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Degenerate competing three-particle systems
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We study systems of three interacting particles, in which drifts and variances are assigned by rank. These systems
are degenerate: the variances corresponding to one or two ranks can vanish, so the corresponding ranked motions
become ballistic rather than diffusive. Depending on which ranks are allowed to “go ballistic” the systems exhibit
markedly different behavior, which we study here in some detail. Also studied are stability properties for the
resulting planar process of gaps between successive ranks.
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1. Introduction

Systems of three or more interacting particles that assign local characteristics to individual motions
by rank, rather than by index (“name”), have received considerable attention in recent years under the
rubric of “competing particle systems”; see for instance [36], [27], [26], [28], [40], [41], [8], [29], [5],
[31], and the references cited there. A crucial common feature of these studies is that particles of all
ranks are assigned some strictly positive local variance. This nondegeneracy smooths out the transition
probabilities of particles.

We study here, and to the best of our knowledge for the first time, systems of such competing particles
which are allowed to degenerate, meaning that the variances assigned to one or two ranks can vanish.
This kind of degeneracy calls for an entirely new theory; we initiate such a theory in the context of
systems consisting of three particles. Even with this simplification, the range of behavior these systems
can exhibit is quite rich. We illustrate just how rich, by studying in detail the construction and properties
of three such systems — respectively, in Sections 2, 3, and in an Appendix (Section A).

The systems of Sections 2 and A assign ballistic motions to the leader and laggard particles, and
diffusive motion to the middle particle. The quadratic variations of both leader and laggard are zero,
as are the cross-variations between any two particles; the resulting diffusion matrix is thus of rank one.
The intensity of collisions between the middle particle, and the leader or the laggard, is measured by
the growth of the local time for the respective gap in ranks. Skew-elastic colliding behavior between
the middle and laggard particles is described by collision local times in Section A.

By contrast, the system of Section 3 assigns independent diffusive motions to the leader and laggard
particles, and ballistic ranked motion to the middle particle. The quadratic variation of the middle
particle is zero, and so are the cross-variations between any two particles; thus, the diffusion matrix is
now of rank two. These different kinds of behavior are summarized in Table 1.

A salient feature emerging from the analysis, is that two purely ballistic ranked motions can never
“pinch” a Brownian motion running between, and reflected off from, them (Proposition 2.1); whereas
two Brownian ranked motions can pinch a purely ballistic one running in their midst and reflected
off from them, resulting in a massive collision that involves all three particles (subsection 3.2). Using
simple excursion-theoretic ideas, we show in Theorem 3.1 how such a system can extricate itself from
such a triple collision; but also that the solution to the stochastic equations that describe its motion,
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Section Leader Middle Laggard  Double Collisions  Triple Collisions

2 Ballistic ~ Diffusive  Ballistic Elastic No triple collisions
3 Diffusive  Ballistic ~ Diffusive Elastic Triple collisions
A Ballistic ~ Diffusive  Ballistic Skewed (open question)

Table 1. Different behavior for leader, middle and laggard particles in each of three particle systems.

which is demonstrably strong up until the first time a triple collision occurs, ceases to be strong after
that time. This last question on the structure of filtrations had been open for several years. We also show
that, even when triple collisions do occur in the systems studied here, they are “soft”: the associated
triple collision local time is identically equal to zero.

The analysis of these three-particle systems is connected to that of planar, semimartingale reflecting
Brownian motions (SRBMs) and their local times on the faces of the nonnegative orthant. The survey
paper [46] and the monograph [16] are excellent entry points to this subject and its applications, along-
side the foundational papers [17], [44], [18], [19], [38]. In Sections 2 and A the planar process of gaps
is a degenerate SRBM driven by a one-dimensional Brownian motion, while it is a non-degenerate
SRBM driven by a two-dimensional Brownian motion in Section 3. The directions of reflection are the
same in Sections 2 and 3, but different in Section A because of the skew-elastic collisions between the
middle and laggard particles. Under appropriate conditions the planar process of gaps between ranked
particles has an invariant distribution. We exhibit this distribution explicitly in one instance (subsection
A.3) under the so-called “skew-symmetry” condition, and offer a conjecture for it in another. We show
that the former is the product (A.20) of its exponential marginals, while the latter is determined by the
distribution of the sum of its marginals and is not of product form (cf. Remarks 2.4, 2.6 in [24]).

The three-particle systems studied in this paper reveal some of the rich probabilistic structures that
degenerate, three-dimensional continuous MARKOV processes can exhibit. It will be very interesting
to extend the analysis of the present paper to n-particle systems with n > 4. We expect certain of the
features studied here to hold also in higher dimensions, but leave such extensions to future work.

2. Diffusion in the middle, with ballistic hedges

Given real numbers 61, 9, §3 and x; > x > x3, we start by constructing a probability space (Q,F,P)
endowed with a right-continuous filtration F = {i‘y(t)}o <<co» 10 Which are adapted three independent
Brownian motions Bj(-), Bx(+), B3(+), and three continuous processes Xi(-), Xo(+), X3(+) that satisfy

3 . .
Xl() = xi + Z 6k‘/0 l{X,(Z):Ri((Z)}dt +‘/0‘ I{X,‘(l‘):R;(l‘)} dB,(t), i: 1,2,3, (21)
k=1
/0 Lpxoerxn & =0, ¥ k<t {1e(0.00): RXt)=R¥()} = o 2.2)

with probability one. Here we denote the descending order statistics by

max_X;(t)=: R¥(t) > RX(t) > RY(t):= min_X;(1),  t€[0,00), (2.3)
J=12,3 j=1,2,3

and adopt the convention of resolving ties always in favor of the lowest index i ; for instance, we set

R =X1(t), RX(t)=X3(t), RY(t)=X2(t)  on {Xi(t)=X3(t)> Xa(t)} .
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The dynamics (2.1) mandate ballistic motions for the leader and laggard particles with drifts §; and
03, respectively, which act here as “outer hedges”; and diffusive (Brownian) motion with drift §,, for
the middle particle. The first condition in (2.2) posits that collisions of particles are non-sticky, in that
the set of all collision times has zero LEBESGUE measure; while the second proscribes triple collisions.

As a canonical example, it is useful to keep in mind the symmetric configuration

§3=-01=y>0=0, (2.4)

for which the system of equations (2.1) takes the appealing, symmetric form

Xi()=xi+y /O (l{xi(t>=R§‘<r>} ‘I{Xi(t)=Rf‘<t>})d’ + /O Lixi=rx @y 4Bi0). (2.5

This system was introduced and studied for the first time in the technical report [13]. Figure 1, which
illustrates its path behavior, is taken from that report.

A very salient feature of the dynamics in (2.1) is that its dispersion structure is both degenerate and
discontinuous. It should come then as no surprise, that the analysis of the system (2.1)—(2.2) might be
not entirely trivial; in particular, it is not covered by the results in either [42] or [4]. The question then,
is whether a process X(-) with (2.1) and (2.2) exists; and if so, whether its distribution — and, a bit
more ambitiously, its sample path structure — is determined uniquely.

2.1. Analysis

Suppose that a solution to the system of equation (2.1) subject to the conditions of (2.2) has been
constructed. Its descending order-statistics are given then as

1 1
RE(t) = xy + 611+ o) A, R = x5 +0631 - 5 A3 (2.6)

1 1
RX(t) = xp + 621+ W(t) - 5 A2 () + 5 AZ3(r) (2.7)

for 0 <t < oo, on the strength of the results in [3]. Here, the scalar process

3 . 3
W():= Z‘/O Lix; (=rX (1) 4Bi(1) = Z;
i= i=

is standard Brownian motion by the P. LEVY theorem; and we denote the local time accumulated at the
origin by the continuous, nonnegative semimartingale R,f ()- Rff () over the time interval [0,], by

3 .
XL() - Xi — Z 6]{ 4/0‘ I{Xl(t)_Ri((l‘)}dt) (28)
k=1

A&OGy = LRERE (1), k<o (2.9)
Throughout this paper we use the convention
= = . 1 ' ’ —_ '
150 = 560 i=lim o [ geerd@n® = [ gm0 = [ 1gomdc @10
£10 2 0 0 0

for the “right” local time at the origin of a continuous, nonnegative semimartingale of the form =(-) =
Z(0) + M(-)+ C(-), with M(-) a continuous local martingale and C(-) a process of finite first variation
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on compact intervals. The local time process LZ(-) is continuous, adapted and nondecreasing, flat off
the zero-set {t > 0:E(t) =0} .

