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Weighted Gaussian entropy and determinant inequalities
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Abstract. We produce a series of results extending information-theoretical inequalities (dis-
cussed by Dembo–Cover–Thomas in 1988–1991) to a weighted version of entropy. Most of
the resulting inequalities involve the Gaussian weighted entropy; they imply a number of
new relations for determinants of positive-definite matrices. Unlike the Shannon entropy
where the contribution of an outcome depends only upon its probability, the weighted (or
context-dependent) entropy takes into account a ‘value’ of an outcome determined by a
given weight function ϕ. An example of a new result is a weighted version of the strong
Hadamard inequality (SHI) between the determinants of a positive-definite d × d matrix
and its square blocks (sub-matrices) of different sizes. When ϕ ≡ 1, the weighted inequality
becomes a ‘standard’ SHI; in general, the weighted version requires some assumptions upon
ϕ. The SHI and its weighted version generalize a widely known ‘usual’ Hadamard inequality

detC ≤ ∏d
j=1 Cjj .

Mathematics Subject Classification. 60A10, 60B05, 60C05.

Keywords. Weight function, Weighted entropy, Weighted conditional entropy, Weighted mu-

tual information, Weighted Gaussian entropy, Determinant inequalities.

1. Introduction

The aim of this paper is to continue an analysis of the weighted entropy by
following [18] and in particular to give a number of new inequalities involv-
ing the determinants of positive-definite matrices. These inequalities can be
considered as generalizations of inequalities discussed in [3,4,6,12].

The inequalities presented in the current paper are obtained by a unified
method which is based on weighted entropies (WEs), in particular, on Gaussian
WEs. The concept of a WE was introduced in the late 1960s–early 1970s;
see, e.g., [2]. (Another term that can be used is a context-dependent or a
preferential entropy.) The reader is referred to [18] where a number of notions
and elementary inequalities were established for the WE, mirroring well-known
facts about the standard (Shannon) entropy. We follow the system of notation
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from [3,6,18] with minor deviations. Methodologically, we follow the view that
at the root of most WE inequalities is the weighted Gibbs inequality; see [[18],
Theorem 1.3].

In recent years weighted entropy found applications in a wide variety of
areas: medical statistics [9,17], investments [11], sensing for motion planning
[13,14], data-compression [19], samples-selection in videos [1], data availability
and file search efficiency in certain networks [21], slimming neural networks [8],
rockburst predictions [23], multi-goal reinforcement learning [22], measurement
of complexity in production [7], etc. A different, more theoretical, direction of
study of the weight function and weighted entropy has been pursued in recent
works [10,15,19,20]. In [19], for instance, the weight function (WF) is used
to propose a further reduction in the storage space after data-compression
(a refinement of Shannon’s Noiseless Coding theorem). Results of [20] clarify
various aspects of the weighted information (WI) and WE rates, establishing
connections with important notions such as metric and topological entropy,
pressure from the theory of dynamical systems.

The WE of a random element X taking values in a standard measure space
(SMS) (X ,M, ν) with a WF: x ∈ X �→ ϕ(x) ≥ 0 is defined by

hw
ϕ(X) = hw

ϕ(f):= − E [ϕ(X) log f(X)] = −
∫

X
ϕ(x)f(x) log f(x)ν(dx), (1.1)

assuming that ϕ is measurable and the integral in the right-hand side of (1.1)
is absolutely convergent. Here f = f(x) is the probability mass/density func-
tion (PM/DF) of X relative to measure ν. The symbol E stands for the ex-
pected value (relative to a probability distribution that is explicitly specified
or emerges from the context in an unambiguous manner). This definition is
immediately extended to a pair of random elements X1, X2 with values in
(X1,M1, ν1) and (X2,M2, ν2) with a joint PM/DF f = fX1,X2 and marginals
fj = fXj

. Writing fX1,X2(x1, x2) = f2(x2)f1|2(x1|x2), xj ∈ Xj , leads to the
definition of the conditional WE

hw
ϕ(X1|X2) = −E

[
ϕ(X1,X2) log f1|2(X1|X2)

]
= hw

ϕ(X1,X2) − hw
ψ2

(X2)

= −
∫

X1×X2

ϕ(x1, x2)f(x1, x2) log f1|2(x1|x2)ν1(dx1)ν2(dx2),

(1.2)

where ψ2 is a reduced WF: ψ2(x2) =
∫

X1
ϕ(x1, x2)f1|2(x1|x2)ν1(dx1). Further,

the mutual weighted information (WI) between X1 and X2 is given by

iwϕ(X1;X2) :=E

[

ϕ(X1,X2) log
f(X1,X2)

f1(X1)f2(X2)

]

=
∫

X1×X2

ϕ(x1, x2)f(x1, x2) log
f(x1, x2)

f1(x1)f2(x2)
ν1(dx1)ν2(dx2).

(1.3)
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For ϕ(x1, x2) ≡ 1, the above concepts are reduced to the corresponding stan-
dard ones.

In particular, the WE of a d-variate Gaussian random vector X with PDF
fNo
C , with mean zero and covariance matrix C, has the form

hw
ϕ(X) = hw

ϕ(fNo
C ) =

α(C)
2

log
(
(2π)d detC

)
+

log e
2

tr
(
C−1Φ

)

whereα(C) = Eϕ(X)andΦ = E
[
ϕ(X)XXT

]
;

(1.4)

for ϕ ≡ 1, we get the ‘standard’ Gaussian differential entropy

h(fNo
C ) =

1
2

log
(
(2πe)ddetC

)
.

Accordingly, we speak here of WE inequalities, in particular, weighted de-
terminant inequalities (WDIs). The WDIs offered in the present paper are
novel, at least to the best of our knowledge. In fact, the essence of this work
is that we subsequently examined DIs from [3,6] for a possibility of a (direct)
extension to non-constant weight functions; successful attempts are presented
in the current paper. This reflects a particular feature of the present work: a
host of new inequalities are obtained by an old method while [3,6] re-establish
old inequalities by using a new method. An example is the so-called weighted
Fano, Ky Fan, Hadamard, Cramér-Rao and Kullback inequalities (see [[16],
Theorems 2.5, 3.5, 3.7, 5.1, 5.4, 5.3]); in this paper we continue this line of
study by offering additional WDIs, although their list here is by no means
complete.

To illustrate the situation, we mention here the weighted Ky Fan inequality
(see [16, Theorem 3.5]). The original inequality asserts that σ : C �→ log detC
is a concave function on the set of d × d positive-definite matrices; it is proved
in [3,6] by using an elegant and short argument based on properties of the
standard entropy. Formally: ∀ λ1, λ2 ≥ 0 with λ1 + λ2 = 1,

σ(λ1C1 + λ2C2) − λ1σ(C1) − λ2σ(C2) ≥ 0,
or, equivalently, h(fNo

λ1C1+λ2C2
) − λ1h(fNo

C1
) − λ2h(fNo

C2
) ≥ 0.

(1.5)

The weighted Ky Fan inequality reads

hw
ϕ(fNo

λ1C1+λ2C2
) − λ1h

w
ϕ(fNo

C1
) − λ2h

w
ϕ(fNo

C2
) ≥ 0. (1.6)

It involves an additional ingredient, a WF ϕ, and it holds provided that ϕ
satisfies certain conditions involving λj and Cj . For ϕ ≡ 1 these conditions
are automatically satisfied. For a judicial choice of ϕ, the weighted inequality
may lead to a positive right-hand side in (1.5), i.e., to an improvement of the
original one. A similar picture emerges for other DIs. However, this direction
needs further studies, including numerical simulations, which is beyond the
scope of the current paper.

The present text is organized as follows. In Sect. 2 we work with a general
setting, elaborating on properties of WEs which have been established earlier in
[18]. Next, Sect. 3 summarizes some properties of Gaussian weighted entropies
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while Sect. 4 analyzes the behavior of weighted entropies under mappings;
these sections also rely on Ref. [18]. The WDIs are presented in Sects. 5 and
6 as a sequel to the material from Sects. 2–4.

2. Random strings and reduced weight functions

A number of properties of the WE are related to a Cartesian product structure.
Let random elements X1, . . . , Xn be given, taking values in SMSs (Xi,Mi, νi),
1 ≤ i ≤ n. Set Xn

1
= {X1, . . . , Xn} and assume that X1, . . . , Xn have a joint

PM/DF fXn
1
(xn

1
), xn

1
∈ X n

1 = ×
1≤i≤n

Xi, relative to the measure νn
1 = ×

1≤i≤n
νi;

for brevity we will sometimes set fXn
1

= f . The joint WE of string Xn
1

is
defined as

hw
ϕ(Xn

1
) = −E

[
ϕ(Xn

1
) log f(Xn

1
)
]

= −
∫

Xn
1

ϕ(xn
1
)f(xn

1
) log f(xn

1
)νn

1 (dxn
1
). (2.1)

Given a set S ⊆ I = {1, 2, . . . , n}, define: S� = I \ S, and

X(S) = {Xi : i ∈ S}, X(S�) = {Xi : i ∈ S�}, x(S)

= {xi : i ∈ S}, x(S�) = {xi : i ∈ S�},

X (S) = ×i∈SXi, X (S�) = ×i∈S�Xi.

