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ABSTRACT: Quantum machine-learning algorithms have
emerged to be a promising alternative to their classical counter-
parts as they leverage the power of quantum computers. Such
algorithms have been developed to solve problems like electronic
structure calculations of molecular systems and spin models in
magnetic systems. However, the discussion in all these recipes
focuses specifically on targeting the ground state. Herein we
demonstrate a quantum algorithm that can filter any energy
eigenstate of the system based on either symmetry properties or a
predefined choice of'the user. The workhorse of our technique is a
shallow neural network encoding the desired state of the system
with the amplitude computed by sampling the Gibbs—Boltzmann
distribution using a quantum circuit and the phase information
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obtained classically from the nonlinear activation of a separate set of neurons. We show that the resource requirements of our
algorithm are strictly quadratic. To demonstrate its efficacy, we use state filtration in monolayer transition metal dichalcogenides
which are hitherto unexplored in any flavor of quantum simulations. We implement our algorithm not only on quantum simulators
but also on actual IBM-Q. quantum devices and show good agreement with the results procured from conventional electronic
structure calculations. We thus expect our protocol to provide a new alternative in exploring the band structures of exquisite
materials to usual electronic structure methods or machine-learning techniques that are implementable solely on a classical

computer.

1. INTRODUCTION

Machine learning concerned with identifying and utilizing
patterns within a data set has gained tremendous importance
within the past decade. Even though the germinal idea can be
traced back to the 1950s,! it is safe to say that the domain has
become a pioneering field ofresearch within the past few years
due to escalation in computational prowess and data
availability and that it has metamorphosed several disciplines
including autonomous driving,2 image recognition,3 speech
recognition,4 natural language processing,5 computer games,6
and even refugee integration/ Consequently, the integration of
the technique in solving problems ofphysicochemical interest8
have also been explored with remarkable success whether in
predicting ground-state density functionals,9’10 self-energy in
dynamical mean-field theory (DMFT) for the Anderson
model,ll atomistic potentials and force fields for molecular
dynamics,12'13 or the unsupervised learning of phases of the
2D-Ising Hamiltonian.14 Similar advancements have also been
made in the fields of deep learningl5 and artificial neural
networks (ANN) which have been used successfully to learn
phase transition parametersl6’l7 or in quantum phase
recognition.18 Among the various architectures in this
category, restricted Boltzmann machine (RBM)-based gen-
erative models being a universally powerful approximator for
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any probability density19,20 have particularly gained attention.
RBMs have been successfully used to reconstruct quantum
states in tomography from measurement statistics.2l Carleo
and Troyer showed how a neural network encoding a shallow
RBM ansatz requires fewer parameters than certain kinds of
matrix product states and predicts the ground-state energy and
unitary dynamical evolution of simple spin models with high
accuracy.22

However, all the algorithms discussed above have trained
machine-learning or deep-learning models on a classical
computer to effectively recreate either a quantum state or its
The past decade has also witnessed
unprecedented development in quantum computing as a new

essential features.
paradigm which is fundamentally different than its classical

counterpart in processing and storing data and performing
logical operations23 harnessing the power of quantum
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superposition and nonclassical correlations like entanglement.
A natural question that has spawned is whether such quantum
machines can interpret and produce statistical patterns in data
which are either difficult for classical machine-learning
algorithms or the performance of machine-learning algorithms
on quantum computer can outperform the classical variants in
efficiency.24 This has naturally motivated the development ofa
host of quantum machine-learning algorithms like Quantum
Principal Component Analysis (PCA),25 Quantum Support
Vector Machines (QSVM),26 Quantum Reinforcement Learn-
ing,27 quantum supervised and unsupervised learning,28 kernel
design for Gaussian processes,29 Gaussian process regression,30
quantum classifier, or a plethora of linear algebra routines
like HHL,32 QSVD,33 and qBLAS34 which form the backbone
of the quantum versions of many other machine-learning
algorithms. Each of these methods has reported theoretical
speedup over the best-known classical algorithm under certain
specific circumstances.35 Similar investigations have also been
undertaken for artificial neural networks to discover any
unforeseen quantum advantage. For instance, Amin and co-
workers have demonstrated a quantum Boltzmann machine36
by adding an off-diagonal transverse field to the training model
thereby making it more expressive to treat larger classes of
problems.37 Weibe et al. have shown how sampling from a
Gibbs distribution as is required for training an RBM can be
distinctly accelerated using a quantum processor.38

Motivated by such recent developments, Xia and Kais39
proposed an actual quantum circuit using polynomial resources
to correctly learn the amplitude of the RBM ansatz encoded
within a neural network representing the state of a quantum
system. The work also extended the neural network to three
layers to learn the sign of the various components of the
encoded wave function. The algorithm was benchmarked by
showing the evaluation of ground states on simple molecular
systems like H% LiH, and so on, thereby formally extending the
efforts mentioned above to actual electronic structure
calculations which are considered to be powerful applications
of near-term quantum devices. Indeed, interesting algorithmic
advances have been made recently that can capture both the
ground and excited states of'such electronic structure problems
with good accuracy.40-46 Kanno et al.47 modified the above
method to encompass the complex phase of each component
of the wave function by adding an additional neuron to the
third layer. However, both the works simulated the perform-
ance of the algorithm for ground states only on noiseless
classical devices. In fact, due to conditional dependence on the
sequence of measurements of the ancilla register, straightfor-
ward implementation of the algorithm on a present-day actual
NISQ _device is difficult.

The main contributions of this manuscript are as follows:
(1) Unlike previous efforts, we focus our attention beyond just
the ground state and devise a quantum machine-learning
algorithm with a three-layered RBM being trained to learn any
arbitrary state of the system retaining the quadratic resource
requirements. To train the network with the RBM ansatz, we
employ a hardware-implementable version of the above
quantum circuit which as we shall discuss explicitly makes
our algorithm require quadratic resources in all fronts like
circuit width, circuit depth, and parameter count. (2) A generic
lower bound for the successful sampling ofthe quantum circuit
in the algorithm is derived in terms of the parameters of the
network. The performance of the lower bound is thoroughly
characterized, and specific limiting cases leading to known
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bounds are formally deduced and discussed. On the basis of
this we also discuss in detail the measurement statistics of our
algorithm for systems studied in this report and in general. (3)
We also present a simple yet formal proof of feasibility of the
cost function used to train the network. Even though such
functions have been used in classical algorithms and are
beginning to being used in other quantum algorithms beyond
the precincts of quantum machine learning, a formal proof'is
lacking in literature which we supply here for completeness.
(4) Furthermore, unlike most reports on quantum machine
learning and quantum computing in general which have
studied molecular systems only, we apply our algorithm on
important 2D materials like monolayer transition metal
dichalcogenides (TMDCs) which are hitherto unexplored on
a quantum computer using any algorithm let alone quantum
machine learning. These materials have been shown to possess
tunable band gap for many novel applications.48-51 We make a
comprehensive study of such materials by showing how our
algorithm can not only learn the true band gap but also by
resolving finer yet important features like trigonal warping and
spin—orbit coupling (SOC) which dictates the low-energy
physics near the JC-valley. The importance of understanding
excited states beyond just the valence band for such periodic
materials underlies its function in photovoltaics.52’53 If applied
to other systems, then excited states can be an insightful
resource like in elucidating the reaction pathways across
conical intersections arising in processes like vision,54'55
photosynthesis,56’57 magneto-reception,58’59 and even the
biochemistry of luciferin60 to name a few. (5) We further
demonstrate in a unified way how a user can sieve any desired
state in such materials using not only energy as in point (4) but
also other inherent symmetries of the Hamiltonian. (6) All
numerical experiments are implemented on not only quantum
simulator (Qiskit) but also actual NISQ. devices using the
quantum processors at IBM.61 The performance of the
algorithm is benchmarked thoroughly in each case using
quantifiers like energy errors of the target state, state
composition, constraint violation, infidelity with the target
state learnt by the neural network, and so on. The usage of
certain kinds of error-mitigation techniques and the role of
initial parametrization enhancing the capacity of the model
through additional spins in the network is thoroughly
discussed. We have also included results from a molecular
example wherein multireference correlation is important due to
geometric distortion. To the best of our knowledge, all ofthese
are first of their kind in any flavor of quantum machine
learning. We show that the performance of our algorithm is in
excellent agreement with the exact value in each case.

