 6.11 then shows that we may take

o1
log |ug|

Finally, by Corollary 5.16, we know that the determinant of the basis

ot W~

log ug, | log|uf |

is E[+/2]-rational, and hence

1
log ug | -log|uf |

o
AT AT M ELae

showing that we may take A~ = |

1
log |u}70\ '
Remark 6.15. The idea to use the map ¢ was communicated to us by the referee for a

previous version for this manuscript. We thank them for this suggestion.

Remark 6.16. We expect that the condition 2 in Proposition 6.14 (i.e., L*(a)}”) # 0) is
equivalent to the character y, of f; being quadratic. One implication is clear: c*(a);l)
transforms by the character xg under the action of I'j(V), and hence Tr(t*(wj‘?)) =0
unless x§ = 1. Conversely, if Xg = 1, then the global analogue of Jacquet's conjecture
[37, 55] implies that the automorphic representation = generated by f contains a nonzero
GLZ(AQ)—invariant functional. We predict that f — L*(a);l) is this functional, that is,
L*(a);l) # 0.

Finally, we expect that Proposition 6.14 has a refinement when xZ # 1. If o, is
the character of A@ corresponding to x, by class field theory and wj is its extension
to Ay (which always exists), then Jacquet's conjecture predicts that the representation
TR 56_1 has a nonzero GL, (AQ)—invariant functional. One could hope to translate this

to a classical statement analogous to Conjecture 6.11.
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6.5 Computing the integrals numerically

The next goal is to provide numerical evidence of Conjecture 6.11, that is, check that

— dz A dz
/f(elz,ezz)yT ~px loglug|. (6.9)

an
C(C

We will assume that Xg =1 (cf. Remark 6.16), and hence the integral may be taken over
[o(W)\H instead of I') (W)\’H. Indeed, equation (6.9) is equivalent to

_ dz Adz

/ f(elz,ezz)yT ~gx loglug| (6.10)
Co(N)\H

because the two integrals differ by a factor of ¢(IV).

We first derive a formula (Theorem 6.20) for the integral on the left-hand side
using Nelson's technique [52] for evaluating integrals on modular curves.

Let I € SL,(Z) be a finite index subgroup, and let F: '\H{ — C be a I'-invariant
function on the upper half plane H. Suppose we have its g-expansions, that is, for all

7 € SLy(Z), we have

F(1z) = ) ap(n,y; )e(nx), (6.11)
neQ

where e(nx) = e27inx,

Theorem 6.17 ([52, Theorem 5.6]). Suppose F is bounded, measurable, and satisfies
F(rz) « y~“ for some fixed « > 0, almost all z = x + iy with y > 1, and all = € SL,(Z).

Then, for 0 < § < o, we have that

/F(z)dxfy= /(2s—1)25(2s> S ap0,5 01— 5) =
y 271
MH (1+9) tel\SL2(Z)
where
r
£(2s) = QE(ZS),
T

d
ap©0,1)"(1 =9 = [ az(©,7; 00" <.

0

220z aunp gz uo 1senb Aq £/676S59/92 L OBUL/UIWI/EE0 | 01 /10P/2[0IB-80UBAPE/UILI/WOD dno™olWwapese//:sdjy Wol) papeojumoq



68 A. Horawa
Applying this to F(z) = fy(2) - fiy(@ - y* gives an explicit expression for the
Petersson inner product (fj, f5).
Corollary 6.18 (Nelson [12, Theorem 4.2]). Suppose f is a cusp form in S; (I, x). For
h, O
acusp s, let 3" a, ;q" be the g-expansion at oo of fj|lzy 1, where 7, ) = rs( S ) and
n

1,00 = s. Then we have that

oo

_ 4 hs,O
oo = et 2

seM\PL(Q)

& @y 5|2 x \ k-1 mm
EF (g) (XKk—Z(X)_Kk—l(X))' x=4nn h_S’

n=1

where K, is a K-Bessel function, h; is the classical width of the cusp s, and h; is the
width described in [12, Lemma 2.1].

Remark 6.19. An algorithm to compute these Petersson inner products was developed

and implemented by Collins [12, Algorithm 4.3].

The goal for this section is to prove the following theorem, which is an explicit
form of Theorem 6.17 in our case.

