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ABSTRACT: Quantum machine-learning algorithms have 
emerged to be a promising alternative to their classical counter­
parts as they leverage the power of quantum computers. Such 
algorithms have been developed to solve problems like electronic 
structure calculations of molecular systems and spin models in 
magnetic systems. However, the discussion in all these recipes 
focuses specifically on targeting the ground state. Herein we 
demonstrate a quantum algorithm that can filter any energy 
eigenstate of the system based on either symmetry properties or a 
predefined choice of the user. The workhorse of our technique is a 
shallow neural network encoding the desired state of the system 
with the amplitude computed by sampling the Gibbs—Boltzmann 
distribution using a quantum circuit and the phase information 
obtained classically from the nonlinear activation of a separate set of neurons. We show that the resource requirements of our 
algorithm are strictly quadratic. To demonstrate its efficacy, we use state filtration in monolayer transition metal dichalcogenides 
which are hitherto unexplored in any flavor of quantum simulations. We implement our algorithm not only on quantum simulators 
but also on actual IBM-Q. quantum devices and show good agreement with the results procured from conventional electronic 
structure calculations. We thus expect our protocol to provide a new alternative in exploring the band structures of exquisite 
materials to usual electronic structure methods or machine-learning techniques that are implementable solely on a classical 
computer.

1. INTRODUCTION
Machine learning concerned with identifying and utilizing 
patterns within a data set has gained tremendous importance 
within the past decade. Even though the germinal idea can be 
traced back to the 1950s,1 it is safe to say that the domain has 
become a pioneering field of research within the past few years 
due to escalation in computational prowess and data 
availability and that it has metamorphosed several disciplines 
including autonomous driving,2 image recognition,3 speech 
recognition,4 natural language processing,5 computer games,6 
and even refugee integration/ Consequently, the integration of 
the technique in solving problems of physicochemical interest8 
have also been explored with remarkable success whether in 
predicting ground-state density functionals,9’10 self-energy in 
dynamical mean-field theory (DMFT) for the Anderson 
model,11 atomistic potentials and force fields for molecular 
dynamics,12'13 or the unsupervised learning of phases of the 
2D-Ising Hamiltonian.14 Similar advancements have also been 
made in the fields of deep learning15 and artificial neural 
networks (ANN) which have been used successfully to learn 
phase transition parameters16’17 or in quantum phase 
recognition.18 Among the various architectures in this 
category, restricted Boltzmann machine (RBM)-based gen­
erative models being a universally powerful approximator for

any probability density19,20 have particularly gained attention. 
RBMs have been successfully used to reconstruct quantum 
states in tomography from measurement statistics.21 Carleo 
and Troyer showed how a neural network encoding a shallow 
RBM ansatz requires fewer parameters than certain kinds of 
matrix product states and predicts the ground-state energy and 
unitary dynamical evolution of simple spin models with high 
accuracy.22

However, all the algorithms discussed above have trained 
machine-learning or deep-learning models on a classical 
computer to effectively recreate either a quantum state or its 
essential features. The past decade has also witnessed 
unprecedented development in quantum computing as a new 
paradigm which is fundamentally different than its classical 
counterpart in processing and storing data and performing 
logical operations23 harnessing the power of quantum
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superposition and nonclassical correlations like entanglement. 
A natural question that has spawned is whether such quantum 
machines can interpret and produce statistical patterns in data 
which are either difficult for classical machine-learning 
algorithms or the performance of machine-learning algorithms 
on quantum computer can outperform the classical variants in 
efficiency.24 This has naturally motivated the development of a 
host of quantum machine-learning algorithms like Quantum 
Principal Component Analysis (PCA),25 Quantum Support 
Vector Machines (QSVM),26 Quantum Reinforcement Learn­
ing,27 quantum supervised and unsupervised learning,28 kernel 
design for Gaussian processes,29 Gaussian process regression,30 
quantum classifier, or a plethora of linear algebra routines 
like HHL,32 QSVD,33 and qBLAS34 which form the backbone 
of the quantum versions of many other machine-learning 
algorithms. Each of these methods has reported theoretical 
speedup over the best-known classical algorithm under certain 
specific circumstances.35 Similar investigations have also been 
undertaken for artificial neural networks to discover any 
unforeseen quantum advantage. For instance, Amin and co­
workers have demonstrated a quantum Boltzmann machine36 
by adding an off-diagonal transverse field to the training model 
thereby making it more expressive to treat larger classes of 
problems.37 Weibe et al. have shown how sampling from a 
Gibbs distribution as is required for training an RBM can be 
distinctly accelerated using a quantum processor.38

Motivated by such recent developments, Xia and Kais39 
proposed an actual quantum circuit using polynomial resources 
to correctly learn the amplitude of the RBM ansatz encoded 
within a neural network representing the state of a quantum 
system. The work also extended the neural network to three 
layers to learn the sign of the various components of the 
encoded wave function. The algorithm was benchmarked by 
showing the evaluation of ground states on simple molecular 
systems like H% LiH, and so on, thereby formally extending the 
efforts mentioned above to actual electronic structure 
calculations which are considered to be powerful applications 
of near-term quantum devices. Indeed, interesting algorithmic 
advances have been made recently that can capture both the 
ground and excited states of such electronic structure problems 
with good accuracy.40-46 Kanno et al.47 modified the above 
method to encompass the complex phase of each component 
of the wave function by adding an additional neuron to the 
third layer. However, both the works simulated the perform­
ance of the algorithm for ground states only on noiseless 
classical devices. In fact, due to conditional dependence on the 
sequence of measurements of the ancilla register, straightfor­
ward implementation of the algorithm on a present-day actual 
NISQ_ device is difficult.

The main contributions of this manuscript are as follows:
(l) Unlike previous efforts, we focus our attention beyond just 
the ground state and devise a quantum machine-learning 
algorithm with a three-layered RBM being trained to learn any 
arbitrary state of the system retaining the quadratic resource 
requirements. To train the network with the RBM ansatz, we 
employ a hardware-implementable version of the above 
quantum circuit which as we shall discuss explicitly makes 
our algorithm require quadratic resources in all fronts like 
circuit width, circuit depth, and parameter count. (2) A generic 
lower bound for the successful sampling of the quantum circuit 
in the algorithm is derived in terms of the parameters of the 
network. The performance of the lower bound is thoroughly 
characterized, and specific limiting cases leading to known

bounds are formally deduced and discussed. On the basis of 
this we also discuss in detail the measurement statistics of our 
algorithm for systems studied in this report and in general. (3) 
We also present a simple yet formal proof of feasibility of the 
cost function used to train the network. Even though such 
functions have been used in classical algorithms and are 
beginning to being used in other quantum algorithms beyond 
the precincts of quantum machine learning, a formal proof is 
lacking in literature which we supply here for completeness. 
(4) Furthermore, unlike most reports on quantum machine 
learning and quantum computing in general which have 
studied molecular systems only, we apply our algorithm on 
important 2D materials like monolayer transition metal 
dichalcogenides (TMDCs) which are hitherto unexplored on 
a quantum computer using any algorithm let alone quantum 
machine learning. These materials have been shown to possess 
tunable band gap for many novel applications.48-51 We make a 
comprehensive study of such materials by showing how our 
algorithm can not only learn the true band gap but also by 
resolving finer yet important features like trigonal warping and 
spin—orbit coupling (SOC) which dictates the low-energy 
physics near the JC-valley. The importance of understanding 
excited states beyond just the valence band for such periodic 
materials underlies its function in photovoltaics.52’53 If applied 
to other systems, then excited states can be an insightful 
resource like in elucidating the reaction pathways across 
conical intersections arising in processes like vision,54'55 
photosynthesis,56’57 magneto-reception,58’59 and even the 
biochemistry of luciferin60 to name a few. (5) We further 
demonstrate in a unified way how a user can sieve any desired 
state in such materials using not only energy as in point (4) but 
also other inherent symmetries of the Hamiltonian. (6) All 
numerical experiments are implemented on not only quantum 
simulator (Qiskit) but also actual NISQ. devices using the 
quantum processors at IBM.61 The performance of the 
algorithm is benchmarked thoroughly in each case using 
quantifiers like energy errors of the target state, state 
composition, constraint violation, infidelity with the target 
state learnt by the neural network, and so on. The usage of 
certain kinds of error-mitigation techniques and the role of 
initial parametrization enhancing the capacity of the model 
through additional spins in the network is thoroughly 
discussed. We have also included results from a molecular 
example wherein multireference correlation is important due to 
geometric distortion. To the best of our knowledge, all of these 
are first of their kind in any flavor of quantum machine 
learning. We show that the performance of our algorithm is in 
excellent agreement with the exact value in each case.

The organization of this paper is as follows. In section 2, we 
discuss the theoretical underpinning of our algorithm with an 
original proof of the feasibility of our cost function employed 
for training the network. In section 3, we elaborate on the 
geometry of the network and the details of the algorithm 
required for learning the desired feature with the associated 
resource requirements and implementation techniques. We 
prove an explicit lower bound on the probability of successful 
events on our algorithm (see Supporting Information section 
2). In section 4, we discuss the application of the algorithm in 
simulating excited states or any arbitrary states in two 
important TMDCs: MoS2- and WS2-based on user-defined 
constraints. We conclude in section 5 with a brief discussion of 
possible future extensions.

