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Incertae sedis. Marsileaceae is first recorded in the Middle to Late Jurassic. Incertae sedis genera are recorded
for first time in the Early Cretaceous while Salviniaceae in the Late Cretaceous. Two diversity spikes are recog-
nized: one spanned the Aptian-Albian (Early Cretaceous) and is linked to an increase in species diversity within

Available online 27 August 2021

g:%ﬁ;e Marsileaceae; and the other occurred during the Campanian-Maastrichtian (Late Cretaceous) and it is associated
Marsileaceae with the diversification at generic level of the entire Salviniales. Two decreases in diversity are recognized: one
Fossils during the Cenomanian-Santonian and affected Marsileaceae at specific level but not its generic diversity, and
K/Pg boundary the second is related to the Cretaceous-Paleogene mass extinction and affected all Salviniales at generic and spe-
Paleogeography cific levels. From the Paleocene onwards there is a steady decline in the fossil record of the group, with most re-

Paleoenvironments mains belonging to the extant genera. This study suggests that Southern Hemisphere aquatic ferns underwent a

sharp radiation during the Late Cretaceous and a deep decline in the Paleocene that parallels that occurred in the
Northern Hemisphere. Probably, the temporal co-occurrence of geological and climate events and the availability
of suitable lineages promoted the evolutionary changes of the water ferns in the studied area, including the high

diversification and distribution in the Cretaceous and the subsequent post-Maastrichtian decline.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Heterosporous water ferns constitute a monophyletic clade that in-
cludes two extant families, Marsileaceae Mirbel and Salviniaceae
Martinov, within the order Salviniales Link (Smith et al., 2006; PPG I,
2016). Marsileaceae has three extant genera: Marsilea L. (~50 species)
distributed in tropical to temperate regions worldwide and in South
America from northern Venezuela to central Argentina; Regnellidium
Lindm. with one species restricted to a small region of southern Brazil
and adjacent territories of Paraguay and Argentina; and Pilularia L. (~5
species) with a disjunct distribution in both hemispheres and specifi-
cally in South America from northern Venezuela to central Argentina
and Chile (Tryon and Tryon, 1982; Tryon and Lugardon, 1991; Pryer,
1999; Nagalingum et al., 2006). Salviniaceae comprises two extant gen-
era: Azolla Lam. with (~7 species) distributed in temperate to tropical
regions worldwide, in South America from northern Venezuela to
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southern Chile and the Falkland/Malvinas Islands; and Salvinia Ség.
(~10 species) distributed in temperate to tropical zones worldwide, in
South America from northern Venezuela to central Argentina (Tryon
and Tryon, 1982; Tryon and Lugardon, 1991; Nagalingum et al., 2006).

The macro- and microfossil record of Marsileaceae is widespread,
with a large stratigraphic and geographic distribution, occurring world-
wide from the Late Jurassic-Early Cretaceous (Yamada and Kato, 2002)
or maybe Late Triassic (Sun et al., 2014) to the Present (Collinson, 1991,
2001; Lupia et al., 2000; Estrada-Ruiz et al., 2018; Hermsen, 2019). The
fossil record of Salviniaceae starts latter, in the Late Cretaceous, and it is
mostly based on dispersed megaspores and microspore massulae prob-
ably because their sporophytes are extremely fragile and therefore less
likely to preserve (Weber, 1973; Hoffman and Stockey, 1994; Collinson
et al., 2013; Hermsen et al., 2019). Fossils that can be assigned to mod-
ern Marsilea (Hermsen, 2019), Regnellidium (Ctneo et al., 2013), Azolla
(Hermsen et al., 2019) and Salvinia (Weber, 1973; Schrank, 1994) are
known from the Late Cretaceous. During the Late Cretaceous, the mod-
ern genera existed alongside several fossil genera, most of them corre-
sponding only to dispersed megaspores (Batten and Kovach, 1990;
Collinson, 1991, 2001). Therefore, the finding of in situ spores from
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fertile whole plants is essential for understanding the phylogeny, diver-
sification, and extinction patterns in aquatic ferns (Collinson, 1991;
Rothwell and Stockey, 1994; Hermsen et al., 2019).

Kovach and Batten (1989) and Batten and Kovach (1990) published
afirst compilation of salvinialean fossil megaspores that was included as
part of a catalog of Mesozoic and Tertiary megaspores genera and species
worldwide. Later on, other authors have gathered information on macro-
and microfossil records related to Salviniales or to a particular group
within this clade (e.g., Collinson, 2001; Nandi and Chattopadhyay, 2003;
Vajda and McLoughlin, 2005; Kutluk et al., 2011; Batten et al., 2016;
Pérez-Consuegra et al., 2017; Hermsen, 2019; among others).

Interestingly, even though the salvinialean fossil record is quite
abundant and it has been treated abundantly in the literature, there is
not a comprehensive compilation of the complete fossil record of
Salviniales worldwide. In this contribution, we present an exhaustive
bibliographical review of the salvinialean fossil record from South
America and the Antarctic Peninsula while providing key information
on the austral paleogeographic and paleoenvironmental history of the
group as a starting point. Furthermore, this compendium is crucial to
test if a diversification/decline scenario similar to the one observed at
the Northern Hemisphere had occurred in the Southern Hemisphere
at the same time.

2. Materials and methods

Records in this contribution include those published in scientific
journals, books, and special publications while abstracts and unpub-
lished theses were included when they are of exceptional interest. The
information was gathered in an Excel file that is provided as supple-
mentary material (Appendix A). For the quantitative and qualitative
analyzes and to better visualize the changes through geological
time, the record was grouped into arbitrary time intervals as fol-
lows: Callovian-Tithonian; Berriasian-Barremian; Aptian-Albian;
Cenomanian-Santonian; Campanian-Maastrichtian; Paleocene-
Oligocene; Miocene-Pliocene; and Pleistocene-Holocene. A single file/
entry (one record) corresponds to a taxonomic unit from a single strati-
graphic unit or informal strata. However, when a record spans more than
one of these time intervals (e.g., Maastrichtian-Paleocene), it is regis-
tered as two files/entries to avoid underrepresentation in the diversity
analyses (e.g., see below Azolla boliviensis). A taxonomic unit can be a for-
mal fossil species (e.g., Mirasolita irupensis, in Hermsen et al., 2014), a
taxon in open nomenclature (e.g., Azolla sp., in Quattrocchio et al.,
2005) or an informal name (e.g., ‘Marsileaceae’, in Monje Dussan et al.,
2016). The taxonomy and ages of the fossils are updated based on the lat-
est publications. Efforts are focused in pre-Quaternary records.

Fossil records were organized into three groups: Marsileaceae,
Salviniaceae, and Incertae sedis (which includes those macro- and mi-
crofossils species whose affinity with either of the two extant families
has not been clearly demonstrated). Those fossil spore species for
which the mega- and microspore are known to be produced by the
same parent plant were considered as a single species in the diversity
analyzes (e.g., Molaspora lobata/Crybelosporites pannuceus, in Lupia
et al., 2000; Molaspora reticulata/Gabonisporis cristata, in Aulenback,
2009; Arcellites santacrucensis/Crybelosporites australis, in Villar de
Seoane and Archangelsky, 2008). We are aware that different fossil dis-
persed spores could have been produced by the same parent plant but
because the parental origin cannot be confirmed they are considered
as different genera/species. Two examples of this are Lugiomarsiglia
aquatica (sporocarps) and Mirasolita irupensis (leaves) from the
Maastrichtian of Argentina and macrofossils of Regnellidium thomas-
taylorii that were found associated with the fossil spores of Molaspora
lobata and Crybelosporites pannuceus (Clneo et al., 2013; Hermsen
etal, 2014).