Recall that for o € SL,(Og), we write «; = 0;(a) and
Fllaly(zy,25) = fley 2y, @2,)j (@, 21) (e, 2,) 72,
where
J(g,2) = det(g)"*(cz + d).

By definition, if f is a Hilbert modular form of weight (k;, k,) and level I' and

b
Characterx’thenf”a]k:)((d)«f for(x:(a d)e F
K C

Theorem 6.20. Let f be a normalized parallel weight k Hilbert modular newform of

level M and character x. For each cusp s € P1(Q)/ o), let T € SL,(Z) satisfy too = s.
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Let hg be the width of the cusp as described in [12, Lemma 2.1], and

If > gy sq™ is the g-expansion of f|[z;]; at oo, then
m>0

dAd hs, Ums k-l
[ femeny S E gy TS e (o) (ReatKea)

Fo\H =

where x = 22*i/271n\/7 and hg, is the classical width of the cusp s, and i = 0 if
d=1@ori=1ifd=3(4).

Remark 6.21. This formula is very similar to the formula for (f;, f;) in Corollary 6.18.
We can hence adapt the algorithm [12, Algorithm 4.3] to compute the integral. The
computation of g-expansions of f at other cusps given the g-expansion at oo is discussed

in the next section (6.6).

We devote the rest of this section to the proof of this theorem. We want to apply

Theorem 6.17 to the function
F(2) = F{'(2) = f(€1Z,€,2) - vk, (6.12)

where f is a Hilbert modular form of parallel weight k.
We will need g-expansions of F(z) at other cusps, that is, g-expansions of F(rz)
for r € SL,(Z), as in equation (6.11). The idea is to express them in terms of g-expansions

at oo of another Hilbert modular form.

Lemma 6.22. Suppose f is a Hilbert modular form of weight (k, k). For a cusp s, let
T € SL,(Op) be such that roo = s, and set
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Then we have that

FJ‘ZI (t2) = F;‘I[qu(z).
Proof. For t € SL,(Z), we have that
e O —kj2 k: k
fe1(t2)), €5(72p)) Zf‘ |:(0 1)7-'j| (21, 23) - (Ngg(€)) J(t,2))7)(T, 25)
k

0
=f‘ |:‘L’E (S 1):| (Zl,Zz) . (NF/Q(G))_k/Z 'j(lel)kj(T,Zz)k
k

= fllt€) (€121, €22,) - (T, 2)Nj(T, 25)F.

Therefore,
F7' (x2) = f(€(12), 5(12)) - (Im(r2))"
= fllzN(€,Z, €2) - |j(z, 2)|** - (Im(r2)¥
= fIlt1,(€,Z, €,2) - Im(2)¥
= Ffjizey, (2),
since Im(tz) = |j(z, 2)| " ?y. [ |

Lemma 6.23. For a cusp s, consider t € SL,(Z) such that roo = s. Let h be the width

of cusp s (as in [12, Lemma 2.1]) and

The g-expansion coefficients of F(rz) (as in equation (6.11)) are given by

ap(n/hg,y;7) = (Y/hs)k . Z Ay s - e 2m(€2mz/d2—exm1/61)y/hs

m>0
Tr(em)=n

where a,,, ; are Fourier coefficients of f|[r;];. In particular,

21y,
7d (v/hs) ,

o0

-2

ap(0,y;7) = (y/hy* - Z Am),s " € "
m=1

wherei=0ifd=1 @) andi=1ifd =3 (4).
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Proof. We write h = hg for simplicity. Suppose the g-expansion of f|[z;]; is

Fllegle(z1,2) = D7 @y sa™°
m>0

Then,

Fliz€li(zy, 25) = KK Z By 0™
m>0

By Lemma 6.22,

F(1z) = f|ltN(6,Z, €,2) - ¥

— (Y/h)k Z Amys g2rilexmy/81(Z/h)+eamz /82(2/h))

"
meOy

— (y/h)k Z Qs e~ 27 (eamz/da—e1my/81)(y/h) 27 i(Trem/8)(x/h)

meO;

_ (y/h)k Z Z Ay - e~ 27 (eamz/da—e1my /81)(y/h) e((n/h)x).