B httpsy/doi.org/10.1021 /jacs.1 C06246
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2. THEORY
Our objective is to develop an efficient algorithm to train a 
neural network to perform the following minimization in a d- 
dimensional space

min (i//IHIi//)
VyreS

S — {lx)IOIx) — co\x) V lx) e Cd} (l)

where H G Cdxd is the hermitian Hamiltonian defining the 
problem. Similarly, 6 G Cdxd is the user-defined hermitian 
operator, co is the eigenvalue (real-valued) of the operator O 
and lx) is the corresponding eigenvector. The set S is the 
collection of all such eigenvectors with a specific eigenvalue ft). 
The operators O which we shall discuss will generally have 
more than one element in set S due to degeneracy in the 
eigenspace labeled by co. By construction, the form of the 
algorithm shall always normalize the state I;//); hence, 
normalization as a further constraint is unnecessary. We will 
return to this point later. The primary goal of the network is to 
then encode a normalized state-vector It//) which is a formal 
solution to eq 1. The corresponding state so obtained is from 
the eigenspace of O with eigenvalue co. If several such choices 
exist, then the network learns the one with minimum energy.

To solve the quadratic minimization problem with quadratic 
constraint in eq 1, we will define a penalty procedure as

F(\w), H, 6, A) = (ydHIt/r) + A(yl(0 - t»)V> (2)

where A > 0 is the penalty parameter. We provide a formal and 
original proof of equivalence of eq 2 with respect to eq 1 based 
on the following Theorem.

Theorem 2.1. Let {A,},^ be a sequence in the penalty 
parameter such that Aj < A2 < A3 ... A*, —> oo. Also let P = 
{lt//;)}“ such that V It//;) G P the following is true.

lt/<) = arg min F(A„ H, 6, It//))
V (3)

In other words, P is the set of minimizers for eq 2 for each 
penalty parameter A G {A,}^. If It//*) G P is a limit-point of the 
convergent sequence {t//;}”i in P, i.e., It//*) = lim,^ li/zj, then 
It//*) G S

An original proof of Theorem 2.1 is given in section 1 of the 
Supporting Information based on the fact that both the first 
and second term in eq 2 are quadratic forms. An intuitive 
explanation can be provided that would suffice to appreciate 
the discussion in this report. One can note that in the cost 
function defined in eq 2 the term (yAH\y/) imposes the 
minimization of energy as required in eq 1. The second term, 
i.e., (l//l(0 — <w)2It//), is the variance of the operator O with the 
mean being the eigenvalue co and is non-negative by 
construction. For large values of the penalty parameter A, the 
minimization of the overall cost function is afforded if the 
variance term is pinned to zero, i.e., the state It//*) so chosen is 
an eigenstate of the operator O with eigenvalue co. The space 
of such states is defined by the set S in eq 1. If several such 
choices exist, then the role of the first term kicks in to 
guarantee optimality in energy.

While penalized optimization schemes with cost function of 
the kind in eq 2 have been employed in classical algorithms like 
Density Matrix Renormalization Group (DMRG),62 in 
Quantum Monte Carlo methods in the past,63 and even 
recently64 and are also are beginning to gain attention in recent

literature on quantum algorithms beyond quantum machine 
learning, i.e., in algorithms using Unitary-Coupled Cluster 
Ansatz (UCC) of variational quantum eigensolver (VQE),65 
yet a formal proof is lacking. Besides a more popular choice 
that has been studied in some detail is constraining the average 
value of the operator (t//IOIi//)66,67 with the required eigenvalue 
instead of penalizing the variance as in eq 2. However, this 
recent study65 shows eq 2 is a better penalty procedure in 
terms of feasibility and final error than restraining the average 
without providing a formal proof of equivalence between eqs 2 
and 1. Ref 65 also implemented the same to target symmetry 
operators on molecular systems using UCC-VQE using 
Qulacs68 which is an ideal simulator of a real quantum 
computer. However, in this report, we shall use eq 2 to develop 
and train a shallow neural network using a quantum machine- 
learning algorithm with quadratic resource requirements in 
terms of the size of the qubit register, the number of gates, and 
parameter counts. The ansatz which the neural network would 
encode for the quantum state ly) would correspond to a 
probability density represented by RBM. We benchmark our 
algorithm on important 2D periodic materials like TMDCs and 
show implementations not only on quantum simulators but on 
actual NISQ. devices (IBM-Q). TMDCs have never been 
studied before using any quantum algorithm. In the next few 
sections, we shall show how to filter any specific state of these 
2D materials using either symmetry operators of the 
Hamiltonian or user-defined constructions of operator O in a 
unified manner using the same algorithm. Such an attempt to 
the best of our knowledge is the first of its kind in QML as all 
previous reports have focused exclusively on targeting the 
ground state of the system alone.47,69

2.1. Filter for Specific Excited States. To target the first 
excited state of the system, one can use a user-defined operator 
(O = lg)(gl, ft) = 0) where Ig) is the ground state of the system 
obtained by training the network in a previous computation 
with A = 0 in eq 2. In essence, we require the neural network to 
return a state vector in the null space of operator lg)(gl. Since 
the null space is (d — l)-dimensional, the minimum energy 
criterion as enforced by the first term in eq 2 guarantees the 
first excited state. This method using the penalty program in eq 
2 is formally equivalent to the deflation technique if one 
recognizes the idempotency of O = lg)(gl. Deflation has been 
the cornerstone of many classical algorithms in the past for 
obtaining excited states70,71 and even a quantum algorithm as 
well with UCC-VQE.72 However, the formal reduction of our 
penalty procedure to deflation in eq 2 based on Theorem 2.1 
offers a slightly different perspective. Moreover, as we shall see 
shortly, the penalty program in eq 2 is more general and can be 
used to sieve any state based on arbitrary operator O. For 
higher excited states (say the tth), one can add similar terms to 
eq 2 with the set {Ojfr/ which forms a set of commuting 
operators with progressively refined null space. For the choice 
of the penalty parameter A in eq 2, one can choose any number 
greater than the spectral range of the Hamiltonian H as that 
would always work. The spectral range can be computed from 
the knowledge of the ground state and ||H||2.

2.2. Filter for Arbitrary States Using Symmetry 
Operators. Equation 2 can be used to solve a more general 
problem with any symmetry operator of the system O (by 
definition such operators satisfy [O, H] = 0 and hence share 
the same eigenspace). The corresponding user-desired 
eigenvalue co labels the symmetry sector (set S in eq l). 
Unlike in the previous case in section 2.1, the usual symmetry

C httpsy/doi.org/10.1021/jacs.1c06246
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(a)

Hidden nodes (m)

bi 62

(b)

(")

(i) Initialize parameter set 

X = (a,b,W,d, f,c,e)

Use (d,f,c,e)
to get phase

Feed (a, b, W) to 
Gibbs sampling circuit

(iii) Construct state ^(X)

\ _
Evaluate cost function from

0,H,X as

(vi)
Update parameters 

X -> X a '/* {/•'>£.(a'.

Run on QPU 
(see Fig. 2)

Figure 1. (a) RBM architecture used in this work. The visible node contains n neurons (green); the hidden node has m neurons (blue). The phase 
node contains 2 neurons: one to model the real part (orange) of the phase of the wave function and the other to model the imaginary part (gray). 
The weights and biases of the respective units are displayed. The RBM ansatz for the required state is defined from the Boltzmann distribution over 
the state-space of the visible-hidden units, (b) QML algorithm used to perform the variance penalized optimization. The part of step (ii) marked 
within the red box is performed on a quantum processor (QPU). All other steps are performed on a classical computer. Each step is marked with a 
roman numeral. We follow each of these roman numerals for discussing the algorithm in section 3.2.

operators need not satisfy idempotency and hence relaxation to 
deflation is impossible. To demonstrate our point, here we 
shall use O = L2 where L2 is the squared-orbital angular 
momentum operator, a symmetry for 2D materials, go would be 
set to the desired eigenvalue of L2. We shall see that the 
network will always learn the lowest energy eigenstate correctly 
despite multiple-fold degeneracy. To sieve other states from 
the entire degenerate subspace, one can use a combination 
filter of O, = L2 and 02 = b)(vl where Iv) is the lowest energy 
state in the symmetry subspace obtained from the RBM. The 
penalty parameter X can be chosen using the prescription in ref 
65.

3. ALGORITHM
3.1. The Model. In the early 1980s, Hopfield networks73 

defined a probability distribution over a set of random 
variables which is encoded within the nodes of a unidirected 
graph using the physical notion of energy of interaction 
between the nodes. Boltzmann machines (BM) are extensions 
of such a network that categorizes the node space into visible/ 
physical layer and hidden/latent layers maintaining all to all 
connectivity.74 A restricted Boltzmann machine 
(RBM)8’20’75-78 is a practically useful subcategory of BM 
which permits interaction only between the visible layer and 
hidden layer. The energy function used in the RBM model is 
thus that of a partially connected classical Ising network and 
the ansatz for the probability distribution is the corresponding 
thermal distribution. The ansatz is optimized to mimic the 
underlying probability distribution of the given data using free 
parameters called weights and biases.19,76*81 The goal of this 
paper is to use the RBM distribution to encode the amplitude 
field of an arbitrary quantum state li/r) which is a solution to eq 
1. Such neural-network quantum states (NQS) have been 
successfully employed in a variety of problems recently8'20'22'82 
by training the weights and biases using a classical computer.