Accordingly, the marginal PD/MF fX(S)(x(S)) emerges, for which we will
often write fS(x(S)) or even f(x(S)) for short. Furthermore, given a WF:
xn
1

�→ ϕ(xn
1
) ≥ 0, we define the function ψ(S) : x(S) �→ ψ(S;x(S)) ≥ 0

involving the conditional PM/DF fX(S�)|X(S)

(
x(S�) |x(S)

)
:

ψ(S;x(S)) =
∫

X (S�)

ϕ(xn
1
)fX(S�)|X(S)

(
x(S�) |x(S)

)
νX (S�)(dx(S�)) (2.2)

where νX (S�) = ×
i∈S�

νi. For brevity sometimes we again write fS�|S instead

of fX(S�)|X(S) or omit subscripts altogether. We also write dx(S) and dx(S�)

instead of νX (S)(dx(S)) and νX (S)(dx(S�)) and dx instead of νn
1 (dxn

1
).

The function ψ(S; · ) will play the role of a reduced (or induced) WF when
we pass from Xn

1
to a sub-string X(S). More precisely, set

hw
ψ(S)(X(S)) = −E

[
ψ(S;X(S) log fS(X(S))

]

= −
∫

X (S)

ψ(S;x(S))fS(x(S)) log fS(x(S))dx(S). (2.3)
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Next, for k = 1, . . . , n define

hw,n
k =

(
n

k

)−1 ∑

S⊆I: #(S)=k

hw
ψ(S)(X(S))

k
. (2.4)

(Here and below, #(S) and #(S�) are the cardinalities of S and S�.) Here
hw,n

k renders the averaged WE (per string and per element) of a randomly
drawn k-element sub-string in Xn

1
.

Consider the following condition: for all S ⊆ I,

∀i ∈ S,withS−
i = {j ∈ S : j < i}andS+

i = {j ∈ S : j > i},∫

X (S)

ψ(S;x(S))
{

f(x(S)) − f(x(S−
i ))f(xi|x(S−

i ))

×f(x(S+
i )|x(S−

i ))
}

dx(S) ≥ 0,

(2.5)

with standard agreements when one of the sets S±
i = ∅. Pictorially, Eq. (2.5) is

an extension of inequality (1.27) from [18]; it means that for all i ∈ S ⊆ I, the
induced WF ψ(S; · ) is correlated more positively with the marginal PM/DF
fS(x(S)) than with the dependence-broken product fS−

i
(x(S−

i ))f{i}|S−
i

(xi|x(S−
i ))fS+

i |S−
i

(x(S+
i )|x(S−

i )). Another version of (essentially) the same
property is Eq. (2.18) below.

Remark 2.1. The special choice of sets S±
i is not particularly important: it

can be a general partition of S \ {i} allowing us to use the chain rule for the
conditional WE (see below).

Theorem 2.2. (Cf. [[3], Lemma 7] or [[6], Theorem 1]) Let hw,n
k be defined as

in (2.4) and assume (2.5). Then

hw,n
1 ≥ hw,n

2 ≥ · · · ≥ hw,n
n−1 ≥ hw,n

n . (2.6)

Remark 2.3. An overview of the proof of Theorem 2.3 below shows that its
structure is the same as that of the quoted assertions from [3] and [6]. The
noted differences are that (i) one uses the weighted Gibbs inequality in place
of the standard one, and (ii) at every technical step, one has to re-calculate the
involved WFs. Such a pattern persists in the proofs of the remaining statements
in this section (Theorems 2.4–2.7 below). Therefore, we only highlight the
notable differences in these proofs or entirely omit them from the paper.

Proof. Begin with the last inequality, hw,n
n−1 ≥ hw,n

n . Let 1 ≤ i ≤ n and choose
S = I, S−

i = I−
i = {1, . . . , i − 1} and S+

i = I+i = {i + 1, . . . , n}, with
{i}� = I−

i ∪ I+i . Then the condition
∫

Xn
1

ϕ(x)
[
f(x) − fXi−1

1
(xi−1

1
)f(xi|xi−1

1
)f(xn

i+1
|xi−1

1
)
]
dx ≥ 0 (by virtue of (2.5)),

(2.7)
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yields:

hw
ϕ(X

n

1
) = hw

ϕ(Xi|X({i}�)) + hw
ψ({i}�)(X({i}�)) by the chain rule (2.8)

≤ hw

ψ(I−
i )

(Xi|Xi−1

1
) + hw

ψ({i}�)(X({i}�)) by Theorem 1.3 from [18].

(2.9)

Here reduced WFs ψ({i}�) and ψ(I−
i ) are calculated according to the recipes

in (2.2), (2.3).
Taking the sum, we obtain:

nhw
ϕ(Xn

1
) ≤

n∑

i=1

hw
ψ({i}�)(X({i}�)) +

n∑

i=1

hw
ψ(I−

i )
(Xi|Xi−1

1
). (2.10)

By using the chain rule,
n∑

i=1

hw
ψ(I−

i )
(Xi|Xi−1

1
) = hw

ϕ(Xn
1
). The proof can now be

completed as in the proof of [[6], Theorem 1] and then extended to k-element
subsets S = {i1, . . . , ik} ⊂ I. (We again need to invoke condition (2.5).) �

In Theorem 2.4 we extend the result of Theorem 2.2 to exponents of WEs
for sub-strings in Xn

1
.

Theorem 2.4. (Cf. [3, Corollary of Lemma 7] or [6, Corollary 1]) Given r > 0,
define:

gw,n
k =

(
n

k

)−1 ∑

S⊆I: #(S)=k

exp

[

r
hw

ψ(S)(X(S))

k

]

. (2.11)

Then, under assumption (2.5),

gw,n
1 ≥ gw,n

2 ≥ · · · ≥ gw,n
n−1 ≥ gw,n

n . (2.12)

In Theorem 2.5 we analyse the averaged conditional WEs for sub-strings
in Xn

1
.

Theorem 2.5. (Cf. [6, Theorem 2]) Let pw,n
k be defined as

pw,n
k =

(
n

k

)−1 ∑

S⊆I: #(S)=k

hw
ϕ(X(S)|X(S�))

k
. (2.13)

Then, under assumption (2.5), we have that

pw,n
1 ≤ pw,n

2 ≤ · · · ≤ pw,n
n−1 ≤ pw,n

n . (2.14)

The next step is to pass to the (non-normalised) mutual WI.
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Theorem 2.6. (Cf. [6, Corollary 2]) Consider the averaged mutual WI between
a subset (or a sub-string) and its complement:

qw,n
k =

(
n

k

)−1 ∑

S⊆I: #(S)=k

iwϕ

(
X(S);X(S�)

)

k
, (2.15)

and assume (2.5). Then

qw,n
1 ≥ qw,n

2 ≥ · · · ≥ qw,n
n−1 ≥ qw,n

n . (2.16)

Proof. The result is straightforward, from Theorems 2.2 and 2.5 and the fol-
lowing relation between the conditional WE and mutual WI:

iwϕ

(
X(S);X(S�)

)
= hw

ψ(S)(X(S)) − hw
ϕ

(
X(S)

∣
∣X(S�)

)
. (2.17)

�

In Theorem 2.7 we consider the following condition: for all set S with
# S ≥ 2 and i, j ∈ S with i 
= j,

∫

Xn
1

ϕ(x)f(x(S�)|x(S))
[
f(x(S))

−f(x(S \ {i, j})) f(xi|x(S \ {i, j})) f(xj |x(S \ {i, j}))
]
dx ≥ 0.

(2.18)

The meaning of (2.18) is that for all S and i, j as above, the reduced WF
ψS(x(S)) is correlated more positively with f(x(S)) than with the PM/DF
f(x(S \ {i, j}))f(xi|x(S \ {i, j})) f(xj |x(S \ {i, j})) where the conditional
dependence between Xi and Xj is broken, given X(S \ {i, j}).

Theorem 2.7. (Cf. [6, Theorem 3]) Define the average mutual WI as

Iw,n
k =

(
n

k

)−1 ∑

S⊆I: #(S)=k

iwϕ

(
X(S);X(S�)

)
. (2.19)

By the symmetry of the mutual WI, Iw,n
k = Iw,n

n−k. Assume condition (2.18).
Then

Iw,n
1 ≤ Iw,n

2 ≤ · · · ≤ Iw,n
�n/2�. (2.20)
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Proof. The proof follows that in [6]. Here a new concept is needed: mutual-
conditional WIs

iwϕ

[
Xj ;X(S�)|X(S \ {j})

]

= E

(
ϕ(X) log f(Xj ,X(S�)|X(S\{j}))

f(Xj |X(S\{j}))f(X(S�)|X(S\{j}))

)

=
∫

Xn
1

ϕ(x)f(x) log
f(xj ,x(S�)|x(S \ {j}))

f(xj |x(S \ {j}))f(x(S�)|x(S \ {j}))
dx,

(2.21)

iwϕ

[
Xj ;X(S \ {j})|X(S�)

]
= E

(
ϕ(X) log

f(Xj ,X(S \ {j})|X(S�))
f(Xj |X(S�))f(X(S \ {j})|X(S�))

)

=
∫

Xn
1

ϕ(x)f(x) log
f(xj ,x(S \ {j})|x(S�))

f(xj |x(S�))f(x(S \ {j})|x(S�))
dx.