nez meO}'
Tr(em/8)=n

Hence,

ap(n/h,y;7) = (y/h)*- Z Amys - g 2n(e2ma/S—exm1 /81)(y/h)

m>0
Tr(em/8)=n

and in particular,

ap(0,y; 1) = (y/h)k . z a(m)yse—2ﬂ(62m2/52—€1m1/51)(Y/h).

m>0
Tr(em/8)=0

To make this last formula more explicit, we write m = « + +/d. We may choose
8 = 2!4/d - € to be the totally positive generator of the different ideal. Then,

B o
§ = — . d.
em/ 2‘+21d\/_
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If Tr(em/é) = 0, then B =0, so m = « € Z_. Moreover,

21-im

Vd

€My /8y — €My /) =

We may hence rewrite the above sum as

00 1-i
_2 2 m( h)
ap0,7;0) = G/W* > gy s-e 7 va T,

m=1
proving the lemma. |

We finally complete the proof of Theorem 6.20.

Proof of Theorem 6.20. We will apply Theorem 6.17 to the invariant function
F(z) = F}’l (2). By Lemma 6.23,

~2x 2y /)

o0
ap(0,y;7) = (y/hy)*- Z Am),s " €

m=1
Hence,

o0

ap(0,;0)" (1 —1) =/aF(0'Y; 0yt d7y~

o

m=1

o ® 1-i
= Z a(m) shs_k e nﬁy Yt+k_1 Q

m=1 0 y
- Lok rt+k—1)
- Z a(m),s S 2l-im k—1

o] (znm_ﬁ)t+ _

Am),s Ft+k—-1)

= “~ (22_iﬂm/\/a)k_1hs (22—inhsl\/a)t'
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According to [52, Lemma A.4],
r@r+v) de
/ (t—1/2)—— oo = XK, ,(x) — K, (x)

( /2)2t+v 27‘[
(1+9)

for v € C with Re(v) > 0.
By Theorem 6.17,

/

dt
/ (2t—1)2§(2t)ZaF(0, ;o) (l—t)ﬁ

M\H 1+9)
a ad rere+k—1) 1 dt
=4) h s /(t—1/2),———_
Z S°mzl<22 /N h r;( 1 @ttt n 2w
a rre+k—1) ds
—4 sO (m),s / 1/2
Z (22-igm/d)k- 12 t-1/2) (22-ix Z;Z%)t 2mi

nl(le

OO k-1
hs0 s X ~
_42 (m/~/d)*~1h, Z(zs—in) (XKje—2 (%) = Kje_1 (),

Sml

where we set x = 2272z n,/m/h v/d in the last line. [

In order to use Theorem 6.20, we need to compute the g-expansions of the Hilbert
modular form f at other cusps, that is, g-expansions of f|[a]; at co for a matrix «. We

discuss this problem in the next section.

6.6 g-Expansions at other cusps

In this section, we address the following question: given the g-expansion of a Hilbert
modular form f(z) at the cusp oo, what is the g-expansion of f(z) at any cusp of
Lo (WN)\H??

We take two methods available for modular forms and discuss their generaliza-

tion to Hilbert modular forms:

e Asai’s explicit formula [2] (Theorem 6.25),
e Collins computational method based on a least-squares algorithm [12]
(Algorithm 6.27).
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The 1st one is much faster in practice but only works for square-free level. The
2nd one works for any level, but our implementation is too slow in practice to compute
the above integrals. We include it here since it might be of independent interest.

Collins also introduced an improved computational method for modular forms
using twists of eigenforms [12, Algorithm 2.6]. This is also discussed in Chen’s thesis
[11, Chapter 4].

An alternative approach is to use the adelic language. The Fourier coefficients
of a modular form are given by value of the Whittaker newform of f at certain matrices.
Loeffler and Weinstein [44] give an algorithm to compute the local representations,
so one just needs an algorithm to compute the local newforms. For more details, see
[13, Section 3].

6.6.1 Explicit formula, following [2]
Let F be a totally real field of narrow class number 1 (of arbitrary degree d). Suppose
f is a Hilbert modular eigenform of level 9t with character x: (Op/9)* — C* and
parallel weight k. Suppose the level 91 is square-free. We write I' = I'j(91) throughout
this section.