The organization ofthis paper is as follows. In section 2, we
discuss the theoretical underpinning of our algorithm with an
original proof of the feasibility of our cost function employed
for training the network. In section 3, we elaborate on the
geometry of the network and the details of the algorithm
required for learning the desired feature with the associated
resource requirements and implementation techniques. We
prove an explicit lower bound on the probability of successful
events on our algorithm (see Supporting Information section
2). In section 4, we discuss the application of'the algorithm in
simulating excited states or any arbitrary states in two
important TMDCs: MoS2- and WS2-based on user-defined
constraints. We conclude in section 5 with a brief discussion of
possible future extensions.

httpsy/doi.org/10.1021 /jacs.1 C06246
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2. THEORY

Our objective is to develop an efficient algorithm to train a
neural network to perform the following minimization in a d-
dimensional space

min (i//IHIi//)
VyreS

S — {IX)I0Ix) — colxy) V Ix) e Cd} )

where H G Cdxd is the hermitian Hamiltonian defining the
problem. Similarly, 6 G Cdxd is the user-defined hermitian
operator, co is the eigenvalue (real-valued) of the operator O
and Ix) is the corresponding eigenvector. The set S is the
collection ofall such eigenvectors with a specific eigenvalue ft).
The operators O which we shall discuss will generally have
more than one element in set .S due to degeneracy in the
eigenspace labeled by co. By construction, the form of the
algorithm shall always normalize the state [//); hence,
normalization as a further constraint is unnecessary. We will
return to this point later. The primary goal ofthe network is to
then encode a normalized state-vector It//) which is a formal
solution to eq 1. The corresponding state so obtained is from
the eigenspace of O with eigenvalue co. If several such choices
exist, then the network learns the one with minimum energy.
To solve the quadratic minimization problem with quadratic
constraint in eq 1, we will define a penalty procedure as

F(\w), H, 6, A) = (ydHIt/r) + A(y1(0 — t»)V> @)

where A > 0 is the penalty parameter. We provide a formal and
original proof of equivalence of eq 2 with respect to eq 1 based
on the following Theorem.

Theorem 2.1. Let {A,}, be a sequence in the penalty
parameter such that Aj < 42 < A3 .. A*, — oo. Also let P =
{l//;)} such that V It//;) G P the following is true.

It)<) = arg min F(A,, H, 6, 1t//))
v 3)

In other words, P is the set of minimizers for eq 2 for each
penalty parameter A G {A,}”. IfIt/*) G P is a limit-point ofthe
convergent sequence {t//;}*’i in P, i.e., It/¥*) = lim,” li/zj, then
It/*) G §

An original proofof Theorem 2.1 is given in section | ofthe
Supporting Information based on the fact that both the first
and second term in eq 2 are quadratic forms. An intuitive
explanation can be provided that would suffice to appreciate
the discussion in this report. One can note that in the cost
function defined in eq 2 the term (vAH\y/) imposes the
minimization of energy as required in eq 1. The second term,
i.e., (1//1(0 — <w)2lt//), is the variance ofthe operator O with the
mean being the eigenvalue co and is non-negative by
construction. For large values of the penalty parameter A, the
minimization of the overall cost function is afforded if the
variance term is pinned to zero, i.e., the state It//*) so chosen is
an eigenstate of the operator O with eigenvalue co. The space
of such states is defined by the set S in eq 1. If several such
choices exist, then the role of the first term kicks in to
guarantee optimality in energy.

While penalized optimization schemes with cost function of

the kind in eq 2 have been employed in classical algorithms like
Density Matrix Renormalization Group (DMRG),62 in

Quantum Monte Carlo methods in the past,63 and even
recently64 and are also are beginning to gain attention in recent
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literature on quantum algorithms beyond quantum machine
learning, i.e., in algorithms using Unitary-Coupled Cluster
Ansatz (UCC) of variational quantum eigensolver (VQE),65
yet a formal proof is lacking. Besides a more popular choice
that has been studied in some detail is constraining the average
value of'the operator (t//I01i//)66,67 with the required eigenvalue

instead of penalizing the variance as in eq 2. However, this
recent study65 shows eq 2 is a better penalty procedure in
terms of feasibility and final error than restraining the average
without providing a formal proof of equivalence between eqs 2
and 1. Ref 65 also implemented the same to target symmetry
operators on molecular systems using UCC-VQE using
Qulacs68 which is an ideal simulator of a real quantum
computer. However, in this report, we shall use eq 2 to develop
and train a shallow neural network using a quantum machine-
learning algorithm with quadratic resource requirements in
terms ofthe size ofthe qubit register, the number of gates, and
parameter counts. The ansatz which the neural network would
encode for the quantum state ly) would correspond to a
probability density represented by RBM. We benchmark our
algorithm on important 2D periodic materials like TMDCs and
show implementations not only on quantum simulators but on
actual NISQ. devices (IBM-Q). TMDCs have never been
studied before using any quantum algorithm. In the next few
sections, we shall show how to filter any specific state ofthese
2D materials using either symmetry operators of the
Hamiltonian or user-defined constructions of operator O in a
unified manner using the same algorithm. Such an attempt to
the best of our knowledge is the first ofiits kind in QML as all
previous reports have focused exclusively on targeting the
ground state of the system alone.47,69

2.1. Filter for Specific Excited States. To target the first
excited state ofthe system, one can use a user-defined operator
(O = Ig)(gl, ft) = 0) where Ig) is the ground state of the system
obtained by training the network in a previous computation
with A =0 in eq 2. In essence, we require the neural network to
return a state vector in the null space of operator lg)(gl. Since
the null space is (d — l)-dimensional, the minimum energy
criterion as enforced by the first term in eq 2 guarantees the
first excited state. This method using the penalty program in eq
2 is formally equivalent to the deflation technique if one
recognizes the idempotency of O = lg)(gl. Deflation has been
the cornerstone of many classical algorithms in the past for
obtaining excited states70,71 and even a quantum algorithm as
well with UCC-VQE.72 However, the formal reduction of our
penalty procedure to deflation in eq 2 based on Theorem 2.1
offers a slightly different perspective. Moreover, as we shall see
shortly, the penalty program in eq 2 is more general and can be
used to sieve any state based on arbitrary operator O. For
higher excited states (say the tth), one can add similar terms to
eq 2 with the set {Ojft/ which forms a set of commuting
operators with progressively refined null space. For the choice
ofthe penalty parameter A in eq 2, one can choose any number
greater than the spectral range of the Hamiltonian / as that
would always work. The spectral range can be computed from
the knowledge of the ground state and ||H]|2.

2.2. Filter for Arbitrary States Using Symmetry
Operators. Equation 2 can be used to solve a more general
problem with any symmetry operator of the system O (by
definition such operators satisfy [O, ] = 0 and hence share
the same -eigenspace). The corresponding user-desired
eigenvalue co labels the symmetry sector (set S in eq 1).
Unlike in the previous case in section 2.1, the usual symmetry

httpsy/doi.org/10.1021/jacs.1c06246
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Figure 1. (a) RBM architecture used in this work. The visible node contains # neurons (green); the hidden node has m neurons (blue). The phase
node contains 2 neurons: one to model the real part (orange) of'the phase ofthe wave function and the other to model the imaginary part (gray).
The weights and biases ofthe respective units are displayed. The RBM ansatz for the required state is defined from the Boltzmann distribution over
the state-space of the visible-hidden units, (b) QML algorithm used to perform the variance penalized optimization. The part of step (ii) marked
within the red box is performed on a quantum processor (QPU). All other steps are performed on a classical computer. Each step is marked with a
roman numeral. We follow each of'these roman numerals for discussing the algorithm in section 3.2.

operators need not satisfy idempotency and hence relaxation to
deflation is impossible. To demonstrate our point, here we
shall use O = L2 where L2 is the squared-orbital angular
momentum operator, a symmetry for 2D materials, ¢o would be
set to the desired eigenvalue of L2. We shall see that the
network will always learn the lowest energy eigenstate correctly
despite multiple-fold degeneracy. To sieve other states from
the entire degenerate subspace, one can use a combination
filter of O, = L2 and 02 = b)(vl where 1v) is the lowest energy
state in the symmetry subspace obtained from the RBM. The
penalty parameter X can be chosen using the prescription in ref
65.

3. ALGORITHM

3.1. The Model. In the early 1980s, Hopfield networks73
defined a probability distribution over a set of random
variables which is encoded within the nodes of a unidirected
graph using the physical notion of energy of interaction
between the nodes. Boltzmann machines (BM) are extensions
of'such a network that categorizes the node space into visible/
physical layer and hidden/latent layers maintaining all to all
connectivity.74 A restricted Boltzmann machine
(RBM)82075-78 is a practically useful subcategory of BM
which permits interaction only between the visible layer and
hidden layer. The energy function used in the RBM model is
thus that of a partially connected classical Ising network and
the ansatz for the probability distribution is the corresponding
thermal distribution. The ansatz is optimized to mimic the
underlying probability distribution of'the given data using free
parameters called weights and biases.19,76*8] The goal of this
paper is to use the RBM distribution to encode the amplitude
field of'an arbitrary quantum state li/r) which is a solution to eq
1. Such neural-network quantum states (NQS) have been
successfully employed in a variety of problems recently8'2022'82

by training the weights and biases using a classical computer.

Herein, we shall train the network by constructing the RBM
distribution using a quantum circuit and discuss the quantum
advantages.