Herein, we shall train the network by constructing the RBM 
distribution using a quantum circuit and discuss the quantum 
advantages.

The RBM network we use in this report consists specifically 
of three layers each having multiple neurons. The schematic of 
the network architecture is presented in Figure la. The first 
layer is the visible node consisting of n neurons; the second 
layer is the hidden node consisting of m neurons. The last layer 
is a phase node consisting of two neurons. While the n neurons 
are responsible for encoding the actual state, the purpose of the 
hidden neurons m is to add more controllable parameters to 
make the joint probability distribution (to be defined in eq 4) 
more expressive and induce higher order correlation among n 
neurons. Variables encoded by the visible node neurons 
(henceforth denoted by {<7,}"=1) and those by the hidden node 
neurons (henceforth denoted by {h,}™;) are both binary 
random variables as a{ and G (l, —1). As depicted in Figure 
la, the bias vector of the visible neurons is denoted as a £ R",
the bias vector of hidden neurons is denoted as b G Rm, and 
the interconnecting weights of the visible and hidden neurons 
are denoted as W £ R"Xm. The joint RBM distribu­
tion8’20'76-78 P(a, b, W, a, h) defined over the variables 

(5, h) is

eEf

A<tM (4)

For an electronic Hamiltonian with r spin—orbitals and N 
electrons, a naive Jordan Wigner mapping (JW)83 would make 
« = r or (or n » 0(log2(r)) for Bravi—Kitaev mapping).83 
However, it is now well-understood that qubit requirements 
can be tapered by using additional symmetries like Z2.84 The 
chemically inspired process of reducing qubit cost like using an 
active space85 (wherein number of physical qubits required is

P(a, b, W, S, h)

D https://doi.org/10.1021/jacs.1 C06246
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Visible nodes

Hidden nodes
m = 2

Ancilla 
m x n — 4

x v

Figure 2. Gibbs sampling quantum circuit used to create the Boltzmann distribution in Figure lb (highlighted within the red box in Figure l(b) 
step (ii)) for the case of n = m = 2. The circuit contains single-qubit R, gates parametrized by biases (a, b) of hidden and visible neurons and C— 
C—Ry gates parametrized by weights W between the hidden and visible neurons. Each C—C—Ry gate is conditioned to rotate by different angles 
and 02 for different choices of configurations of the control qubits. This can be implemented by use of X gates as illustrated at the bottom. The 
open circles show a node in state 10), and the closed circles show a node in state 11). At the end of the circuit, all qubits are measured and 
configurations wherein the ancilla qubits are all in state 11) are postselected (see text for details). For (n + m) visible and hidden neurons, there will 
be (n + m) visible and hidden qubits and (n + m) single Ry gates as there are that many biases. However, since the C—C—Ry gates are always 
controlled by 1 visible and 1 hidden qubit, there will be m X n such possibilities each of which targets one ancilla thereby making the size of the 
ancilla register m X n. Thus, there will be 0(n X m) gates and number of qubits in the circuit. We discuss this further in section 3.3.

still r, but logical qubits required are much less as some qubits 
have frozen occupation/eigenvalue with Z operator) or using 
point-group symmetry or angular-momentum symmetry of the 
required state84,86 is also being recently employed. Thus, a 
direct relationship of n with r would depend on the 
specification of the mapping and tapering used. Whatever 
may be the method, if the final H matrix is Cdxd (as used in 
section 2), then it is safe to say that in our model n = log2(d) . 
The number of hidden units m in our model is user-defined 
(for almost all data in this manuscript we have used n = m), 
but the hidden node density a = m/n can be tuned to enhance 
the final accuracy desired. We shall return to this point later. 
Neurons in the phase node are always 2 in number.

The purpose of the neurons in the phase node is to account 
for complex values and capture the phase of the wave 
function47 unlike in conventional two-layer RBM networks21 
which faithfully recovers only the amplitude. As shown in 
Figure la, for the phase node, the biases are denoted by 
{c, e) E R2 where c is the bias for the neuron capturing the 
real part of the phase and e is the bias for the neuron encoding 
the corresponding imaginary part. The phase node shares 
interconnections with the visible node only and is defined by

d E R" for the real part of the phase and / E R" for the 
associated imaginary part. The corresponding phase function 
for the quantum state lyz) defined using these nodes is

s(d,f, c, e, 3) = tanh c + 2 diai + i e + i
i y

(5)

Together, the set X = (a, b, W, d,f, c, e) thus defines the 
complete set of trainable parameters of the model which the 
network shall learn iteratively to mimic the coefficients of the 
quantum state Iyr) in the chosen basis. We shall discuss the 
algorithm to do this in the next section.

3.2. Outline of the Method. The entire algorithm is 
schematically depicted in Figure lb. It goes as follows.

(i) The first step is to initialize the parameters in the

parameter vector X = (a, b, W, d,f, c, e) on a classical 
computer. All parameters are randomly initialized in the 
parameter range [—0.02, 0.02] to avoid the vanishing gradient 
of the activation function for the phase node.39 Sometimes if 
random initialization returns a poorly converged result, then 
we use the initial parameter set of a converged point in a 
similar problem as the starting guess, a process known as warm 
optimization.

(ii) In the second step, the set (a, b,W) is fed into a 
quantum circuit for Gibbs sampling shown in Figure 2. This 
step is performed on a quantum computer. The circuit requires 
n + m qubits to encode the visible node and the hidden node 
respectively and additionally m X n ancillary qubits. The entire 
register is initialized to 10). The purpose of the circuit is to 
sample a bit string (3, h) E {1, — l}m+" from the RBM 

distribution P(a, b, W, a, h) defined in before in eq 4.69 In 

reality, the circuit actually draws a sample (3, h) from

Q(2, b, W, 3, h) =
£

gi/KZi “A+Zj b)hi+T,ij wM) 

gl ACE; afl+X; %+Z; y/l/)
[ah] (6)

E https://doi.org/10.1021/jacs.1 C06246
J. Am. Chem. Soc. XXXX, XXX, XXX-XXX



Journal of the American Chemical Society pubs.acs.org/JACS Article

and then reconstructs
P(a, b, W, a, h) o< Q(a, b, W, a, h)k. The real-valued pa­
rameter k will be discussed shortly.

The state of the visible node qubits and hidden node qubits 
are denoted henceforth as Iff,) and Ify) respectively. When ff, 
(or hj) = —1, Iff,) (or Ihj)) = 10) and ll) otherwise. In the circuit 
shown in Figure 2, the single-qubit Ry gates acting only on the 
visible and hidden units have rotation angles parametrized by
(a, b)and are responsible for creating the noninteracting part 

of the distribution in Q.(fl, b, W, 5, h), while the interaction 
terms {2yM'i;0ify} are turned on through using C—C—Ry gates 
acting on ancilla register as the target. The rotation angles of 
these doubly controlled Ry gates are parametrized by W and 
are different for different configurations of the control qubits 
(always 1 hidden and 1 visible). Various such choices can be 
realized by using X gates as shown in Figure 2. After all such 
operations, we measure all the (m + n + m X n) qubits and 
after select the results wherein the ancilla qubits have collapsed 
to state lllll... lm„) only. We show that the probability of such 
a successful event has a generic lower bound determinable in 
terms of the parameters of the network (a, b, W) (for details 
of the derivation of the generic bound, refer to section 2 of the 
Supporting Information). This master lower bound generalizes 
the previously noted one39 as a special case. The role of the 
real-valued parameter k kicks in here. It serves as a regulator 
and is chosen in simulation to make the aforesaid lower bound 
a constant value (see section 2 in the Supporting Information). 
After the postselection, the corresponding states of the visible 
and hidden units are equivalent to all possible bit strings 
sampled from the distribution Q(a, b, W, ff, h) from which

the desired distribution P(a, b, W, a, h) is constructed. The 
primary quantum advantage in our algorithm comes at this 
step where the full RBM distribution is constructed. Indeed, 
we shall elaborate in section 3.3 that there are no polynomial­
time classical algorithms for the construction of full RBM 
distribution. In our case, we can access the full distribution 
using quadratic resources by leveraging a quantum computer. 
The physical reason for this advantage is rooted in quantum 
parallelism which before a projective measurement allows the 
general state of the (m + n + m X n) qubits to be a 
superposition of all possible bit-strings with the coefficients 
sampled from the full RBM distribution. Many such measure­
ments are necessary to construct the RBM distribution 
encoding the target state as postmeasurement we can retrieve 
only one such bit-string. As explained above, the k parameter in 
our model is useful here as it can be adaptively chosen by the 
user to control the measurement statistics (see section 2 in the 
Supporting Information). Besides, for all systems primarily 
treated in this manuscript, we shall show that the chances of 
the ancilla register collapsing in the favorable state are naturally 
high even for modest values of the k parameter (see section 5 
in the Supporting Information). With P(a, b, W, ff, h) 
constructed, one can now compute the marginal distribution 
over the state space of the visible units only as p(a, b, W, a) 

where p(a, b, W, a) — ^ P(a, b, W, ff, h). Now

a, b, W, ff) defines the amplitude of wave function 
over basis states of the visible units, i.e., Iff1ff2... ff„). The phase 
of each component of the wave function is now constructed

classically using (d, /, e) and tanh activation of neurons in the 
phase node as defined before in eq 5.