(2.22)

With this at hand, the formal argument from [6] is repeated. �

3. Gaussian weighted entropies

As we said in the introduction, WDIs are connected with the Gaussian WE

hw
ϕ(fNo

C ) = −
∫

Rd

ϕ(x)fNo
C (x) log fNo

C (x)dx. (3.1)

Here fNo
C stands for a normal probability density function (PDF) with mean

0 and covariance matrix C:

fNo
C (x) =

1

(2π)d/2
(
detC

)1/2
exp

(

−1
2

xTC−1x
)

, x = (x1, . . . , xn)T ∈ R
d.

(3.2)

The Gaussian WE in (3.1) admits the following representation:

hw
ϕ(fNo

C ) =
αϕ(C)

2
log
[
(2π)d(detC)

]
+

log e
2

tr
(
C−1ΦNo

C

)
. (3.3)

Here αϕ(C) > 0 and the positive-definite matrix ΦNo
C are given by

αϕ(C) =
∫

Rd

ϕ(xd
1)f

No
C (xd

1)dx
d
1, ΦNo

C =
∫

Rd

xd
1

(
xd
1

)T
ϕ(xd

1)f
No
C (xd

1)dx
d
1. (3.4)
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Throughout the paper we use a property of maximization of the WE hw
ϕ(f) at

f = fNo
C . Given a PDF f on R

d, set:

Φ =
∫

Rd

xd
1

(
xd
1

)T
ϕ(xd

1)f(xd
1)dx

d
1. (3.5)

Consider the following inequalities:
∫

Rd

ϕ(x)
[
f(x) − fNo

C (x)
]
dx ≥ 0

log
[
(2π)d(detC)

]
∫

Rd

ϕ(x)
[
f(x) − fNo

C (x)
]
dx + tr

[
C−1

(
Φ − ΦNo

C

) ]
≤ 0.

(3.6)

Theorem 3.1. (Cf. [6, Example 3.2]) Let X = Xd
1 ∼ f(x), x ∈ R

d, be a random
vector with PDF f , mean zero and covariance matrix

C = E
[(

Xd
1

) (
Xd

1)
T
]

=
∫

Rd

xxTf(x)dx. (3.7)

Set:

ΦNo
C = EC

[(
Xd

1

) (
Xd

1)
Tϕ(Xd

1)
]

=
∫

Rd

xxTϕ(x)fNo
C (x)dx (3.8)

and suppose that (3.6) is fulfilled. Then

hw
ϕ(f) ≤ hw

ϕ(fNo
C ), (3.9)

with equality iff ϕ(f − fNo
C ) = 0 a.s.

The proof of Theorem 3.1 follows the argument in Example 3.2 from [18].
A conditional form of Theorem 3.1 is Theorem 3.2 below. The correspond-

ing assertion for the standard entropy was noted in earlier literature. See, e.g.,
[3, p. 1516]: the proof of Theorem 29, item (c), the reference to a conditional
version of [3, Lemma 5].

Given a d × d positive-definite matrix C and p = 1, . . . , d − 1, write C in
the block form:

C =
(

Cp
1 Cp

d−p

Cd−p
p Cd

p+1

)

(3.10)

where Cp
d−p and Cd−p

p are mutually transposed p × (d − p) and (d − p) × p

matrices:
(
Cp

d−p

)T
= Cd−p

p . Set: D = Cp
d−p (Cd

p+1)
−1 and Kp

1 = Cp
1 −

Cp
d−p (Cd

p+1)
−1 Cd−p

p . If X = Xd
1 is a random vector (RV) with PDF fX and
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covariance matrix C then Cp
1 represents the covariance matrix for vector Xp

1,
with PDF fXp

1
(xp

1). Let Xd
p+1 stand for the residual/remaining random vector

and set fXp
1 |Xd

p+1
(xp

1|xd
p+1) =

fX(xd
1)

fXp
1
(xd

p+1)
. Also denote by N, Np

1 and Nd
p+1

the corresponding Gaussian vectors, with PDFs fN(x) = fNo
C (x), fNp

1
(xp

1) =
fNo
Cp

1
(xp

1) and fNo
Np

1 |Nd
p+1

(xp
1|xd

p+1). Finally, for a given WF: x ∈ R
d �→ ϕ(x) set:

ψ(xd
p+1) =

∫

Rp

ϕ(x)fNd
1 |Nd

p+1
(xp

1|xd
p+1)dx

p
1,

α(Cd
p+1) =

∫

Rd−p

ψ(xd
p+1)fNd

p+1
(xd

p+1)dx
d
p+1, α(C) =

∫

Rd

ϕ(x)fN(x)dx,

ΨNd
p+1

=
∫

Rd−p

[
xd

p+1

(
xd

p+1

)T]
ψ(xd

p+1)fNd
p+1

(xd
p+1)dx

d
p+1,

ΦN =
∫

Rd

(
xxT

)
ϕ(x)fNd

1
(x)dx. (3.11)

Also, consider inequalities

I1 =
∫

Rd

ϕ(x)fXd
p+1

(xd
p+1)

[
fXp

1 |Xd
p+1

(xp
1|xd

p+1) − fNp
1 |Nd

p+1
(xp

1|xd
p+1)

]
dx ≥ 0,

I2 =
∫

Rd

ϕ(x)
[
fX(x) − fN(x)

]{

log [(2π)pdet (Kp
1)]

+ (log e)
[(

xp
1 − Dxd

p+1

)T
(Kp

1)
−1 (xp

1 − Dxd
p+1

)]
}

dx ≤ 0. (3.12)

Theorem 3.2. Assume that inequalities (3.12) are satisfied. Then the following
inequality holds true:

hw
ϕ(Xd

1|Xd
p+1) = −

∫

Rd

ϕ(x)fX(x) log fXp
1 |Xd

p+1
(xp

1|xd
p+1)dx

≤ hw
ϕ(Np

1|Nd
p+1) = hw

ϕ(N) − hw
ψ(Nd

p+1)

=
α(C)

2
log
[
(2π)ddetC

]
+

log e
2

tr
[
C−1ΦN

]

− α(Cd
p+1)
2

log
[
(2π)d−pdetCd

p+1

]

− log e
2

tr
[(

Cd
p+1

)−1
ΨNd

p+1

]
. (3.13)
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Proof. Note that the conditional distribution Np
1|Nd

p+1 coincides with NKp
1
,

a Gaussian variable with mean Dxd
p+1 and covariance matrix Kp

1. Denote the
random variable with conditional distribution Xp

1|Xd
p+1 by Xp+1,d

1,p . Set:

ψ̂(Xd
p+1) =

∫

Rd

ϕ(x)fXp
1 |Xd

p+1
(xp

1|xd
p+1)dx

p
1.

By the weighted Gibbs inequality, under assumption (3.12),
∫

Rd−p

fXd
p+1

(xd
p+1)i

w
ψ̂(Xd

p+1)
(Xp+1,d

1,p |NKp
1
)dxd

p+1 ≥ I1 ≥ 0. (3.14)

Hence,

hw
ϕ(Xp+1,d

1,p ) ≤ 1
2

∫

Rd

ϕ(x)fX(x)
[
log[(2π)pdet (Kp

1)]

+ (log e)[(xp
1 − Dxd

p+1)
T (Kp

1)
−1 (xp

1 − Dxd
p+1)]

]
dx (3.15)

implying (3.13) in view of the inequality I2 ≤ 0 in (3.12). �

4. Weighted entropies under mappings

In this section we give a series of general results (Theorems 4.1–4.3 and Theo-
rem 4.4) reflecting properties of WEs under mappings of random variables (an
example is a sum X + Y ). Of a special importance for us is Theorem 4.3 used
in Sect. 5. In essence, Theorems 4.1–4.3 can be interpreted as versions of data-
processing inequalities for the WE, and directly generalize their counterparts
from [18]. Hence, we omit their proofs.