The RBM network we use in this report consists specifically
of'three layers each having multiple neurons. The schematic of
the network architecture is presented in Figure la. The first
layer is the visible node consisting of n neurons; the second
layer is the hidden node consisting ofm neurons. The last layer
is a phase node consisting of two neurons. While the n neurons
are responsible for encoding the actual state, the purpose ofthe
hidden neurons m is to add more controllable parameters to
make the joint probability distribution (to be defined in eq 4)
more expressive and induce higher order correlation among n
neurons. Variables encoded by the visible node neurons
(henceforth denoted by {<7,}"=]1) and those by the hidden node
neurons (henceforth denoted by {4,}™;) are both binary
random variables as af and G (1, —1). As depicted in Figure
la, the bias vector of'the visible neurons is denoted as a £ R",
the bias vector of hidden neurons is denoted as b G Rm, and
the interconnecting weights of the visible and hidden neurons
are denoted as W £ R"Xm. The joint RBM distribu-

tion820'76-78 P(a, b, W, a, h) defined over the variables
(5, 1) is

eEl
P(a, b, W, S, h)

A<M “

For an electronic Hamiltonian with » spin—orbitals and NV
electrons, a naive Jordan Wigner mapping (JW)83 would make
« = r or (or n » 0(log2(r)) for Bravi—Kitaev mapping).83
However, it is now well-understood that qubit requirements
can be tapered by using additional symmetries like Z2.84 The
chemically inspired process ofreducing qubit cost like using an
active space85 (wherein number of physical qubits required is

https://doi.org/10.1021/jacs.1 C06246
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Hidden nodes
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Figure 2. Gibbs sampling quantum circuit used to create the Boltzmann distribution in Figure 1b (highlighted within the red box in Figure 1(b)
step (ii)) for the case of n = m = 2. The circuit contains single-qubit R, gates parametrized by biases (a, ) ofhidden and visible neurons and C—

C—Ry gates parametrized by weights /# between the hidden and visible neurons. Each C—C—Ry gate is conditioned to rotate by different angles

and 02 for different choices of configurations ofthe control qubits. This can be implemented by use of X gates as illustrated at the bottom. The
open circles show a node in state 10), and the closed circles show a node in state 11). At the end of the circuit, all qubits are measured and
configurations wherein the ancilla qubits are all in state 11) are postselected (see text for details). For (n + m) visible and hidden neurons, there will
be (n + m) visible and hidden qubits and (n + m) single Ry gates as there are that many biases. However, since the C—C—Ry gates are always
controlled by 1 visible and | hidden qubit, there will be m X n such possibilities each of which targets one ancilla thereby making the size ofthe

ancilla register m X n. Thus, there will be O(n X m) gates and number of qubits in the circuit. We discuss this further in section 3.3.

still 1, but logical qubits required are much less as some qubits
have frozen occupation/eigenvalue with Z operator) or using
point-group symmetry or angular-momentum symmetry ofthe
required state84,86 is also being recently employed. Thus, a
direct relationship of » with r would depend on the
specification of the mapping and tapering used. Whatever
may be the method, if the final A matrix is Cdxd (as used in

section 2), then it is safe to say that in our model » = log2(d) .
The number of hidden units m in our model is user-defined
(for almost all data in this manuscript we have used n = m),
but the hidden node density @ = m/n can be tuned to enhance
the final accuracy desired. We shall return to this point later.
Neurons in the phase node are always 2 in number.

The purpose of'the neurons in the phase node is to account
for complex values and capture the phase of the wave
function47 unlike in conventional two-layer RBM networks21
which faithfully recovers only the amplitude. As shown in
Figure la, for the phase node, the biases are denoted by
{c, e) E R2 where c is the bias for the neuron capturing the
real part of the phase and e is the bias for the neuron encoding
the corresponding imaginary part. The phase node shares
interconnections with the visible node only and is defined by

d E R" for the real part of the phase and / E R" for the
associated imaginary part. The corresponding phase function
for the quantum state lyz) defined using these nodes is

s(d.f c e 3) =tanh ¢+ 2diai 4, i

€)

Together, the set X = (a, b, W, d,f, c, e) thus defines the
complete set of trainable parameters of the model which the
network shall learn iteratively to mimic the coefficients of the
quantum state lyr) in the chosen basis. We shall discuss the
algorithm to do this in the next section.

3.2. Outline of the Method. The entire algorithm is
schematically depicted in Figure 1b. It goes as follows.

(i)The first step is to initialize the parameters in the

parameter vector X = (a, b, W, d,f, ¢, ¢ on a classical
computer. All parameters are randomly initialized in the
parameter range [—0.02, 0.02] to avoid the vanishing gradient
of the activation function for the phase node.39 Sometimes if
random initialization returns a poorly converged result, then
we use the initial parameter set of a converged point in a
similar problem as the starting guess, a process known as warm
optimization.

(i) In the second step, the set (a, b, W) is fed into a
quantum circuit for Gibbs sampling shown in Figure 2. This
step is performed on a quantum computer. The circuit requires
n + m qubits to encode the visible node and the hidden node
respectively and additionally m X n ancillary qubits. The entire
register is initialized to 10). The purpose of the circuit is to
sample a bit string (3, #) E {lI, —1}m+" from the RBM

distribution P(a, b, W, a, h) defined in before in eq 4.69 In
reality, the circuit actually draws a sample (3, /) from

gi/KZi “A+Zj hhi+T,ij wVL)

) =
QE, b W, 3. £ SIACE; af+X; %+Z; y/l/)
[ah]

https://doi.org/10.1021/jacs.1 C06246
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and then reconstructs
P(a, b, W, a, h) < Q(a, b, W, a, h)k. The real-valued pa-
rameter k will be discussed shortly.

The state ofthe visible node qubits and hidden node qubits
are denoted henceforth as Iff) and Ify) respectively. When ff,
(or hj) = —1, Iff)) (orlkj)) = 10) and 11) otherwise. In the circuit
shown in Figure 2, the single-qubit Ry gates acting only on the
visible and hidden units have rotation angles parametrized by

(a, b)and are responsible for creating the noninteracting part

of the distribution in Q.(fl, b, W, 5, h), while the interaction
terms {2yMi;0ify} are turned on through using C—C—Ry gates
acting on ancilla register as the target. The rotation angles of
these doubly controlled Ry gates are parametrized by W and
are different for different configurations of the control qubits
(always 1| hidden and 1 visible). Various such choices can be
realized by using X gates as shown in Figure 2. After all such
operations, we measure all the (m + n + m X n) qubits and
after select the results wherein the ancilla qubits have collapsed
to state 11111... 1m,,) only. We show that the probability of such
a successful event has a generic lower bound determinable in

terms of the parameters ofthe network (a, b, W) (for details
of'the derivation ofthe generic bound, refer to section 2 ofthe
Supporting Information). This master lower bound generalizes
the previously noted one39 as a special case. The role of the
real-valued parameter k kicks in here. It serves as a regulator
and is chosen in simulation to make the aforesaid lower bound
a constant value (see section 2 in the Supporting Information).
After the postselection, the corresponding states of the visible
and hidden units are equivalent to all possible bit strings

sampled from the distribution Q(a, b, W, ff, h) from which

the desired distribution P(a, b, W, a, h) is constructed. The
primary quantum advantage in our algorithm comes at this
step where the full RBM distribution is constructed. Indeed,
we shall elaborate in section 3.3 that there are no polynomial-
time classical algorithms for the construction of full RBM
distribution. In our case, we can access the full distribution
using quadratic resources by leveraging a quantum computer.
The physical reason for this advantage is rooted in quantum
parallelism which before a projective measurement allows the
general state of the (m + n + m X n) qubits to be a
superposition of all possible bit-strings with the coefficients
sampled from the full RBM distribution. Many such measure-
ments are necessary to construct the RBM distribution
encoding the target state as postmeasurement we can retrieve
only one such bit-string. As explained above, the k& parameter in
our model is useful here as it can be adaptively chosen by the
user to control the measurement statistics (see section 2 in the
Supporting Information). Besides, for all systems primarily
treated in this manuscript, we shall show that the chances of
the ancilla register collapsing in the favorable state are naturally
high even for modest values of'the k& parameter (see section 5

in the Supporting Information). With P¢a, b, W, ft, h)
constructed, one can now compute the marginal distribution
over the state space of'the visible units only as p(a, b, W, a)

where p(a, b W, a) — “~P(a, b, W, ff, h). Now

ﬂp'(a, b, W, ff) defines the amplitude of wave function

over basis states of'the visible units, i.e., Iffiff2... ff,)). The phase
of each component of the wave function is now constructed

pubs.acs.org/JACS Article

classically using (d, /, e) and tanh activation of neurons in the
phase node as defined before in eq 5.

(ill) With the two information from step (ii), the target wave
function can now be constructed classically as

Vx) = 2] k, W, ff) s(d.f, c, e, fDloiff2..f,)

@)

(iv) With the wave function, the cost function in eq 2 can
now be constructed classically with the (ff, O, A) from the user
where A and O are the Hamiltonian and filter operator for the
system being investigated, respectively, and A is the penalty
parameter.

(v) The next step is to check for convergence criterion or
maximum number ofiterations (to be discussed later). Ifeither
of'the criterion is satisfied, then the results are printed.