We denote now the sizes of the gaps between the leader and the middle particle, and between the
middle particle and the laggard, by

G() := RX()-R¥(),  H():= RX()-RY(), (2.11)

respectively, and obtain from (2.6)—(2.9) the semimartingale representations

G(t) = x1 —x2— (62— 61) 1 = W() - %LH(I) +L%(1), 0<t<oo (2.12)

H(t) = XQ—X3—(53—52)I+W(I)—%LG(I)+LH(Z‘), 0<t<o (2.13)

where we recall the identifications LE(-) = A2 (), LH ()= A@3(.) from (2.11), (2.9). We introduce
also the continuous semimartingales

Ut)=x; —x3— (62— 61) t = W(t) - %LH(z‘), V(t)=x3—x3— (63 = 62) t + W(t) - %LG(t),

and observe

G()=UX+LS() >0, /0 LiGcu)>0y dLC(1) = 0 (2.14)

H()=V()+ LH(') >0, ‘/0 LiH)>0) dLH(t) =0. (2.15)

In other words, the “gaps” G(-), H(-) are the SKOROKHOD reflections of the semimartingales U(-)
and V(-), respectively. The theory of the SKOROKHOD reflection problem (e.g., Lemma VI.2.1 in [39])
provides now the relationships

L) = [nax (-U@s) " = [max ( —(x1 = x2) + (62— 61) s + W(s) + %LH(S)) : (2.16)
+ 1 +
LM(1) = max (= V(s))" = max ( — (2= x)+ (83— 62) s = W(s) + 5 LG(s)) .17)

between the two local time processes LY (-) = AU-2(-) and LH(-) = A@3)(.), once the scalar Brownian
motion W(-) has been specified.
o Finally, we note that the equations of (2.12)-(2.13) can be cast in the form

(138) = 6(1) =g+3(N+RL(), 0<i<oo, (2.18)

of [17], where
~ {0 12 ~ _ (L%
R—I—Q, Q.— (1/2 0 ), g—(ﬁ(O), B(I)_(LH(I‘))’

(61— 62)t = W(1)

3() = ((52 _@HW([)) ., 0<r<oco. (2.19)
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One reflects off the faces of the nonnegative quadrant, in other words, the degenerate, two-dimensional
Brownian motion 3(-) with drift vector and covariance matrix given respectively by

, 1 -1
m = (6,-61,60-63), C::(_1 1). (2.20)

The directions of reflection are the row vectors of the reflection matrix R, and the matrix Q =7 — R
has spectral radius strictly less than 1, as postulated by [17]. The process 3(-) is allowed in [17] to be
degenerate, i.e., its covariation matrix can be only nonnegative-definite.

2.2. Synthesis

We trace now the steps of subsection 2.1 in reverse: start with given real numbers 61, 92, 93, and x| >
Xy > x3, and construct a filtered probability space (Q,F,P), F = {‘F;(t)} 0<f<co TiCh enough to support a
scalar, standard Brownian motion W(-). In fact, we select the filtration F to be FW = {‘&W(t)}o creeo
the smallest right-continuous filtration to which W(-) is adapted.

Informed by the analysis of the previous section we consider, by analogy with (2.16)-(2.17), the
two-dimensional SKOROKHOD reflection system

A(t) = Orilai(t(—(xl —x2)+ (62— 61) s+W(s)+%F(s))+, 0<t<oo (2.21)
[() = max ( — (x2— x3) + (63 — 62) s — W(s) + %A(s))+, 0<i<oo (2.22)
<s<t

for two continuous, nondecreasing and F" -adapted processes A(-) and I'(-) with A(0) =T'(0)=0.
This system of equations is of the type studied in [17]. From Theorem 1 of that paper, we know that it
possesses a unique, F" -adapted solution.

Once the solution (A(),['(-)) to this system has been constructed, we define the processes

Ult):=x1—x2— (52 —51) t—=W(t)- %r(l), V(t):=xp—x3— ((53 —(52) t+W(t) - %A([) (2.23)

and then “fold” them to obtain their SKOROKHOD reflections; that is, the continuous semimartingales

G(t) == U(t) + mnax (=U)" = x1—x2— (62 -61) t = W(t) - %F(r) +A(t) 20 (2.24)

H@t) = V(@) + [max (=V(s)" =x0—x3— (63— 6) t + W(t) - % A)+T(@F) =20 (2.25)

for 1 € [0,00), in accordance with (2.14)—(2.17). From the theory of the SKOROKHOD reflection problem
once again, we deduce the a.e. properties

/0 1(G(1)>0y dA(?) = 0, /o Lig()>0y dI(#) = 03 (2.26)

and the theory of semimartingale local time ([39], Chapter VI), gives

[ teomardi= [ tiooa@0=0. [ tuoeodr= [ 1o deno=o.
(2.27)
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2.2.1. Constructing the ranks

We introduce now, by analogy with (2.6)-(2.7), the processes

1 1
Ri(t) = x1+61t+ 3 A(t), Ri(t) := x3+ 631 — 3 I'(z), (2.28)

Ry(t) := xo+ 6t + W(t) — %A(t) + %F(t) (2.29)

for 0 < ¢ < oo and note the relations Ri(-) — Ry(-) = G(-) =0, Ry(-) — R3(-) = H(-) = 0 in conjunction
with (2.24) and (2.25). In other words, we have the a.e. comparisons, or “descending rankings”, R (-) >
Ry(:) > R3(+). It is clear from the discussion following (2.21), (2.22), that these processes are adapted to
the filtration generated by the driving Brownian motion W(-), whence the inclusion F(®1-R2.R3) ¢ W

Let us show that these rankings never collapse. To put things a bit colloquially: “Two ballistic mo-
tions cannot squeeze a diffusive (Brownian) motion”. We are indebted to Drs. Robert FERNHOLZ (cf.
[12]) and Johannes RUF for the argument that follows.

Proposition 2.1. With probability one, we have: Ri(-) — R3(-) = G(-) + H(:) > 0.

Proof. We shall show that there cannot possibly exist numbers 7 € (0,00) and r € R, such that R (T) =
Ry(T)=R3(T)=r.

We argue by contradiction: If such a configuration were possible for some w € Q and some T =
T(w) € (0,0), r =r(w) € R, we would have

r—03(T—1) < R3(t,w) < Ry(t,w) < Ri(t,w) < r—61(T 1), 0<t<T.

This is already impossible if d; > 83, so let us assume §; < 63 and try to arrive at a contradiction in
this case as well. The above quadruple inequality implies, a fortiori,

r—03(T—t) < E(t,w) = é(R3(t,u))+R2(t,a))+R1(t,a))) <r-6(T-1), 0<t<T.

But we have r - R(t,w) = R(T,w) = R(t,w) = 6(T —t) + (W(T,w) — W(t,w)) /3, where & := (5 + & +
63)/3, and back into the above inequality this gives

3(6 _5) < W(T,w) - W(t,w)
: B T-t

<3(63-6), 0<t<T.

However, from the PAYLEY-WIENER-ZYGMUND theorem for the Brownian motion W(-), this double
inequality would force w into a P-null set. O

In this case the sequence (0'12,0'22,0'%) =(0,1,0) of local covariances-by-rank is concave, so the lack
of triple collisions just established is in formal accordance with known results; although not obviously

expected, let alone deduced, from them, because the local variance structure here is degenerate.

2.2.2. Identifying the increasing processes A(-), I'(:) as local times
We claim that, in addition to (2.26) and (2.27), the properties

L 1{H(t):0} dA(t) =0, '/0‘ l{G(t)z()} dr(l‘) =0 (2.30)
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are also valid a.e. Indeed, we know from (2.26) that A(-) is flat off the set {t > 0: G(z) = 0}, so we have
fooo 1{p(r)=0y dA(?) = /Ooo 1{H(1)=G(1)=0} dA(?) ; but this last expression is a.e. equal to zero because, as
we have shown, {r > 0: G(t) = H(t) = 0} = @ holds mod. P. This proves the first equality in (2.30);
the second is argued similarly.

But now, the local time at the origin of the continuous, nonnegative semimartingale G(-) is given as

dr(z
2

. . . ) .
LG(')=/O 1{G(z):0}dG(t)=/0 1{G(z):0}dA(t)—/0 1(G(1)=0 +(61—62) A 1(G(1)=0) dt

from (2.10) and (2.24). From (2.27) and (2.30) the last two integrals vanish, so (2.26) leads to
190 = [ Mg da0 = 40 and 170 =T @31)

Remark 2.1. The Structure of Filtrations: We have identified the components of the pair (A(), I'(+)),
solution of the system (2.21)-(2.22), as the local times at the origin of the continuous semimartingales
Ri(:)=Ry(:)=G(-) 20 and Ry(-) — R3(-) = H(-) = 0. In particular, this implies the filtration inclusions
FAD = FRR3) ¢ g(G.H) ¢ F(R1R2.R3). and back in (2.29), it gives FW ¢ F(Ri-R2.R3) Byt we have
already noted the reverse of this inclusion, so we conclude that the process of ranks generates exactly
the same filtration as the driving scalar Brownian motion: [F®i-R2.R3) = pW

2.2.3. Constructing the individual motions (“names”

Once the “ranks” Rj(-) = Rp(-) = R3(-) have been constructed in §2.2.1 on the filtered probability
space (Q,F,P), F = {F()}o<s<o, With F selected as the smallest right-continuous filtration FW =
{FY(1)}0<r<co to which the scalar Brownian motion W(-) is adapted, we can construct as in the proof
of Theorem 5 in [29] the “names” that generate these ranks — that is, processes X;(-), X»(:), X3(-), as
well as a three-dimensional Brownian motion (B (), B2(+), B3(-)) defined on this same space, such that
the equation (2.1) is satisfied and R]i((~) =Ry (1), k=1,2,3.