Let (X ,X, νX ), (Y,Y, νY ) be a pair of SMSs and suppose X, Y are random
elements in (X ,X), (Y,Y) and fX , fY are PM/DFs, relative to measures νX ,
νY , respectively. Suppose η : (X ,X) → (Y,Y) is a measurable map onto, and
that νY(B) = νX (η−1B), B ∈ Y. Consider the partition of X with elements
B(y) = {x ∈ X : ηx = y} and let νX ( · |y) be the family of induced measures

on B(y), y ∈ Y. Suppose that fY (y) =
∫

B(y)

fX(x)ν(dx|y) and for x ∈ B(y)

let fX|Y (x|y) =
fX(x)
fY (y)

denote the PM/DF of X conditional on Y = y. (Re-

call, fX|Y ( · |y) is a family of PM/DFs defined for fY -a.a y ∈ Y such that∫

X
G(x)fX(x)νX (dx) =

∫

Y

∫

B(y)

G(x)fX|Y (x|y)νX (dx|y)fY (y)νY(dy) for any

non-negative measurable function G.)
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Theorem 4.1. (Cf. [16, Lemma 1.6]) Suppose that a WF: x ∈ X �→ ϕ(x) ≥ 0
obeys

∫

X
ϕ(x)fX(x)

[
fX|Y (x|ηx) − 1

]
νX (dx) ≤ 0 (4.1)

and set

ψ(y) =
∫

B(y)

ϕ(x)fX|Y (x|y)ν(dx|y), y ∈ Y. (4.2)

Then

hw
ϕ(X) ≥ hw

ψ(Y ) = −
∫

Y
ψ(y)fY (y) log fY (y)νY (dy), or

hw
ϕ(X|Y ) = −

∫

X
ϕ(x)fX(x) log fX|Y (x|y(x))νX (dx) ≥ 0, (4.3)

with equality iff ϕ(x)
[
fX|Y (x|ηx) − 1

]
= 0 for f-a.a. x ∈ X .

In particular, suppose that for fY -a.a. y ∈ Y a set B(y) contains at most
countably many values and ν( · |y) is a counting measure with ν1(x) = 1,
x ∈ B(y). Then the value fX|Y (x|ηx) yields the conditional probability P(X =
x|Y = ηx), which is ≤ 1 for fY -a.a. y ∈ Y. Then hw

ϕ(X|Y ) ≥ 0 and the
inequality is strict unless, modulo ϕ, map η is one-to-one.

Let (X ,X, νX ), (Y,Y, νY), (Z,Z, νZ) be a triple of SMSs and suppose X,
Y , Z are random elements in (X ,X), (Y,Y), (Z,Z). Let fX be the PM/DF
for X relative to measure νX and fY,Z the joint PM/DF for Y,Z relative to

the measures νY × νZ . Further, set fZ(z) =
∫

Y
f(y, z)νY(dy) and fY |Z(y|z) =

fY,Z(y, z)
fZ(z)

.

Consider the partition of X with elements B(y, z) = {x ∈ X : ηx =
y, ζx = z}, and let νX ( · |y, z) be the family of induced measures on B(y, z),
(y, z) ∈ Y × Z. Set:

fY,Z(y, z) =
∫

B(y,z)

fX(x)νX (dx|y, z) (4.4)

and for x ∈ B(y, z) let fX|Y,Z(x|y, z) =
fX(x)

fY,Z(y, z)
denote the PM/DF of X

conditional on Y = y, Z = z. (Recall, fX|Y,Z( · |y, z) is a family of PM/DFs
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defined for fY,Z-a.a (y, z) ∈ Y × Z such that
∫

X
G(x)fX(x)νX (dx)

=
∫

Y×Z

∫

B(y,z)

G(x)fX|Y,Z(x|y, z)νX (dx|y, z)fY,Z(y, z))νY(dy)νZ(dz) (4.5)

for any non-negative measurable function G.)

Theorem 4.2. (Cf. [16, Lemma 1.9]) Suppose that

η : (X ,X) → (Y,Y), ζ : (X ,X) → (Z,Z) (4.6)

is a pair of measurable maps onto, and that

νY(A) = νX (η−1A), A ∈ Y, νZ(B) = νX (ζ−1B), B ∈ Z. (4.7)

Assume that a WF: x �→ ϕ(x) ≥ 0 obeys
∫

X
ϕ(x)f(x)

[
fX|Y,Z(x|ηx, ζx) − 1

]
νX (dx) ≤ 0 (4.8)

and set

ψ(y, z) =
∫

B(y,z)

ϕ(x)fX|Y,Z(x|y, z)ν(dx|y, z). (4.9)

Then

−
∫

Y×Z
ψ(y, z)fY,Z(y, z) log fY |Z(y|z)νY(dy)νZ(dz)

= hw
ψ(Y |Z) ≤ hw

ϕ(X|Z) = −
∫

X
ϕ(x)fX(x) log fX|Z(x|ζx)ν(dx);

(4.10)

equality iff ϕ(x)
[
fX|Y,Z(x|ηx, ζx) − 1

]
= 0 for fX-a.a. x ∈ X .

As in Theorem 4.1, assume B(y, z) consists of at most countably many
values and ν(x|y, z) = 1, x ∈ B(y, z) for fY,Z-a.a. (y, z) ∈ Y × Z. Then the
value fX|Y,Z(x|y, z) yields the conditional probability P(X = x|Y = y, Z = z),
for fY,Z-a.a. y, z ∈ Y×Z. Then hw

ϕ(X|Z) ≥ hw
ψ(Y |Z), with equality iff, modulo

ϕ, the map x �→ (ηx, ζx) is one-to-one.

Let fX,Y be the joint PM/DF for X,Y relative to measure νX ×νY and set

fY (y) =
∫

X
fX,Y (x, y)νX (dx), fX|Y (x|y) =

fX,Y (x, y)
fY (y)

. (4.11)

Suppose that

ξ : (Y,Y) → (Z,Z) (4.12)
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is a measurable map onto, and that

νZ(C) = νY(ξ−1C), C ∈ Z. (4.13)

Consider a partition of Y with elements C(z) = {y ∈ Y : ξy = z} and let
νY( · |z) be the family of induced measures on C(z), z ∈ Z. Given (x, z) ∈ X ×Z
and y ∈ C(z), let

fX,Z(x, z) =
∫

C(z)

fX,Y (x, y)νY(dy|z), fZ(z) =
∫

X
fX,Z(x, z)νX (dx), (4.14)

and

fX|Z(x|z) =
fX,Z(x, z)

fZ(z)
, fY |Z(y|z) =

fY (y)
fZ(z)

. (4.15)

Theorem 4.3. (Cf. [16, Lemma 1.11]) Assume that a WF: (x, y) �→ ϕ(x, y) ≥ 0
obeys
∫

X×Y
ϕ(x, y)

[
fX,Y (x, y) − fZ(ξy)fX|Z(x|ξy)fY |Z(y|ξy)

]
νX (dx)νY(dy) ≥ 0

(4.16)

and set

ψ(x, z) =
∫

C(z)

ϕ(x, y)fY |Z(y|z)νY(dy|z). (4.17)

Then

−
∫

X×Z
ψ(x, z)fX,Z(x, z) log fX|Z(y|z)νX (dx)νZ(dz)

= hw
ψ(X|Z) ≥ hw

ϕ(X|Y ) = −
∫

X×Y
ϕ(x, y)fX(x) log fX|Y (x|y)νX (dx)νY(dy).

(4.18)

Furthermore, equality in (4.18) holds iff X and Y are conditionally independent
given Z modulo ϕ, i.e. ϕ(x, y)

[
fX,Y (x, y) − fZ(ξy)fX|Z(x|ξy)fY |Z(y|ξy)

]
= 0.

We will use an alternative notation hw
ϕ(X) = hw

ϕ(fX) where X = Xd
1 =

(X1, . . . , Xd)T is a d-dimensional random vector with PDF fX(x). (A change
in the notation is motivated by the emphasis on linearity properties in R

d

absent in X n.) In this context, we employ the notation X ∼ fX, Y ∼ fY,

(X,Y) ∼ fX,Y and (X|Y) ∼ fX|Y where fX|Y(x|y) =
fX,Y(x,y)

fY(y)
.
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Theorem 4.4 below mimics a result in [3, Lemma 5] extending from the
case of a standard entropy to that of the WE. A number of facts are related
to the conditional WE

hw
ϕ(X|Y) = −

∫

Rd×Rd

ϕ(x,y)fX,Y(x,y) log fX|Y(x|y)dxdy (4.19)

or, more generally,

hw
ϕ̃(U|V) = −

∫

Rd×Rd

ϕ̃(u,v)fU,V(u,v) log fU|V(u|v)dudv. (4.20)

Here a pair (U,V) is a function of (X,Y) with a joint PM/DF fU,V, marginal

PM/DFs fU, fV and conditional PM/DF fU|V(u|v) =
fU,V(u,v)

fV(v)
. (Viz.,

U = Y, V = X + Y.) WF ϕ̃ may or may not be involved with the map
(X,Y) �→ (U,V).