(ill) With the two information from step (ii), the target wave 
function can now be constructed classically as

V(X) = 2] k, W, ff) s(d,f, c, e, ff)loiff2...ff„)

(7)

(iv) With the wave function, the cost function in eq 2 can 
now be constructed classically with the (ff, O, A) from the user 
where H and O are the Hamiltonian and filter operator for the 
system being investigated, respectively, and A is the penalty 
parameter.

(v) The next step is to check for convergence criterion or 
maximum number of iterations (to be discussed later). If either 
of the criterion is satisfied, then the results are printed.

(vi) If either of the criterion from the previous step is not 
satisfied, then the parameter set X is updated using steepest- 
descent algorithm with a learning rate (set to 0.005 in all our 
calculations). The updated parameter vector X is fed into step 
(ii) for the next iteration of the algorithm. We have also used 
the ADAM optimizer,87 but there is no significant change in 
convergence for the systems treated in this report. It must be 
emphasized that unlike in classical supervised deep-learning 
models the learning of our network does not require prior 
training against a preassigned labeled data set. The network 
learns the target eigenstate directly through minimization of 
the cost function (see eq 2) using the optimizer of choice 
(gradient descent in this case).

3.3. Resource Requirements. The power of an RBM 
ansatz even though underutilized in material science is 
beginning to gain attention in many areas of Fermionic and 
bosonic physics.20,82'88 Using n visible neurons and m hidden 
neurons, a recent study89 has shown explicitly how a shallow 
RBM ansatz (a = m/n = l) like ours already captures several 
orders of perturbation theory and is a good approximant to the 
exact state. Classically, constructing such a full RBM 
distribution will require tracking amplitudes from a 2m+n 
dimensional state space and hence has exponential resource 
requirements in preparation. Ref 90 formalizes and consol­
idates this statement by proving that a polynomial-time 
algorithm for classically simulating or constructing a full 
RBM distribution is not only absent now but also is unlikely to 
exist even in the future as long as the polynomial hierarchy 
remains uncollapsed. However, such analysis does not preclude 
the existence of efficient quantum algorithms such as the one 
considered in this work. The quantum circuit in our algorithm 
(see Figure 2) uses m + n + mX n qubits only for constructing 
the state indicating an 0(m X n) scaling in the qubit resource 
which if expressed in terms of hidden node density a = m/n is 
0(an2) The gate-set comprising single-qubit Ry gates also 
scales as m + n, one for each of the bias terms (a, b) of the 
visible and hidden node qubits. Each C—C—Ry gate in the 
circuit mediate a single interaction term within the W matrix 
between a spin of the visible layer cr, and a spin of the hidden 
layer hj. Since there are m X n such terms, the number of C— 
C—Ry gates are also mXn, with the targets being each qubit in 
the ancilla register. Toggling between the various config­
urations of the control qubits (l visible + 1 hidden) would 
require 6 R% gates additionally in each C—C—Ry (see Figure 2); 
hence, the total number of such R% gates is 6mn. This indicates

https://doi.org/10.1021 /jacs.l C06246
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the total gate requirements of our sampling circuit is also 0(m 
X n) which is equivalent to 0(an2). The number of variational 
parameters in our algorithm for amplitude encoding using 
RBM is m + n for the biases of the two nodes and m X n for the 
W matrix. For the phase encoding, the variables are two n- 
dimensional vectors (d,f) and two scalars (c, e). Thus, the 
total number of variational parameters isttJXn + m + 3w + 2 = 
an2 + an + 3n + 2 which is also quadratic. The upshot is then 
that our algorithm for an RBM ansatz uses 0(an2) qubits 
(circuit width), gate-set (circuit depth), and variational 
parameters to encode any arbitrary quantum state of n qubits 
in a d = 2”-dimensional Hilbert space. Removing redundancy 
in the global phase and normalization, a general such state 
would require 2(2" — l) parameters. One must know that in 
the RBM construction circuit no specific structure or sparsity 
has been assumed in the W matrix which if present may lower 
the requirements further. Quantum advantages have also been 
observed in supervised learning using the RBM distribution.38 
The study indicated that for the data set of size N, a quantum 
circuit with amplitude amplification reduces the complexity of 
the algorithm from the conventional 0(N) to 0(\/n), a 
quadratic boost. It must also be emphasized that all the results 
in this manuscript are primarily treated for the case of a = 1 as 
that suffices for the description of the system we study. We 
show how the results change for changing hidden node density 
a in section 6 of the Supporting Information. Even though a = 
1 is good for systems in this report, for the case where the state 
is highly entangled, the user may be required to enhance the 
hidden node density as that increases the number of variational 
parameters and make the ansatz more expressive.20 That may 
also be the case for molecular systems under geometric 
distortion wherein multireference correlation is important (we 
explore this point briefly in section 10 of the Supporting 
Information). In this work, all our results are compared against 
exact diagonalization as it affords the best accuracy in a given 
basis. The exact diagonalization results are obtained using 
“Numpy” package91 in python 3.0 with LAPACK routine.

3.4. Implementation Methods. We implement the 
algorithm in three flavors of computation. The first flavor 
henceforth designated as “RfiM-d” involves implementing the 
entire gate set of the Gibbs sampling circuit on a classical 
computer. This computation returns to us the exact state after 
the termination of the circuit. The second flavor is henceforth 
designated as “RBM-qasm”. This has been implemented by 
simulating the Gibbs sampling circuit using Qiskit which 
stands for IBM’s Quantum Information Software Kit 
(Qiskit).61 We specifically used the qasm_simulator at Aer 
provider (hence the name RBM-qasm) which is a quantum 
computer simulator and hence can mimic calculations 
performed on a noisy-intermediate scale quantum computing 
device even using a classical computer with options to 
incorporate customizable noise models. Unlike in “RBM-cl” 
where the exact state is returned, in “RBM-qasm”, the Gibbs 
sampling circuit in Figure 2 is interrogated multiple times to 
build measurement statistics. From the observed bit-strings,

the measurement probabilities P(a, b, W, 3, h) are com­
puted; hence, the results are subjected to statistical fluctuations 
due to finite sampling errors. No noise model was used during 
the simulation in “RBM-qasm”. Finally, to see the effect of 
noise, we also investigated the performance of our algorithm 
on real IBM-Q, quantum computers using the Qiskit interface. 
We used IBM-Q,Sydney92 and IBM-Q_Toronto93 interchange­

ably, both of which are 27 qubit machines and hence suitable 
for our case studies. Calculations of this flavor are henceforth 
referred to as “RBM-IBMQ,”. To reduce the effect of noise on 
the sampling probabilities we employ measurement error 
mitigation (MEM)94 directly implementable on Qiskit. We 
show in this report that MEM alone guarantees smooth and 
clear self-convergence in training (see section 4 in the 
Supporting Information). The final accuracy of the results is 
affected by both MEM and warm-starting. We have seen 
without warm-starting convergence can not only be slow but 
sometimes the network can even be trapped in a local minima. 
It is in general difficult to assess apriori when the need for 
warm-starting can arise without a knowledge of the 
optimization surface as the objective function being optimized 
for the amplitude and the phase are nonconvex in the 
arguments (see eqs 4 and 5). It has been noted that the 
algorithm converges better without the need for warm-starting 
near optima (symmetry points for the system being treated in 
this report as discussed later). For the “RBM-qasm” and 
“RBM-cl” simulations, the maximum number of iterations 
within which well-converged results to be discussed below 
were obtained is <30 000 either with a warm-start or randomly 
initialized parameter set depending on the case. The “RBM- 
IBMQ,” simulations were performed by breaking into two 
sessions/runs with the maximum iteration <700 for each 
session to reduce the job queue. Normally most calculations 
converged well before 700 iterations were reached within the 
first run as warm-starting and MEM has been used as described 
above. For the few that did not, the final parameter set of the 
first run is punched for initializing the second session to ensure 
one continuous run. It must be emphasized that the entire 
code-base for training the network is home-built in Python 3.0 
using standard packages like Numpy.91 As mentioned before, 
we have extensively used Qiskit though as an interface to 
communicate with the IBMQ hardware and with qasm_simu- 
lator.

4. RESULTS AND DISCUSSION
As a test of our method, we target state filtration of energy 
eigenstates of two well-established TMDCs: monolayer 
molybdenum disulfide (MoS2) and monolayer tungsten 
disulfide (WS2). Monolayer TMDCs have so far eluded 
attention in quantum simulations even though it is imperative 
to study their electronic structures to understand novel 
properties51'96 like high carrier mobility, high photolumines­
cence due to the direct band gap, lack of inversion symmetry 
leading to large spin—orbit coupling, intravalley transport, and 
so on. Indeed, such features have made them attractive 
candidates for applications in field-effect transistors,97 super­
capacitors,98 spintronics,99 optoelectronics,100'101 and “valley- 
tronics”.102 We first show how the entire conduction band 
(CB) in such materials can be simulated using an appropriate 
choice of operator O as the ground-state projector as discussed 
before and then later show how to “sieve” eigenstates based on 
angular momentum symmetry. In all cases, we implement our 
algorithm on three flavors of RBM calculations as discussed: 
RBM-cl, RBM-qasm, and RBM-IBMQ.