It is also clear from our construction that the conditions (2.2) are also satisfied: the first thanks to the
properties of (2.27), the second because of Proposition 2.1.

e Alternatively, the construction of a pathwise unique, strong solution for the system (2.1) can be
carried out along the lines of Proposition 8 in [26]. We start at time 79 = 0 and follow the paths of
the top particle and of the pair consisting of the bottom two particles separately, until the top particle
collides with the leader of the bottom pair (at time ©p). Then we follow the paths of the bottom particle
and of the pair consisting of the top two particles separately, until the bottom particle collides with the
laggard of the top pair (at time 71). We repeat the procedure until the first time we see a triple collision,
obtain two interlaced sequences of stopping times {7y }ren, and {ox }ren, With

OZTOSQOSTISQIS”'STkSQkS”" (232)
and denote by the first time a triple collision occurs

S = inf{r €(0,00): X1 (1) = Xo(t) = X3(t)} = kli_r)rolo‘rk = klinio Ok - (2.33)

During each interval of the form [1x,0r) or [ok,7Tk+1), @ pathwise unique, strong solution of the
corresponding two-particle system is constructed as in Theorem 4.1 in [15].

We end up in this manner with a three-dimensional Brownian motion (Bj(-), B2(-), B3(-)), and with
three processes Xj(-),X>(+),X3(-) that satisfy (2.1) and the first requirement (2.2), once again thanks



2074 T. Ichiba and I. Karatzas

0.0
1

-0.4

Figure 1. Simulated processes for the system in (2.5) with y = 1: Black = X;(-), Red = X3(-), Green = X3(-).
The 3-D process (X1 (-), X5(-), X3(+)) carries the same information content as a scalar Brownian Motion.

to results in [15]. For this system, the ranked processes Rf((-) > R;f(-) > Rgf(-) as in (2.3), satisfy
the equations we studied in § 2.2.1, and generate the same filtration FY = {F"W (f)}o</<c as the scalar
Brownian motion W(-) above (Remark 2.1). We have seen in Proposition 2.1 that for such a system there
are no triple collisions: S = co. Thus the second condition in (2.2) is satisfied as well, all inequalities
in (2.32) are strict, and we have proved the following result.

Theorem 2.2. The system of equations (2.1), (2.2) admits a pathwise unique strong solution.

Figure 1, reproduced here from [12], illustrates trajectories of X;(-), X»(-), X3(-) for the canonical
example (2.4). It is clear from this picture and from the construction in §2.2.1, that the middle particle
R () undergoes Brownian motion W(-) with reflection at the upper and lower boundaries, respectively
Ri(:) and R;3(-), of a time-dependent domain.

In contrast to the “double SKOROKHOD map” of [32] [6], where the upper and lower reflecting
boundaries are given deterministic functions, these boundaries R;(-) and R3(-) are here random con-
tinuous functions of time, of finite first variation on compact intervals. They are “sculpted” by the
Brownian motion W(-) itself via the local times LY(-) = A(-) and L¥(-) = T'(-), in the manner of
the system (2.21), (2.22). The upper (respectively, lower) boundary decreases (resp., increases) by lin-
ear segments at a 45°-angle, and increases (resp., decreases) by a singularly continuous CANTOR-like
random function, governed by the local time LY(-) = A(-) (resp., L7 (-) =T(-)).

2.3. Positive recurrence, ergodicity, laws of large numbers

We present now a criterion for the process (G(-),H(-)) in (2.12)-(2.13) to reach an arbitrary open
neighborhood of the origin in finite expected time. We carry out this analysis along the lines of [21].
The system studied there, is a non-degenerate reflected Brownian motion (X.,Y.) in the first orthant
driven by a planar Brownian motion (B.,W.), namely

Xi=x+B, +put+LX¥+alY, Y, =y+W,+vi+BLX+LY, 0<t<oo. (2.34)
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Here (x,y) is the initial state in the nonnegative quadrant, and g, v, @, B are real constants. A
necessary and sufficient condition for the positive recurrence of (X .,Y.) in (2.34) is

p+av. <0, v+Bu <0; (2.35)

and x~ = max(—x,0) is the negative part of x € R (see Proposition 2.3 of [21]). By contrast, our system
(2.12)-(2.13) is driven by the single Brownian motion W(-), thus degenerate, and has the form

Xi=x-W,+ut+LX+aLlY, Y, =y+W,+vi+BLX+LY, 0<t<oo (2.36)

that one obtains by replacing formally the planar Brownian motion (B.,W.) in (2.34) by (-W.,W.).
The system (2.12)-(2.13) can be cast in the form (2.36), if we replace formally the triple (X.,Y.,W.)
by the triple (G(-),H(-),W(-)) and substitute g =—(6 —61), v=—(63—-62), a=B=-1/2.

2.3.1. Existence, uniqueness and ergodicity of an invariant distribution

Theorem 2.3. Under the conditions
2(53—52)+ (51 —(52)7 >0, 2((52—51)+ (52—53)7 >0, (2.37)

the process (G('), H (')) in (2.12)—(2.13) is positive-recurrent, and has a unique invariant measure 7
with 7((0,00)%) = 1, to which its time-marginal distributions converge as t — co.

Let us note that the condition (2.37) is a simple recasting of (2.35). It is satisfied in the special case
of (2.4); and more generally, under the strict ordering

01 <0y <03. (2.38)

This condition is strictly stronger than (2.37); e.g., the choices §; =1/3, 6, =0, 63 =1 satisfy (2.37)
but not (2.38). We note that (2.37) implies 0 < d3, and at least one of §, > 61, 93 > 05 ; that is, (2.37)
excludes the possibility 63 < 6, < . These claims are discussed in detail in Remark 2.2.

Proof. We start with a remark on the positivity of the transition probability
P'(3A4) :=P((G(),H()) € A|(G(0),H(0)) =y),  y=(y1,y2) €(0,00)°, A€ B((0,00)).

We recall that G(-) + H(-) is of finite first variation, and decreases monotonically until (G(-),H(-)) hits
one of the edges, i.e., d(G(t) + H(t)) = —(83 — 6,)dr + (1/2)(dLC(r) + dLH (1)), t > 0.

Consider now a trapezoid 7,5 := {(x,y) € [0, 00)? 1 —x +a <y < —x + b} whose intersection with
A has positive LEBESGUE measure Leb(7, 5 N A) > 0, for some a,b > 0. Two cases arise:
(i) If y1 +yz > b, then the point y is located in the north-east of 7, 5 , and we see that

P'3A) = p' (1, ANTap)>0 (2.39)

is valid for every ¢ > (y; + y, —a) / (63 — 61), by considering the paths which do not touch the edges.
(ii) If y; + y» < b, then considering the paths for which either LY (-) or L¥(-) exhibit an increase and
invoking the MARKOV property, we see that (2.39) holds for every ¢ > 0.

In either case, we deduce that for every y € (0,00)?, A € B((0,00)?) with positive LEBESGUE mea-
sure Leb(A) > 0, there exists a positive real number ¢ such that p’(y,A) > 0 holds for every ¢ > t*.
This shows that the skeleton MARKOV chain of the process (G(-), H(+)) is irreducible.
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e Let us define now, inductively, two sequences of stopping times 7 := 7| = inf{s > 0 : G(s) = 0},
=0 =inf{s > 1: H(s) =0}, 1, :=inf{s > 0y_1 : G(s) =0}, oy :=inf{s > 7, : H(s) = 0} for
n=2,3,....Alsolet us define T :=inf{s > 0: G(s)H(s) =0} and

T; :=inf{s > 0: G(s) < x0,H(s) =0}, T, :=inf{s > 0: (G(s),H(s)) € Bo(r)},

where Bg(r) is the ball of radius r > 0 centered at the origin.