(vi) If either of the criterion from the previous step is not

satisfied, then the parameter set X is updated using steepest-
descent algorithm with a learning rate (set to 0.005 in all our

calculations). The updated parameter vector X is fed into step
(i1) for the next iteration of the algorithm. We have also used
the ADAM optimizer,87 but there is no significant change in
convergence for the systems treated in this report. It must be
emphasized that unlike in classical supervised deep-learning
models the learning of our network does not require prior
training against a preassigned labeled data set. The network
learns the target eigenstate directly through minimization of
the cost function (see eq 2) using the optimizer of choice
(gradient descent in this case).

3.3. Resource Requirements. The power of an RBM
ansatz even though underutilized in material science is
beginning to gain attention in many areas of Fermionic and
bosonic physics.20,82'88 Using n visible neurons and m hidden
neurons, a recent study89 has shown explicitly how a shallow
RBM ansatz (a = m/n = 1) like ours already captures several
orders of perturbation theory and is a good approximant to the
exact state. Classically, constructing such a full RBM
distribution will require tracking amplitudes from a Zm+n
dimensional state space and hence has exponential resource
requirements in preparation. Ref 90 formalizes and consol-
idates this statement by proving that a polynomial-time
algorithm for classically simulating or constructing a full
RBM distribution is not only absent now but also is unlikely to
exist even in the future as long as the polynomial hierarchy
remains uncollapsed. However, such analysis does not preclude
the existence of efficient quantum algorithms such as the one
considered in this work. The quantum circuit in our algorithm
(see Figure 2) uses m + n + m.X n qubits only for constructing
the state indicating an O(m X n) scaling in the qubit resource
which if expressed in terms of hidden node density a = m/n is
O(an2) The gate-set comprising single-qubit Ry gates also
scales as m + n, one for each ofthe bias terms (a, b) of the
visible and hidden node qubits. Each C—C—Ry gate in the

circuit mediate a single interaction term within the # matrix
between a spin of the visible layer cr, and a spin ofthe hidden
layer hj. Since there are m X n such terms, the number of C—
C—Ry gates are also m.Xn, with the targets being each qubit in
the ancilla register. Toggling between the various config-
urations of the control qubits (1 visible + | hidden) would
require 6 R% gates additionally in each C—C—Ry (see Figure 2);
hence, the total number of'such R% gates is 6mn. This indicates
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the total gate requirements of our sampling circuit is also O(m
X n) which is equivalent to O(an2). The number of variational
parameters in our algorithm for amplitude encoding using
RBM is m + n for the biases ofthe two nodes and m X n for the
W matrix. For the phase encoding, the variables are two n-
dimensional vectors (<7, f) and two scalars (c, e¢). Thus, the
total number ofvariational parameters isttJXn + m + 3w + 2 =
an? + an + 3n + 2 which is also quadratic. The upshot is then
that our algorithm for an RBM ansatz uses O(an2) qubits
(circuit width), gate-set (circuit depth), and variational
parameters to encode any arbitrary quantum state of n qubits
in a d = 2”-dimensional Hilbert space. Removing redundancy
in the global phase and normalization, a general such state
would require 2(2" — 1) parameters. One must know that in
the RBM construction circuit no specific structure or sparsity

has been assumed in the # matrix which if present may lower
the requirements further. Quantum advantages have also been
observed in supervised learning using the RBM distribution.38
The study indicated that for the data set of size N, a quantum
circuit with amplitude amplification reduces the complexity of
the algorithm from the conventional O(N) to O(\V/N), a
quadratic boost. It must also be emphasized that all the results
in this manuscript are primarily treated for the case ofa = 1 as
that suffices for the description of the system we study. We
show how the results change for changing hidden node density
a in section 6 of'the Supporting Information. Even though a =
1 is good for systems in this report, for the case where the state
is highly entangled, the user may be required to enhance the
hidden node density as that increases the number of'variational
parameters and make the ansatz more expressive.20 That may
also be the case for molecular systems under geometric
distortion wherein multireference correlation is important (we
explore this point briefly in section 10 of the Supporting
Information). In this work, all our results are compared against
exact diagonalization as it affords the best accuracy in a given
basis. The exact diagonalization results are obtained using
“Numpy” package9l in python 3.0 with LAPACK routine.
3.4. Implementation Methods. We implement the
algorithm in three flavors of computation. The first flavor
henceforth designated as “RfiM-d” involves implementing the
entire gate set of the Gibbs sampling circuit on a classical
computer. This computation returns to us the exact state after
the termination ofthe circuit. The second flavor is henceforth
designated as “RBM-qasm”. This has been implemented by
simulating the Gibbs sampling circuit using Qiskit which
stands for IBM’s Quantum Information Software Kit
(Qiskit).61 We specifically used the gasm_simulator at Aer
provider (hence the name RBM-qasm) which is a quantum
computer simulator and hence can mimic calculations
performed on a noisy-intermediate scale quantum computing
device even using a classical computer with options to
incorporate customizable noise models. Unlike in “RBM-cl”
where the exact state is returned, in “RBM-qasm”, the Gibbs
sampling circuit in Figure 2 is interrogated multiple times to
build measurement statistics. From the observed bit-strings,

the measurement probabilities P(a, b, W, 3, h) are com-
puted; hence, the results are subjected to statistical fluctuations
due to finite sampling errors. No noise model was used during
the simulation in “RBM-qasm”. Finally, to see the effect of
noise, we also investigated the performance of our algorithm

on real IBM-Q,quantum computers using the Qiskit interface.
We used IBM-Q,Sydney92 and IBM-Q_Toronto93 interchange-

pubs.acs.org/JACS Article

ably, both of which are 27 qubit machines and hence suitable
for our case studies. Calculations of'this flavor are henceforth
referred to as “RBM-IBMQ,”. To reduce the effect of noise on
the sampling probabilities we employ measurement error
mitigation (MEM)9%4 directly implementable on Qiskit. We
show in this report that MEM alone guarantees smooth and
clear self-convergence in training (see section 4 in the
Supporting Information). The final accuracy of the results is
affected by both MEM and warm-starting. We have seen
without warm-starting convergence can not only be slow but
sometimes the network can even be trapped in a local minima.
It is in general difficult to assess apriori when the need for
warm-starting can arise without a knowledge of the
optimization surface as the objective function being optimized
for the amplitude and the phase are nonconvex in the
arguments (see eqs 4 and 5). It has been noted that the
algorithm converges better without the need for warm-starting
near optima (symmetry points for the system being treated in
this report as discussed later). For the “RBM-qasm” and
“RBM-cl” simulations, the maximum number of iterations
within which well-converged results to be discussed below
were obtained is <30 000 either with a warm-start or randomly
initialized parameter set depending on the case. The “RBM-
IBMQ,” simulations were performed by breaking into two
sessions/runs with the maximum iteration <700 for each
session to reduce the job queue. Normally most calculations
converged well before 700 iterations were reached within the
first run as warm-starting and MEM has been used as described
above. For the few that did not, the final parameter set of the
first run is punched for initializing the second session to ensure
one continuous run. It must be emphasized that the entire
code-base for training the network is home-built in Python 3.0
using standard packages like Numpy.91 As mentioned before,
we have extensively used Qiskit though as an interface to
communicate with the IBMQhardware and with gasm_simu-
lator.

4. RESULTS AND DISCUSSION

As a test of our method, we target state filtration of energy
eigenstates of two well-established TMDCs: monolayer
molybdenum disulfide (Mo0S2) and monolayer tungsten
disulfide (WS2). Monolayer TMDCs have so far eluded
attention in quantum simulations even though it is imperative
to study their electronic structures to understand novel
properties51'96 like high carrier mobility, high photolumines-
cence due to the direct band gap, lack of inversion symmetry
leading to large spin—orbit coupling, intravalley transport, and
so on. Indeed, such features have made them attractive
candidates for applications in field-effect transistors,97 super-
capacitors,98 spintronics,99 optoelectronics,100'101 and “valley-
tronics”.102 We first show how the entire conduction band
(CB) in such materials can be simulated using an appropriate
choice of operator O as the ground-state projector as discussed
before and then later show how to “sieve” eigenstates based on
angular momentum symmetry. In all cases, we implement our
algorithm on three flavors of RBM calculations as discussed:
RBM-cl, RBM-qasm, and RBM-IBMQ.

4.1. Filter for Target Excited States: Simulation of
Low-Energy Bands in MoS2 and WS2 and the Effect of
Spin—Orbit Coupling. The geometrical structure of
monolayer TMDCs like MoS2 or WS2 indicates the presence
of a trigonal prismatic real space unit cell5] with D3J, point
group symmetry as shown in Figure 3. The transition metal is

https://doi.org/10.1021 /jacs.1 C06246
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Figure 3. (a) Top view ofthe TMDC monolayer as studied in this report. The orange atoms are a chalcogen whereas the blue atoms are the metal
center, (b) Real-space trigonal prismatic unit cell highlighting D3k symmetry. This shows that in the TMDC monolayer unlike in graphene, the
constituent atoms have a noncoplanar arrangement, (c) Unit cell in reciprocal space showing the important symmetry points (F, K, M, K'). We
shall investigate the energy and other properties within the sector marked in green following the usual F—K—M—F path as in ref 103. The

coordinates ofthe symmetry points as (fc*, ky) are F = (0, 0), K =

0j, and M =

where al is the metal—chalcogen bond length.