4.1. Filter for Target Excited States: Simulation of 
Low-Energy Bands in MoS2 and WS2 and the Effect of 
Spin—Orbit Coupling. The geometrical structure of 
monolayer TMDCs like MoS2 or WS2 indicates the presence 
of a trigonal prismatic real space unit cell51 with D3j, point 
group symmetry as shown in Figure 3. The transition metal is

https://doi.org/10.1021 /jacs.1 C06246
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Figure 3. (a) Top view of the TMDC monolayer as studied in this report. The orange atoms are a chalcogen whereas the blue atoms are the metal 
center, (b) Real-space trigonal prismatic unit cell highlighting D3h symmetry. This shows that in the TMDC monolayer unlike in graphene, the 
constituent atoms have a noncoplanar arrangement, (c) Unit cell in reciprocal space showing the important symmetry points (F, K, M, K'). We 
shall investigate the energy and other properties within the sector marked in green following the usual F—K—M—F path as in ref 103. The
coordinates of the symmetry points as (fc*, ky) are F = (0, 0), K = oj, and M = where a0 is the metal—chalcogen bond length.

For systems studied in this report the metal center is Mo, W, and the chalcogen is S.

at the center and the sulfur atoms are at the six comers of the 
triangular prism (see Figure 3b). Consequently, the best orbital 
decomposition to evaluate the band structure of this periodic 
material should involve not only the s, p, and d orbitals of the 
central metal atom but also of the surrounding sulfur atoms. 
Indeed several reports exist which treats the electronic 
structure of such materials using a tight-binding description 
obtainable from a 5, 7, or an 11 band model using a varying 
degree of inclusion of the orbital set of the metal and the 
chalcogen.104-107 However, recently a three-band parametriza- 
tion has been demonstrated to yield remarkable accuracy in 
energy over the entire Brillouin zone.103 A tight-binding 
Hamiltonian in this description is obtained by fitting the 
energy curves against DPT calculations (with GGA and LDA 
functionals) only employing the dz2, and dx2_2 orbitals of 
the metal center.103 This choice is based on the fact that for 
trigonal prismatic coordination, the d orbital set of the metal 
splits into three groups: A[ containing dz2 orbital only, E' 
containing d^ and d2_2, and E" containing dm and dyz orbitals. 
However, reflection symmetry of Dih restricts intercoupling 
between the orbitals of E" set with the remaining two groups. 
Indeed E" contributes exclusively to higher energy bands and 
has no role to play in the low-energy physics of the valence and 
conduction band which is considered in this work. The 
absence of chalcogen p orbitals is definitely an approximation 
albeit a good one as seen from ref 103. We shall return to this 
point shortly.

We henceforth use a tight-binding model comprising of 
third-nearest neighbor (TNN) metal—metal hopping103 of the 
aforesaid three-band Hamiltonian for all our calculations. The 
parameters of the model are obtained from the more accurate 
GGA calculation set.103 Section 3 of the Supporting 
Information gives the details of the Hamiltonian and 
parameters for completeness and brevity. Our working

Hamiltonian, for both the systems are thus a 3 X 3 Hermitian 
matrix. For qubitization we convert it into a 4 X 4 Hermitian 
matrix by padding an additional lXl block with a diagonal 
entry chosen to be greater than or equal to the spectral range 
of H3x3 as that would keep the low-lying eigenvalue structure 
of the resultant matrix undisturbed for the training to 
successfully proceed. Thus, for both the systems, our neural 
network comprises of a visible node with 2 neurons to encode 
the state, two hidden neurons, and additional 2 neurons for the 
phase node. For the Gibbs sampling circuit in Figure 2, we thus 
need 2 qubits to represent the entire visible layer and 2 qubits 
for the hidden layer. In addition, we need 4 ancilla qubits to 
serve as targets for (C—C—Ry) rotation thereby requiring 8 
qubits in total. For the circuit in Figure 2, we use 4 single-qubit 
rotation gates (Ey), 4 controlled—controlled rotation gates 
(C—C—Ry), and also 24 bit-flip (X) gates. The optimization in 
each case starts from a randomly initialized parameter set. In 
case if the accuracy is poor, then we restart the algorithm by 
feeding the initial parameter from the results of a nearby 
converged k-point as a warm start. We see the results are in 
excellent agreement with the exact diagonalization when a such 
a warm start is employed along with MEM as described before. 
For IBMQ_ implementation, we have used “IBM-Sydney” and 
“IBM-Toronto” both of which are 27 qubit machines. To 
reduce the operational time on the actual quantum device for 
the job queue and isolate the effect of gate-infidelity, IBMQ_ 
simulations for each k-point were often warm-started with an 
initial parameter set obtained from the initial parameters of the 
qasm simulation of a nearby but nonidentical k-point.

The results from the algorithm using the cost function in eq 
2 is displayed in Figure 4 for MoS2 and Figure 5 for WS2. In 
Figure 4a, we have overlaid the energies obtained from our 
algorithm as a function of the wave-vector index sampled from 
the Brillouin zone following the usual T—K—M—F path (see

https://doi.org/10.1021/jacs.1 C06246
J. Am. Chem. Soc. XXXX, XXX, XXX-XXX



Journal of the American Chemical Society pubs.acs.org/JACS Article

Reciprocal lattice

10-' 

10" 

10-“ 

f 10-'"
S 10' 

10" 

10“ 

10-“

m

★ S3 / * Y

• • • •

★
r K m r

na

rOPdjJ

★
**

EB * V* /

------------------- ***

* ★
M ...... .. ...

Reciprocal lattice

Reciprocal lattice

Quantum states at k=K point

Figure 4. (a) Valence (VB) and conduction band (CB) of MoS2 calculated using all flavors of RBM and overlaid against exact diagonalization. The 
valence band is simulated using X = 0 in eq 2 and the conduction band using (O = lv0)(v0l, a> = 0, X = 5) in eq 2 where lv0) is the valence band state 
at each fc-point. For IBMQ_implementations we used “IBM-Sydney” and “IBM-Toronto”. All parameters are randomly initialized (see Figure 2) or 
warm-started with the initial guess of a converged nearby fc-point. (b) Corresponding energy errors from (a) in eV. (c) Corresponding state 
infidelities (l — Fid) where Fid = l(tt,RBMltPEQCt)l2. (d) Orbital decomposition of the states at K-point where 10) = dz2,11) = d^, and 12) = The 
states from RBM calculations match well with those from exact diagonalization in phase and amplitude. The width for each bar is set differently for 
visual clarity.

Figure 3c). The result for the valence band (VB) is denoted in 
blue and is obtained by setting X = 0 in eq 2 which corresponds 
to the usual variational optimization to obtain the ground state 
at each fc-point. The results for the CB are shown in orange in 
Figure 4a. They are thereafter computed as a separate set of 
calculations using O = lv0)(v0l and ft) = 0 in the cost function in 
eq 2 where the corresponding ground state in the VB is 
denoted as lv0). The penalty parameter is X = 5. The cost- 
function now samples a state orthogonal to ground state (null 
space of the projector lv0)(i/0l) for each of the fc-points. The 
minimum energy criterion imposed by the first term in the cost 
function in eq 2 guarantees obtaining the next higher excited 
state which happens to be the state space in the conduction 
band.

We see for all flavors of our algorithm (RBM-cl, RBM-qasm, 
and RBM-IBMQ) that the simulated energy values for both the 
valence and the conduction band are in good agreement with 
the ones obtained from exact diagonalization. The correspond­

ing errors in energy are displayed in Figure 4b and are usually 
<10-4 eV for RBM-cl and RBM-qasm which are noiseless 
pristine implementations, but the error is around 10-2—10-4 
eV for the VB and the conduction band for RBM-IBMQ, 
indicating the worsening of performance due to faulty gate 
implementations in the Gibbs sampling circuit. Figure 4c plots 
the state infidelities, i.e., 1 — Fid where Fid = l('PRBMl'PElact)l2. 
We see that the infidelities are also quite small for each band 
with the performance worsened only in the IBMQ_ variant of 
the RBM implementation.

Like Figure 4a, Figure 5a displays the band structure of WS2 
wherein the energies for both the valence and conduction band 
are overlaid against the energy values obtained from exact 
diagonalization. All three flavors of RBM implementation yield 
reasonably accurate results as in the case for Figure 4a. Figure 
5b,c displays the energy error and the state infidelities of the 
state obtained from the RBM calculations against exact

https://doi.org/10.1021/jacs.1 C06246
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Figure 5. (a) VB and CB of WS2 calculated using all flavors of RBM and overlaid against exact diagonalization. The valence band is simulated using 
A = 0 in eq 2 and the conduction band using (O = lvo)(v0l, ft) = 0, A = 5) in eq 2 where lv0) is the valence band state at each fc-point. For IBMQ_ 
implementations we used “IBM-Sydney” and “IBM-Toronto”. All parameters are randomly initialized (see Figure 2) or warm-started with the initial 
guess of a converged nearby fc-point. (b) Corresponding energy errors from (a) in eV. (c) Corresponding state infidelities (l — Fid) where Fid = 
KvPRBMltt,Emct)l2- (d) Orbital decomposition of the states at K-point where 10) = d2, 11) = d^, and 12) = dx2_2. The states from RBM calculations 
match well with those from exact diagonalization in phase and amplitude. The width for each bar is set differently for visual clarity.

diagonalization. The error ranges in each case are similar to 
what has been discussed for MoS2.