Most of the arguments in [21] carry over smoothly to the degenerate system (2.12)-(2.13). In fact, we
can replace B(-) by —W(:) in the proof of Propositions 2.1-2.2 of [21], and deduce that, under (2.37),
there exists a large enough xo > 0 such that for x; — x, > xo we have

EC20[Go)] < (v = %2)/2,  EN™29[0] < 2C(x) - x2),

where C is some positive constant. Moreover, again replacing B(-) by —W(-) in the first part of the

proof of Proposition 2.3 of [21], we deduce E[T+] < C(1 + v/(x; — x2)? + (x — x3)? ). We claim that
there exists a constant 6 > 0 such that a uniform estimate

inf P@’O)(Tg <Toy, A 1) >6>0 (2.40)
0<y<xg
holds; once (2.40) has been established, positive recurrence under the condition (2.37) will follow.
Instead of showing (2.40), we shall argue under the condition (2.37) that for every 0 < € < xp, there
exists a positive constant ¢ > 0 such that

inf P@’O)(Ts <oy, A to(y)) > 650, (2.41)

£<y <X

where to(y) :=(y —(5/6)e) /(63 — 61 — (1/2)(63 — 82)") >0, e <y < xp and

T, :=inf{s >0:G(s)+ H(s)=r}, r=>0.

In fact, we shall evaluate the smaller probability infs <y <y, pO-0) (Ts < Tz xo No(), T e < T) , Where
we recall 7:=inf{s > 0: G(s) = 0} ; that is, the probability that the process (G(-),H(-)), starting from
the point (G(0),H(0)) = (y,0) on the axis, with y € (0,xp], reaches the neighborhood of the origin
before going away from the origin and before attaining the other axis.

We argue as follows: The process (G(-), H(-)) does not accumulate any local time A(-) before 7:

0<G(t)y=y—=(0r =6t —=W()—(1/2)I(2), 0<H(t)=—(63 -0t +W()+T(¢),

and consequently G(¢z) + H(t) = y — (63 — 61)t + (1/2)I'(¢), for 0 <t < 7. From the SKOHOKHOD
construction, we obtain the upper bound

[(t) = max (—W(s)+ (63 —62)s) " < max (-W(s))* + (63 -62)"t, 0<r<7
0<s<t 0<s<t

for the local time I'(-). Thus we obtain

| 1 N
ORI (52 — 61+ (63 - 52)+)r —W() - max (= W(s) ", (2.42)
G(t)+H(t)§y—(63—61—%(63—62)+)t+%Ongaict(—W(s))Jr; 0<t<r. (2.43)
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Now let us consider the event

A(y):= {weQ:omax |W(s,w)|§e/3}, e<y<Xx.

<s<to(y)

Since 63 — 61 — (1/2)(65 — 62)" < 67 — 61 + (1/2)(63 — 62)* , for every w € A(y) we obtain

. 1 + 1 +
— — — — — —_— — >
min [y (62 o1 + 5 (63 — 62) )t W(t,w) 5 Or;l?;( W(s,w)) ] >=>0,

£
0<t<to(y) 3

hence, combining with (2.42), we obtain A(y) C {ty(y) < 7}. Moreover, for every w € A(y) we have

1 1
i < (63 =6; — — (62 —6)* — -W +] <
pcin (G(t,w) + H(t,w)) <1tmtr;(y) [ (63 5 5 (63— 62) )t + 7 max (-Wsw) | <e

thus also maxo<; < (y) (G(t,w) + H(t,w)) < xo + & < 2xg. We deduce the set-inclusion A(y) C {T, <
T2x0 Ato(y), T, < 7}, so the reflection principle for Brownian motion gives

inf PYO(T, <T2xO/\t0(y))> inf POO(T, < Tayy Ato(y),Te <7)

£<y<Xx( Y <X0

to(xo)) o4 ( (&3 )
on g/3 2to(x0)/
Selecting € € (0, 1) small enough so that this right-most expression is positive, and denoting it by & > 0,

we obtain (2.41). We appeal now to the second half of the proof of Proposition 2.3 in [21], page 393,
and conclude that the system (2.12)-(2.13) is positive-recurrent for neighborhoods, under (2.37).

> inf POOAG) =1 (
E<y <X

For the remaining claims of the Theorem, let us recall the equations of (2.12)-(2.13) written in the
HARRISON & REIMAN [17] form (2.18)-(2.20), and note that the process 3(-) of (2.19) has indepen-
dent, stationary increments with 3(¢) =0 and E|3(1)| < oo. Now, as is relatively easy to verify (and
shown in Remark 2.2), the conditions of (2.37) imply that the components of the vector

1y 22 1) (62-6 _2 02 +03—201\ _ [A1) _
-R 15(3(1))_3(1 2) (53—52)‘ 3(253_51_52) = (/12)_1 (2.44)

are both strictly positive; cf. (2.49) below. Then Corollary 2.1 in [30] implies that the planar process
®(-) = (G(-),H(")) is positive recurrent, has a unique invariant probability measure 7, and converges
to this measure in distribution as t — oo. The claim 71'((0,00)2) =1 follows now from (2.27) and the
strong law of large numbers (for bounded, measurable f : [0,00)*> — R):

1T
Jim — /0 F(G(0),H(p)) dr = /[0 - f(g,h)n(dg,dh), ae. O

Proposition 2.4. Under the conditions of (2.37), the local times accumulated at the origin by the “gap”
processes G(-) and H(-) satisfy in the notation of (2.44) the strong laws of large numbers

LO(¢ LH (¢
lim *) =4, lim *)

t—00 t t—00 t

= Ay, a.e. (2.45)



2078 T. Ichiba and I. Karatzas

200 250 300
Il Il 1
150000 200000

100000
|

50000
|

- f

o - o -
T T T T T T T T T T T T
2000 4000 6000 8000 10000 0e+00 2e+06 4e+06 6e+06 8e+06 1e+07

50
Il

o

Time Time
Figure 2. Simulated local times LG(‘) (black) and L () (red) for a short time (left panel) and for a long time
(right panel) with 67 = 0.01, 8, = 0.02, 63 = 0.03, thus A = 2p = 0.02. The long-term growth rates converge
in the manner of (2.45), as the time-horizon increases; whereas over short time horizons, the CANTOR-function-
like nature of local time becomes quite evident.

Proof. The two-dimensional process (G(-), H(-)) of gaps has under (2.37) a unique invariant probabil-
ity measure 7 on B((0, 00)2) , to which it converges in distribution. This implies, a fortiori, that

lim & =0 and lim & =

t—00 t t—00 t

0 (2.46)

hold in distribution, thus also in probability. Back into (2.24), (2.25) and in conjunction with the law
of large numbers for the Brownian motion W(-), these observations give that

2Lt - LY (: 2LH (1) - LGt
lim—() ():62—(51, lim—() ():

t—oo 2t t—o0 2t

53— 6 (2.47)

hold in probability, and thus the same is true of (2.45). There exist then sequences {t }xen C (0,00)
and {7 }xen C (0,00) which increase strictly to infinity, and along which we have, a.e.,

L ()

LY (T, 2
L7 _ = S (26 -51-0).

2 .
=30+0-28),  lim =

lim
k—o0 Tk
Theorem I1.2 in [2] gives that lim; e (LE(#)/¢) and lim,_e (L¥(r)/t) do exist almost everywhere

(see also [18], sections 7, 8). It follows that the limits in (2.45) are valid not just in probability, but also
almost everywhere; the same is true then for those of (2.46). ]

The long-term growth rates of the local times (LY (), LH(-)) in (2.45) are consistent with simulated
local times based on the SKOROKHOD map in [17]. The simulations, reported in Figure 2, demonstrate
the long-term linear growth of these local times with the rates of (2.45).

Remark 2.2 (Discussion of Condition (2.37), and a Sanity Check). We note that if 6; > 6, > 3,
the conditions of (2.37) cannot hold; this is because we have then

2(62 —51) + ((52 —53)_ = 2(52 —51) <0, 2(53 —(52) + (51 —52)_ = 2(53 —52) <0.
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Thus, under (2.37), we have either 6, > 1 or d3 > &, . Only three cases are compatible with (2.37):
(i) 61 < 62 < 83, (ii) 62 > 6; and 6, > 63, (iii) 63 > 6 and 61 > 0> .
It can be shown that, in all these cases, the conditions of (2.37) imply

53 > 01, (2.48)

203 —61 — 6, >0, 0 +63—26;>0; (2.49)

then, the a.e. limits in (2.45) are positive.

The inequalities of (2.49) imply both (2.48) and (2.37). As observed by the referee, the condition
(2.49) has the interpretation that if any partition of {1,2,3} into two subsets of consecutive indices, the
leftmost group of particles has a larger average drift than the rightmost group; cf. [36], page 2187.