For systems studied in this report the metal center is Mo, W, and the chalcogen is S.

at the center and the sulfur atoms are at the six comers of'the
triangular prism (see Figure 3b). Consequently, the best orbital
decomposition to evaluate the band structure of this periodic
material should involve not only the s, p, and d orbitals of'the
central metal atom but also of the surrounding sulfur atoms.
Indeed several reports exist which treats the -electronic
structure of such materials using a tight-binding description
obtainable from a 5, 7, or an 11 band model using a varying
degree of inclusion of the orbital set of the metal and the
chalcogen.104-107 However, recently a three-band parametriza-
tion has been demonstrated to yield remarkable accuracy in
energy over the entire Brillouin zone.l03 A tight-binding
Hamiltonian in this description is obtained by fitting the
energy curves against DPT calculations (with GGA and LDA
functionals) only employing the dz), and dx]_] orbitals of
the metal center.103 This choice is based on the fact that for
trigonal prismatic coordination, the d orbital set of the metal
splits into three groups: A/ containing dz} orbital only, E'
containing d” and ! ), and E" containing dm and dyz orbitals.
However, reflection symmetry of Dih restricts intercoupling
between the orbitals of £” set with the remaining two groups.
Indeed E" contributes exclusively to higher energy bands and
has no role to play in the low-energy physics ofthe valence and
conduction band which is considered in this work. The
absence of chalcogen p orbitals is definitely an approximation
albeit a good one as seen from ref 103. We shall return to this
point shortly.

We henceforth use a tight-binding model comprising of
third-nearest neighbor (TNN) metal—metal hoppingl03 ofthe
aforesaid three-band Hamiltonian for all our calculations. The
parameters of the model are obtained from the more accurate
GGA calculation set.103 Section 3 of the Supporting
Information gives the details of the Hamiltonian and
parameters for completeness and brevity. Our working

Hamiltonian, for both the systems are thus a 3 X 3 Hermitian
matrix. For qubitization we convert it into a 4 X 4 Hermitian
matrix by padding an additional 12X1 block with a diagonal
entry chosen to be greater than or equal to the spectral range
of H3x3 as that would keep the low-lying eigenvalue structure
of the resultant matrix undisturbed for the training to
successfully proceed. Thus, for both the systems, our neural
network comprises of a visible node with 2 neurons to encode
the state, two hidden neurons, and additional 2 neurons for the
phase node. For the Gibbs sampling circuit in Figure 2, we thus
need 2 qubits to represent the entire visible layer and 2 qubits
for the hidden layer. In addition, we need 4 ancilla qubits to
serve as targets for (C—C—Ry) rotation thereby requiring 8
qubits in total. For the circuit in Figure 2, we use 4 single-qubit
rotation gates (Ey), 4 controlled—controlled rotation gates
(C—C—Ry), and also 24 bit-flip (X) gates. The optimization in
each case starts from a randomly initialized parameter set. In
case if the accuracy is poor, then we restart the algorithm by
feeding the initial parameter from the results of a nearby
converged k-point as a warm start. We see the results are in
excellent agreement with the exact diagonalization when a such
a warm start is employed along with MEM as described before.
For IBMQ implementation, we have used “IBM-Sydney” and
“IBM-Toronto” both of which are 27 qubit machines. To
reduce the operational time on the actual quantum device for
the job queue and isolate the effect of gate-infidelity, IBMQ
simulations for each k-point were often warm-started with an
initial parameter set obtained from the initial parameters ofthe
gasm simulation of a nearby but nonidentical k-point.

The results from the algorithm using the cost function in eq
2 is displayed in Figure 4 for MoS2 and Figure 5 for WS2. In
Figure 4a, we have overlaid the energies obtained from our
algorithm as a function ofthe wave-vector index sampled from
the Brillouin zone following the usual T—K—M—F path (see

https://doi.org/10.1021/jacs.1 C06246
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Quantum states at k=K point

Figure 4. (a) Valence (VB) and conduction band (CB) ofMoS?2 calculated using all flavors of RBM and overlaid against exact diagonalization. The
valence band is simulated using X = 0 in eq 2 and the conduction band using (O = v0)(v0l, > = 0, X = 5) in eq 2 where Iv0) is the valence band state
at each fc-point. For IBMQ_implementations we used “IBM-Sydney” and “IBM-Toronto”. All parameters are randomly initialized (see Figure 2) or
warm-started with the initial guess of a converged nearby fc-point. (b) Corresponding energy errors from (a) in eV. (c) Corresponding state
infidelities (1 — Fid) where Fid = 1(tt, RBMItPEQCt)12. (d) Orbital decomposition ofthe states at K-point where 10) = dz),11) = d”, and 12) = The
states from RBM calculations match well with those from exact diagonalization in phase and amplitude. The width for each bar is set differently for

visual clarity.

Figure 3c). The result for the valence band (VB) is denoted in
blue and is obtained by setting X = 0 in eq 2 which corresponds
to the usual variational optimization to obtain the ground state
at each fc-point. The results for the CB are shown in orange in
Figure 4a. They are thereafter computed as a separate set of
calculations using O = Iv0)(v0l and ft) = 0 in the cost function in
eq 2 where the corresponding ground state in the VB is
denoted as Iv0). The penalty parameter is X = 5. The cost-
function now samples a state orthogonal to ground state (null
space of the projector Iv0)(i/01) for each of the fc-points. The
minimum energy criterion imposed by the first term in the cost
function in eq 2 guarantees obtaining the next higher excited
state which happens to be the state space in the conduction
band.

We see for all flavors of our algorithm (RBM-cl, RBM-qasm,
and RBM-IBMQ) that the simulated energy values for both the
valence and the conduction band are in good agreement with
the ones obtained from exact diagonalization. The correspond-

ing errors in energy are displayed in Figure 4b and are usually
<10-4 eV for RBM-cl and RBM-qasm which are noiseless
pristine implementations, but the error is around 10-2—10-4
eV for the VB and the conduction band for RBM-IBMQ,
indicating the worsening of performance due to faulty gate
implementations in the Gibbs sampling circuit. Figure 4c plots
the state infidelities, i.e., | — Fid where Fid = 1('"PRBMI'PElact)12.
We see that the infidelities are also quite small for each band
with the performance worsened only in the IBMQ_variant of
the RBM implementation.

Like Figure 4a, Figure 5a displays the band structure of WS2
wherein the energies for both the valence and conduction band
are overlaid against the energy values obtained from exact
diagonalization. All three flavors of RBM implementation yield
reasonably accurate results as in the case for Figure 4a. Figure
5b,c displays the energy error and the state infidelities of the
state obtained from the RBM calculations against exact

https://doi.org/10.1021/jacs.1 C06246
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Figure 5. (a) VB and CB of WS2 calculated using all flavors of RBM and overlaid against exact diagonalization. The valence band is simulated using
A =0 in eq 2 and the conduction band using (O = wo)vol, ft) = 0, A = 5) in eq 2 where Iv0) is the valence band state at each fc-point. For IBMQ
implementations we used “IBM-Sydney” and “IBM-Toronto”. All parameters are randomly initialized (see Figure 2) or warm-started with the initial
guess of a converged nearby fc-point. (b) Corresponding energy errors from (a) in eV. (c¢) Corresponding state infidelities (1 — Fid) where Fid =
KvPRBMItt,Emet)12- (d) Orbital decomposition of the states at K-point where 10) = &), 11) = d*, and 12) = dx] 1. The states from RBM calculations
match well with those from exact diagonalization in phase and amplitude. The width for each bar is set differently for visual clarity.

diagonalization. The error ranges in each case are similar to
what has been discussed for MoS2.

Figures 4d and 5d display the orbital decomposition of the
states in the conduction and valence band at the most
important symmetry point, i.e., the K-point. In our
calculations, qubits 10) = ), 11) = d and 12) = d! 1 where
{0, 1, 2} are the integer equivalents ofthe two-qubit bit strings
encoding the neurons of the visible node. We see from our
calculations however that the exact state generated from the
model lines up correctly against the RBM states in both
amplitude and phase. While the state of the conduction band
at K-point is exclusively populated by ), that in the valence
band is a superposition of d _and dx} y? with a phase shift of
311/2. This is consistent with the orbital decomposition given
in Figure 2 of ref 103 and is partly the reason given by the
authors to use this three orbitals for generating the tight-
binding Hamiltonian as the model yields correct state
description near the band gap. However, as is clear from
Figure 2 ofref 103, the orbital composition of'the states at the
F- and M-points has contribution from the p-orbitals of S and

s-orbitals of both the metal and the S atoms. This makes the
three-band model an approximation for the exact character of
the states even though it can replicate the energy very well

throughout the Brillouin zone.

We further concentrate in this report on describing the low-
energy physics near the K or K' valley for which, as mentioned
before, the state description of the three-band model suffices.