The goal is to prove an explicit formula (Theorem 6.25) for the g-expansion of
a Hilbert modular form f at a cusp C = a/b € F in terms of the g-expansion at oo,
generalizing the main result of [2] to the Hilbert modular case.

Since M is square-free, the cusps C = a/b of I'\H? are in bijection with

decompositions 91 = 2 - B, where B = ((b),M). For each divisor 2, we consider the

o =
Ny A$ By AsJ\o 1

matrix

such that

e A, N are totally positive generators of 2, 91, respectively; then B = N/A is a
totally positive generator of B;

e det Wy =A;

o o, fB,v,8¢€0p.

Such a matrix always exists: since 2 = (A) and 8 = (B) are coprime, we have
that 1 = XA + uB, for some A, u € Op, S0 A = 1A% + uN, and we may take « = g = 1 and
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y = —u, 8§ = A to obtain such a matrix:

” A 1
T\ eve an)

Conversely, for a matrix Wy,

. 5
WQ[ o0 =—

is a cusp with ((By), ) = B because
1 =Aad — BBy = —BBy mod %,

so (y) is coprime to .

Such a matrix Wy associated with 2 is well defined up multiplication by
elements of I'. Moreover, Wy normalizes I' and A" W2 € T

The g-expansion of f at the cusp corresponding to 9t = A*B is the g-expansion of
the Hilbert modular form fy = f|Wy at co.

For a prime ideal p = (@) of O, coprime to N, with totally positive generator @,

the action of the Hecke operator T(p) on the space of cusp forms S, (91, x) is given by

1 v
( ) . (6.13)
r\0 @

For example, when d = 2, this simplifies to the more familiar expression:

0
FIT(P) = Np)jo (0> x(w)f‘k(lg 1)+ > f

veOr/p

_ _ Z:+vy Z,+ v
FIT(®) = Ng o0 ! | x(@)f (@,2,, @929 + Npjgp™* D f(gu)
veOr/p @1 @2

We will write T(p, x) for the action of the Hecke operator T(p) on S (9, x).
Remark 6.24. This normalization of Hecke operators is consistent with T’(p) in [64].

For simplicity, whenever we write down a generator of an ideal, it is assumed to

be totally positive. The main result of this section is the following.
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Theorem 6.25. Let f be a newform in S;(M, x) and fIT(p, x) = apf. For each
decomposition M = AV, let fiy = f|Wy. Then fy is a newform in S (M, *x) and

fm|T(P,mX) = a;(agl)fgl

for every prime p = (@), where

a® _ E(w)ap ifp /24
p =
X (@)@, ifp [B,

and

Xt (Op/A0p)* — CX,
m — x((—=BBy)m + (Axd)),
Xt (Op/BOR* — C*,
m i x((Aad)m + (—=BBy)),
Ayt (Op/NOR)* — C,
m > x((Aad)m + (=BBy)m™M).
Proof. The proof is a straightforward generalization of [2, Theorem 1], so we just give
a sketch.

We first check that fy has character *x described above. Write
d: T =Ty — (Op/MN,
b
(a )|—> d mod M.
c d

Then we just need to check that

d (Wagwy') = *x(d(@),
where

Ay (m) = (Aad)m + (—BBy)m™' mod N.
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b
Forg = (a ), we have that
c d

_ Aa B \fa b 5§ -—B/A
Wy y Wyt =
a7 (Ny Aa)(c d)(—By o )
_[Aa B as —bBy —apB/A+ ba
\wy 4s)\cs—dBy —cp/A+da
SO

d(WyyWy') = —aByB + bNay — cpé + dAas

(—ByB)a + (Aas)d mod N sincec=0 mod I,

which proves the above result, since ad =1 mod M.
One then computes a formula for how the Hecke operator T(p, x) commutes with
Wy using the above expression for Hecke operators (cf. [2, Lemma 2]). To check that fiy

is a newform, one shows that Wy preserves oldforms (cf. [2, Lemma 1]). [ |

The Hecke eigenvalues q, of T(n) may be computed from the eigenvalues a, of

T(p) in the standard way [64, (2.26)]. For n coprime to m, we have that

Qum = Ay - Ay
and for n = p”, we have that
o0
D ayNp) ™ =[1-a,Np)* + x(mNEFe 5], (6.14)
r=0
where ky = max{k,,..., k,}.