2.3.2. Exponential convergence

Proposition 2.5. Under the assumptions of Theorem 2.3, the function

V(g h) := exp{yJg2+gh+h2}, (gh)e[0,00)?\(0,0) (2.50)

is LYAPUNOV for the process ©(-) in (2.12)—(2.13); i.e., there exist constants a,b,k >0 such that
Z() = V(6() = V(6(0)) + /0 (k- V(6(0) = b- 17, (6()) ) dr 2.51)

is a supermartingale, for T, = {(g,h) €[0,00)2:g+h< a} . In particular, the time-marginal dis-
tributions of the positive-recurrent process ©(-) of gaps between ranks, converge exponentially fast in
total variation to the unique invariant probability measure m of the process.

Proof. Applying ITO’s formula to V(®(-)), in conjunction with the easy consequence
3
d(G*(t) + G(OH (1) + HX(1)) = [ 1= (UGO + LH) ] dt+ (H@) - G@) dW(r)  (2.52)

of (2.24), (2.25) we obtain the decomposition V(G(¢)) = V(6(0)) + MY () + AV (¢),, where
MY () :z/t V(6(s)) - (G(s) — H(s))
0 24/G2(s) + G(s)H(s) + H2(s)

V(g h)
2482 + gh+ h?

w(s), AY(@):= / t[ﬂV](GB(s))ds,
0

V(g.h)g—h)?*  V(g.h)(g—h)?
8(g2+gh+h2)  8(g2+gh+h?)32"

[AV](g,h) := [1 - %(/llg + Ah)| +

For arbitrary small & > 0 and sufficiently large a > 0, the drift function [AV](g,h) satisfies

[AV](g.h) < —k-V(g,h)+b-17,(g,h); (g, h)€Te

for some « := (3/4)min(1;,43) > 0, b := sup{V(g,h)((1/8) + 1/(2\g% + gh + h2)): (g,h) € Te.a},
with the trapezoids 7z 4 := {(x,y) € [0,00)> : ~x + £ < y < —x + a} and Tz o = {(x,y) € [0,00)? :
—x +¢& < y}. Then Z(-) in (2.51) is a local supermartingale satisfying Z(¢) > —V(%(0)) — bt for
t > 0, hence a supermartingale by FATOU’s lemma. The function V of (2.50) and its derivatives are
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not defined at the origin; but by Proposition 2.1, the process ®(-) does not attain the origin when
started away from it. Proposition 3.1 in [9] (and its references, as well as Definitions 5, 6 of [41] in
the context of SRBM), shows that V is a LYAPUNOV function. As in the proof of Theorem 2.3, 6(-)
has an irreducible skeleton chain and hence, by Theorem 6.1 of [35], is aperiodic. We appeal now to
the results in [41] (cf. [20], [35], [10], [9]). These show that 6(-) is positive recurrent, has a unique
invariant distribution, and is V-uniformly ergodic. O

3. Ballistic middle motion, diffusive hedges

We take up in this section the “obverse” of the three-particle system in (2.1), (2.2), by which we mean
replacing the equations in (2.1) by

3 . .
Xi() = xi+ ), 5k/0 l{xi<z>:R§<r)}d’+/0 (oxmron + L)) B0 G
k=1

for i = 1,2,3, and replacing in the notation of (2.3) and (2.10) the conditions of (2.2) by
/o Lirx@o=rX@ydt =0,V k<{; LRI R () =o. (3.2)

The processes Bj(+), B2(-), B3(+), are again independent scalar Brownian motions. It is now the leading
and laggard particles that undergo diffusion, and the middle particle that “goes ballistic”. The dynamics
(3.1) involve again dispersion functions that are both discontinuous and degenerate.

In contrast to Proposition 2.1, however, we shall see here that “the two Brownian motions can eventu-
ally squeeze the ballistic motion in the middle”, and thus triple points can occur; in fact, with probability
one in the case 61 = 5 = 03 . Yet also, that the resulting triple collisions are “soft”, in that the local time
LRI RS () associated with them is identically equal to zero, as postulated in the second requirement
of (3.2). The first requirement there, mandates that all collisions are non-sticky.

3.1. Analysis

Let us assume that a weak solution to this system of (3.1), (3.2) has been constructed on an appropriate
filtered probability space (Q,&,P), F = {§(¢)}o<r<c - Reasoning as before, we have the analogues

1 1 1
RE(1) = x1+ 611+ Wi(r) + 5 AYD(@), RX(1) = xa+ 621 — 5 A1) + o) AZ3@),

| (3.3)
R (1) = x3 + 631+ Ws(1) = APy 120
of (2.6)-(2.7) in the notation of (2.9). As in (2.8), the processes
3 )
Wi(-) o= ;/0 i, -rX () 4Bi(). k=13 (3.4)

are independent Brownian motions by the P. LEVY theorem. It is fairly clear that the center of gravity
of this system evolves as Brownian motion with drift, since Z?:l Xi(1)=x+6t+V2Q(r) for x =

X1+ X2+ X3, =061 +62+63,and Q(-) = (Wi(-) + W3(-))/V2 is standard Brownian motion.
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Now, the gaps G(-) := R{(-) — RY(-) and H(-):= RY(-) - RY(-) are given as
Gt)=UmN+LC@),  H@) =V(e)+ L), 0<r<oo
in the manner of (2.12), (2.13), where again LY(-)= A2 (), LH(-)= AZ3)(.), and
1 1
U(t) = x1 — x2 — (62 — 61) £ + Wi (r) — 5 LE(), V(t):=x3—x3— (63— 62) t — W5(t) — 5 LE().

The theory of the SKOROKHOD reflection problem provides the system of equations linking the two
local time processes LE(-), LH(-), an analogue of the system (2.16), (2.17):

LC@) = [nax (-U(s)" = Jmax ( —(x1 = x2) + (62— 61) s = Wi(s) + %LH(S)) ' (3.5)
L) = max (= V(s))" = max (= (o= x3)+ (85 -82) 5+ Wals) + % L9(s)) Y

3.2. Synthesis

Starting again with given real numbers 6y, 62, 63 and x; > xp > x3, we construct a filtered probabil-
ity space (Q,%,P), F= {Ty(t)}o <1<o Which supports three independent, standard Brownian motions
Wi(-), k=1,2,3. We consider the analogue

A(t) = max (— (x1 —xp) + (62 —61) s = Wi(s) + l F(s))+, 0<t<oo (3.7
0<s<t 2
() = [max ( —(x2 = x3)+ (03 — 62) s + Wa(s) + %A(s)) ' , 0<t<oo (3.8)
<s<t

of the system of equations (3.5) and (3.6) for two continuous, nondecreasing and adapted processes
A(-) and T'(-) with A(0) =T'(0) = 0. Once again, the theory of [17] guarantees the existence of a
unique continuous solution (A(-),I'()) for the system (3.7), (3.8), adapted to the filtration FW1.W3)
generated by the 2-D Brownian motion (W (-), W3(+)):

FADH cgWWp),  0<i<e. (3.9)
With the processes A(:), I'(+) thus in place, we consider the continuous semimartingales
1 1
U(I) =X]— Xy — ((52 - (51) r+ W](l‘) — 3 r(l‘), V(l) =Xp — X3 — (53 —(52) - W3(t) - E A(l‘)
and then “fold” them to obtain their SKOROKHOD reflections

G(t) = U(t)+ [nax (-U@s) " = x1—x2— (62— 61) 1+ Wy (1) - %F(r) +A() >0 (3.10)

H(@t) = V() + [nax (=V(s)" = x2—x3— (63— ) t — W3(t) — %A(t) +I() >0 (3.11)
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for # € [0,00). This system of equations (3.10), (3.11) can be cast in the HARRISON-REIMAN form

() = (G) +a0rme. o< <o

of (2.18), now with covariance matrix

(1 0 . . _ ({0 1)2
C = (0 1) , reflection matrix R=7I-Q, Q:= (1/2 0 ) , and

G -
w=(fnl) 30=[GIETIE) osren,

We obtain easily the analogues

/0 1(G()>0y dA(?) = 0, /0 Lip()>0ydl(2) = 0, (3.12)

./o LiG@=0ydt = 0, /0 Lig(n=0ydt =0 (3.13)

of the properties in (2.26), (2.27) using, respectively, the theories of the SKOROKHOD reflection prob-
lem and of semimartingale local time. We claim that we also have here the analogues

‘/() 1{H(z):0} dA(t) =0, ‘/0' l{G(t):O} dF(l‘) =0 3.14)

of the properties in (2.30), though now for a different reason.

Let us elaborate: The system of (3.10), (3.11) characterizes a non-degenerate, two-dimensional Brow-
nian motion (G(-), H(-)) with drift (6] — 65, 62 — 83), reflected off the faces of the nonnegative
quadrant. But now, in contrast to the situation prevalent in Section 2, it becomes perfectly possible
for this planar motion to hit the corner of the nonnegative orthant with positive probability. In fact,
according to Theorem 2.2 of [44] (see also [40] [22]; this theory is not directly applicable to the
setting of Section 2, or to that of Section A, because there the driving Brownian motions are one-
dimensional), when 61 = 6, = 03 this process will hit the corner of the quadrant with probability one:
P(G(t)=H(t)=0, forsomet>0)=1.