Figures 4d and 5d display the orbital decomposition of the 
states in the conduction and valence band at the most 
important symmetry point, i.e., the K-point. In our 
calculations, qubits 10) = d2, ll) = d^, and 12) = d2_2 where 
{0, 1, 2} are the integer equivalents of the two-qubit bit strings 
encoding the neurons of the visible node. We see from our 
calculations however that the exact state generated from the 
model lines up correctly against the RBM states in both 
amplitude and phase. While the state of the conduction band 
at K-point is exclusively populated by d2, that in the valence 
band is a superposition of d_ and dx2_y2 with a phase shift of 
3jt/2. This is consistent with the orbital decomposition given 
in Figure 2 of ref 103 and is partly the reason given by the 
authors to use this three orbitals for generating the tight- 
binding Hamiltonian as the model yields correct state 
description near the band gap. However, as is clear from 
Figure 2 of ref 103, the orbital composition of the states at the 
F- and M-points has contribution from the p-orbitals of S and

s-orbitals of both the metal and the S atoms. This makes the 

three-band model an approximation for the exact character of 

the states even though it can replicate the energy very well 

throughout the Brillouin zone.
We further concentrate in this report on describing the low- 

energy physics near the K or K' valley for which, as mentioned 

before, the state description of the three-band model suffices. 

We construct the Hamiltonian108-111 near the K-valley in the 

basis of the states of the conduction band, i.e., Idz2) (see 

Figures 4d and 5d) and that of the valence band, i.e., 

-^(Idx2_y2) + ildjy)) (see Figures 4d and 5d). The states at

the K' valley are related to those at the K valley due to time- 

reversal symmetry110’112 and hence are ignored from further 

discussion. The Hamiltonian is

J https://doi.org/10.1021/jacs.1 C06246
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Figure 6. (a) Exact energy contours in the VB for s = 1 within the three-band approximation for the Hamiltonian in eq 8 as a function of (k*, ky) 
near the K-point in MoS2. (b) Same as in (a) but for s = —1. (c) Same as in (a) for the CB. The crosses in (a), (b), and (c) denote the (kM ky) pair 
wherein calculations for all three flavors of RBM have been executed, (d) Energy errors in eV from three flavors of RBM calculations for points 
denoted as cross in (a) for the valence band (s = l) case computed using X = 0 in eq 2 in MoS2. The %-axis is a flattened point index with (k# ky) 
pairs marked as crosses in (a) mapped to integers such that the origin is at the K-point. From the K-point, the flattened point index scale moves
spirally outward grouping all (kM ky) pairs satisfying Ikl = yjkz + ky as consecutive integers and then proceeding to the next Ikl (e) Same as in d)

but with points denoted in b) as crosses for other valence band with s = —1. (f) Same as in (d) but for points denoted in (c) as crosses for the 
conduction band computed with (X = 5, (O = 0, O = \v^j{vQ\) in eq 2. (g) Amplitude for the occupancy of d/ orbital on the metal for states 
computed at (k# ky) pairs near the K-point from all three flavors of RBM as well as the exact states in valence band (s = l) for MoS2. The amplitude
of states with the same Ikl = yjk* + ky appear bunched together as “steps” due to the flattened point-index scale used. Near the K-point, the

amplitude is the same for all such pairs within a given step due to isotropy of the energy surface. However, away from the K-point deviations appear 
due to trigonal warping owing to the D3h symmetry of the unit cells in TMDCs. The states from all flavors of RBM can resolve the influence of 
warping accurately with the performance worsened for the noisy variant, (h) Same as in (g) for valence band (s = —l). (i) Same as in (g) for 
conduction band.

H = (y + Y)('-® + (Y + T)(f + ?) + AS

+ YKS, + y(fc( + + Sz) + + fc))(l - <5)
+ ktw(K + iky)2(% + iOy) + Krw(k* - - iop

(8)

A effective description such as eq 8 is often referred in 
literature as the two-band k-p model constructed using Lowdin 
Partitioning.103’109 The first two terms in eq 8 is the massive 
term required to create the band gap (A) in the material at the

K-point. These terms are absent in graphene. In most reports 
this term is written as A/2<rz with a symmetrically located 
origin but we choose to use the Ec and Ev values obtained from 
our calculations in Figures 4 and 5. The additional summands 
in each of the first two terms (Av, Xc) refer to band-splitting at 
the K-point due to spin—orbit coupling (SOC). In the three- 
band basis, SOC is entirely due to the Lz operator (more on 
this in the next section) contribution of which in the chosen 
basis of can be effectively modeled as the first two 
terms.108’111,113 Unlike the Bloch state in the conduction 
band, the valence band is exclusively dominated by metal 
orbitals Idx2_y2) and Id^) with nonzero angular momentum

K https://doi.org/10.1021/jacs.1 C06246
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leading to strong splitting.103 The spin—orbit splitting in the 
conduction band is weak103’108'112 and below the resolvable 
limit of NISQ. devices and hence has been ignored herein, i.e., 
Xc = 0. The parameter s G {1, —1} is the spin index and labels 
the SOC split valence bands. The third through sixth terms are 
the linear and quadratic extrapolations away from the K-point 
and yield a spherically isotropic band surface. The seventh and 
eighth terms (parametrized by K^w) break the isotropy and 
lead to the well-known effect of trigonal warping (TW). The 
warped band surfaces in these materials are a consequence of 
the presence of a perpendicular C3 axis due to the D3ll 
symmetry of the associated real-space unit cells (see Figure 
3b). Further terms in ref 109 which removes anisotropy 
between valence and conduction band are ignored due to their 
small unresolvable contributions.

Since the Hamiltonian in eq 8 is 2 X 2, we require a single 
visible neuron to encode the eigenstates, a single hidden 
neuron consistent with a = 1, and 1 additional ancillary qubit. 
The number of single-qubit Ry gates is 2, and the number of 
C—C—Ry gates is 1 and 6 R* gates. Calculations are performed 
using X = 0 in eq 2 for the two SOC split valence bands with s 
= ± 1 and (O - lz/0)(z/0l, X = 5, ft) = 0) for the conduction band. 
For NISQ. devices we use “IBM-Sydney” and “IBM-Toronto” 
interchangeably as before. All calculations are performed for 
(ky ky) pairs centered at the fC-point and with a cutoff Ikl of 
O.LK point to probe the low-energy regime. Since the (ky ky) 
pairs are near a symmetry point (if-point), warm-starting was 
rarely observed to be required in RBM-cl and RBM-qasm but 
has been occasionally used in RBM-IBMQ. for hastening 
convergence and reducing job queue. Each point on RBM- 
IBMQ. are performed within a single run with MEM as before 
for smooth self-convergence and consistency with other results. 
Parameters for warping are obtained from ref 109.

In Figure 6a—c, we plot the exact 2D band surfaces obtained 
from eq 8 for the two SOC split valence bands (s = ±l) and 
the conduction band. The crosses in each plot refer to the (ky 
ky) pairs wherein all flavors of RBM calculations have been 
performed. The results of such RBM calculations for each such 
pair are displayed as energy errors (eV) in Figure 6d—f. The x- 
axis in each such plot is a flattened point index mapping (ky 
ky) pairs to integers by starting from pairs closest to the K- 
valley at the origin and proceeding spirally outward. In other 
words, for a given Ikl the flattened point index groups all (ky
ky) pairs satisfying Ikl = ^fc2 + fc2 as consecutive integers and

then proceeds to the next Ikl. We see that the energy error in 
each case is low for the RBM-cl and RBM-qasm variant (<10-4 
eV) for all three bands and <10-2 eV for the IBMQ. variant. 
Thus, given the energy scale and extent of the splitting in the 
valence bands (s = ± l) in Figure 6a,b and the scale of the 
energy errors in Figure 6d,e, it suffices to say that the 
performance of our algorithm is good enough to resolve band 
splitting due to features like spin—orbit coupling. To study the 
effect of warping parameters in eq 8 in the state, we plot in 
Figure 6g—i the amplitude of the corresponding states in the 
basis of \dz2) for the two SOC split valence bands (s = ± l) and 
the conduction band. The %-axis in each case is the flattened 
pair index as in Figure 6d—f. At the JC-point (origin), the 
conduction band is exclusively populated by Id/) as discussed 
before, but the reverse is true for the valence bands. In each of 
the plots in Figure 6g—i, all (ky ky) pairs which satisfy
Ikl = Jk2 + ky are bunched together as “steps” due to the

flattened point index scale chosen. We see that near the K- 
point wherein the effect of warping is not prominent, all such 
points within a given “step” (same Ikl) share the same 
amplitude. However, away from the fC-point deviation starts to 
become predominant. The amplitudes computed from the 
states of all three variants of RBM calculations line up well 
against the exact curve with the IBMQ. variant showing some 
deviations albeit small considering the y-scale in these plots. 
Our algorithm thus can successfully resolve finer features like 
trigonal warping too in these Bloch states. A similar panel for 
WS2 is presented in section 7 of the Supporting Information. 
Accurate computation of such Bloch states with these finer 
features preserved is necessary as momentum matrix elements 
between these states become important in simulating 
important properties of materials like optical conductiv­
ity,114'115 electrical and thermal conductivity,116 and so on.