Figs. 1-3 were plotted with the Palaeontological Statistics program
(PAST; Hammer et al., 2009) and edited using Adobe Photoshop CS6
(Adobe, San José, California, USA). To analyze the role that continental
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[Marsileaceae | Salviniaceae | Incertae sedis
Callovian - Tithonian 2 0 0
Berriasian - Barremian 2 0 0
Aptian - Albian 78 0 11
Cenomanian - Santonian 21 0 14
Campanian - Maastrichtian 44 26 61
Paleocene - Oligocene 9 18 8
Miocene - Pliocene 0 21 0
Pleistocene - Holocene 1 8 0

n° records
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B Incertae sedis

B Salviniaceae
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Fig. 1. Number of records through time. The numbers on the bars correspond to the total of
records for each interval.

drift and the paleoenvironments could have had in the distribution
and diversity of Salviniales, its fossil record was plotted on paleogeo-
graphic reconstructions of different geologic times (Figs. 4 and 5). For
the paleogeographic reconstructions we used the PALEOMAP PaleoAtlas
for GPlates (Scotese, 2016). Figs. 6 and 7 show the stratigraphic ranges
of the genera and species, respectively, for South America and the Ant-
arctic Peninsula listed in Appendix A.

3. Results

A data list consisting of 324 records, including 16 macrofossils (spo-
rophytes, leaves, and reproductive structures) and 308 microfossils
(megaspores and microspores/microspore massulae) referred to the
heterosporous water ferns from South America and the Antarctic Penin-
sula was made (Supplementary material, Appendix A).

An annotated alphabetical list of the 63 macro- and microfossil spe-
cies considered is provided below (note: the number in parentheses is
used as a reference for Figs. 4, 5, and 7; for those fossils that were not
identified at the species level, a letter in parentheses is used as reference
for Figs. 4 and 5).

3.1. Macrofossil record

3.1.1. Family MARSILEACEAE
(1) Lugiomarsiglia aquatica Gandolfo, Hermsen & Ctineo: sporocarps
from the Maastrichtian of Patagonia, Argentina (Hermsen et al., 2014).
(2) Mendozaphyllum loncochense Puebla, Pramparo & Gandolfo:
plant with rhizome, roots, and leaves from the Campanian-
Maastrichtian of western Argentina (Puebla et al., 2014).



F. De Benedetti, M.C. Zamaloa, M.A. Gandolfo et al.

Review of Palaeobotany and Palynology 295 (2021) 104521

[Marsileaceae | Salviniaceae | Incertae sedis [Marsileaceae | Salviniaceae | Incertae sedis
Callovian - Tithonian 1 0 0 Callovian - Tithonian 2 0 0
Berriasian - Barremian 1 0 0 Berriasian - Barremian 1 0 0
Aptian - Albian 2 0 3 Aptian - Albian 18 0 4
Cenomanian - Santonian 3 0 3 Cenomanian - Santonian 7 0 5
Campanian - Maastrichtian 8 1 7 Campanian - Maastrichtian 9 7 15
Paleocene - Oligocene 2 2 2 Paleocene - Oligocene 3 7 3
Miocene - Pliocene 0 2 0 Miocene - Pliocene 0 3 0
Pleistocene - Holocene 1 2 0 Pleistocene - Holocene 1 2 0

n° genera

18
16
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12
10

B Incertae sedis

Marsileaceae [l Salviniaceae

Fig. 2. Number of genera through time. The numbers on the bars correspond to the total of
genera for each interval.

(3) Mirasolita irupensis Hermsen, Gandolfo & Ctineo: leaves from the
Maastrichtian of Patagonia, Argentina (Hermsen et al., 2014).

(4) Regnellidium thomas-taylorii Ctineo, Gandolfo & Hermsen: plant
with rhizome, roots, leaves and sporocarps from the Maastrichtian of
Patagonia, Argentina (Ctneo et al.,, 2013).

(5) Marsileaceae: leaves from the Aptian of Colombia (Monje
Dussan et al., 2016).

(6) Marsileaceae: leaves from the Albian of Alexander Island, Antarc-
tic Peninsula (Nagalingum, 2007). Described as Marsileaceaephyllum
lobatum Nagalingum and later referred to a fossil of uncertain affinity
within Marsileaceae in Hermsen et al. (2014). The specimens described
as Marsileaceaephyllum sp. B by Nagalingum (2007) are here considered
as the same fossil taxon because, as indicated by the author, it is possible
that the two species represent two morphological forms of a single spe-
cies. See comments in Hermsen (2019).

(7) Marsileaceae: leaves and leaflets from the Maastrichtian of Pata-
gonia, Argentina (Vallati et al., 2017). Described as Marsileaceaephyllum
sp. and later referred to a fossil of uncertain affinity within Marsileaceae
in Hermsen (2019).

3.1.2. Family SALVINIACEAE

(8) Azolla coloniensis De Benedetti & Zamaloa emend. Hermsen et al.:
plant with roots, leaves and reproductive structures (including mega-
spores and microspore massulae) from the Maastrichtian-Danian of
Patagonia, Argentina (De Benedetti et al., 2018; Hermsen et al., 2019;
Clyde et al., 2021).

(9) Azolla keuja Hermsen et al.: plant with roots, leaves and repro-
ductive structures (including megaspores and microspore massulae)
from the Danian of Patagonia, Argentina (Hermsen et al.,, 2019).

n° species
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Marsileaceae [l Salviniaceae M Incertae sedis

Fig. 3. Number of species through time. Only formal fossil species and those with open
nomenclature but described in detail as differentiated species, were included in this
figure. Those species for which the micro- and megaspore were recorded attached and
confirmed to belonging to the same species were considered as individual species when
they were found in the same sediments (see Appendix A). The numbers on the bars
correspond to the total of species for each interval.

(10) Salvinia bogotensis Cuervo & Pérez: plant with floating and sub-
merged leaves from the late Paleocene of Colombia (Pérez-Consuegra
etal, 2017).

(11) Salvinia graui Herbst & Anzétegui: leaves from the Miocene of
northern Argentina (Herbst et al., 1987).

(12) Salvinia magdalenensis Cuervo & Pérez: plant with floating and
submerged leaves from the late Eocene of Colombia (Pérez-Consuegra
etal, 2017).

(13) Salvinia sp. cf. S. minima Baker: leaves from the Miocene (Herbst
et al., 1987) and Holocene (Contreras and Robledo, 2021) of northern
Argentina.

(14) Salvinia sp. 1: plant with floating leaves from the late Eocene of
Colombia (Pérez-Consuegra et al., 2017).

(15) Salvinia sp. 2: plant with floating and submerged leaves from
the middle to late Paleocene of Colombia (Pérez-Consuegra et al., 2017).