Yet, we have always with probability one:

/0 1(G(1)=0y dI'(r) :/o LiGu)=H()=0ydI'(t) = 0, (3.15)

/0 L (1)=0y dA(?) =/0 1(Gt)=H()=0} dA(t) = 0. (3.16)

Here the first two equalities come from those in (3.12), and the second two equalities from Theorem 1
in [38]. The claims in (3.14) are thus established. Armed with the properties (3.12)-(3.14), we obtain
here again the identifications LY(-) = A(-), LH(-) =T'(-) of the processes A(-), I'(-) in (3.7), (3.8) as
local times. Details are omitted, as they are very similar to what was done before.
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e Construction of the Ranked Motions: We introduce now, by analogy with (2.28)-(2.29), the processes

Ri(t) :==x1+61t+Wi(t) + l A(t), Ry(t):=xp+0rt— l A(t) + l I'(@)),
2 2 2 (3.17)
R3(t) :=x3+ 03t + W3(¢t) — %r(l‘)

for 0 <t < o0, and note again the relations R(-) — Ro(-) = G(:) =20, Ry(-) — R3(-) = H(-) > 0 and the

comparisons Rj(-) > Ry(-) = R3(-). The range
Ri(t) = R3(t) = G(r) + H(t) = x1 — x3 + (81 — 63) £ + Wy (t) - W3(1) + %(A(t) +T(0), 0<r<o

is a nonnegative semimartingale with (R; — R3)(f) =2t and local time at the origin

: 1
LRRs () = /0 L(G(0)+ H(1)=0} [(51 —d3) dr + E(dA(t)J’dr(t)) ] =0 G18)

by virtue of (2.10) and (3.13), (3.14). This is in accordance with the second property posited in (3.2).
Whereas, we argued already that, at least when 6; = d, = 93, the first time of a triple collision is
a.e. finite: i.e., P(S < 00) = 1 for

S:=inf{r>0:Ri(r)=R3(t)} = inf{r >0:G(r) = H(t) = 0}. (3.19)

Remark 3.1 (Structure of Filtrations). It follows from (3.17), (3.9) that the so-constructed triple
(R1(-), R2(), R3(+)) is adapted to the filtration F(W1-W3) of the planar Brownian motion (W;(-), W3(-)):

& RiR2R3) (1) ¢ g WLWs) () 0<t<oo. (3.20)

On the other hand, the identifications A(-) = LE(-) = LRi=R2(.) T'(:) = LH () = LR27R3(.) show that
(A(), () is adapted to the filtration F(R1-R2.R3) generated by the triple (R (-), R (-), R3(-)); on account
of (3.17), it follows that the same is true of the 2-D Brownian motion (W(-), W3(-)).

In other words, the reverse inclusion of (3.20) is also valid, and we conclude that the triple
(R1(+), Ra(+), R3(+)) and the pair (W, (-), W3(-)) generate exactly the same filtration:

FRRLR) () = gWEW() - 0 <r <o, (3.21)

e Construction of the Individual Motions Up Until a Triple Collision: The methodologies deployed in
§2.2.3, show here as well how to construct a strong solution to the system (3.1) subject to the require-
ments of (3.2), up until the first time S of (3.19) when a triple collision occurs. The difference here,
of course, is that this can happen now in finite time, with positive probability; in fact, with probability
one, i.e., P(S < o0) =1, when §; = 6> = d3 as we have seen.

Thus, we need to find another way to construct a solution beyond this time, that is, on the event
{S < oo}. For concreteness, and in order to simplify terminology and notation, we shall assume for the
remainder of the present subsection that this event has full P-measure.

o Construction of the Individual Motions After a Triple Collision: In order to construct the processes
that satisfy (3.1) after the first triple collision time S, we consider the excursions of the rank-gap
process (G(-),H(-)) and unfold them, by permuting randomly the names of the individual components.
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More precisely, for the semimartingales G(-) and H(-) let us define the first passage time
o9 = inf{t >0:G()ANH() = O} ,
the zero sets
3¢:={>0:Ge)=0}, 3H:={>0:H(@) =0},

and the corresponding countably-many excursion intervals {CY,¢ € N}, {CH,m € N} away from the
origin in a measurable manner, i.e.,

RS =[Jcf,  Rr3"=[]cH.

£eN meN

We need to permute the indices in a proper and consistent way, so we define the permutation matrices

010 100
gBl’z =1100 5 %2’3 =001 ]. (322)
001 010

Here B> permutes the first and second elements, and ‘B, 3 permutes the second and third elements.

We enlarge the probability space with I.I.D. random (permutation) matrices {E?m, £ eN, meN}
and {Egm, £ € N, m € N}, independent of each other and of the filtration FR(-) genérated by the rank
process (R, (-),R,(-), R5(-))" . Here, for each (£,m), the random matrix E?’m takes each of the values in
{Z, B2} with probability 1/2; whereas Egm takes each of the values in {7, P, 3} with probability
1/2. With these ingredients we introduce the simple, matrix-valued process

— =G _
n() = E E 1c[§mc,1,{n[ao,oo)(‘)((~f,m T) LiinecSsintcll )
£eN meN , (323)

+ (‘—‘f,m -7) l{infcf<infc,§{})

then define the matrix-valued process Z(-) as the solution to the stochastic integral equation

Z()=T+ /0 Z()dn(e). (3.24)

To construct this solution, we proceed via an approximating scheme as in (3.28)-(3.29) below.
The definition of the process n(-) in (3.23), after the time oy, is understood as follows:

(i) On the interval Cé,G N C,I,{ of the excursion which starts from a pointin 3¢ (i.e., inf Cf > inf C,I,f ),
the simple process 7(-) assigns to this excursion the (0 matrix with probability 1/2, or with probability
1/2, the non-zero matrix

-110
PBip-L = 1 -10]. (3.25)
0 00

(ii) On the interval Cf N C,fll of the excursion which starts from a pointin 37 (i.e., inf CfG < inf C,,If ),
the simple process 7(-) assigns to this excursion the 0 matrix with probability 1/2, or with probability
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1/2, the non-zero matrix

00 0
Prs-T =[0-11|. (3.26)
01 -1

(iii) When the excursion starts from the corner {r > 0: G(¢t) = H(t) = 0} (thatis, inf C[G = infCH for
some ¢ and m), then the process n(-) assigns the 0 matrix to this excursion.

The value Z(¢) of the matrix-valued process defined in (3.24) represents the product of (countably
many, random) permutations listed in (3.22), until time # > 0. Since products of permutations are also
permutations, the process Z(-) takes values in the collection of permutation matrices.

Finally, with R(-) = (R, (-),R,(-), R;(*))" constructed as in (3.17), we define the vector process
X() = (X10).X0).X:0))" = ZOR(). (3.27)

e We introduce at this point the enlarged filtration F := {§(¢), t > 0} via §(¢) := g(t) vV FZ(t). Since the
sequences of I.I.D. random matrices {E[Gm; ¢ eN, meN} and {E;’m; £ €N, m € N} are independent
of FR, it can be shown as in [37] that both triples (W(-),Wa(:),Ws(-)) and (R;(-),Ro(-),R3(-)) are
semimartingales of this enlarged filtration F.

We can state now and prove the following result.

Theorem 3.1. On the filtered probability space (Q,F,P),F = {&(t)}s>0 just constructed, and with the
process X(+) as in (3.27), there exists a three-dimensional Brownian motion B(-) = (B1(-), B2(-), B3(-))’
such that (Q,F,P), F={F(t)}+>0, (X(-),B(:)) is a weak solution for the system (3.1), (3.2).

This solution is unique in the sense of the probability distribution; thus, X(-) has the strong MARKOV
property. It is also pathwise unique and strong, up until the first time S a triple collision occurs;
however, both pathwise uniqueness and strength fail after time S .

Proof. We split the argument in three distinct parts.

(i) Existence: We show that, on a suitable filtered probability space with independent Brownian motions
Bi(+),Ba2(-), B3(+), the process X(-) defined by (3.27), with Z(-) in (3.24) and 7(-) in (3.23), satisfies the
dynamics (3.1) and the requirement (3.2). The proof is based on the technique of unfolding semimartin-
gales, in the manner of [25] for WALSH semimartingales.