We construct the Hamiltonian108-111 near the K-valley in the
basis of the states of the conduction band, i.e., ldz}) (see
Figures 4d and 5d) and that of the valence band, i.e.,
-~dx: y2) + ildjy)) (see Figures 4d and 5d). The states at
the K' valley are related to those at the K valley due to time-
reversal symmetryl10’112 and hence are ignored from further
discussion. The Hamiltonian is

https://doi.org/10.1021/jacs.1 C06246
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Figure 6. (a) Exact energy contours in the VB for s = | within the three-band approximation for the Hamiltonian in eq 8 as a function of (k*, ky)
near the K-point in MoS2. (b) Same as in (a) but fors = —1. (¢) Same as in (a) for the CB. The crosses in (a), (b), and (c) denote the (kM ky) pair
wherein calculations for all three flavors of RBM have been executed, (d) Energy errors in eV from three flavors of RBM calculations for points
denoted as cross in (a) for the valence band (s = 1) case computed using X = 0 in eq 2 in MoS2. The %-axis is a flattened point index with (k# ky)
pairs marked as crosses in (a) mapped to integers such that the origin is at the K-point. From the K-point, the flattened point index scale moves

spirally outward grouping all (kM ky) pairs satisfying Ikl = yjkz + ky as consecutive integers and then proceeding to the next kI () Same as in d)

but with points denoted in b) as crosses for other valence band with s = —1. (f) Same as in (d) but for points denoted in (c) as crosses for the
conduction band computed with (X = 5, (0 = 0, O = W%{¥)) in eq 2. (g) Amplitude for the occupancy of d/ orbital on the metal for states
computed at (k# ky) pairs near the K-point from all three flavors of RBM as well as the exact states in valence band (s = 1) for MoS2. The amplitude

of states with the same Ikl = yjk* + ky appear bunched together as “steps” due to the flattened point-index scale used. Near the K-point, the

amplitude is the same for all such pairs within a given step due to isotropy ofthe energy surface. However, away from the K-point deviations appear
due to trigonal warping owing to the D3h symmetry ofthe unit cells in TMDCs. The states from all flavors of RBM can resolve the influence of
warping accurately with the performance worsened for the noisy variant, (h) Same as in (g) for valence band (s = —l1). (i) Same as in (g) for
conduction band.
- v K-point. These terms are absent in graphene. In most reports
H - (y * Y)( -® * (Y * T)(f * 7) * AS this term is written as A/2<rz with a symmetrically located
origin but we choose to use the Ec and Ev values obtained from
+ YKS, + y(fc( + + Sz) + + fc))(l - <5) our calculations in Figures 4 and 5. The additional summands
in each ofthe first two terms (Av, Xc¢) refer to band-splitting at
the K-point due to spin—orbit coupling (SOC). In the three-
) band basis, SOC is entirely due to the Lz operator (more on

this in the next section) contribution of which in the chosen

+ KTW(K + iky)2(% + iOy) + Krw(k* — — iop

A effective description such as eq 8 is often referred in basis of can be effectively modeled as the first two

literature as the two-band k-p model constructed using Lowdin
Partitioning.103’109 The first two terms in eq 8 is the massive

term required to create the band gap (A) in the material at the

terms.108’111,113 Unlike the Bloch state in the conduction
band, the valence band is exclusively dominated by metal
orbitals ldx] y2) and ld”) with nonzero angular momentum

https://doi.org/10.1021/jacs.1 C06246
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leading to strong splitting.103 The spin—orbit splitting in the
conduction band is weakl103’108'112 and below the resolvable
limit of NISQ.devices and hence has been ignored herein, i.e.,
Xc = 0. The parameter s G {1, —1} is the spin index and labels
the SOC split valence bands. The third through sixth terms are
the linear and quadratic extrapolations away from the K-point
and yield a spherically isotropic band surface. The seventh and
eighth terms (parametrized by K*w) break the isotropy and
lead to the well-known effect of trigonal warping (TW). The
warped band surfaces in these materials are a consequence of
the presence of a perpendicular C3 axis due to the Dill
symmetry of the associated real-space unit cells (see Figure
3b). Further terms in ref 109 which removes anisotropy
between valence and conduction band are ignored due to their
small unresolvable contributions.

Since the Hamiltonian in eq 8 is 2 X 2, we require a single
visible neuron to encode the eigenstates, a single hidden
neuron consistent with @ = 1, and 1 additional ancillary qubit.
The number of single-qubit Ry gates is 2, and the number of
C—C—Ry gates is | and 6 R* gates. Calculations are performed
using X = 0 in eq 2 for the two SOC split valence bands with s
== 1 and (O - 120)(z/0l, X = 5, ft) = 0) for the conduction band.
For NISQ. devices we use “IBM-Sydney” and “IBM-Toronto”
interchangeably as before. All calculations are performed for
(ky ky) pairs centered at the fC-point and with a cutoff Ikl of
0.LK point to probe the low-energy regime. Since the (ky ky)
pairs are near a symmetry point (if-point), warm-starting was
rarely observed to be required in RBM-cl and RBM-qasm but
has been occasionally used in RBM-IBMQ. for hastening
convergence and reducing job queue. Each point on RBM-
IBMQ. are performed within a single run with MEM as before
for smooth self-convergence and consistency with other results.
Parameters for warping are obtained from ref 109.

In Figure 6a—c, we plot the exact 2D band surfaces obtained
from eq 8 for the two SOC split valence bands (s = =1) and
the conduction band. The crosses in each plot refer to the (ky
ky) pairs wherein all flavors of RBM calculations have been
performed. The results of such RBM calculations for each such
pair are displayed as energy errors (eV) in Figure 6d—f. The x-
axis in each such plot is a flattened point index mapping (ky
ky) pairs to integers by starting from pairs closest to the K-
valley at the origin and proceeding spirally outward. In other
words, for a given Ikl the flattened point index groups all (ky

ky) pairs satisfying Ikl = ~c2 + fc2 as consecutive integers and

then proceeds to the next lkl. We see that the energy error in
each case is low for the RBM-cl and RBM-qasm variant (<10-4
eV) for all three bands and <10-2 eV for the IBMQ. variant.
Thus, given the energy scale and extent of the splitting in the
valence bands (s = == 1) in Figure 6a,b and the scale of the
energy errors in Figure 6d,e, it suffices to say that the
performance of our algorithm is good enough to resolve band
splitting due to features like spin—orbit coupling. To study the
effect of warping parameters in eq 8 in the state, we plot in
Figure 6g—i the amplitude ofthe corresponding states in the
basis of\dz) for the two SOC split valence bands (s = = 1) and
the conduction band. The %-axis in each case is the flattened
pair index as in Figure 6d—f. At the JC-point (origin), the
conduction band is exclusively populated by ld/) as discussed
before, but the reverse is true for the valence bands. In each of
the plots in Figure 6g—i, all (ky kp) pairs which satisfy
Ikl = Jk2 + ky are bunched together as “steps” due to the
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flattened point index scale chosen. We see that near the K-
point wherein the effect of warping is not prominent, all such
points within a given “step” (same Ikl) share the same
amplitude. However, away from the fC-point deviation starts to
become predominant. The amplitudes computed from the
states of all three variants of RBM calculations line up well
against the exact curve with the IBMQ.variant showing some
deviations albeit small considering the y-scale in these plots.
Our algorithm thus can successfully resolve finer features like
trigonal warping too in these Bloch states. A similar panel for
WS2 is presented in section 7 of the Supporting Information.
Accurate computation of such Bloch states with these finer
features preserved is necessary as momentum matrix elements
between these states become important in simulating
important properties of materials like optical conductiv-
ity,114'115 electrical and thermal conductivity,116 and so on.

4.2. Filter for Arbitrary States Using Symmetry
Operators. In this section, we shall use the same set of
TMDCs discussed above to explore how one can sieve
arbitrary states based on symmetry constraints. To demon-
strate the point we use orbital angular momentum symmetry.
The Lz operator in the three-band approximation commutes
with the Hamiltonianl03 in absence of spin—orbit coupling as
has been considered in this work. The operators Ly Ly are
essentially null matrices in the three-band basis of {dz}, d_,
dxl_yl} as mentioned in.103 Hence L2 enjoys exclusive
contribution from Lz and is a symmetry operator in the
system. For computation, we use the Hamiltonian of the
system at the K-point because the three-band approximation as
discussed before is extremely accurate therein.

The complete set of eigenvalues and eigenstates of Lz and
hence of L2 operator is given in section § of the Supporting
Information. From the knowledge of the spectrum of L2
operator, we see that it has two distinct eigenvalues which
are (0, 4} in atomic units. One of the eigenvectors of the
doubly degenerate eigenspace with eigenvalue 4 is the state in
the valence band, and the other is a higher energy excited state
above the conduction band (not shown in Figures 4 or 5).
Both these states are exclusively made from the contribution of
{dxy, dx| yl} as seen from the state decomposition in section 8
of the Supporting Information. The sector with eigenvalue 0
has single-fold degeneracy and is made from the excited state
in the conduction band. As discussed before in Figures 4d and
5d (and in section 8 of'the Supporting Information) this state
is exclusively made from the contribution of the dz? which
explains the absence of z-component angular momentum. We
would thus expect that ifwe choose O = 1? and ft) = (0, 4} in
eq 2 for training the network then we should yield the excited
state in the conduction band for <« = 0 and should yield the
ground state in the valence band for ft) = 4 as that is of lower
energy (in compliance with the first term in eq 2) than the
other degenerate eigenstate.