3.2. Microfossil record

3.2.1. Family MARSILEACEAE

(16) Arcellites disciformis Miner emend. Ellis & Tschudy: megaspore.
Aptian-Cenomanian of Patagonia, Argentina (Baldoni and Batten, 1991;
Santamarina et al., 2018, 2020). 2 records.

(17) Arcellites humilis Villar de Seoane & Archangelsky: megaspore.
Albian-Cenomanian of Patagonia, Argentina (Villar de Seoane and
Archangelsky, 2008, 2013). 3 records.
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2T

Fig. 4. Paleogeographic reconstructions showing records of Salviniales, numbers and letters correspond to those of the Results section. A. Middle to Late Jurassic (Map of 145 Ma of Scotese,
2016). B. Berriasian-Barremian (Map of 132 Ma of Scotese, 2016). C. Aptian-Albian (Map of 113 Ma of Scotese, 2016). D. Cenomanian-Santonian (Map of 90 Ma of Scotese, 2016). Some
records occurring in the same geographic region have been combined. The color of the rectangles corresponds to blue: Marsileaceae; green: Salviniaceae; and gray: Incertae sedis.

(18) Arecellites sp. cf. A. nudus (Cookson & Dettmann) Potter: mega-
spore. Aptian-Albian of Patagonia, Argentina (Del Fueyo et al., 2007).
1 record.

(19) Arcellites pentagonalis Villar de Seoane & Archangelsky: mega-
spore. Albian of Patagonia, Argentina (Villar de Seoane and Archangelsky,
2008). 1 record.

(20) Arcellites sp. cf. A. reticulatus Potter: megaspore. Campanian—
Maastrichtian of Patagonia, Argentina (Baldoni and Batten, 1997). 1
record.

(21) Arcellites santacrucensis Baldoni: megaspore. Aptian-
Cenomanian of Patagonia, Argentina (Baldoni, 1987; Baldoni and
Taylor, 1988; Batten et al., 1996; Villar de Seoane and Archangelsky,
2008). 3 records.

(22) Arcellites sp. A: megaspore. Aptian-Cenomanian of Patagonia,
Argentina (Villar de Seoane and Archangelsky, 2008). 2 records.

(23) Arcellites sp. 1: megaspore. Aptian-Albian of northeastern Brazil
(de Lima, 1978, 1979). 2 records.

(24) Arcellites sp. 2: megaspore. Aptian-Albian of northeastern Brazil
(de Lima, 1979). 1 record.

(A) Arcellites spp.: megaspores. Aptian of northeastern Brazil
(Ferreira et al., 2020) and Campanian-Maastrichtian of Venezuela
(Fasola and Paredes de Ramos, 1991). 2 records.

(25) Crybelosporites australis Archangelsky & Llorens: microspore.
Aptian-Albian of Patagonia, Argentina (Archangelsky and Llorens,
2005; Villar de Seoane and Archangelsky, 2008). Found among the ap-
pendages of Arcellites santacrucensis. 1 record.

(26) Crybelosporites berberioides Burger: microspore. Late Jurassic—
Early Cretaceous. Sparsely distributed from the Falkland Plateau
(Kotova, 1983) and southern Argentina (Cornd, 1986; del Fueyo et al,,
2007) to northeastern Brazil (de Lima, 1979). 6 records.

(27) Crybelosporites brennerii Playford: microspore. Aptian-Albian of
northeastern Brazil (de Lima, 1978, 1979, 1982; Ferreira et al., 2020;
among others). 7 records.

(28) Crybelosporites corrugatus Perez Loinaze & Llorens: microspore.
Aptian of Patagonia, Argentina (Perez Loinaze and Llorens, 2018). 1 re-
cord.

(29) Crybelosporites pannuceus (Brenner) Srivastava: microspore.
Widely recorded from Aptian to Danian. Most of them from the
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Fig. 5. Paleogeographic reconstructions showing records of Salviniales, numbers and letters correspond to those of the Results section. A. Campanian-Maastrichtian (Map of 76 Ma of
Scotese, 2016). B. Paleocene-Oligocene (Map of 56 Ma of Scotese, 2016). C. Miocene-Pliocene (Map of 13 Ma of Scotese, 2016). D. Pleistocene-Holocene (Map of 1,8 Ma of Scotese,
2016). Some records occurring in the same geographic region have been combined. The color of the rectangles corresponds to blue: Marsileaceae; green: Salviniaceae; and gray:

Incertae sedis.

Aptian-Cenomanian of northern South America (Brenner, 1968;
Herngreen and Duenas Jimenez, 1990; Jaillard et al., 1995, 1997;
Helenes and Somoza, 1999; among others). 33 records.

(30) Crybelosporites punctatus Dettmann: microspore. Aptian of
northeastern Brazil (Ferreira et al., 2020) and Aptian—-Cenomanian of
southern Argentina (Medina et al., 2008; Villar de Seoane and
Archangelsky, 2008; Archangelsky et al., 2012). 5 records.

(31) Crybelosporites striatus (Cookson & Dettmann) Dettmann: mi-
crospore. Sparsely recorded from the Aptian of northeastern Brazil
(Batten, 2007; Ferreira et al., 2020; among others). One record from
the Albian of the Falkland Plateau (Kotova, 1983) and the Aptian-
Albian of southern Argentina (Archangelsky et al., 2012), and two re-
cords from the Aptian-Albian of the Antarctic Peninsula (Dettmann
and Thomson, 1987; Hathway et al,, 1999). 10 records.

(32) Crybelosporites stylosus Dettmann: microspore. Callovian (mid-
dle Jurassic) and Albian of southern Argentina (Scafati and Morbelli,
1984; Archangelsky et al.,, 2008), and the Aptian-Albian of the Antarctic
Peninsula (Dettmann and Thomson, 1987; Riding et al., 1998). 5 records.

(33) Crybelosporites truncatus de Lima: microspore. Aptian-Albian of
northeastern Brazil (de Lima, 1978, 1979; Ferreira et al., 2016, 2020)
and southern Argentina (Baldoni and Batten, 1991). 4 records.

(B) Crybelosporites spp. (e.g., C. sp., C. sp.1, C. sp. A, and C. sp. B): mi-
crospores. Hauterivian-Maastrichtian of South America and the
Falkland Plateau (Archangelsky and Seiler, 1980; Ludwig et al., 1983;
Pramparo, 1989; Prossl and Vergara Streinesberger, 1993; among
others). 13 records.

(34) Gabonisporis cristata (Stanley) Sweet: microspore. Maastrichtian—
Danian of Patagonia, Argentina (Clyde et al., 2021; De Benedetti et al.,
2021). 2 records.

(35) Gabonisporis vigourouxii Boltenhagen: microspore. Widely
recorded from Late Cretaceous deposits, particularly from the
Campanian-Maastrichtian interval of northern South America (Ashraf
and Stinnesbeck, 1988; Fasola and Paredes de Ramos, 1991; Jaillard
et al.,, 1995, 1997, Vajda-Santivanez, 1999; Arai and Dias-Brito, 2018;
among others). Also sparsely recorded from the Maastrichtian-Danian
of southern Argentina (Volkheimer et al., 2007; Vallati et al., 2016,
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2017), Paleocene of Colombia (Jaramillo et al., 2011), and Paleocene to
Eocene of northern Argentina (Quattrocchio, 1978; Quattrocchio et al.,
1997; Narvaez and Volkheimer, 2011; among others). 33 records.