We can then recover the g-expansion of fy, up to a constant A, from the Hecke
eigenvalues a,(f[) given by Theorem 6.25. There is an explicit expression for A, described

in the next theorem.
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Theorem 6.26. Let f be a normalized Hilbert newform with character x and level 91.

Then there is a constant A such that

@
fa=h 2 a0)q"

V>0
—_——
£
where we define
®) _
agqy = 1
A 7 .
ag) = xaag, if ((1),2) = O,
a® = (V@) if B)=0
v = X (V)a, if ((v),B) = O,
@) @) ) . _
Aouy = Ay A if (v, w) = Op.

Moreover, there is an explicit formula for A, analogous to [2, Theorem 2]. First,

for a decomposition 9t = p®B for a prime ideal p = (@), let

w 1
W, =
Ny w@é

be a matrix of determinant & with y,8 € Og. Then,

FIW, = f®
with
4N, -Np~*Z.@  if p divides cond(x),
r —Npl-k/2 -a, otherwise,
where

Cop) = 2, xp(h)- 7T
h mod p

is a Gauss sum associated with Xp-
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In general, for any 91 = AB with an associated matrix Wy = (

that

h=x@s-By) ] x@&/@),
(@)=p|A

Aa
Ny A$

), we have

Proof. Once again, the proof generalizes the proof of [3, Theorem 2]. Since for 2

coprime to 2, we may take Wiy = Wy Wy, it is enough to check the assertion for a

prime ideal 2 = p.

By definition of agf)) and Ay, We have that

FIT®) o W, = apfIW, =ayr, > “EE))QV/‘S-
v>0

We compute the left-hand side in another way to get the result.

Since det W, =, we have that
By =By —wd=-1 modp.
Hence, for j # 1 mod p,
1+Byj=1—j#0 modp,
so there exists £ # 0 mod p such that
(1+4+Byj)t=1 mod p.

Moreover, this defines a bijection

JeOp/plj#1 modp} < {teOp/p|j#0 mod p}.

One can then check that forj # 1 mod p

(o)) )

for some o; € I'j(9) such that x(d(o;)) = Xp ().

(6.15)
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For j = 1, we have that

(" 2)m=eam(™ )

for some o, € T'y(9) such that x(d(0,)) = xy (@).
Using the expression (6.13) for T'(p),

o
k w

fIT(p) o W, = (NF/Q;@P)IC/%1 Z f
J€OF/p

1 ¢ w w
=V k/2-1 [/ ‘ ‘ w, )
(NVg@P) %Xp( )fk( w)( 1) +X;B(W)fk p( 1)

Using the g-expansions,

_ ) _ p) /8
f=2a0a" fiW,=4,> agq"”,

v>0 v>>0

1 ¢ w .
( )( ): Z a(y)eZTrlTr(vE/sz)qv/é,
k w 1 V>0

o _ k/2 () s
Wp( 1) = (Npgp) /22, Z g™’

v>>0

we have that

k

Hence,

FIT() 0 Wy = Ngygp) > D" ag, [ D x, (0 T ) gl

v>>0 00
+ W)~ )y 3 ailg .
v>>0

If x,, is primitive, then

D xp O = 5 (0) X, (8)C(x,)
0£0
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since § is coprime to @, and hence

FIT() 0 Wy = W g0 /* %, (OC(x) D %y @)@ + Wg o) xs (@2, D ab)g"™ /e
v>0 v>0

If x,, is not primitive, then x, = 1, is the trivial character modulo p. Then, since

w is coprime to §,

; ; N(@ -1 pl(v),
z X (0)@2TiTrve /0w Z 2T Tr(ve/5) _ q p
££0 £2£0 -1 otherwise.

Hence,

FIT(R)oW, =—Ng;om* 1 > ai, g+ ((Np)k/za(vm)Jr (NF/@m’“—lx%(w)ApaEE;) g
v>0 v>0

Comparing the expression for f|T(p) o W, in each case with equation (6.15) gives
the result. u

6.6.2 Numerical method, following [12]

The explicit formulas above only apply to Hilbert modular forms of square-free level.
We discuss how one could generalize a method of Collins to compute g-expansions at
other cusps for general levels.