4.2. Filter for Arbitrary States Using Symmetry 
Operators. In this section, we shall use the same set of 
TMDCs discussed above to explore how one can sieve 
arbitrary states based on symmetry constraints. To demon­
strate the point we use orbital angular momentum symmetry. 
The Lz operator in the three-band approximation commutes 
with the Hamiltonian103 in absence of spin—orbit coupling as 
has been considered in this work. The operators Ly Ly are 
essentially null matrices in the three-band basis of {dz2, d_, 
dx1_y1} as mentioned in.103 Hence L2 enjoys exclusive 
contribution from Lz and is a symmetry operator in the 
system. For computation, we use the Hamiltonian of the 
system at the K-point because the three-band approximation as 
discussed before is extremely accurate therein.

The complete set of eigenvalues and eigenstates of Lz and 
hence of L2 operator is given in section 8 of the Supporting 
Information. From the knowledge of the spectrum of L2 
operator, we see that it has two distinct eigenvalues which 
are (0, 4} in atomic units. One of the eigenvectors of the 
doubly degenerate eigenspace with eigenvalue 4 is the state in 
the valence band, and the other is a higher energy excited state 
above the conduction band (not shown in Figures 4 or 5). 
Both these states are exclusively made from the contribution of 
{dxy, dx1_y1} as seen from the state decomposition in section 8 
of the Supporting Information. The sector with eigenvalue 0 
has single-fold degeneracy and is made from the excited state 
in the conduction band. As discussed before in Figures 4d and 
5d (and in section 8 of the Supporting Information) this state 
is exclusively made from the contribution of the dz2 which 
explains the absence of z-component angular momentum. We 
would thus expect that if we choose 0 = 1? and ft) = (0, 4} in 
eq 2 for training the network then we should yield the excited 
state in the conduction band for <a = 0 and should yield the 
ground state in the valence band for ft) = 4 as that is of lower 
energy (in compliance with the first term in eq 2) than the 
other degenerate eigenstate.

The qubit and gate resource requirements of this simulation 
are exactly the same as discussed in section 4.1 with 2 visible 
node neurons and 2 hidden node neurons for each of the two 
systems, MoS2 and WS2. The Gibbs sampling circuit in Figure 
2 would need a total of 8 qubits as before (2 for visible node + 
2 for hidden node + 4 ancillary qubits). The gate requirements 
for the circuit to reproduce the amplitude are thus 4 single 
qubit rotation gates (Ry), 4 controlled— controlled rotation 
gates (C—C—Ry), and 24 bit-flip (X) gates. We start the 
optimization with randomly initialized parameters.

https://doi.org/10.1021/jacs.lc06246
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In Figure 7, we display the results of our simulation. Like 
before, the results from all three flavors of RBM (marked as 2 
= RBM-cl, 3 = RBM-qasm and 4 = RBM-IBMQ) are compared 
against the exact expected state (marked as 1 = Exact). In 
Figure 7a, the results of energy (in eV) from the three RBM 
simulations and the exact one are displayed for the eigenvalue 
sector <0 = 0 a.u. This happens to be the CB energy in Figure 
4a. We find an extremely good agreement for all flavors of 
RBM with the exact value. The corresponding energy error is 
displayed in Figure 7c and is in the range of 10-5—10-4 eV for 
RBM-cl and RBM-qasm, but it is within 10-4—10-3 eV for the 
RBM-IBMQ.variant. Figure 7b displays the constraint violation 
error, i.e., how much the state encoded in the neural network 
after training has an (L2) equal to the target value of <0 (in this 
case <0 = 0 a.u.). We see that the violations are quite small for 
the noiseless implementations. Even for implementation on 
actual NISQ. devices of IBM-Q, it is close to 10-3 a.u.

Figure 7c displays the energy error, and Figure 7d displays 
the state infidelity error (l — Fid where Fid = l('PRBMl'PElact)l2). 
We see that for all flavors of RBM implementation the 
infidelities are quite small with the performance worsened for 
implementation on the actual IBM-Q. device. Figure 7e—h 
corresponds to similar plots as discussed above but this time in 
the other eigenvalue sector with <0 = 4 a.u. We again see that 
the energy values (in eV) in Figure 7e matches with the exact 
for all flavors of RBM-implementation. This state happens to 
be the ground state in the VB shown in Figure 4a. The 
corresponding energy errors shown in Figure 7g are like in the 
previous case (<o = 0 a.u.) low for RBM-cl and RBM-qasm but 
in the range of 10-3—10-2 eV for RBM-IBMQ. Similar analysis 
as in the case of <0 = 0 a.u. can also be made for the constraint 
violation error in Figure 7f and the state infidelity in Figure 7h. 
Both of these have low errors with the respective ranges as 
displayed.

M https://doi.org/10.1021/jacs.1 C06246
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Figure 8 shows a similar plot for the other system studied, 
WS2. Just as before we display the results for w = 0 a.u. in 
Figure 8a—d and for ft) = 4 a.u. in Figure 8e—h. Figure 8a 
shows the energy match between the RBM implementations 
and the exact value for w = 0 a.u., and Figure 8e shows the 
same for to = 4 a.u. The former is equal to the state in the 
conduction band at JC-point (see Figure 5a) and the latter is 
the corresponding state in the valence band (see Figure 5a). 
We see good agreement for all RBM variants and the exact 
expected value. The corresponding energy errors are low (see 
Figure 8c,g) with the range for IBMQ. implementation being 
lO-3—10-2 eV and even lesser for the pristine implementa­
tions. The respective constraint violation errors are displayed 
in Figure 8b,f and are small too as seen from the scale. A 
similar statement can also be made for the state infidelity 
displayed in Figure 8d,h. We have seen that in both the 
systems, MoS2 and WS2, the state infidelity and energy errors 
are higher in the to = 4 a.u. eigensector than in to = 0 a.u. 
eigensector in the IBMQ. implementation especially. In fact, 
the relative energy errors for the said sector are close to 596 for 
RBM-IBMQ. However, the corresponding errors (both relative 
and absolute) are low for the noiseless implementation (RBM- 
cl and RBM-qasm) indicating that the higher percent error is 
attributable to the imperfect implementation of gates in the 
Gibbs sampling circuit in an IBM-Q_machine and hence can be 
mitigated with future quantum computing devices with better 
gate fidelities and error-correction schemes.

5. CONCLUSION
In this study, we have demonstrated an algorithm which can 
filter arbitrary energy eigenstates in 2D materials like TMDCs 
using a quantum circuit with quadratic resources. We provided 
an original proof of feasibility for our cost function employed 
for the constrained optimization. We also proved a generic 
lower bound for the successful sampling of our quantum circuit 
from which previously known bounds can be extracted. Our 
circuit trains a three-layered neural network that encodes the 
desired state using an RBM ansatz for the probability density. 
As an illustration, we were able to filter energy eigenstates in 
the conduction band of important TMDCs like MoS2 and WS2 
and faithfully reproduce the band gap. We were also able to 
filter arbitrary states based on a user-defined orbital angular 
momentum symmetry constraint. We trained the network on 
various flavors of computation using not only a classical 
computer, qasm backend quantum simulator in Qiskit, but also 
a real IBMQ. machine (IBM Sydney and IBM Toronto) with 
the objective to see the performance of the algorithm on actual 
NISQ. devices. In all flavors of computation, our algorithm 
demonstrated very high accuracy when compared to the exact 
values obtained from direct diagonalization.

Venturing beyond the ground state to obtain arbitrary states 
based on user-defined restrictions is the first of its kind in all 
flavors of QML. Furthermore, the systems of our choice 
happen to be TMDCs, an important class of ZD-periodic 
systems which have never been studied using any quantum 
algorithm. Periodic systems in general have received scanty 
attention as far as quantum algorithms are concerned. Only 
two such reports exist,47'69 both of which have simulated just 
the valence band in graphene and hexagonal boron nitride (h- 
BN).

It must also be emphasized that a host of classical algorithms 
have been developed in traditional quantum chemistry that are 
extremely accurate and polynomial^ efficient. Over the past