(C) Gabonisporis spp. (described as G. sp. and G. sp. 1): microspores.
Santonian to Danian deposits of Brazil to southern Argentina (Arai and
Dias-Brito, 2018; Volkheimer et al., 2006; Vallati, 2010; Povilauskas,
2017; among others). 8 records.

(36) Molaspora lobata (Dijkstra) Hall: megaspore. Maastrichtian of
Patagonia, Argentina (Ctineo et al., 2013, 2014; Hermsen et al., 2014;
Vallati et al., 2017). 2 records.

(37) Molaspora reticulata Campbell and Untergasser: megaspore.
Maastrichtian of Patagonia, Argentina (De Benedetti et al., 2021). 1
record.

(38) Regnellidium diphyllum Lindman: extant. Recorded as dispersed
microspores in Holocene sediments of southern Brazil (Leal and
Lorscheitter, 2006). 1 record.

3.2.2. Family SALVINIACEAE

(39) Azolla andreisii De Benedetti & Zamaloa: megaspore.
Maastrichtian of Patagonia, Argentina (De Benedetti et al., 2021). 1
record.

(40) Azolla boliviensis Vajda & McLoughlin: megaspore and micro-
spore massulae. Maastrichtian-Danian of Bolivia (Vajda-Santivanez,
1999; Vajda and McLoughlin, 2005). 2 records.

(41) Azolla circinata Oltz & Hall: microspore massulae. Campanian-
Maastrichtian of western Argentina (Puebla et al., 2014). 1 record.

(42) Azolla colhuehuapensis Vallati et al.: megaspore and microspore
massulae. Maastrichtian of Patagonia, Argentina (Vallati et al., 2017). 1
record.

(43) Azolla cretacea Stanley: microspore massulae. Maastrichtian of
Perd (Jaillard et al., 1995), and Campanian-Maastrichtian of northern
Patagonia, Argentina (Papt and Septlveda, 1995; Papd, 2002, 2006).
However, all these records should be considered as Azolla sp., and the

assignment of isolated microspore massulae to the species level should
be avoided. 4 records.

(44) Azolla filiculoides Lamarck: extant. Recorded as dispersed
microspore massulae in Holocene sediments of southern Brazil
(Medeanic et al., 2000, 2001, 2006; Leal and Lorscheitter, 2006;
Macedo et al.,, 2007) and northern Argentina (Contreras and
Robledo, 2021). 3 records.

(45) Azolla sp. 1: megaspore. Maastrichtian of Patagonia, Argentina
(Vallati et al., 2017). 1 record.

(D) Azolla spp.: microspore massulae. Widely recorded from Campa-
nian to Holocene deposits of South America (Papt, 1990; Guler et al.,
2001; Barreda et al., 2009; de Oliveira Medeiros et al., 2011; among
others). Two records from the Maastrichtian-Danian of the Antarctic
Peninsula (Baldoni and Barreda, 1986; Askin, 1989, 1990; Bowman
et al., 2014; Scasso et al., 2020). 50 records.

3.2.3. Family INCERTAE SEDIS

(46) Ariadnaesporites cristatus Tschudy; megaspore/microspore.
Campanian of northeastern Brazil (Lima, 1974). 1 record.

(47) Ariadnaesporites longiprocessum (Hills and Jensen) Hills: mega-
spore/microspore. Albian-Maastrichtian of Brazil (Lima, 1974; Haag,
2019). 5 records.

(48) Ariadnaesporites micromedusus Stough: megaspore/microspore.
Campanian-Maastrichtian of southern Argentina and Chile (Stough,
1968; Vallati et al., 2016). 2 records.

(49) Ariadnaesporites potoniei Kedves: megaspore/microspore.
Cenomanian of western Brazil (Haag, 2019). 1 record.

(50) Ariadnaesporites spinosus (Elsik) Hills: megaspore/microspore.
Widely recorded from the Albian-Maastrichtian of northern South
America (Elsik, 1966; Lima, 1974; Belsky et al., 1975; Fasola and Paredes
de Ramos, 1991; Jaillard et al., 1995, 1997; de Oliveira Alves et al., 2019;
among others). Only one record from the early Paleocene of Colombia

(Jaramillo et al., 2011). 19 records.
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Phanerozoic
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Grapnelispora loncochensis (60)

Parazolla sp. (62)

Paleoazolla patagonica (61)
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Fig. 7. Stratigraphic range of the Salviniales fossil species from South America and the Antarctic Peninsula. The species are arranged in order of first appearance. The number in parentheses
correspond to those used in the text. The shaded areas indicate times of high diversity. The dashed lines indicate gaps in the fossil record of the species. The red line indicates the K-Pg
boundary. The color of the bars corresponds to blue: Marsileaceae; green: Salviniaceae; and gray: Incertae sedis.

(51) Ariadnaesporites verrucatus (Elsik) Hills: megaspore/micro-
spore. Campanian of Pera (Elsik, 1966). 1 record.

(E) Ariadnaesporites spp.: megaspore/microspore. Aptian to Danian
deposits (Albertdo et al., 1994; Jaillard et al., 1997; de la Parra, 2009;
Ferreira et al., 2020; among others). 18 records.

(52) Azollopsis coccoides Hall emend. Sweet & Hills: microspore
massulae. Campanian-Maastrichtian of southern Argentina (Papt
et al,, 1988; Papt and Septlveda, 1995). 3 records.

(53) Azollopsis intermedia Sweet & Hills: megaspore and micro-
spore massulae. Maastrichtian-Danian of southern Argentina
(Volkheimer et al., 2007; Scafati et al., 2009; De Benedetti et al.,
2021). 2 records.

(54) Azollopsis polyancyra (Stough) Hall: microspore massulae.
Cenomanian-Maastrichtian of southern Argentina and Chile (Stough,
1968; Papt and Sepulveda, 1995; Pap(, 2002; Marenssi et al., 2004). 5
records.
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(55) Azollopsis tomentosa Hall: megaspore and microspore massulae.
Maastrichtian-Danian of southern Argentina (Volkheimer et al., 2007;
Scafati et al., 2009; Barreda et al., 2012; De Benedetti et al., 2021). 3
records.

(F) Azollopsis spp.: microspore massulae. Maastrichtian of southern
Argentina (Papt, 2006; Santamarina et al., 2020). 3 records.

(56) Balmeisporites holodictyus Cookson & Dettmann: megaspore.
Aptian of northeastern Brazil (Ferreira et al, 2020) and Aptian-
Cenomanian of southern Argentina (Villar de Seoane and Archangelsky,
2008; Santamarina et al., 2018, 2020). The genus Balmeisporites has
been traditionally related to the Marsileaceae due to the presence of an
acrolamella and the structure of the wall. However, spores assignable to
B. holodictyus were found inside the sporangia of Heroleandra Krassilov
& Golovneva from the late Cretaceous of western Siberia (Krassilov and
Golovneva, 2000). This peculiar fossil was placed in a new order of hetero-
sporous plants (Krassilov and Golovneva, 2000). Therefore, B. holodictyus
might not be related to the aquatic ferns, although it is here retained in
Salviniales until more detailed studies clarify their taxonomic position. 3
records.