The qubit and gate resource requirements ofthis simulation
are exactly the same as discussed in section 4.1 with 2 visible
node neurons and 2 hidden node neurons for each ofthe two
systems, MoS2 and WS2. The Gibbs sampling circuit in Figure
2 would need a total of 8 qubits as before (2 for visible node +
2 for hidden node + 4 ancillary qubits). The gate requirements
for the circuit to reproduce the amplitude are thus 4 single
qubit rotation gates (Ry), 4 controlled—controlled rotation
gates (C—C—Ry), and 24 bit-flip (X) gates. We start the
optimization with randomly initialized parameters.

https://doi.org/10.1021/jacs.1c06246
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Figure 7. (a) Energy comparison between exact (1), RBM-cl (2), RBM-qasm (3), and RBM-IBMQ. (4) for computation with 6 = L2 and
eigenvalue fo = 0.0 a.u. in eq 2. The exact energy is 1.5950 eV and is the conduction band energy at K-point in MoS2 shown in Figure 4. (b)
Constraint violation error 1(L2) — ¢>| of the state obtained from different flavors of RBM and the desired value (0. (c) Energy error in eV from (a) of
the states obtained from RBM. (d) State infidelities (1 — Fid where Fid = 1('PBBMI'LEiact)l2) obtained from RBM and the exact one (e—h)
corresponds to an equivalent set ofplots as in (a—d) just described but with the other eigenspace of’L2 with eigenvalue <0 = 4 a.u. The exact energy
here is the valence band energy at K-point for MoS2 shown in Figure 4 and is —0.0629 eV.
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eigenvalue to = 0.0 a.u. in eq 2. The exact energy is 1.749 eV and is the conduction band energy at K-point in WS2 shown in Figure 5. (b)
Constraint violation error 1(L2) — fill ofthe state obtained from different flavors of RBM and the desired value to. (c) Energy error in eV from (a) of
the states obtained from RBM. (d) State infidelities (1 — Fid where Fid = 1('FRBMI'PElact)l2) obtained from RBM and the exact one (e—h)
corresponds to an equivalent set ofplots as in (a—d) just described but with the other eigenspace ofL2 with eigenvalue <0 = 4 a.u. The exact energy
here is the valence band energy at K-point for WS2 shown in Figure 5 and is —0.0572 eV.

In Figure 7, we display the results of our simulation. Like
before, the results from all three flavors of RBM (marked as 2
= RBM-cl, 3 = RBM-qasm and 4 = RBM-IBMQ) are compared
against the exact expected state (marked as 1 = Exact). In
Figure 7a, the results of energy (in eV) from the three RBM
simulations and the exact one are displayed for the eigenvalue
sector <0 = 0 a.u. This happens to be the CB energy in Figure
4a. We find an extremely good agreement for all flavors of
RBM with the exact value. The corresponding energy error is
displayed in Figure 7c¢ and is in the range of 10-5—10-4 eV for
RBM-cl and RBM-qasm, but it is within 10-4—10-3 eV for the
RBM-IBMQ.variant. Figure 7b displays the constraint violation
error, i.e., how much the state encoded in the neural network
after training has an (L2) equal to the target value of<0 (in this
case <0 = 0 a.u.). We see that the violations are quite small for
the noiseless implementations. Even for implementation on
actual NISQ. devices of IBM-Q, it is close to 10-3 a.u.

Figure 7c displays the energy error, and Figure 7d displays
the state infidelity error (1 — Fid where Fid = 1('PRBMI'PElact)12).
We see that for all flavors of RBM implementation the
infidelities are quite small with the performance worsened for
implementation on the actual IBM-Q. device. Figure 7e—h
corresponds to similar plots as discussed above but this time in
the other eigenvalue sector with <0 = 4 a.u. We again see that
the energy values (in eV) in Figure 7¢ matches with the exact
for all flavors of RBM-implementation. This state happens to
be the ground state in the VB shown in Figure 4a. The
corresponding energy errors shown in Figure 7g are like in the
previous case (<o = 0 a.u.) low for RBM-cl and RBM-qasm but
in the range of 10-3—10-2 eV for RBM-IBMQ. Similar analysis
as in the case of <0 = 0 a.u. can also be made for the constraint
violation error in Figure 7fand the state infidelity in Figure 7h.
Both of these have low errors with the respective ranges as
displayed.

https://doi.org/10.1021/jacs.1 C06246
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Figure 8 shows a similar plot for the other system studied,
WS2. Just as before we display the results for w = 0 a.u. in
Figure 8a—d and for ft) = 4 a.u. in Figure 8e—h. Figure 8a
shows the energy match between the RBM implementations
and the exact value for w = 0 a.u., and Figure 8¢ shows the
same for to = 4 a.u. The former is equal to the state in the
conduction band at JC-point (see Figure 5a) and the latter is
the corresponding state in the valence band (see Figure 5a).
We see good agreement for all RBM variants and the exact
expected value. The corresponding energy errors are low (see
Figure 8c,g) with the range for IBMQ. implementation being
10-3—10-2 eV and even lesser for the pristine implementa-
tions. The respective constraint violation errors are displayed
in Figure 8b,f and are small too as seen from the scale. A
similar statement can also be made for the state infidelity
displayed in Figure 8d,h. We have seen that in both the
systems, MoS2 and WS, the state infidelity and energy errors
are higher in the to = 4 a.u. eigensector than in to = 0 a.u.
eigensector in the IBMQ. implementation especially. In fact,
the relative energy errors for the said sector are close to 596 for
RBM-IBMQ. However, the corresponding errors (both relative
and absolute) are low for the noiseless implementation (RBM-
cl and RBM-qasm) indicating that the higher percent error is
attributable to the imperfect implementation of gates in the
Gibbs sampling circuit in an IBM-Q_machine and hence can be
mitigated with future quantum computing devices with better
gate fidelities and error-correction schemes.

5. CONCLUSION

In this study, we have demonstrated an algorithm which can
filter arbitrary energy eigenstates in 2D materials like TMDCs
using a quantum circuit with quadratic resources. We provided
an original proof of feasibility for our cost function employed
for the constrained optimization. We also proved a generic
lower bound for the successful sampling of our quantum circuit
from which previously known bounds can be extracted. Our
circuit trains a three-layered neural network that encodes the
desired state using an RBM ansatz for the probability density.
As an illustration, we were able to filter energy eigenstates in
the conduction band ofimportant TMDCs like MoS2 and WS2
and faithfully reproduce the band gap. We were also able to
filter arbitrary states based on a user-defined orbital angular
momentum symmetry constraint. We trained the network on
various flavors of computation using not only a classical
computer, gasm backend quantum simulator in Qiskit, but also
a real IBMQ.machine (IBM Sydney and IBM Toronto) with
the objective to see the performance ofthe algorithm on actual
NISQ. devices. In all flavors of computation, our algorithm
demonstrated very high accuracy when compared to the exact
values obtained from direct diagonalization.

Venturing beyond the ground state to obtain arbitrary states
based on user-defined restrictions is the first ofits kind in all
flavors of QML. Furthermore, the systems of our choice
happen to be TMDCs, an important class of ZD-periodic
systems which have never been studied using any quantum
algorithm. Periodic systems in general have received scanty
attention as far as quantum algorithms are concerned. Only
two such reports exist,47'69 both of which have simulated just
the valence band in graphene and hexagonal boron nitride (h-
BN).

It must also be emphasized that a host ofclassical algorithms
have been developed in traditional quantum chemistry that are
extremely accurate and polynomial” efficient. Over the past
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few decades, density functional theory (DFT) has emerged
into a leading candidate for accurate computation of wide-

variety of electronic structure problems in molecules and
materials.117,118 Variants of it are being developed for cases

wherein multireference correlation would be important too.119
Reduced density-matrix based methods are also polynomially
scalingl20 and have shown excellent accuracy in strongly
correlated systems.121,122 Tensor-network-based methods like
Density-Matrix Renormalization Group (DMRG)123-125 have
been developed which even though capable of exploiting rank
sparsity in strongly correlated one-dimensional systems yet
loses the polynomial advantage in multiple dimensions. Like
our algorithm which attempts to construct the many-body
state, a plethora of similar wave function based ab initio
methods exist in traditional quantum chemistry too starting
from the uncorrelated Hartree—Fock method to post-Hartree