We start by defining recursively the sequence {7;,£ € No} of stopping times as 7§ := 0,

0
Tppy o= inf{t > 15, 1 G() NH(t) 2 &}, 15, = inf{t > 15, : G(t) A H(t) = 0}, (3.28)
along with the approximating processes X*(-) := Z®(-)R(-), where
z°() =1+ /0 ZE0dn* (), 070 = ) O s 2 () (3.29)
feN

for every ¢ € (0,1). For these approximating processes, the product rule gives

Xe() = /O.d(Z‘S(t)R(t)) = /O.Z"’“(t)dR(t)+‘/0.dZS(t)R(t). (3.30)

Now, as & | 0, the process X*(-) converges to X(-) = Z(-)R(:) in (3.27), and the first term on the
right-hand side converges in probability to the stochastic integral /0' Z(t)dR(?).
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Let us analyze the semimartingale dynamics of this last integral. Since Z(-) is a permutation-matrix-
valued process, the absolutely continuous finite-variation (“drift”) components of /0 Z(t)dR(t) are

O ix,(1)=R, (1)}

. 3 =R,
/Z(t)(éz)dt /Z Okl{x(0)=R, (1)} |df.

k=1\ 6kl (x;0)=R, (1)}

Similarly, the martingale (‘“noise””) components of /0' Z(t)dR(r) are given by

. dw, (1) [ Yixio =R,y dW1(0) + Lix, (1) = Ry (1)} W3 (1)
/ ZH| 0 |= Lixo0)= R (0} dAW1(0) + Lix, () = R, (1)} W3 (1)
0 dWs(t) 0 Lixa0)= R 0y AW1(0) + Tixy )= R, 1)y W3 (1)

(3.31)
([ Ax =Ry 1)} + Lix,(1)=Ry(1)}) dB1 (1)
= / L ixo(0=R (1)} + Lixa(t)=R3(1)}) dB2(1) |3
Lixs0=Ri (1)} + Lixs(t)=Rs(1)}) dB3 (1)
here, on account of the P. LEVY theorem, the processes
3.
Bi(") := Z/ Lix;o=r ey dWe(@),  i=123 (3.32)
k=170

are independent F-Brownian motions (recall that W (-), W»(-), W3(-) are independent F-Brownian mo-
tions). Finally, the local time components contributed by the term /O. Z(t)dR(t) are

. (1/2)dLC(r) e 1 0
/ Z(t)(—(l/Z)dLG(t)+(1/2)dLH(t) = - / Z(t)((—l)dLG(t)+ l)dLH(t) . (3.33)
0 ~(1/2)dLH (1) 2 Jo 0 -

On the other hand, in the limit as & | 0 of the term /0. dZ2(#)R(t) in (3.30), local time components
appear and cancel those in (3.33). More precisely, by (3.24), we have

T T T
[ azoro= [ zowroro. [ atoro= Y a0Ra,)
0 0 0 L
{¢: T4 <T}
(3.34)
The random vector n°(75,,,) R(75,, ) can take values

—R (75 + Ry (15, 1) -1
(B2 =T)R(5p,0) = | Ri(15,,) = Ry(75,,,) [=¢| 1
0 0

or 0, each with equal probability 1/2, if it corresponds to the excursion from 3 for sufficiently small
£ > 0; and it can take values
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0 0
(B3 = T)R(15,,) = _Rz(Taﬁgml) +R3(7§5+1) =gl -1
Ry(75p,1) = Ry(15,,1) 1

or 0, each with probability 1/2, if it corresponds to the excursion from 3, for sufficiently small
& > 0. We are deploying here (3.23), (3.25)-(3.26), and the continuity of the sample paths of R(-).

We recall now the excursion-theoretic characterization of semimartingale local time (Theorem
VL1.10 of [39]): for a continuous scalar semimartingale, the rescaled number of its “downcrossings”
approximates in a weak-law-of-large-numbers fashion the local time accumulated at the origin (see
[37], [23], and the proof of Theorem 2.1 in [25], for crucial applications of this result). Applying this
approximation to each set of excursions from 3¢ and 3" in the summation of (3.34), for G(-) and
H(-), respectively, leads to the limiting behavior

-1 0

T T 1 T 1
/ dp®(OR() — f —| 1 [dLC @) + / —| =1 |dL" 1)
0 £l0 Jo 2 0 0o 2 1

in probability. Combining this limit with (3.34), we obtain the convergence in probability

-1 0

T T
/ dZ%(NR(t) — 1 / zo) || 1 [dLC @) +| -1 |dLH (1) (3.35)
0 £l 2 Jo 0 1

and observe that the local time components in (3.33) are cancelled by the limit (3.35) of fOT dZ¢(t)R(1).
We conclude that the process X(-) in (3.27) satisfies the requirements of (3.1)-(3.2), and yields a
weak solution (Q,F,P), F={&()};>0, (X(+),B(-)) for this system as described above.

(ii) Uniqueness in Distribution: Suppose that there are two probability measures Py, P, under which
X(+) in (3.27) satisfies (3.1)-(3.2), and B(-) is three-dimensional Brownian motion. For j = 1,2
we have P;(S < o) = 1. By analogy with the discussion in §2.2.3, up to the first triple collision
time S in (2.33) this solution is pathwise unique, thus also strong; that is, adapted to the filtration
F(B1-B2.83) generated by the 3-D Brownian motion (Bj(-), B2(-), B3(+)). Hence, its probability distribu-
tion is uniquely determined over the interval [0,S); in other words, P =P, on F(S-).

Attime t =S we have X(S) = X»(S) = X3(S), P; -a.e., for j = 1,2, and ties are resolved in favor of
the lowest index. For ¢ > S, every given “name” appears in each rank equally likely, since the system
(3.1)-(3.2) is invariant under permutations; in particular, for every ¢ > 0, we have

Pi(X;(t) = RX())| 1>8) = 1/3;  (i,k) € {1,2,3}, j=12. (3.36)

Here the distribution of the rank process Rff (), £ = 1,2,3 in (3.3) is uniquely determined through
(3.17) by the distribution of the reflected Brownian motion (G(-), H(-)) in subsection 3.2. Since the
distribution of X(¢), > S is determined by the process RX(-) of ranks and the name-rank correspon-
dence, it is uniquely determined. Arguments based on the MARKOV property, allow us now to extend
these considerations to the finite-dimensional distributions: P1(-N{t > S}) =P>(-N{r > S}) for every
¢t > 0. Combining these considerations with the uniqueness in distribution before time S, we deduce
that the weak solution we constructed is unique in distribution, that is, P} =P, on F (o).

(iii) Failure of Pathwise Uniqueness, and of Strength: In the construction of the matrix-valued pro-
cesses 77(+) in (3.23) and Z(-) in (3.24), the excursion starting from the corner {¢r > 0: G(¢t) = H(t) = 0}
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Figure 3. Simulated processes; Black = X;(-), Red = X,(-), Green = X3(-). Here we have taken &; = —0.5,
6 =0 and 63 =0.5 in (3.1).

does not appear explicitly, because the triple collision local time LE+H(.) = LRI-RS (+) is identically
equal to zero as in (3.18). The corresponding construction of X(-) does not change the name-rank
correspondence immediately before or after the triple collision. Since the triple collision local time
LY+H(.) does not grow, one may perturb in the above construction the weak solution, by randomly
permuting the names of particles immediately after the triple collision time S — and still obtain the
same stochastic dynamics (3.1)-(3.2), hence the same probability distribution for X(-).

Then the resulting sample path of X(-) is different from the original sample path, so pathwise unique-
ness fails. But here we have uniqueness in distribution, so the solution of (3.1)-(3.2) cannot be strong
after the first triple collision §; this is because uniqueness in distribution, coupled with strong exis-
tence, implies pathwise uniqueness (the “dual YAMADA-WATANABE theorem” of [11], [7]). O

Remark 3.2 (Some Open Questions). To the best of our knowledge, the result of Theorem 3.1 — to
the effect that the solution ceases to be strong after the first triple collision — is the first of its kind for
competing particle systems. We conjecture that this feature holds in general such systems with n > 3
particles. Figure 3 shows simulated paths of particles in (3.1) with 6; = -0.5, 6, =0 and 63 =0.5,
based on the construction discussed in Theorem 3.1.

The approach to (3.1)-(3.2) is akin to the construction of the WALSH Brownian motion, and to the
splitting stochastic flow of the TANAKA equation. It would be interesting to examine the solvability of
(3.1)-(3.2) via the spectral measures of classical/non-classical noises, and via the theory of stochastic
flows in [43], [45], and [33], [34] (see also [1] and its references). It would also be quite interesting
to determine whether the filtration of the post—S process X(-) might fail, in the spirit of [43], to be
generated by any Brownian motion of any dimension. We leave these issues to further research.