(G) Balmeisporites sp.: megaspore. Albian-Cenomanian of northern
Argentina (Narvaez et al., 2014). Late Santonian of southeastern Brazil
(Arai and Dias-Brito, 2018). 3 records.

(57) Ghoshispora minuta (Brenner) Kutluk et al.: megaspore/micro-
spore. Aptian-Albian of northeastern Brazil (de Lima, 1978, 1979; Bat-
ten, 2007). Albian of Pert (Brenner, 1968; Jaillard et al., 1995). 4 records.

(58) Ghoshispora sp.: megaspore/microspore. Maastrichtian of
southern Argentina (De Benedetti et al., 2021). 1 record.

(59) Grapnelispora evansii Stover & Partridge: microspore massulae.
Maastrichtian of southern Argentina (Papu et al., 1999; Palamarczuk
and Gamerro, 1988; Barreda et al., 2012) and the Antarctic Peninsula
(Baldoni and Barreda, 1986; Askin, 1990; Pirrie et al., 1997; Bowman
et al,, 2014; Scasso et al., 2020). One record from the Paleocene of north-
ern Argentina (Quattrocchio et al., 1997, 2000; Narvéez and Volkheimer,
2011). 5 records.

(60) Grapnelispora loncochensis Papt: microspore massulae.
Campanian-Maastrichtian of southern Argentina (Papd, 1993, 1997,
Marenssi et al., 2004; Vallati, 2010; Puebla et al., 2014; among others).
9 records.

(61) Paleoazolla patagonica Archangelsky et al. emend. De Benedetti
& Zamaloa: megaspore and microspore massulae. Maastrichtian of Pat-
agonia, Argentina (Archangelsky et al., 1999; Puebla et al., 2014; De
Benedetti et al., 2020). 2 records.

(62) Parazolla sp.: microspore massulae. Campanian-Maastrichtian
of southern Argentina (Papq et al., 1988; Papu, 2006). 3 records.

(63) Thecaspora spinosa Elsik: megaspore/microspore. Campanian of
Pert (Elsik, 1966). 1 record.

3.2.4. The genus Hydrosporis Krutzsch

It is important to mention the genus Hydrosporis Krutzsch. It was
created for trilete laevigate microspores with similar morphology to
those produced by modern Azolla and Salvinia (Krutzsch, 1962). How-
ever, microspores of extant Salviniaceae are produced in massulae,
and therefore, the relationship of the genus Hydrosporis to Salviniaceae
is mostly based on the small size, spherical shape, and weak sculpture of
the spores. This kind of spores can be found in the modern genera Azolla
and Salvinia, but also in the massulae of several fossil genera such as
Azollopsis and Parazolla. Records of this genus were incorporated at
the end of the data list without a reference number and have not been
considered in the diversity analyses.

(s/n) Hydrosporis minor da Silva-Caminha et al.: microspore. Late
Oligocene-Pliocene of Brazil (da Silva-Caminha et al., 2010; Haag,
2019). 2 records.

(s/n) Hydrosporis sp.: microspore. Eocene-Oligocene of the Antarctic
Peninsula (Stuchlik, 1981; Birkenmajer and Zastawniak, 1989). 1
record.
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4. Discussion
4.1. Quantitative, qualitative and stratigraphic analyses

4.1.1. Number of records through time (Fig. 1)

The oldest record of water ferns corresponds to Marsileaceae and
dates from the Middle Jurassic (Callovian) and the uppermost Jurassic
(Tithonian). Only two other records of Marsileaceae were documented
until the Barremian. Remarkably, the number of records jumped from
2 to 89 during the Aptian-Albian interval, most of them related to
Marsileaceae and a few to salvinialean Incertae sedis. The number of
records declines to 35 during the Cenomanian-Santonian interval,
with 21 records of Marsileaceae and 14 of Incertae sedis; notably, 24
are from the Cenomanian and only 11 from the Turonian-Santonian
interval.

Itis in the Campanian-Maastrichtian interval that the fossil record of
Salviniales reached its highest number reaching 131 records. Definitely,
this is due to the appearance of the Salviniaceae with 26 records and a
massive increase in number of records of salvinialean Incertae sedis mi-
crofossils (61 records). After a significant presence of Marsileaceae dur-
ing the Aptian-Albian interval, its number declined from 78 to 21 in the
early Late Cretaceous but it bounced to 44 records during the
Campanian-Maastrichtian.

Clearly, the fossil record of Salviniales dropped in abundance after
the K-Pg boundary, with only 35 records in the Paleocene-Oligocene in-
terval, most of them from the early Paleocene (22 records).
Marsileaceae and salvinialean Incertae sedis are restricted to a few men-
tions, 9 and 8 records respectively, while Salviniaceae is the most repre-
sented (18 records). During the Miocene-Pliocene interval 21 records
were registered and all of them belonging to Salviniaceae. During the
Pleistocene-Holocene interval, Salviniaceae comprises 8 records and
Marsileaceae only 1.

This analysis demonstrates the presence of two well-defined inter-
vals of high abundance of aquatic ferns in South America and the Ant-
arctic Peninsula, one during the Aptian-Albian related to Marsileaceae
and a second one during the Campanian-Maastrichtian comprising
the entire salvinialean clade. From the Paleocene onwards, there is a
steady decline in the number of fossil records.

4.1.2. Number of genera through time (Figs. 2 and 6)

As mentioned above, only Marsileaceae is recorded throughout the
Callovian-Barremian interval, represented solely by Crybelosporites. In
the Aptian-Albian several new spore genera are recorded; Marsileaceae
is represented by Crybelosporites and Arcellites while the salvinialean
Incertae sedis are represented by Ariadnaesporites, Balmeisporites, and
Ghoshispora. During the Cenomanian-Santonian, Marsileaceae is repre-
sented by the genera Crybelosporites, Arcellites, and Gabonisporis, and
the Incertae sedis by Ariadnaesporites, Balmeisporites, and Azollopsis.
The number of genera increases remarkably during the Campanian-
Maastrichtian interval. In addition to the previously mentioned spore fos-
sil genera (excluding Balmeisporites), several others are first recorded in-
cluding Grapnelispora, Molaspora, Paleoazolla, Parazolla, and Thecaspora.
Macrofossil genera Lugiomarsiglia, Mendozaphyllum, Mirasolita, and the
modern Azolla and Regnellidium are recorded in this interval as well.

The generic diversity of aquatic ferns conspicuously decreases after
the K-Pg boundary. During the Paleocene-Oligocene, the Incertae
sedis comprises only Azollopsis and Ariadnaesporites, whereas
Marsileaceae is represented by Crybelosporites and Gabonisporis and
Salviniaceae by Azolla and Salvinia. Intriguingly, the Incertae sedis gen-
era are restricted to the early Paleocene, while only Gabonisporis is re-
corded in the Eocene. From then on, the fossil record is constrained to
Azolla, Salvinia, and Regnellidium.