As in [12, Section 2], we consider a matrix « that takes infinity to the cusp and
a b\fh O
Olh = .
c dJ\0 1

f|[ah]k S Sk(ro(mh))

For f € S (Ty(M),

and we want to compute its g-expansion

Sllegl = Z A" = Zan'a (Z q”m"), (6.16)

v>0 meZ

where g™ = e27'T*(M/%) and u € (Op)} is a fundamental unit.
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The idea of Collins [12, Section 2.3] is to sample points z,,...,z,, € H? and use

the g-expansion at oo of f to compute flayli(2) for these values. Then to use a least

squares algorithm to approximate the constants a,, , that satisfy

floaple > D an, (Z qumv)‘

meZ

Algorithm 6.27 (g-Expansion at other cusps, adapted from [12, Algorithm 2.3]). Given

a Hilbert modular form f of level 91, weight (k, k), with an algorithm to
compute its Fourier coefficients a, for arbitrarily large n;

acusp a/c € Q of width h;

a maximal norm K of Fourier coefficients needed;

a desired accuracy 107F;

an exponential decay factor e~°,

we can compute the Fourier coefficients for , accurate up to as follows.

1.

Either increase K = K|, or decrease C = C; so that KC ~ log(10)E and work

with interpolating

D Qe (Z q”m”)-

n
Nn<kK mez

Choose M (e.g., 2K,), and pick points z;,...,2zy € H? with both imaginary
parts equal to C/27 and Re(z;) randomly in (—d/ch —1/2,—-d/ch + 1/2)2.
Numerically compute the values flloy](z) = hk/ %(ch(zj,) + d)_k(ch(zjyz) +
d)_kf(ozhzj) using the g-expansion of f, truncating until we have reached an
accuracy a little greater than 10~F, and fill these into a vector b.

Numerically compute the values > q“"" for each z = z,...,2;,, with an
meZ

accuracy a little greater than 10~F, and store them in a matrix A.
Numerically find the least squares solution to Ax = b as the exact solution
to (A*A)x = A*b. The solution vector is our approximation to the coefficients

a, ., for each n of norm at most X.

We implemented this algorithm, but step (3) is very slow in practice. Since we

need a lot of Fourier coefficients in our case, it is not realistic to apply this algorithm

for our purposes.
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6.7 Numerical evidence

We can use Theorems 6.20, 6.25, and 6.26 to compute the integral and verify that

_ dz A dz
flez, GQZ)YT =c-log lug, | (6.17)
Co(W\H

for some ¢ € E*. This numerically verifies Conjecture 6.9 that we showed is equivalent

to Conjecture 4.16 in base change cases.

6.7.1 Modular forms associated with cubic extensions
In Example 2.21, the unit group Uy, is described explicitly, so this is the 1st case
we consider. This is the base change of Example 2.20 to a real quadratic extension
F=QWa) of Q.

We briefly recall Example 2.20 to set up the notation. Let K = Q(«) be a cubic
field of signature [1, 1], obtained by adjoining a root « of a cubic polynomial P(x). The
splitting field L of P(x) is the Galois closure of K and Gp,; = S;. We consider the

irreducible odd Artin representation
Gy g = S — GLy(2).

It has an associated modular form f, and we consider its base change f to F = Q(/ad).
The associated unit group is Ufo = UI({I), the norm 1 units of K, and we consider a
generator u = ug, of this group.

Table 1 shows constants ¢ € Q such that the equality (6.17) holds up to at least
fifteen digits. The computations were performed on the high-performance computing
cluster Great Lakes at the University of Michigan.