Appendix A: Middle diffusion, ballistic hedges, skew-elastic
collisions

Double collisions were completely “elastic” in the systems of Sections 2 and 3: when two particles
there collided, they split their collision local times evenly. We study here briefly a variant of the system
(2.1) — with the same purely ballistic motions for the leader and laggard particles, and the same
diffusive motion for the middle particle — but now with “skew-elastic” collisions, as in [14], between
the second- and third-ranked particles.
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More precisely, we consider in the notation of (2.3), (2.10), and with 01, 02, 3, X] > x» > x3 given
real numbers, the system of equations, first introduced and studied in [13]:

3 . .
Xi(') =x; + Z (5]{‘/0‘ I{Xi(t):Ri((t)} dr +£ l{Xi(t):R;((t)} dB[(Z) (A1)
k=1

' RX-RX ' RX_RX
+[) I{Xi(z):Rg((t)}dL 2 7 (l)+/0 I{Xi(t):Rg((t)} dL™ "3 (t)

for i = 1,2,3. We shall try to find a weak solution to this system; in other words, construct a filtered
probability space (Q,%,P), F= { ‘fy(t)}o </<co TiCh enough to accommodate independent Brownian mo-
tions Bj(:), B2(+), B3(-) and continuous semimartingales X;(-), X»>(-), X3(-) so that, with probability
one, the equations of (A.1) are satisfied, along with the requirements

a . RYX-RYX(\_
‘/O‘ I{Ri((f):R;((l’)} dt = 0, V k<€, L™ 3 ('):0 (A.Z)

A.1. Analysis

Assuming that such a weak solution to the system of (A.l), (A.2) has been constructed, the ranked
processes Ri( () asin (2.3) are continuous semimartingales with decompositions

1 1
RE(t) = xy + 611+ EA(I’Z)(I), RE(t) = x3 + 831+ 5 NGRI0) (A3)

1 3
RX(t) = xp + 621+ W(t) - o) A2 () + 5 A3 (@) (A4)

by analogy with (2.6)-(2.7); though also with the clear difference, that the collision local time A%3)(.)
is not split now evenly between the second- and third-ranked particles, but rather in a 1:3 proportion.
We are using here the exact same notation for the standard Brownian motion W(-) as in (2.8), and for
the collision local times A%-)(-) as in (2.9). For the gaps G(-) = R¥(~) - R;f(-) ,H() = R;(-) - Rf(-)
we have the SKOROKHOD-type representations of the form (2.14)-(2.15), now with

U(t)=x1 —x2 + (61 — 62) t = W(t) - %LH(I), V(t)=x3—x3+ (63— 83) t + W(t) — %LG(t).

Whereas, from the theory of the SKOROKHOD reflection problem we obtain now the relationships
linking the two local time processes LY(-) and L (-), namely
+

LC@) = max (-U(s)" = max (x2 —x1+(62—61) s+ W(s)+ % LH(S)) (A.5)

0<s<

1 +
LH (1) = [nax (-V(s)" = Jnax (x3 —x2+ (63— 62) s — W(s)+ 3 LG(s)) (A.6)

o The resulting system for the two nonnegative gap processes

G(t) = x1 —x2 + (6 —52)t—W(t)—%LH(t)+LG(I), 0<t<oo (A7)
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H(t) = xp— x3+ (62— 83) t + W(t) - % L°O)+L" (1), O<i<o (A.8)

is again of the HARRISON & REIMAN [17] type (2.18). It amounts to reflecting off the faces of the
nonnegative orthant the degenerate, two-dimensional Brownian motion 3(-) as in (2.19), with drift
vector m = (6 1 — 02,00 — 63) " covariance matrix C as in (2.20), but now with reflection matrix

0 3/2

R:=7-@Q, Q=(1/2 0

) thus R1m=2(261+62_353).

01+, —203

Here the matrix @ has spectral radius strictly less than 1, and the skew-symmetry condition R + R’ =
2 C of [18] is satisfied by these covariance and reflection matrices.

A.2. Synthesis

Let us start now with given real numbers d1, 6>, 93, and x; > xo > x3, and construct a filtered proba-
bility space (Q.&.P). F = {F(1)},.,_., rich enough to support a standard Brownian motion W(-). By
analogy with (A.5)-(A.6), we consider the following system of equations for two continuous, nonde-
creasing and adapted processes A(-) and I'(-) with A(0)=T(0)=0:

3 +
A(f) = max (x2—x1+(52—61)S+W(s)+—r(s)) , 0<t<oo (A.9)
0<s<t 2
1 +
F() = max (x3-x+(03-6) s=Ws)+ > A(s)) . Os<r<co. (A.10)
0<s<t 2

Theorem 1 of [17] guarantees that this system has a unique continuous solution (A(-),I'(-)), adapted
to the smallest right-continuous filtration F" to which the driving Brownian motion W(-) is itself
adapted. With this solution in place, we construct the continuous semimartigales

3 1
Ut):=x1—x2+ (61— 62) t=W(t) - 3 (), V@):=xa—x3+(62—03) t+W(t)— 7 A(), (A1)
and then “fold” them, to obtain their SKOROKHOD reflections

G@t) == U@)+ Jnax (=Us) " = x1—x2+ (61 =62) t = W(t) - %F(t) +A@l) =20 (A.12)

H(t) := V() + [nax (=V(s)" = x0—x3+ (62— 83) t + W(t) - %A(t) +I(t) >0 (A.13)

for t € [0,00). As before, for these two continuous, nonnegative semimartingales the theories of the
SKOROKHOD reflection problem and of semimartingale local time give, respectively,

/o 1G>0y dA(t) = 0, /0 Lig(n)>0ydl(2) = 0, (A.14)

A l{G(t):O} dr =0, '/0‘ l{H(t)zo} dr =0. (A.15)
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The following additional properties are checked easily:

A l{G(t):O} dr'(r) = 0, ‘/() I{H(t):O} dA(r) = 0. (A.16)

e We need to identify the regulating processes A(-), I'(-) as local times. We start by observing
) . 3
LG()= /0 16 (=0 dG(1) = /0 LGy=0) | dA®) = ST = dW(0) + (51 - 82) &

from (2.10) and (A.12). The last (LEBESGUE) and next-to-last (ITO) integrals in this expression vanish
on the strength of (A.15), whereas the third-to-last integral vanishes on account of (A.16); so we deduce
the identification LY (-) = /0. 1(G()=0y dA(t) = A(-),, where the second equality comes on the heels of
(A.14). We identify similarly L7 (-)=T(-).

e By analogy with (A.3)-(A.4), we construct now the F" -adapted processes of ranks

1 1
Ri(t) == x1+ 61t + 5 A1), Ri(t) == x3+ 03¢t + E I'(), (A17)

Ry(t) := xp+ 6t + W(t)— %A(l) + %F(r) (A.18)

andnote Rj(-)—Ry(-) =G(-) 20, Ry(-)—R3(-) = H(-) = 0, thus R{(-) > Ry(-) = R3(-). The continuous
process Ri(-) — R3(-) = G(-) + H(-) > 0 is of finite first variation on compact intervals, so its local time
at the origin vanishes, as posited in (A.2): LRi1=R3(.) = 0. The other properties posited there are direct
consequences of (A.15). Finally, the identifications A(-) = LE(-) = LRi=R2(\) T(.) = LH(-) = LR27R3 ()
show, in conjunction with (A.18), that the rank vector process (R (-), R2(+), R3()) and the scalar, standard
Brownian motion W(-) generate the same filtration.

e We can construct now on a suitable filtered probability space independent Brownian motions Bj(-),
B;(-), B3(-) and continuous, adapted processes X(-), Xa(-), X3(-) so that, with probability one, the
equations of (A.1) are satisfied, along with those of (A.2), up until the first time of a triple collision, as
well as R,)f (1) =Ri(t), 0 <t <S8 for k =1,2,3. Just as before, this is done by considering the particles
two-by-two in the manner of [26], and applying the results in [14], [15].

A simulation of the paths of the resulting process (R;(-), Ry(+), R3(-)) with 6; = -1, §, = -2 and
03 = —1 is depicted in Figure 4, reproduced here from [13]. We believe, but have not been able to show,
that P(S = 00) = 1 holds in this case.

A.3. Invariant distribution

Assuming that both components of the vector

() o o [383-261-6
/1_(12)._ R m_2(263—61—62 (A.19)

are positive numbers, and following the reasoning of subsection 2.3, we deduce that here again the
two-dimensional, degenerate process (G('), H (-)) of gaps is positive recurrent, has a unique invariant
measure 7t with 7((0,00)?) = 1, and converges to this probability measure in distribution as 7 — co.
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Figure 4. Simulated processes; Black = R{(-), Red = Ry(-), Green = R3(-). Here we have taken 6| = —1, 6, = -2
and 83 = —1 in (A.1). We are indebted to Dr. E.R. FERNHOLZ for this picture.

The fact that the covariance matrix C and the reflection matrix R satisfy the skew-symmetry condition
R + R’ =2C implies that the invariant probability measure should be the product of exponentials

n(dg,dh) =44 e 28201 qedn,  (g,h) € (0,00)%. (A.20)

We send the reader to [24] for the proof of this result.
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