Definitely, these data reveal the existence of a period of high diver-
sity at the generic level for the Salviniales during the Campanian-
Maastrichtian followed by a quick and deep decline in the Paleocene.
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4.1.3. Number of species through time (Figs. 3-5, and 7)

Middle Jurassic-Early Cretaceous (Fig. 4, A-C): The oldest records are
related to Marsileaceae and correspond to Crybelosporites stylosus from
the Middle Jurassic (Neuquén Basin, Argentina; Scafati and Morbelli,
1984), and Crybelosporites berberioides from the uppermost Jurassic
(Falkland Plateau; Kotova, 1983). Only two other records of this genus
(C. berberioides and C. sp.), both from southern Argentina, were docu-
mented until the Barremian (Archangelsky and Seiler, 1980; Cornd,
1986; Del Fueyo et al., 2007). Two Crybelosporites species were recorded
from the Callovian to the Barremian, while nine Crybelosporites species
(C. australis, C. berberioides, C. brenneri, C. corrugatus, C. pannuceus,
C. punctatus, C. striatus, C. stylosus, and C. truncatus) and eight Arcellites
species (A. disciformis, A. humilis, A. sp. cf. A. nudus, A. pentagonalis,
A. santacrucensis, A. sp. A, A. sp. 1, and A. sp. 2) were registered from
the Aptian-Albian. Furthermore, the oldest macrofossil records related
to Salviniales correspond to leaves of Marsileaceae from the Aptian of
Colombia (Monje Dussan et al., 2016) and the Albian of the Antarctic
Peninsula (Nagalingum, 2007; Hermsen et al., 2014). The presence of
these marsileaceous fossils in such distant regions indicates that the
family was probably widely distributed in the region during the Early
Cretaceous. The Incertae sedis species Ariadnaesporites longiprocessum,
A. spinosus, Balmeisporites holodictyus, and Ghoshispora minuta, although
scarcely, were also recorded during the Aptian-Albian. During the
Aptian-Albian interval, Marsileaceae is widely represented in South
America and the Antarctic Peninsula, while the salvinialean Incertae
sedis are restricted to South America.

Twenty-two species comprising 89 records were registered in the
Aptian-Albian suggesting that aquatic ferns were highly diverse during
that time. A first spike in abundance and diversity at the species level is
recognized for this time interval, which is mainly related to the
Marsileaceae, and particularly to the widespread distribution of the
Crybelosporites and Arcellites species.

Late Cretaceous (Fig. 4, D; Fig. 5, A): After a significant presence of
Marsileaceae during the Aptian-Albian, the family declined in species
diversity and abundance during the early Late Cretaceous. Several
Arcellites and Crybelosporites species that were common in Aptian-
Albian sediments disappeared in the Late Cretaceous. During the
Cenomanian, Crybelosporites is represented only by C. pannuceus and
C. punctatus and Arcellites by A. disciformis, A. humilis, A. santacrucensis,
and A. sp. A. In addition, the salvinialean Incertae sedis are represented
by Ariadnaesporites longiprocessum, A. potoniei, A. spinosus, Balmeisporites
holodictyus, and Azollopsis polyancyra. Species diversity notably declined
during the Turonian-Santonian, Marsileaceae is restricted to
C. pannuceus and the first report of Gabonisporis vigourouxii, while the
Incertae sedis are represented only by A. spinosus. During the early Late
Cretaceous, water ferns are scarcely represented in South America, partic-
ularly during the Turonian-Santonian interval, and they are absent in the
fossil record of the Antarctic Peninsula.

A total of 22 fossil species are recorded in the Aptian-Albian while
only three species in the Turonian-Santonian. Although the fossil record
largely decreases in abundance and species diversity, it was not affected
at generic level. Most Aptian—Albian fossil spore genera have some gap
in their record during the Turonian-Santonian interval (see Fig. 6), but
they are again recorded in the Campanian-Maastrichtian (except
Balmeisporites). This decline in the record could be related in part to
sampling biases due to the few geological units of Turonian-Santonian
age in South America.

The specific diversity and abundance of water ferns increases nota-
bly during the Campanian-Maastrichtian interval. Remarkably,
Salviniaceae appeared and became widely distributed from northern
Colombia to the Antarctic Peninsula, mostly represented by dispersed
microspore massulae of Azolla. The oldest macrofossil record of
Salviniaceae corresponds to Azolla coloniensis from the Maastrichtian
of northern Argentinean Patagonia (Hermsen et al., 2019). Salviniaceae
is represented by six Azolla fossil spore species (A. andreisii, A. boliviensis,
A. circinata, A. colhuehuapensis, A. cretacea, and A. sp. 1). As previously
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mentioned, several salvinialean Incertae sedis fossil spore genera are
first recorded at this time as well, represented by the species
Grapnelispora evansii, G. loncochensis, Paleoazolla patagonica, Parazolla
sp., and Thecaspora spinosa. The genus Azollopsis, recorded for first time
in Cenomanian deposits, is represented by four species (A. polyancyra,
A. coccoides, A. intermedia and A. tomentosa) showing an increase in abun-
dance and diversity during this period. Furthermore, this pattern is also
observed in other taxa such as Ariadnaesporites that is represented by
five species (A. longiprocessum, A. spinosus, A. cristatus, A. verrucatus, and
A. micromedusus). The macrofossil record of Marsileaceae also increases
during the Campanian-Maastrichtian, represented by Lugiomarsiglia
aquatica, Mendozaphyllum loncochense, Mirasolita irupensis, Regnellidium
thomas-taylorii, and leaves of an unidentified Marsileaceae (Ctineo et al.,
2013; Hermsen et al., 2014; Puebla et al., 2014; Vallati et al., 2017)
while its microfossil record is supported by the presence of Arcellites
sp. cf. A. reticulatus, G. vigourouxii, Molaspora lobata/Crybelosporites
pannuceus, and Molaspora reticulata/Gabonisporis cristata. However, it is
interesting to note that Marsileaceae never again reaches the levels of di-
versity achieved during the Early Cretaceous. This decrease in the diver-
sity could be related to many factors, such as competition with better
adapted taxa, the reduction of favorable habitats for this particular
group, or it could be related to their ecology and life history, which simply
provide limited opportunities for preservation (Hermsen, 2019). During
the Campanian-Maastrichtian interval, Marsileaceae, Salviniaceae, and
the Incertae sedis were widely distributed in South America, while only
Salviniaceae (i.e., Azolla sp.) and the salvinialean Incertae sedis
(i.e., Grapnelispora evansii) are recorded in the Antarctic Peninsula.

The fossil record of Salviniales in the region reaches its acme during
the Campanian-Maastrichtian interval, with a total of 131 records, 16
genera, and 31 species recognized, including members of the
Marsileaceae (9 species), Salviniaceae (7 species), and Incertae sedis
(15 species).