Theorem 4.4. (Cf. [3, Lemma 5]) Suppose X and Y are independent random
vectors of dimension d, with PDFs fX and fY:

(X,Y) ∼ fX,Y where fX,Y(x,y) = fX(x)fY(y), x,y ∈ R
d. (4.21)

Assume that WF: (x,y) ∈ R
d × R

d′ → ϕ∗(x,y) = ϕ(x + y,y) ≥ 0 obeys
∫

Rd×Rd

ϕ∗(x,y)fY(y)
[
fX+Y(x + y) − fX(x)

]
dxdy ≥ 0 (4.22)

and set

θ(x) =
∫

Rd

ϕ(x + y,y)fY|X+Y(y|x + y)dy

θ∗(x) =
∫

Rd

ϕ(x + y,y)fY(y)dy, x ∈ R
d. (4.23)

Then

hw
θ (X + Y) ≥ hw

θ∗(X), (4.24)

with equality iff ϕ(x,y)fY(y)
[
fX(x) − fX+Y(x + y)

]
= 0 for Lebesgue-a.a.

(x,y) ∈ R
d × R

d.

Proof. The following relations (a)–(c) hold true:

(a) hw
θ (X + Y) ≥ hw

ϕ(X + Y|Y),

(b) hw
ϕ(X + Y|Y) = hw

ϕ∗(X|Y),

(c) hw
ϕ∗(X|Y) = hw

θ∗(X). (4.25)
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Here inequality (a) comes from the sub-additivity of the WE, see [6, Theorem
1.8] or Eq. (1.32) from [18]. Next, (b) and (c) are derived by applying the
following equations:

hw
ϕ(X + Y|Y) =

∫

Rd

fY(y)hw
ϕ(X + Y|Y = y)dy

= −
∫

Rd×Rd

ϕ(x + y,y)fY(y)fX+Y|Y(x + y|y) log fX+Y|Y(x + y|y)dxdy

= −
∫

Rd×Rd

ϕ(x + y,y)fX,Y(x,y) log fX+Y|Y(x + y|y)dx)dy

= −
∫

Rd

⎡

⎣
∫

Rd

ϕ(x + y,y)fY(y)dy

⎤

⎦ fX(x) log fX(x)dx = hw
ϕ∗(X|Y) = hw

θ∗(X).

(4.26)

These equations also allow us to complete the proof of Theorem 4.4. �

5. Miscellaneous weighted determinant inequalities

In this section we present a host of WDIs derived from the properties of WEs.
As we said before, the proposed inequalities hold when WF ϕ ≡ 1 (in this case
the stated conditions are trivially fulfilled). To stress parallels with ‘standard’
DIs, we provide references to [3] or [6] in each case under consideration.

Theorem 5.1. (Cf. [3, Theorem 2]) Let X, Y be independent d-variate nor-
mal vectors with zero means and covariance matrices C1, C2, respectively:
fX,Y(x,y) = fX(x)fY(y), x,y ∈ R

d, where fX = fNo
C1

, fY = fNo
C2

. Given a
WF: (x,y) ∈ R

d ×R
d �→ ϕ(x,y) ≥ 0, positive on an open domain in R

d ×R
d,

consider a quantity β and d × d matrices Θ, Θ∗:

β =
∫

Rd

θ(x)fNo
C1+C2

(x)dx,

Θ =
∫

Rd

xxTθ(x)fNo
C1+C2

(x)dx, Θ∗ =
∫

Rd

xxTθ∗(x)fNo
C1

(x)dx (5.1)

where θ and θ∗ are as in (4.23):

θ(x) =
∫

Rd

ϕ(x + y,y)fY|X+Y(y|x + y)dy, θ∗(x) =
∫

Rd

ϕ(x + y,y)fY(y)dy.

(5.2)



Vol. 96 (2022) Weighted Gaussian entropy and determinant inequalities 101

Assume the condition emulating (4.22):
∫

Rd×Rd

ϕ(x + y,y)fNo
C2

(y)
[
fNo
C1+C2

(x + y) − fNo
C1

(x)
]
dxdy ≥ 0. (5.3)

Then

β log
[
det (C1 + C2)

detC1

]

+ (log e)
{

tr
[
(C1 + C2)−1Θ

]
− tr

(
C−1

1 Θ∗)
}

≥ 0.

(5.4)

Proof. Using Theorem 4.4 and Eq. (3.3), we can write:

1

2
log
[
(2π)d(det (C1 + C2))

] ∫

Rd

θ(x)fNo
C1+C2(x)dx +

log e

2
tr
[
(C1 + C2)

−1Θ
]

≥ 1

2
log
[
(2π)d(detC1)

] ∫

Rd

θ∗(x)fNo
C1 (x)dx +

log e

2
tr
(
C−1

1 Θ∗) .

(5.5)

Next,
∫

Rd

θ∗(x)fNo
C1

(x)dx = β. The inequality in (5.4) then follows. �

Remark 5.2. Note that (5.4) is equivalent to:

β log
[
det (I + C−1

1 C2)
]

+ (log e)tr
[
(C1 + C2)−1Θ∗ − C−1

1 Θ∗ + (C1 + C2)−1Θ̃
]

≥ 0
(5.6)

where

Θ̃ =
∫

Rd×Rd

(
xyT + yxT + yyT

)
ϕ(x + y,y)fNo

C2
(y)fNo

C1
(x)dydx. (5.7)

This claim is verified by observing that Θ = Θ∗ + Θ̃.

Remark 5.3. As above, we can assume that C2 is a matrix of size d′ × d′,
agreeing that in the sum C1 + C2, matrix C2 is identified as a top left block
(say). This is possible because in Eqs. (5.4) and (5.6) we do not use the inverse
C−1

2 or the determinant detC2.

To this end, recall the following theorem from [16]:

Theorem 5.4. Let G and G+E be non-singular matrices where E is a matrix
of rank one. Let g = tr

(
EG−1

)
. Then g 
= −1 and

(G + E)−1 = G−1 − 1
1 + g

G−1 E G−1. (5.8)
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The above equation is essentially the Sherman-Morrison formula (see [5],
p. 161).

Assuming that C2 = E has rank 1 and letting g = tr (EC−1
1 ), inequality

(5.4) turns into the following inequality:

β log
[
det (C1 + E)

detC1

]

+ (log e)
[

−tr
(

C−1
1 EC1

1 + g
Θ∗
)

+ tr {(C1 + E)−1Θ̃})
]

≥ 0. (5.9)

The techniques developed so far allow us to prove Theorem 5.5 below ren-
dering a weighted form of the Szasz theorem. Suppose C is a positive definite
d × d matrix. Given 1 ≤ k ≤ d and a set S ⊆ I(d) = {1, . . . , d} with #(S) = k,
let C(S) be the k × k sub-matrix of C formed by the rows and columns
with indices i ∈ S. With every S we associate a Gaussian random vector
X(S) ∼ fNo

C(S) considered as a sub-collection of X ∼ fNo
C . Accordingly, condi-

tional PDFs emerge, fNo
S|S′(x(S)|x(S′)), for pairs of sets S, S′ with S ∩ S′ = ∅,

where x(S) ∈ R
#(S), x(S′) ∈ R

#(S′). [The PDF fNo
S|S′ is expressed in terms of

block sub-matrices forming the inverse matrix C(S ∪ S′)−1.]
Further, let a function ϕ(x) ≥ 0, x ∈ R

d, be given, which is positive on an
open domain in R

d and set, as in (2.2),

ψ(S;x(S)) =
∫

R#(S�)

ϕ(x)fNo
S�|S(x(S�) |x(S))dx(S�). (5.10)

Furthermore, define:

τ(S) = tr
[
C(S)−1Φ(S)

]
, T(k) =

∑

S⊆I(d):#(S)=k

τ(S) (5.11)

where matrix Φ(S) is given by

Φ(S) = Φ(C(S)) =
∫

R#(S)

x(S)x(S)Tψ(S;x(S))fNo
C(S)(x(S))dx(S). (5.12)

(For S = I(d), we write simply Φ; cf. (3.4).) Finally, set:

α(S) = α(C(S)) =
∫

R#(S)

ψ(S;x(S))fNo
C(S)(x(S))dx(S),

A(k) =
∑

S⊆I(d):#(S)=k

α(S) (5.13)

and

λ(S) = α(S) log detC(S), Λ(k) =
∑

S⊆I(d):#(S)=k

λ(S). (5.14)
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Consider the following condition repeating (2.5) for the Gaussian case:

∀i ∈ S ⊆ I,withS−
i = {j ∈ S : j < i}andS+

i = {j ∈ S : j > i},
∫

(R#(S)

ψ(S;x(S))
{

fNo
C(S)(x(S))

− fNo
C(S−

i )
(x(S−

i ))fNo
{i}|S−

i
(xi|x(S−

i ))fNo
S+
i |S−

i
(x(S+

i )|x(S−
i ))
}

dx(S) ≥ 0.