few decades, density functional theory (DFT) has emerged 
into a leading candidate for accurate computation of wide- 
variety of electronic structure problems in molecules and 
materials.117,118 Variants of it are being developed for cases 
wherein multireference correlation would be important too.119 
Reduced density-matrix based methods are also polynomially 
scaling120 and have shown excellent accuracy in strongly 
correlated systems.121,122 Tensor-network-based methods like 
Density-Matrix Renormalization Group (DMRG)123-125 have 
been developed which even though capable of exploiting rank 
sparsity in strongly correlated one-dimensional systems yet 
loses the polynomial advantage in multiple dimensions. Like 
our algorithm which attempts to construct the many-body 
state, a plethora of similar wave function based ab initio 
methods exist in traditional quantum chemistry too starting 
from the uncorrelated Hartree—Fock method to post-Hartree 
methods which can recover dynamic correlation like 
perturbative approaches (like MP2),126-128 Truncated Con­
figuration-Interaction or Cl (like CISD),127,129 Couple-Cluster 
(CC) methods130 (like CCSD, CCSD(T), CCSDT, or EOM- 
CCSD for excited states), recently developed SHCI 
methods131,132 to ones which are good for capturing static 
correlation like Multi-Configurational Self-Consistent Field 
(MCSCF).133 A direct comparison of a quantum algorithm like 
ours with these classical algorithms can be attempted to be 
made in terms of accuracy and resource cost. In terms of 
resource requirements, the comparison is made difficult by the 
fact that certain parameters like circuit width, circuit depth, 
and so on which affect the performance of quantum algorithms 
like ours, have no classical analogues. If we consider an Nelec 
electron system with r = r0 + ruo spin orbitals/Fermionic 
modes such that rB = Nelec is the occupied orbital set in 
Hartree—Fock reference and ruo are virtual orbitals excluded 
from Hartree—Fock reference, then under the assumption that 
the orbital space rank loosely equates to qubits or number of 
visible neurons n (see section 3.1 and ref 83), we have shown 
in section 3.3 that the spin—orbital cost of our algorithm would 
be ssCXr2) = 0(rj + + 2rU0r0). The numerical parameter
count of our algorithm is also quadratic, i.e., 0(an2) to 0(r2) = 
0(rt + r*0 + 2rnorD). This is unlike methods like CCSD 
(Coupled-Cluster Singles Doubles) which has a computational 
cost of to0(f2r4o) (for CCSDT it is toO(r^J and for 
CCSD(T) it is «0(r3r40)).130,134 CCSD also evaluates 
«0(^r2o) cluster amplitudes as parameters defining the 
excitations. Chemically important phenomenon, like dissocia­
tion events which are no longer single-referenced, are known 
to be difficult to treat with CCSD,13 even though pair cluster 
doubles can ameliorate the situation to some extent.136 That 
being said, it must also be noted that traditional variant of 
CCSD unlike ours is nonvariational. As far as accuracy is 
concerned, all results in this report are benchmarked against 
exponentially scaling exact diagonalization as that affords the 
exact value in a given basis. Not only the physics of Bloch 
states in the material TMDC but also a molecular example like 
LiH has been treated using our algorithm (see section 10 in the 
Supporting Information). For both the ground and excited 
states of LiH we see good accuracy and improvement of error 
by enhancing the hidden node density which makes the ansatz 
more expressive. Studies on larger molecular systems for which 
the results of exact diagonalization may not be available may be 
undertaken in future. That will provide a platform for 
comparison in accuracy with a subset of the aforesaid classical
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algorithms. Desirable chemical features like size consistency 
and size extensivity may be probed too.

One must also note that several quantum algorithms already 
exist which aim at obtaining ground and excited states of 
Fermionic systems.137 Nonvariational quantum algorithms like 
quantum phase estimation (QPE)40'1 8,139 have exponential 
speed up1 yet require high circuit depth and long coherent 
operations which are beyond the limits of near-term 
hardwares.23 Hybrid Variational Quantum Algorithms 
(VQA) have also been developed which can ameliorate some 
of the above problems.46 The most notable one in the list is 
Unitary Coupled-Cluster Variational Quantum Eigensolver 
(UCC-VQE).43 In its most traditional variant, the unitary 
ansatz which UCC-VQE uses for state preparation consists of 
single and double excitations141-143 (hence often called 
Unitary Coupled Cluster Singles Doubles or UCCSD) from 
the reference state. However, the circuit depth in preparing 
such an ansatz is still large, and the circuit is parametrized by 
many variables which necessitates a high-dimensional classical 
optimization routine144 to update the parameters. To be 
concrete, for rQ and ruo with the same meaning as described in 
previous paragraph, the UCCSD-VQE uses137 0(r0) qubits, 
0(rXJ cluster amplitudes as parameters, and 0(/r4) gates 
where / = 0(r0) or 0(log(rJ) depending on the qubit­
mapping. Besides, the UCC-VQE method can suffer from 
errors incurred due to operator ordering or Trotterization.145 
Also, the ansatz requires a high degree of qubit connectivity for 
nonlocal operations which may not always be available in all 
hardware. 46 A hardware-efficient ansatz44'147 has been 
developed to help solve the above issues which use an 
alternating framework of single-qubit gates and fixed 
entangling operations which can be chosen with the specific 
capabilities of the device in hand. However, unlike UCC-VQE, 
such an ansatz is not physically inspired and often suffers from 
trainability issues during parameter optimization.46,148 Besides 
the number of parameters grow as a function of entangling 
blocks and can even surpass the size of the Hilbert space.1 ,14 
A third variant that has low circuit depth and parameter cost is 
the ADAPT-VQE approach.149 Unlike in the previous two 
cases, this variant constructs the circuit from a preselected pool 
of operators and changes the circuit architecture adaptively by 
adding operators from the pool which affects the energy 
gradient the most. The chosen pool decides the parameter 
count and gate counts in the circuit. In this method, the 
number of measurement shots can be high for computing the 
gradients,144 and it is generally not clear how to preselect the 
operator pool and what guarantees that the pool is complete, 
i.e., the ansatz it produces is expressive enough. Many different 
variants for each method have been constructed for which the 
reader is referred to many excellent reviews.46,137,146 For 
excited states,46 deflation-assisted VQE as described before72 
exist, but for its implementation it used the UCCSD ansatz 
which inherits some of the above problems of high parameter 
count and gates. A recent promising method known as 
Weighted Subspace-Search VQE uses an input array of several 
orthogonal states to construct a weighted Lagrangian as the 
cost function.150 In this case, the input states are mapped to 
the excited states of the system using a parametrized ansatz 
circuit. Depending on the nature of the ansatz circuit, the 
algorithm can have different gate count or parameter count and 
hence it is hard to mention a general estimate.

Our algorithm is also a hybrid variational algorithm like the 
ones in the aforesaid list, but it always requires quadratic

resources (see section 3.3). However, there are some key 
differences as well which need to be acknowledged. Unlike the 
above list of algorithms which prepare a unitary ansatz on a 
quantum computer to mimic the state, our algorithm proposes 
to construct a probability distribution that mimics the 
amplitude field of the target state on a quantum computer. 
As a result, our algorithm is a distribution sampling protocol 
on a quantum computer using a nonunitary ansatz (RBM) 
which is manifested in the usage of ancilla and its subsequent 
measurement collapse. The measurement statistics of such a 
collapse are discussed in detail in sections 2 and 5 in the 
Supporting Information. Since the distribution encoding the 
amplitude field is based on RBM, unlike the ADAPT-VQE 
method, our protocol is largely problem-agnostic. This is due to 
the fact that RBM can act as a universal approximant to any 
probability density19 and hence can be used for a variety of 
problems provided it is made sufficiently expressive with an 
adequate hidden node density. Also unlike other algorithms 
wherein the nature of the excitations or operator pool used 
decides the cost-function gradient, in our case the distribution 
function being RBM always permits training the network with 
analytical gradients. Besides, we have already demonstrated in 
section 3.3 using ref 90 that an analogous classical construction 
of RBM distribution has an exponential overhead, whereas by 
using a quantum algorithm like ours, one can construct it using 
quadratic resources thereby illustrating the distinct quantum- 
classical advantage in our algorithm directly.

Further extension of this algorithm can be made to compute 
operators using Hellmann—Feynmann method,151 to charac­
terize the influence of noise on the algorithm and to see it 
being extended to study other interesting phenomena on 2D 
materials like Rashba splitting in polar TMDCs152 or even 
effect of strain.153 One must also note that in this work we 
construct the full d = 2”-dimensional eigenstate from the 
amplitude encoding using the RBM ansatz (eq 4) and the 
phase encoding using eq 5. This is because the primary 
quantum advantage of our algorithm lies in the fact we use 
quadratic resources to learn the full RBM distribution which 
classically would require exponential resources as necessitated 
in.90 Besides, access to the full state allows us to compute 
matrix elements of arbitrary operator between eigenstates 
important for spectral information, i.e., learning in excitonic 
features114 or thermal and electronic conductivity,116 which as 
said before are important future extensions of this work. Also, 
once trained for a given system, the neural network in our 
algorithm can be used to learn the eigenstates of a closely 
related system accurately with faster convergence and fewer 
iterations, indicating partial transferability of these models (see 
section 9 of the Supporting Information for details). Benefits 
and the scope of such “transferable training” for other 
chemically motivated systems will be investigated in future. 
It must be noted that the symmetry partitioning of the metal 
orbitals in TMDCs guaranteed in ref 103 have reduced the 
effective size of the orbital space and qubit requirements in this 
study. However, understanding spectral information in 
excitonic physics would require more involved models with a 
larger orbital space. A way forward may be focusing on low- 
energy excitons with a certain symmetry (like overall spin- 
angular momentum) characteristics only. For molecular 
systems such symmetry-inspired cost reductions are already 
beginning to be noticed84' 6 as discussed earlier. However, 
such an initiative for materials is largely an uncharted territory. 
Further reduction in qubit resource requirements of our

O httpsV/doi.org/10.1021 /jacs.1 C06246
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algorithm may also help, even though the nonunitary nature of 
the ansatz as discussed before makes it harder. From the 
hardware point of view, robust large-scale error mitigation 
strategies are beginning to be made available now,95,1 4 and 
devices with over 1000 qubits with low qubit decoherence 
errors and gate infidelities are also being promised in recent 
future.155 Such resources would certainly be beneficial to 
extensions of studies like these.

From the algorithmic point of view, besides being quadratic 
scaling in qubit and gate requirements and parameter count, 
our algorithm does not have any dependence on oracular 
objects like qRAM35 which is responsible for creating a 
superposition of all possible basis states and is known to 
commonly sought in most quantum machine-learning 
modules. As futuristic quantum devices are being developed 
with proper error mitigation schemes, we expect to have more 
such cross-pollination between machine-learning algorithms 
and quantum computing with the promise to study electronic 
structure and dynamics in new complex materials.
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