It is quite remarkable that all the constants ¢ are even integers and not just
rational numbers. Rubin’s integral refinement of Stark’s conjecture [59] could provide
an explanation. Understanding this phenomenon may also be related to studying
congruence numbers for f [20] and a potential integral refinement of Conjecture 4.17

would have to take them into account.
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Table 1

This table presents constants ¢ such that equation (6.17) holds for the unit u and the

base change to Q(v/d) of the modular form of level N associated with the polynomial P(x)

d Polynomial P(x) Imfdb.org label Level N Unit u Constant ¢ Time taken
5 x3—x241 23.1.b.a 23 a? -« 2 00:09:34
5 xS 4+x—1 31.1.b.a 31 o -4 00:13:36
5 x34+2x—1 59.1.b.a 59 a? -8 01:56:22
5 x3—x242x+1 87.1.d.b 87 o -2 04:15:09
13 x3—x2 41 23.1.b.a 23 a? -« 8 00:10:19
13 x3+x—1 31.1.b.a 31 o -2 00:49:47
13 x34+2x—1 59.1.b.a 59 o? —22 29:47:44
13 x3—x242x+1 87.1.d.b 87 o -4 04:23:13
17 x3—x% 41 23.1.b.a 23 o —«a 14 00:16:52
17 x3+x—1 31.1.b.a 31 o —-18 01:01:15
17 xS —x24+2x+1 87.1.d.b 87 o —-14 19:40:11
29 x3—x2 41 23.1.b.a 23 o —a 4 00:32:08
29 3 +x—1 31.1.b.a 31 o -14 02:38:12
37 x3—x241 23.1.b.a 23 a? —a 10 00:25:45
37 x3+x—1 31.1.b.a 31 o -6 01:41:38

We give the Imfdb.org label of the modular form. The time taken to perform the computation with at least

fifteen digits of accuracy is displayed in the format hh:mm:ss.

6.7.2 Weight one form of level 47

We give an example where the coefficients of f, are not rational and hence Stark’s

Conjecture 2.9 is not known for the base change form f. Let f; be the modular form

of weight one, level 47, label 47.1.b.a in Imfdb.org, and g-expansion:

where 8 = %(1 + /5).

fo=a+ 1+ — B +(1 - pg*+---,
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The associated Galois representation is
0: Gal(L/Q) = Dy = (s,r | s> =1,r° = 1,srs = r*) — GL,(ZIz5))

01

S > ,
1 0

0

e (;5 )

0 ¢

where we choose s € Dy corresponding to the complex conjugation ¢, € Gal(L/Q)

0 1 0 1 1 O
associated with L — C. For the basis (1 0), ( ) 0), (0 1) of Ad® g, the adjoint

representation is

0: Gal(L/Q) = Dy — GL4(ZI5))

CE+ed/2 (2-¢?/2 0
re> | @2-¢?/2 @E+egH/2 o
0 0 1

Finally, this shows that

u=ug = [J H (6.18)
i=0

where € is the Minkowski unit (Definition 2.3) for the embedding t: L — C such that s
is the complex conjugation associated with .
Note that 8 = ¢2 + ¢ 72, so the coefficients ¢% + ¢~2 lie in the coefficient field

Q(+/5) of f.
Interestingly, in this case, the right-hand side seems to always be an integer
multiple of 1 — %g Once again, this may be related to congruence numbers for f.
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TaBLE 2 This table presents constants ¢ such that equation (6.17) holds for the unit us and the

base change to Q(+~/d) of the modular form f of level 47

d Imfdb.org label Level N Unit ug, Constant ¢ € Q(v/5) Time taken
5 47.1.b.a 47 (6.18) — é 04:44:15
13 47.1.b.a 47 (6.18) 5—-+5 09:20:12
17 47.1b.a 47 (6.18) 8—8YL 02:04:28
29 47.1b.a 47 (6.18) 3-34 15:47:31

The time taken to perform the computation with at least fifteen digits of accuracy is displayed in the format
hh:mm:ss.

A Comparison to Prasanna and Venkatesh [56]

Prasanna and Venkatesh [56, Definition 4.2.1] gave a conjectural definition of the adjoint

motive. Beilinson’s regulator defines a map
H}(Mgoaq, Q1)) — Hp(Mygaq o R)WE = g0, (A.1)

For a cohomological, tempered automorphic representation, they define an action of
/\*(@WR) on Betti cohomology of the associated symmetric space and conjecture that the
action is rational for the rational structure given by motivic cohomology.