(5.15)

Theorem 5.5 below follows from Theorem 2.2:

Theorem 5.5. (Cf. [3, Theorem 4] or [6, Theorem 31]) Assume condition (5.15).
Then the quantity m(k) = m(k,C, ϕ) defined by

m(k) =
(

d

k

)−1 [ log Λ(k)
2k

+
log (2π)

2
A(k) +

log e
2k

T (k)
]

(5.16)

is decreasing in k = 1, . . . , d:

m(1) ≥ · · · ≥ m(d). (5.17)

Proof. For X(S) ∼ fNo
C(S) we have, by using (3.3):

hw
ψ(S)(X(S))

k
=

α(S)
2k

log
[
(2π)kdetC(S)

]
+

log e

2k
tr
[
C(S)−1Φ(S)

]
. (5.18)

Therefore,

m(k) =
(

d

k

)−1 ∑

S:|S|=k

hw
ψ(S)(X(S))

k
. (5.19)

Invoking Theorem 2.2 completes the proof. �

Theorem 5.6. (Cf. [3, Theorem 5] or [6, Theorem 32]) Assuming (5.15), for
all r > 0 the values

s(k) =
(

d

k

)−1 ∑

S⊆I(d): #(S)=k

Λ(k)1/2k exp
{

r

[
log (2π)

2
A(k) +

log e
2k

T(k)
]}

(5.20)

obey

s(1) ≥ · · · ≥ s(d). (5.21)

Proof. The assertion follows readily from Theorem 2.4. �

Our next goal is to establish inequalities for Toeplitz determinants extend-
ing [3, Theorem 6] or [6, Theorem 27]. Recall, C = (Cij) is a d × d Toeplitz
matrix if Cij = Ckl whenever |i − j| = |k − l|. A more restrictive property
is cyclic Toeplitz where Cij = Ckl whenever distd(i, j) = distd(k, l). Here, for
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1 ≤ i < j ≤ d the cyclic distance distd(i, j) = min [j − i, d− j + i]; it is then ex-
tended to a metric with distd(i, j) = distd(j, i) and distd(i, i) = 0. As before, we
consider sub-matrices C(S) where S ⊆ I(d) = {1, . . . , d} and the Gaussian ran-
dom vectors X(S) ∼ fNo

C(S) as sub-collections in Xd
1 = (X1, . . . , Xd)T ∼ fNo

C .
A special role is played by S = Ii,j where Ii,j stands for a segment of posi-
tive integers {i, i + 1, . . . , j} of cardinality j − i + 1 where 1 ≤ i < j ≤ d. In
particular, for S = I1,k, we set: C(S) = Ck and deal with vectors Xk

1 ∼ fNo
Ck

,
1 ≤ k ≤ d, with Cd = C.

Accordingly, we say that WF: x ∈ R
d �→ ϕ(x) ≥ 0 has a Toeplitz property

if the value of the reduced WF ψ(Ii,j ;x
j
i ) coincides with ψ(Ii+k,j+k;xj+k

i+k ),
provided that arguments xj

i = x(Ii,j) and xj+k
i+k = x(Ii+k,j+k) are shifts of

each other (with xi+s(Ii,j) = xi+k+s(Ii+k,j+k), for 0 ≤ s ≤ j − i), where
1 ≤ i < j ≤ d and 1 ≤ i + k < j + k ≤ d. An example is where C is cyclic
Toeplitz and ϕ has a product-form: ϕ(x) =

∏

1≤i≤d

ϕ̂(xi). Recall, the reduced

WF in question involves the conditional PDF fNo
I�
i,j |Ii,j (x(I�

i,j)|xj
i ):

ψ(Ii,j ;x
j
i ) =

∫

Rd−j+i−1

ϕ(x)fNo
I�
i,j |Ii,j (x(I�

i,j)|xj
i )dx(I�

i,j) where I�
i,j = I1,d \ Ii,j .

(5.22)

For S = I1,k, 1 ≤ k ≤ d, in accordance with (3.3),

hψ(k)(X
k
1) = hψ(I1,k)

(Xk
1) =

α(Ck)
2

log
[
(2π)kdetCk

]
+

log e

2
tr
[
C−1

k Ψk

]
.

(5.23)

Here the value α(Ck) = α(k,C, ϕ) and the k × k matrix Ψk = Ψk(k,C, ψ)
are given by

α(Ck) =
∫

Rk

ψ(k;xk
1)f

No
Ck

(xk
1)dx

k
1 , Ψk =

∫

Rk

xk
1

(
xk
1

)T
ψ(k;xk

1)f
No
Ck

(xk
1)dx

k
1

(5.24)

and ψ(k) = ψ(I1,k). (For k = d, the subscript k will be omitted.)

Theorem 5.7. (Cf. [3, Theorem 6] or [6, Theorem 27]) Suppose Cd is a positive
definite d × d Toeplitz matrix and ϕ has the Toeplitz property. Consider the
map k ∈ {1, . . . , d} �→ a(k) = a(k,C, ϕ) where

a(k) = α(Ck)
{

log(2π) + log
[
(det Ck)1/k

]}
+

log e

k
tr
[
C−1

k Ψk

]
. (5.25)

Assuming condition (5.15), the value a(k) is decreasing in k: a(1) ≥ · · · ≥ a(d).

Proof. By using the Toeplitz property of C and ϕ, we can write

hw
ψ(I1,k)

(Xk|Xk−1
1 ) = hw

ψ(I2,k+1)
(Xk+1|Xk

2). (5.26)
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Next, Theorem 4.3 yields:

hw
ψ(I2,k+1)

(Xk+1|Xk
2) ≥ hw

ψ(I1,k+1)
(Xk+1|Xk

1). (5.27)

From (5.26) and (5.27) we conclude that hw
ψ(I1,k)

(Xk|Xk−1
1 ) is decreasing in

k. Thus the running average also decreases. On the other hand, by the chain
rule

1
k

hψ(I1,k)
(Xk

1) =
1
k

k∑

i=1

hw
ψ(I1,i)

(Xi|Xi−1
1 ). (5.28)

Consequently
1
k

hψ(I1,k)
(Xk

1) decreases in k too. Referring to Eqs. (5.24) and

(5.23) leads directly to the result. �

Theorem 5.8. (Cf. [6, Theorem 33]) Given a WF: x ∈ R
d �→ ϕ(x), assume

condition
∫

Rd

ϕ(x)

[

fNo
C (x) −

d∏

i=1

fNo
Cii

(xi)

]

dx ≥ 0. (5.29)

Then the quantity

w(k) = w(k,C, ϕ) =
(

d

k

)−1
α(C)
2k

log

⎡

⎣
∏

S⊆In: #(S)=k

(2π)d(det C)
(2π)d−k(det C(S�))

⎤

⎦

+
(

d

k

)−1 log e

2k

∑

S⊆In: #(S)=k

{
tr
[
C−1Φ

]− tr
[
C(S�)−1Φ(S�)

]}

(5.30)

is increasing in k, with

w(1) ≤ · · · ≤ w(d). (5.31)

Proof. Using the chain rule for the conditional WE, we can write

hw
ϕ(X(S)|X(S�)) = hw

ϕ(X(S),X(S�)) − hw
ψ(S�)(X(S�))

=
α(C)

2
log

[
(2π)d(detC)

]
+

log e

2
tr
[
C−1Φ

]

− α(C)
2

log
[
(2π)d−k(detC(S�))

]
− log e

2
tr
[
C(S�)−1Φ(S�)

]
. (5.32)

Here α(C) =
∫

Rd

ϕ(x)fNo
C (x)dx =

∫

R#(S�)

ψ(x(S�))fNo
C(S�)(x(S�))dx(S�). There-

fore,
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hw
ϕ(X(S)|X(S�))

=
α(C)

2
log

[
(2π)d(det C)

(2π)d−k(det C(S�))

]

+
log e

2

{
tr
[
C−1Φ

]− tr
[
C(S�)−1Φ(S�)

]}
.

(5.33)

After that we apply Theorem 2.5 which completes the proof. �

Remark 5.9. Note that the outermost inequality, w(1) ≤ w(d), can be rewrit-
ten as

α(C) log
[
(2π)d(detC)

]
+ log e tr

[
C−1Φ

] ≥ α(C) log

[
d∏

i=1

2π(det C)

det C(Ii−1
1 ∪ Id

i+1)

]

+ log e
d∑

i=1

{
tr
[
C−1Φ

]− tr
[
C(Ii−1

1 ∪ Id
i+1)

−1Φ(Ii−1
1 ∪ Id

i+1)
]}

. (5.34)

One can note that for ordinary entropies, the outermost inequality can be
interpreted as an inequality involving estimation errors; see [6, p. 1517].

Our next goal is to establish additional WDIs by using Theorem 2.7. For
this purpose, we first analyse the mutual Gaussian WI, iwϕ(X(S);X(S�)). Ac-
cording to the definition of the mutual WI in [18], we can write

iwϕ(X(S);X(S�)) = hw
ψ(S)(X(S)) − hw

ϕ(X(S)|X(S�)). (5.35)

Then, in accordance with (5.33), we have

iwϕ(X(S);X(S�)) =
α(C)

2
log

[
(detC(S)) (detC(S�))

(detC)

]

+
log e

2

{
tr
[
C(S)−1Φ(S)

]
+ tr

[
C(S�)−1Φ(S�)

]
− tr

[
C−1Φ

]}
.