Paleogene (Fig. 5, B): The fossil record of Salviniales strikingly de-
clined in diversity after the K-Pg boundary. During the early Paleocene,
Marsileaceae is represented by Crybelosporites pannuceus, Gabonisporis
cristata, and G. vigourouxii, Salviniaceae by Azolla boliviensis, A.
coloniensis and A. keuja, and the salvinialean Incertae sedis by
Ariadnaesporites spinosus, Azollopsis intermedia, and A. tomentosa. The
Antarctic Peninsula is devoid of water fern fossils from the middle Pa-
leocene onwards. The last salvinialean record from the Antarctic Penin-
sula corresponds to microspore massulae of Azolla from the Danian of
the Seymour/Marambio Island (Baldoni and Barreda, 1986; Askin,
1989; Scasso et al., 2020). During the middle Paleocene to late Eocene,
Marsileaceae is represented only by G. vigourouxii, and Salviniaceae by
Salvinia sp., S. bogotensis, and S. magdalenensis, and dispersed massulae
of Azolla sp. Only dispersed massulae of Azolla sp. are recorded in Oligo-
cene sediments. Interestingly, no new fossil genera are recorded during
the Paleogene and the diversity of the pre-existing ones is drastically
declined. Fossil spore genera correspond to a few mentions of
Ariadnaesporites, Azollopsis, and Crybelosporites from the early Paleo-
cene, while only Gabonisporis is recorded until the Eocene. Probably,
these few records belong to the survivors of the K/Pg mass extinction.

Neogene-Quaternary (Fig. 5, C, D): Throughout the Miocene-Holocene
interval, the fossil record comprises only modern genera, and most of
them correspond to dispersed Azolla microspore massulae. Neogene mac-
rofossils are restricted to the Miocene of Argentina, represented by
Salvinia graui and Salvinia cf. S. minima. Only the extant A. filiculoides,
Salvinia cf. S. minima, and Regnellidium diphyllum have been recorded
from Holocene sediments (Leal and Lorscheitter, 2006; Fernandez
Pacella et al., 2011; Contreras and Robledo, 2021; among others).

4.1.4. Stratigraphic ranges (Figs. 6 and 7)

In South America and the Antarctic Peninsula, the fossil record
started in the Callovian (late Middle Jurassic) with Crybelosporites
which it is the only genus recorded until the Aptian (Early Cretaceous).
During the Aptian four new fossil genera are first recorded, including
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the Marsileaceae Arcellites (Aptian-Maastrichtian), and the Incertae
sedis Ariadnaesporites (Aptian-Danian), Balmeisporites (Aptian—
Santonian) and Ghoshispora (Aptian—-Maastrichtian). At the begin-
ning of the Late Cretaceous, Azollopsis (Cenomanian-Danian) and
Gabonisporis (Turonian-Eocene) are first recorded. The majority of
the genera are restricted to the Late Cretaceous, particularly to the
Campanian-Maastrichtian interval, including Grapnelispora,
Lugiomarsiglia, Mendozaphyllum, Mirasolita, Molaspora, Paleoazolla,
Parazolla, and Thecaspora. Among the modern genera, Azolla has a
continuous record from Campanian to Present; Regnellidium has a
single record in Maastrichtian deposits and a large gap until the Ho-
locene; and Salvinia has a discontinuous record from the Paleocene
onwards (Fig. 6).

Most species span relatively short stratigraphic ranges restricted to
two highly diverse time intervals, the Aptian-Albian and the
Campanian-Maastrichtian  (Fig. 7). Crybelosporites  stylosus,
C. berberioides, C. pannuceus, and Gabonisporis vigourouxii, all of them
corresponding to widely distributed marsileaceous microspores, are
the only exceptions that have wide stratigraphic ranges.

C. stylosus and C. berberioides are the only two species recorded from
the Middle Jurassic to the Barremian, and they are also recorded in
Aptian-Albian deposits. During the Aptian-Albian, several species of
Crybelosporites and Arcellites are recorded, along with Ariadnaesporites
spinosus, Balmeisporites holodictyus, and Ghoshispora minuta. Some of
these species extend their stratigraphic ranges to the Cenomanian,
while only C. pannuceus, Ariadnaesporites longiprocessum, and A. spinosus
are registered until the Maastrichtian or Danian. During the Turonian-
Santonian, most of the Aptian-Albian species disappeared and only a
few species including Crybelosporites pannuceus, Ariadnaesporites
spinosus, and Gabonisporis vigourouxii are recorded.

The Campanian-Maastrichtian interval is characterized by the first
and last occurrences of numerous fossil spore genera (i.e., Grapnelispora,
Molaspora, Paleoazolla, Parazolla and Thecaspora) and species
(e.g., Azolla colhuehuapensis, Grapnelispora loncochensis, Molaspora
reticulata and Paleoazolla patagonica), and several macrofossil
species (e.g., Mendozaphyllum loncochense, Mirasolita irupensis, and
Regnellidium thomas-taylorii). The highest diversity in the evolution of
aquatic ferns is reached during this time interval. Remarkably, several
fossil species such as Ariadnaesporites spinosus, Azolla boliviensis,
A. coloniensis, Azollopsis intermedia, A. tomentosa, Crybelosporites
pannuceus, and Gabonisporis cristata crossed the K-Pg boundary
and are found in the early Paleocene while Gabonisporis vigourouxii
is the only one recorded until the Eocene. From then on, diversity de-
clines markedly, and the few fossil species recorded are related to
the modern genera.

4.2. Paleogeography and paleoenvironments

For assessing the role that the paleoenvironments played on the dis-
tribution and diversity of Salviniales, their fossil record was plotted onto
paleogeographic reconstructions centered on South America and Ant-
arctic Peninsula for different geologic times (Figs. 4 and 5).

Middle-Late Jurassic: This time interval is characterized by the onset
of the breakup of Gondwana and the intensification of rifting (Niirnberg
and Miiller, 1991). South American continental basins and epicontinen-
tal seas occupied reduced areas leaving niches where wetland commu-
nities could arise (Fig. 4A). Water ferns first appeared in southern South
America during this period of time (Kotova, 1983; Scafati and Morbelli,
1984).

Early Cretaceous: During the Early Cretaceous (Fig. 4B) seawater
progressed onto the continent at both north (Venezuela and
Colombia) and south (eastern Patagonia). This was due, in part, to the
breakup of Gondwana and to the movements of the South American
and African plates that produced Atlantic transgressions with the conse-
quent flooding by shallow seas on the South American continent
(Benedetto, 2010; Moulin et al., 2010; Maystrenko et al., 2013) and
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the Antarctic Peninsula. Only a few records were documented from
southern South America before the Barremian (Archangelsky and
Seiler, 1980; Cornd, 1986). Later on, towards the beginning of the
Aptian, the endorheic internal basins expanded and the wetlands occu-
pied larger areas, some of them connecting to oceanic waters (Fig. 4C),
while uplands remained restricted and of moderate height (Graham,
2011). These processes occurred concomitantly with greenhouse effects
conditions, equable climates, high and uniform mean annual precipita-
tion, and low thermal and biodiversity gradients (Follmi, 2012; Hu et al,,
2012; Graham, 2011). As a result of these dynamic physical and climatic
conditions many taxa were widely distributed and numerous new hab-
itats developed that probably contributed to the rapid evolution and es-
tablishment of aquatic ferns.