methods which can recover dynamic correlation like
perturbative approaches (like MP2),126-128 Truncated Con-
figuration-Interaction or Cl (like CISD),127,129 Couple-Cluster
(CC) methodsl130 (like CCSD, CCSD(T), CCSDT, or EOM-
CCSD for excited states), recently developed SHCI
methodsi31,132 to ones which are good for capturing static
correlation like Multi-Configurational Self-Consistent Field
(MCSCF).133 A direct comparison ofa quantum algorithm like
ours with these classical algorithms can be attempted to be
made in terms of accuracy and resource cost. In terms of
resource requirements, the comparison is made difficult by the
fact that certain parameters like circuit width, circuit depth,
and so on which affect the performance of quantum algorithms
like ours, have no classical analogues. If we consider an Nelec
electron system with » = r) + ruo spin orbitals/Fermionic
modes such that rB = Nelec is the occupied orbital set in
Hartree—Fock reference and ruo are virtual orbitals excluded
from Hartree—Fock reference, then under the assumption that
the orbital space rank loosely equates to qubits or number of
visible neurons n (see section 3.1 and ref 83), we have shown
in section 3.3 that the spin—orbital cost of our algorithm would
be ssCXr2) = O(rj + + 2rU0r0). The numerical parameter
count of our algorithm is also quadratic, i.e., O(an2) to O(r2) =
O(rt + r*0 + 2morD). This is unlike methods like CCSD
(Coupled-Cluster Singles Doubles) which has a computational
cost of toO(f2r4o) (for CCSDT it is toO(™J and for
CCSD(T) it is «O(13r40)).130,134 CCSD also evaluates
«O(™1r20) cluster amplitudes as parameters defining the
excitations. Chemically important phenomenon, like dissocia-
tion events which are no longer single-referenced, are known
to be difficult to treat with CCSD,13 even though pair cluster
doubles can ameliorate the situation to some extent.136 That
being said, it must also be noted that traditional variant of
CCSD unlike ours is nonvariational. As far as accuracy is
concerned, all results in this report are benchmarked against
exponentially scaling exact diagonalization as that affords the
exact value in a given basis. Not only the physics of Bloch
states in the material TMDC but also a molecular example like
LiH has been treated using our algorithm (see section 10 in the
Supporting Information). For both the ground and excited
states of LiH we see good accuracy and improvement of error
by enhancing the hidden node density which makes the ansatz
more expressive. Studies on larger molecular systems for which
the results of'exact diagonalization may not be available may be
undertaken in future. That will provide a platform for
comparison in accuracy with a subset ofthe aforesaid classical
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algorithms. Desirable chemical features like size consistency
and size extensivity may be probed too.

One must also note that several quantum algorithms already
exist which aim at obtaining ground and excited states of
Fermionic systems.137 Nonvariational quantum algorithms like
quantum phase estimation (QPE)40'l §,139 have exponential
speed upl yet require high circuit depth and long coherent
operations which are beyond the limits of near-term
hardwares.23 Hybrid Variational Quantum Algorithms
(VQA) have also been developed which can ameliorate some
of the above problems.46 The most notable one in the list is
Unitary Coupled-Cluster Variational Quantum Eigensolver
(UCC-VQE)43 In its most traditional variant, the unitary
ansatz which UCC-VQE uses for state preparation consists of
single and double excitationsl41-143 (hence often called
Unitary Coupled Cluster Singles Doubles or UCCSD) from
the reference state. However, the circuit depth in preparing
such an ansatz is still large, and the circuit is parametrized by
many variables which necessitates a high-dimensional classical
optimization routinel44 to update the parameters. To be
concrete, for rQ and ruo with the same meaning as described in
previous paragraph, the UCCSD-VQE usesl37 O(r0) qubits,
O(rX1J cluster amplitudes as parameters, and O(/r4) gates
where / = O(r0) or O(log(rJ) depending on the qubit-
mapping. Besides, the UCC-VQE method can suffer from
errors incurred due to operator ordering or Trotterization.145
Also, the ansatz requires a high degree of qubit connectivity for
nonlocal operations which may not always be available in all
hardware. 46 A hardware-efficient ansatz44'147 has been
developed to help solve the above issues which use an
alternating framework of single-qubit gates and fixed
entangling operations which can be chosen with the specific
capabilities ofthe device in hand. However, unlike UCC-VQE,
such an ansatz is not physically inspired and often suffers from
trainability issues during parameter optimization.46,148 Besides
the number of parameters grow as a function of entangling
blocks and can even surpass the size ofthe Hilbert space.l ,14
A third variant that has low circuit depth and parameter cost is
the ADAPT-VQE approach.149 Unlike in the previous two
cases, this variant constructs the circuit from a preselected pool
of operators and changes the circuit architecture adaptively by
adding operators from the pool which affects the energy
gradient the most. The chosen pool decides the parameter
count and gate counts in the circuit. In this method, the
number of measurement shots can be high for computing the
gradients,l44 and it is generally not clear how to preselect the
operator pool and what guarantees that the pool is complete,
i.e., the ansatz it produces is expressive enough. Many different

variants for each method have been constructed for which the
reader is referred to many excellent reviews.46,137,146 For

excited states,46 deflation-assisted VQE as described before72
exist, but for its implementation it used the UCCSD ansatz
which inherits some of'the above problems of high parameter
count and gates. A recent promising method known as
Weighted Subspace-Search VQE uses an input array of several
orthogonal states to construct a weighted Lagrangian as the
cost function.150 In this case, the input states are mapped to
the excited states of the system using a parametrized ansatz
circuit. Depending on the nature of the ansatz circuit, the
algorithm can have different gate count or parameter count and
hence it is hard to mention a general estimate.

Our algorithm is also a hybrid variational algorithm like the
ones in the aforesaid list, but it always requires quadratic
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resources (see section 3.3). However, there are some key
differences as well which need to be acknowledged. Unlike the
above list of algorithms which prepare a unitary ansatz on a
quantum computer to mimic the state, our algorithm proposes
to construct a probability distribution that mimics the
amplitude field of the target state on a quantum computer.
As a result, our algorithm is a distribution sampling protocol
on a quantum computer using a nonunitary ansatz (RBM)
which is manifested in the usage of ancilla and its subsequent
measurement collapse. The measurement statistics of such a
collapse are discussed in detail in sections 2 and 5 in the
Supporting Information. Since the distribution encoding the
amplitude field is based on RBM, unlike the ADAPT-VQE
method, our protocol is largely problem-agnostic. This is due to
the fact that RBM can act as a universal approximant to any
probability densityl9 and hence can be used for a variety of
problems provided it is made sufficiently expressive with an
adequate hidden node density. Also unlike other algorithms
wherein the nature of the excitations or operator pool used
decides the cost-function gradient, in our case the distribution
function being RBM always permits training the network with
analytical gradients. Besides, we have already demonstrated in
section 3.3 using ref90 that an analogous classical construction
of RBM distribution has an exponential overhead, whereas by
using a quantum algorithm like ours, one can construct it using
quadratic resources thereby illustrating the distinct quantum-
classical advantage in our algorithm directly.

Further extension ofthis algorithm can be made to compute
operators using Hellmann—Feynmann method,l5] to charac-
terize the influence of noise on the algorithm and to see it
being extended to study other interesting phenomena on 2D
materials like Rashba splitting in polar TMDCsl52 or even
effect of strain.153 One must also note that in this work we
construct the full d = 2”-dimensional eigenstate from the
amplitude encoding using the RBM ansatz (eq 4) and the
phase encoding using eq 5. This is because the primary
quantum advantage of our algorithm lies in the fact we use
quadratic resources to learn the full RBM distribution which
classically would require exponential resources as necessitated
in.90 Besides, access to the full state allows us to compute
matrix elements of arbitrary operator between eigenstates
important for spectral information, i.e., learning in excitonic
featuresl14 or thermal and electronic conductivity,l16 which as
said before are important future extensions of this work. Also,
once trained for a given system, the neural network in our
algorithm can be used to learn the eigenstates of a closely
related system accurately with faster convergence and fewer
iterations, indicating partial transferability ofthese models (see
section 9 of the Supporting Information for details). Benefits
and the scope of such “transferable training” for other
chemically motivated systems will be investigated in future.
It must be noted that the symmetry partitioning of the metal
orbitals in TMDCs guaranteed in ref 103 have reduced the
effective size ofthe orbital space and qubit requirements in this
study. However, understanding spectral information in
excitonic physics would require more involved models with a
larger orbital space. A way forward may be focusing on low-
energy excitons with a certain symmetry (like overall spin-
angular momentum) characteristics only. For molecular
systems such symmetry-inspired cost reductions are already
beginning to be noticed84' 6 as discussed earlier. However,
such an initiative for materials is largely an uncharted territory.
Further reduction in qubit resource requirements of our
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algorithm may also help, even though the nonunitary nature of
the ansatz as discussed before makes it harder. From the
hardware point of view, robust large-scale error mitigation
strategies are beginning to be made available now,95,1 4 and
devices with over 1000 qubits with low qubit decoherence
errors and gate infidelities are also being promised in recent
future.155 Such resources would certainly be beneficial to
extensions of studies like these.

From the algorithmic point of'view, besides being quadratic
scaling in qubit and gate requirements and parameter count,
our algorithm does not have any dependence on oracular
objects like qRAM3S which is responsible for creating a
superposition of all possible basis states and is known to
commonly sought in most quantum machine-learning
modules. As futuristic quantum devices are being developed
with proper error mitigation schemes, we expect to have more
such cross-pollination between machine-learning algorithms
and quantum computing with the promise to study electronic
structure and dynamics in new complex materials.
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