(5.36)

In Theorems 5.10 and 5.11 we consider the following condition (5.37) stem-
ming from (2.18): ∀ S ⊆ {1, . . . , n} with #S ≥ 2 and i, j ∈ S with i 
= j,

∫

Rd

ϕ(x)fNo
S�|S(x(S

�)|x(S))
[
fNo
C(S)(x(S))

−fNo
C(S\{i,j})(x(S \ {i, j})) fNo

i|S\{i,j}(x(S \ {i, j})) fNo
j|S\{i,j}(xj |x(S \ {i, j}))

]
dx ≥ 0.

(5.37)

The proof of Theorems 5.10 and 5.11 is done with the help of Theorem 2.6,
assuming that X1,X2, . . . , Xd are normally distributed with covariance matrix
C.
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Theorem 5.10. (Cf. [6, Theorem 34]) Assume condition (5.37). Let

u(k) =
(d

k

)−1 α(C)

2k
log

⎡

⎣
∏

S⊆I(d): #(S)=k

(detC(S)) (detC(S�))

(detC)

⎤

⎦

+
(d

k

)−1 log e

2k

∑

S⊆In: #(S)=k

{
tr
[
C(S)−1Φ(S)

]
+ tr

[
C(S�)−1Φ(S�)

]
− tr

[
C−1Φ

]}
.

(5.38)

Then

u(1) ≥ u(2) ≥ · · · ≥ u(d − 1) ≥ u(d). (5.39)

Theorem 5.11. (Cf. [6, Theorem 35]) Under condition (5.37), let

z(k) =
(d

k

)−1 α(C)

2
log

⎡

⎣
∏

S⊆I(d): #(S)=k

(detC(S)) (detC(S�))

(detC)

⎤

⎦

+
(d

k

)−1 log e

2

∑

S⊆I(d): #(S)=k
{
tr
[
C(S)−1Φ(S)

]
+ tr

[
C(S�)−1Φ(S�)

]
− tr

[
C−1Φ

]}
. (5.40)

Then

z(1) ≥ z(2) ≥ · · · ≥ z(�d/2�). (5.41)

6. Weighted Hadamard-type inequalities

In this section we group several results related to the weighted Hadamard
inequality (WHI); cf. [6, Theorem 3.7]. The WHI inequality asserts that for a
d × d positive definite matrix C, under condition (5.29) we have:

α(C) log((2π)d
∏

i

Cii) + (log e)
∑

i

C−1
ii Φii

−α(C) log((2π)ddetC) − (log e)tr
(
C−1Φ

) ≥ 0, (6.1)

with equality iff C is diagonal. Recall, α(C) = αϕ(C) and Φ = ΦC = ΦC,ϕ

are as in (3.4). For ϕ ≡ 1, it becomes detC ≤ ∏

1≤i≤d

Cii, the famous inequality

due to Hadamard.
We begin with the weighted version of the strong Hadamard inequality

(WSHI). This inequality (and other inequalities in this section) will involve
determinants detC(S) of sub-matrices C(S) in C where, as before, S is a
subset of I(d) = {1, . . . , d} of a special type. Namely, we fix p ∈ {1, . . . , d − 1}
and consider the segment Ip+1,d = {p + 1, . . . , d}, segment I1,p = {1, . . . , p}
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and unions {i} ∪ Ip+1,d and I1,i ∪ Ip+1,d = I�
i+1,p where i ∈ I1,p. We deal with

the related entry Cii in C and sub-matrices

Cd
p+1 = C(Ip+1,d), Ci−1

1 = C(I1,i−1), C({i} ∪ Ip+1,d) and C(I1,i ∪ Ip+1,d)

and Gaussian random variables Xi and vectors Xd
p+1 = X(Ip+1,d), Xi−1

1 =
X(I1,i−1), Xi ∨ Xd

p+1 = X({i} ∪ Ip+1,d) and Xi
1 ∨ Xd

p+1 = X(I1,i ∪ Ip+1,d)
using symbols xi, xd

p+1, xi−1
1 , and xi

1 ∨ xd
p+1 for their respective values. For

simplicity, let us omit henceforth the subscript No indicating normality. Then
the PDFs

fXd
p+1

(xd
p+1) = fCd

p+1
(xd

p+1) and fXi
1∨Xd

p+1
(xi

1 ∨ xd
p+1) = fC(I1,i∪Ip+1,d)(x

i
1 ∨ xd

p+1)

emerge, as well as conditional PDFs fXi|Xd
p+1

(xi|xd
p+1) and

fXi−1
1 |Xd

p+1
(xi−1

1 |xd
p+1). Viz., Xi

1 ∨ Xd
p+1 and xi

1 ∨ xd
p+1 stand for the concate-

nated vectors (X1, . . . , Xi,Xp+1, . . . , Xd)T and (x1, . . . , xi, xp+1, . . . , xd), each
with i + d − p entries. As above (see (3.4)), for a given WF: x ∈ R

d �→ ϕ(x)
we consider numbers α(Cp

1) = αϕ(p,C) and matrices ΦCp
1

= Φp,C,ϕ:

α(Cp
1) =

∫

Rd

ϕ(xp
1)fCp

1
(xp

1)dx
p
1, ΦCp

1
=
∫

Rd

xp
1 (xp

1)
T

ϕ(xp
1)fC(xp

1)dx
p
1. (6.2)

We also set

Φd
p+1 =

∫

Rp−d

xd
p+1

(
xd

p+1

)T
ψ(Ip+1,d;xd

p+1) fXd
p+1

(xd
p+1) dxd

p+1,

Φ({i} ∪ Ip+1,d) =
∫

Rp−d+1

(xi ∨ xd
p+1)

(
xi ∨ xd

p+1

)T

× ψ({i} ∪ Ip+1,d;xi ∨ xd
p+1)fXi∨Xd

p+1
(xi ∨ xd

p+1)d(xi ∨ xd
p+1), (6.3)

with reduced WFs ψ(Ip+1,d) and ψ({i} ∪ Ip+1,d) calculated as in (2.2), for
S = Ip+1,d and S = {i} ∪ Ip+1,d.

Furthermore, we will assume in Theorem 6.1 that, ∀ i = 1, . . . , p, the re-
duced WF ψ(S) with S = {1, . . . i, p + 1, . . . d} = I�

i+1,p obeys
∫

Ri+d−p

ψ(I�
i+1,p;x

i
1 ∨ xd

p+1)
{

fXi
1∨Xd

p+1
(xi

1 ∨ xd
p+1)

− fXd
p+1

(xd
p+1)fXi|Xd

p+1
(xi|xd

p+1)fXi−1
1 |Xd

p+1
(xi−1

1 |xd
p+1)

}
d(xi

1 ∨ xd
p+1) ≥ 0.

(6.4)
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The ‘standard’ SHI is
detC

detCd
p+1

≤
∏

1≤i≤p

detC({i} ∪ Ip+1,d)
detCd

p+1

or log detC + (p − 1) log detCd
p+1 ≤

∑

1≤i≤p

log detC({i} ∪ Ip+1,d).

(6.5)

The WE approach offers the following WSHI:

Theorem 6.1. (Cf. [3, Theorem 8] or [6, Theorem 28]) Under condition (6.4),
for 1 ≤ p < d,

α(C) log
[
(2π)d detC

]
+ (log e)tr (C−1Φ)

+ (p − 1)
{

α(Cd
p+1) log

[
(2π)d−p detCd

p+1

]
+ (log e)tr [(Cd

p+1)
−1Φd

p+1]
}

≤
∑

1≤i≤p

{

α(C({i} ∪ Ip+1,d)) log
[
(2π)d−p+1detC({i} ∪ Ip+1,d)

]

+ (log e)tr [C({i} ∪ Ip+1,d)−1Φ({i} ∪ Ip+1,d)]
}

. (6.6)

Proof. We use the same idea as in [6, Theorem 3.7]. Recalling (6.13) we can
write

hw
ϕ(Xp

1|Xd
p+1) =

1
2

log
[
(2π)d detC

]
α(C) +

log e

2
tr (C−1Φ)

− 1
2

log
[
(2π)d−p detCd

p+1

]
α(Cd

p+1) − log e

2
tr [(Cd

p+1)
−1Φd

p+1], (6.7)

Cf. Eqs. (5.12), (5.13), (5.24). Furthermore, by the subadditivity of the condi-
tional WE (see [6, Theorem 1.8]), under assumption (6.4) we can write

hw
ϕ(Xp

1|Xd
p+1) ≤

p∑

i=1

hw
ψ({i}∪Ip+1,d)

(Xi|Xd
p+1). (6.8)

Here for i = 1, . . . , p, again in agreement with (6.13),

hw
ψ({i}∪Ip+1,d)

(Xi|Xd
p+1) =

1
2

log
[
(2π)d−p+1detC({i} ∪ Ip+1,d)

]
α(C({i} ∪ Ip+1,d))

+
log e

2
trC({i} ∪ Ip+1,d)−1Φ({i} ∪ Ip+1,d)

− 1
2

log
[
(2π)d−p detCd

p+1

]
α(Cd

p+1)

− log e

2
tr [(Cd

p+1)
−1Φd

p+1]. (6.9)

Substituting into (6.8) yields the assertion of the theorem. �
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Our next result, Theorem 6.2, gives an extension of [3, Lemma 9] (or [6,
Lemma 8]). Let Ĉdd = Cdd − C1

d−1

(
Cd−1

1

)−1 (
C1

d−1

)T be the mean square
error of estimate of Xd by observations Xd−1

1 . Then

Ĉdd =
detC

detCd−1
1

, or log Ĉdd + log detCd−1
1 − log detC = 0. (6.10)

Remarkably, Theorem 6.2 does not require assumption (6.4), in fact, this is a
purely algebraic identity.