Late Cretaceous: At the beginning of the Cenomanian South America
and Africa were completely separated (Niirnberg and Miiller, 1991). It is
during the Cenomanian-Santonian (Fig. 4D) that a major subsidence of
the south Atlantic margin began, causing a massive transgression and
giving origin to the most extensive shallow epicontinental seas that
characterized Patagonia at the end of the Cretaceous (Franzese et al.,
2003; Malumian and Néfiez, 2011). During this period, the maximum
area of flooded inland areas and coastlines of South America was
reached (Fig. 5A). Most probably, new habitats with abundant water
supply, including those characterized by fresh water (such as lagoons
and lakes) and brackish conditions (such as marshes, estuaries, and la-
goon/barrier complexes), provided ideal niches for aquatic plants to
thrive. In these environments, the water ferns had an obvious survival
advantage because of their strategic adaptations to aquatic or semi-
aquatic and/or changing habitats (such as the production of spores
within sporocarps that ensures the viability of the contents over long
periods of time, adaptation to drought, and high rate of vegetative re-
production by fragmentation) (Johnson, 1986; O'Connor et al., 2019)
contributing to the group highest diversity ever recorded.

Cretaceous/Paleogene boundary: The environmental effects of the as-
teroid impact at the Chicxulub site (Chiarenza et al., 2020; Hull et al.,
2020) indicate the boundary between the Cretaceous and the Paleogene
in which the last mass extinction is recognized in Earth history. South
American/Antarctic Peninsula Salviniales were affected (reduction in
diversity and extinctions) by this global event as ~74% of the species
and ~62% of the genera became extinct (Figs. 6 and 7).

Cenozoic: During the Cenozoic marine transgressions and epiconti-
nental seas were widely distributed although maintained an overall
steady decline (Guler et al.,, 2019, 2021). The few fossil genera that sur-
vived and crossed the boundary are restricted to the early Paleocene
(i.e., Ariadnaesporites, Azollopsis and Crybelosporites) and only
Gabonisporis is recorded until the mid-Eocene (Fig. 5B, Fig. 6). From
then on, only the modern genera were recorded. The Antarctic Penin-
sula was devoid of aquatic ferns from the Paleocene onwards. During
the late Eocene-early Oligocene (Fig. 5B), the complete separation of
Antarctica from southern Patagonia and Australia led to the subsequent
development of the Antarctic Circumpolar Current and the consequent
thermal isolation of the Antarctic continent (Lawver and Gahagan,
2003; Brown et al., 2006). These geologic events added to the final uplift
of the Andean Cordillera during the Neogene (Fig. 5C) (Ramos, 1999;
Hartley, 2003), led to the modern climate of South America (Fig. 5D).

Most certainly all these tectonic movements and their associated
changes in the topography and the climate contributed enormously to
the evolutionary history and distribution of the Salviniales. Evolutionary
responses to ecological opportunities are important in colonization of
new disturbed habitats (Hoffmann and Hercus, 2000; Hoffmann and
Sgro, 2011) and, in the case of the Salviniales it helps to explain their di-
versification patterns in the fossil record (Collinson, 1991; Collinson
etal, 2013). The crucial importance of the temporal correspondence be-
tween habitat opportunities and linage availability in shaping the evolu-
tion of the ecosystems was stressed by Graham (2012). Although
aquatic and other freshwater or brackish habitats were present on
Earth long before the Cretaceous, the concurrence in time and space of
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physical environmental factors (mainly climate changes and geological
events) and the accessibility of lineages that could underwent evolu-
tionary changes to exploit new opportunities would explain the diversi-
fication of the group during the Cretaceous. The same forcing
mechanisms (Graham, 2011) could have promoted the post Paleocene
water ferns decline as the new habitats were exploited by other evolv-
ing and more successful groups probably represented by several line-
ages within the flowering plants.

4.3. Northern Hemisphere fossil record

Currently, there is not a comprehensive compilation of the fossil re-
cord of Salviniales for the Northern Hemisphere and therefore only par-
tial comparisons with the data presented here can be made. The
Northern Hemisphere Salvinialean fossil record is mostly based on dis-
persed spores (Batten and Kovach, 1990; Collinson, 1991, 2001; Batten
and Collinson, 2001; Batten et al, 2011a, 2011b; Nandi and
Chattopadhyay, 2003; Zavialova and Batten, 2018), although its macro-
fossil record has been increasing over the last decades (Collinson, 2001;
Yamada and Kato, 2002; Aulenback, 2009; Sun et al., 2014; Wang et al.,
2014; Pérez-Consuegra et al., 2017; Hermsen, 2019; among others).

Most water ferns fossil spore genera have a relatively widespread dis-
tribution in North and South America, Europe, Asia, Africa, and Australia,
and they are mainly restricted to the Cretaceous (i.e. Arcellites,
Ariadnaesporites, Azollopsis, Balmeisporites, Crybelosporites, Gabonisporis,
Ghoshispora, Molaspora, and Parazolla). Only a few fossil spore genera ap-
pear to have an endemic distribution, which is restricted to the Late Cre-
taceous of some Northern Hemisphere regions [e.g., Capulisporites Potonié
(Batten et al., 1994; Nandi and Chattopadhyay, 2003), Glomerisporites
Potonié (Batten et al., 1998), and Hallisporites Nowak and Lupia (Nowak
and Lupia, 2005)] or Southern Hemisphere regions (i.e., Grapnelispora,
Paleoazolla, and Thecaspora).

Based mainly on the Northern Hemisphere record, several authors
have proposed that the Salviniales diversified during the Late Creta-
ceous, with only the extant genera surviving into the Cenozoic
(Rothwell and Stockey, 1994; Nandi and Chattopadhyay, 2003;
Collinson et al., 2013). The few fossil genera that crossed the K-Pg
boundary are almost entirely restricted to the early Paleocene. Similar
results were obtained in the present study for South America and the
Antarctic Peninsula.

5. Conclusions

We compiled 324 fossil records of the Salviniales including macro-
(16 records) and microfossils (308 records) from South America and
the Antarctic Peninsula. Marsileaceae is first recorded in the Middle to
Late Jurassic, while Salviniaceae in the Late Cretaceous. Incertae sedis
genera are recorded from Early Cretaceous to early Paleocene deposits.
Two spikes in abundance and diversity are recognized, one in the Early
Cretaceous, related to an increase in species diversity of Marsileaceae,
and a second one during the Late Cretaceous associated with an increase
at generic level of the entire salvinialean clade. One pauperization event
is identified during the early Late Cretaceous which apparently only af-
fected the species diversity of Marsileaceae. The major extinction event
encompassed all Salviniales at generic and species levels and occurred
between the Maastrichtian and the Danian (K-Pg extinction event).
From the Paleocene onwards, most of the records are related to the ex-
tant genera.

Definitely, the Salviniales fossil record suggests that evolutionary re-
sponses (genetic and plastic changes) to ecological opportunities pro-
moted by environmental changes, such as the paleogeographic
configuration, the fluctuating sea levels with the development of wide
epicontinental seas and the generalized distribution of wetlands envi-
ronments, the global warm climate during the Cretaceous-Paleogene,
the Cenozoic cooling, among other factors, played an important role in
their past history.
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Based on the evidence provided here, it is clear that aquatic ferns
underwent a marked radiation during the Cretaceous and a deep de-
cline from the Paleocene onwards in South America and the Antarctic
Peninsula that parallels those proposed for the Northern Hemisphere,
suggesting that additional studies of this group should be done globally
to really understand their past history and perhaps their future.
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