In this appendix, we explain that Conjecture 4.16 is the natural analogue of this

for coherent cohomology. In our case,

12

g

d
@5[2@.
j=1

The archimedean Langlands parameter associated with a Hilbert modular form f of
weight (k, r) is given by

d
¢: Wi =C*UCj - @) GL,(C)
j=1

2r i(ki—1)0
C* > sé > ster
§2rg—ilki—1)6

. (0 (=D

(ad

J 1 0
(see [41]).

A simple computation of the adjoint action gives the following lemma.
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Lemma A.1. For a Hilbert modular form of weight (k, r), we have that

1 0
§VE ~ @ ]R(O —1) (A.2)
J

J st kj=1

This allows us to define the action of this Deligne cohomology group on coherent

cohomology.

Definition A.2. Let f be a Hilbert modular form of weight (k, r). We define an action

1 O
of \* QWR on H* (X, & ) by letting (0 1) for j such that k; = 1 act by
H (X, &) — BTN (Xe, & )y

JUloj}
J W

(,l)fl—)
0 O'jGJ.

Here, we use the bases of cohomology groups given in Corollary 4.3.

This is precisely the action we defined in Definition 4.15.

Remark A.3. Recall from Remark 4.1 that the cohomology class a); is associated with

the action of right translation by the matrix g; € G(R) where

1 0
U]EJ,
0 -1
(g_])jz
1 0
01

Although the elements in equation (A.2) belong to the Lie algebra g and not G(R), this
seems like a natural way to define this action.

In the case (k,r) = (1,1), we expect from Proposition 2.24 that UJY =
Hjlw(Mcoaer(l))- Proposition 4.13 gives an explicit expression for the (inverse of the)
Beilinson regulator (A.1). Therefore, Conjecture 4.16 amounts to the fact that the action

of H} , (M,

coadr @Q(1)) preserves the rational structure on coherent cohomology.

Finally, we briefly discuss the motivic action conjecture for partial weight one

Hilbert modular forms. Suppose f is a Hilbert modular form of weight (k,r), and let
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M = M,,,q be the conjectural coadjoint motive of weight zero associated with f. The

Beilinson short exact sequence for M is
0 — F!(Hyg (M) ®g R — Hp(Mg, R) — Hp (Mg, R(1)) — 0. (A.3)
A simple calculation using the Hodge decomposition of Hy(M) gives
dim F! (Hgg (M)) = #{j | k; > 1},
and hence,
dim Hp, (Mg, R(1)) = #{j | k; = 1}.

The last assertion is consistent with Lemma A.1.

Consider the rational structure on HZID(MR,R(I)) given by the motivic coho-
mology group H}M(M,@(l)) via Beilinson's regulator (A.1). This gives an action x of
H}Vl (M, Q(1)) on coherent cohomology H* (X, 5k,r)f via Definition A.2.

Conjecture A.4. The action » of A\* H/l\/( (M, Q(1)) on H*(X¢, 5Ig,r)f preserves the rational
structure H*(X, Ekyr)f.

The action of top-degree elements, that is, the group /\e H}Vl(M,Q(l)) where
¢ = #{j | k; = 1}, has a particularly nice description in terms of Beilinson’s conjecture
for the adjoint L-function. For m € /\Z Hjl\/l (M, Q(1)), we have that

OF
mxf = m cH (Xc,é'klr)f,
where J;, = {j | kj = 1}. This final space is one-dimensional according to Theorem 4.2
(2) and hence we may check the rationality of m x f using Serre duality. We consider the
rational element
wEOO\Jl

f d—t
pZeo\1 () eH" (X, Esz,r)f

(see Definition 4.6). Then,
J oo \J:
< e > ii)

rp(m)’ vEe\i(f) TE o rp(m) - vEe\1(f)

by Proposition 4.8. Using Theorem 5.6, this amounts to the statement

L(L,f,Ad) ~g gox oM™= (f),

up to appropriate powers of 7.
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Finally, Beilinson’s conjecture implies that
rp(det Hy, (M, Q(1))) = L(1,f, Ad) det Hp(Mg, Q)

as rational structures on HID(MR,R(I)). Assuming this, Conjecture A.4 is equivalent to

the statement
=\ (f) = det Hp(My, Q),

which we would expect to be true. It would be interesting to verify this final equality,

but we decided to pursue this problem elsewhere.
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