Theorem 6.2. (Cf. [3, Lemma 9] or [6, Lemma 8]) The following equality holds
true:

α(Ĉdd) log
[
(2π)Ĉdd

]
+ α(Cd−1

1 ) log
[
(2π)d−1det Cd−1

1

]− α(C) log
[
(2π)ddet C

]

= (log e) tr
[
C−1Φ

]− (log e) tr
[(

Cd−1
1

)−1
Φd−1

1

]
− (log e) Ĉ−1

dd Φdd.

(6.11)

Proof. Using the conditional normality of Xd given Xd−1
1 , we can write

hw
ϕ(Xd|Xd−1

1 ) =
α(Ĉdd)

2
log

[
(2π)Ĉdd

]
+

log e
2

Ĉ−1
dd Φdd.

On the other hand,

hw
ϕ(Xd|Xd−1

1 ) = hw
ϕ(Xd

1) − hw
ψ(I1,d−1)

(Xd−1
1 ), (6.12)

and therefore

α(Ĉdd)
2

log
[
(2π)Ĉdd

]
+

log e
2

Ĉ−1
dd Φdd

=
α(C)

2
log

[
(2π)ddet C

]
+

log e
2

tr C−1Φ

− α(Cd−1
1 )
2

log
[
(2π)d−1det Cd−1

1

]− log e
2

tr
[(

Cd−1
1

)−1
Φ(d−1)

1

]
.

(6.13)

The result then follows. �

The next assertion, Theorem 6.3, extends the result of [3, Theorem 9] (or

[3, Theorem 29]) that, ∀ p = 1, . . . , d, C �→ log
detC
detCp

1

is a concave function of

a positive definite d × d matrix C. We will write matrix C in the block form
similar to (3.10):

C =
(

Cp
1 Cp

d−p

Cd−p
p Cd

p+1

)

, (6.14)
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with
(
Cp

d−p

)T
= Cd−p

p . Set D = Cp
d−p (Cd

p+1)
−1 and Kp

1 = Cp
1

− Cp
d−p (Cd

p+1)
−1 Cd−p

p . Consider the following inequalities
∫

Rd

ϕ(x)fXd
p+1

(xd
p+1)

[
fXd

1 |Xd
p+1

(xp
1|xd

p+1) − fYp
1 |Yd

p+1
(xp

1|xd
p+1)

]
dx ≥ 0 (6.15)

and
∫

Rd

ϕ(x)
[
fX(x) − fC(x)

]{

log [(2π)pdet (Kp
1)]

+ (log e)
[(

xp
1 − Dxd

p+1

)T
(Kp

1)
−1 (xp

1 − Dxd
p+1

)]
}

dx ≤ 0. (6.16)

Theorem 6.3. (Cf. [3, Theorem 9] or [6, Theorem 29]) Assume that C = λC′ +
(1−λ)C′′ where C, C′ and C′′ are positive definite d×d matrices and λ ∈ [0, 1].
Given a WF: x �→ ϕ(x) ≥ 0 and 1 ≤ p ≤ d, define:

μ(C) = hw
ϕ(Xp

1|Xd
p+1)

=
1
2

{

α(C) log
[
(2π)ddet C

]
+ (log e) tr

[
C−1ΦC

]

− α(Cd
p+1) log

[
(2π)pdet Cd

p+1

]− (log e) tr
[(

Cd
p+1

)−1
ΦCd

p+1

]}

,

(6.17)

and similarly with μ(C′) and μ(C′′). Then, under conditions (6.15) and (6.16),

μ(C) ≥ λμ(C′) + (1 − λ)μ(C′′). (6.18)

Proof. Again we essentially follow the method in [3] with modifications de-
veloped in [18]. Fix two d × d positive definite matrices C′ and C′′ and set
X′ ∼ fC′ , X′′ ∼ fC′′ . Given λ ∈ [0, 1], consider a random variable Θ taking
values ϑ = 1, 2 with probabilities λ and 1−λ independently of (X′,X′′). Next,
set

X =

{
X′, whenΘ = 1,

X′′, whenΘ = 2.

Then X ∼ (λfC′ + (1 − λ)fC′′) and the covariance matrix Cov X = λC′ +(1−
λ)C′′ = C.

With the WF ϕ̃(xd
1, ϑ) = ϕ(xd

1), use [6, Theorem 2.1] and Theorem 3.2
from Sect. 3 (which is possible under (6.15) and (6.16)) and write:

hw
ϕ̃(Xd

p+1|Xp
1,Θ) ≤ hw

ϕ(Xd
p+1|Xp

1) ≤ hw
ϕ(Yd

p+1|Yp
1). (6.19)

Here Y stands for the Gaussian random vector with the PDF fC(xd
1). The

LHS in (6.19) coincides with λμ(C′) + (1 − λ)μ(C′′) and the RHS with μ(C).
This completes the proof. �
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In a particular case p = d − 1, the function C �→ det C
det Cd−1

1

is also con-

cave. (See [3, Theorem 10] or [6, Theorem 30].) It is challenging to establish a
weighted version of this assertion. In this paper we make a step towards such
a result: see Theorem 6.5 below. A crucial part is played by Theorem 4.3, with
X represented by the random variable Zd ∼ fAdd+Bdd

and Y associated with
the independent Gaussian pair of vectors (Xd−1

1 ,Yd−1
1 ) having the joint PDF

fXd−1
1 ,Yd−1

1
(xd−1

1 ,yd−1
1 ) = fAd−1

1
(xd−1

1 )fBd−1
1

(yd−1
1 ).

The random element Z from Theorem 4.3 is represented by Zd−1
1 = Xd−1

1 +
Yd−1

1 , and the map ξ takes (xd−1
1 ,yd−1

1 ) �→ xd−1
1 + yd−1

1 .
Next, introduce a WF

(z,xd−1
1 ,yd−1

1 ) ∈ R × R
d−1 × R

d−1 �→ ϕ(z,xd−1
1 ,yd−1

1 ) (6.20)

and consider the following inequality involving conditional normal PDFs
fZd|Xd−1

1 ,Yd−1
1

and fZd|Zd−1
1

:

∫

R×Rd−1×Rd−1

ϕ(z,xd−1
1 ,yd−1

1 )fAd−1
1

(xd−1
1 )fBd−1

1
(yd−1

1 )

×
[
fZd|Xd−1

1 ,Yd−1
1

(z|xd−1
1 ,yd−1

1 ) − fZd|Zd−1
1

(z|xd−1
1 + yd−1

1 )
]
dzdxd−1

1 yd−1
1 ≥ 0.

(6.21)

Theorem 6.4. Let A, B be two positive definite d × d matrices and X ∼ fA,
Y ∼ fB be the corresponding independent Gaussian vectors, with Z:=X+Y ∼
fA+B. Then, under condition (6.21),

hw
ψ(Zd|Zd−1

1 ) ≥ hw
ϕ(Xd + Yd|Xd−1

1 ,Yd−1
1 ). (6.22)

Proof. The assertion follows by virtue of (3.13) and Theorem 4.3. �

Finally, combining (5.34) and (6.1), we offer

Theorem 6.5. (Cf. [6, Corollary 4]) Given a d × d positive definite matrix C,
assume condition (5.29). Then

α(C) log

[
d∏

i=1

2π(det C)
det C(Ii−1

1 ∪ Id
i+1)

]

+ log e

d∑

i=1

{
tr
[
C−1Φ

]− tr
[
C(Ii−1

1 ∪ Id
i+1)

−1Φ(Ii−1
1 ∪ Id

i+1)
]}

≤ α(C) log
(

(2π)ddetC
)

+ (log e)tr
[
C−1Φ

]

≤ α(C) log
(
(2π)d

∏

i

Cii

)
+ (log e)

∑

i

C−1
ii Φii. (6.23)
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