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Weighted Gaussian entropy and determinant inequalities
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Abstract. We produce a series of results extending information-theoretical inequalities (dis-
cussed by Dembo—Cover-Thomas in 1988-1991) to a weighted version of entropy. Most of
the resulting inequalities involve the Gaussian weighted entropy; they imply a number of
new relations for determinants of positive-definite matrices. Unlike the Shannon entropy
where the contribution of an outcome depends only upon its probability, the weighted (or
context-dependent) entropy takes into account a ‘value’ of an outcome determined by a
given weight function ¢. An example of a new result is a weighted version of the strong
Hadamard inequality (SHI) between the determinants of a positive-definite d X d matrix
and its square blocks (sub-matrices) of different sizes. When ¢ = 1, the weighted inequality
becomes a ‘standard’ SHI; in general, the weighted version requires some assumptions upon
. The SHI and its weighted version generalize a widely known ‘usual’ Hadamard inequality
det C < []9_, Cy;.
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1. Introduction

The aim of this paper is to continue an analysis of the weighted entropy by
following [18] and in particular to give a number of new inequalities involv-
ing the determinants of positive-definite matrices. These inequalities can be
considered as generalizations of inequalities discussed in [3,4,6,12].

The inequalities presented in the current paper are obtained by a unified
method which is based on weighted entropies (WEs), in particular, on Gaussian
WESs. The concept of a WE was introduced in the late 1960s—early 1970s;
see, e.g., [2]. (Another term that can be used is a context-dependent or a
preferential entropy.) The reader is referred to [18] where a number of notions
and elementary inequalities were established for the WE, mirroring well-known
facts about the standard (Shannon) entropy. We follow the system of notation
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from [3,6,18] with minor deviations. Methodologically, we follow the view that
at the root of most WE inequalities is the weighted Gibbs inequality; see [[18],
Theorem 1.3].

In recent years weighted entropy found applications in a wide variety of
areas: medical statistics [9,17], investments [11], sensing for motion planning
[13,14], data-compression [19], samples-selection in videos [1], data availability
and file search efficiency in certain networks [21], slimming neural networks [8],
rockburst predictions [23], multi-goal reinforcement learning [22], measurement
of complexity in production [7], etc. A different, more theoretical, direction of
study of the weight function and weighted entropy has been pursued in recent
works [10,15,19,20]. In [19], for instance, the weight function (WF) is used
to propose a further reduction in the storage space after data-compression
(a refinement of Shannon’s Noiseless Coding theorem). Results of [20] clarify
various aspects of the weighted information (WI) and WE rates, establishing
connections with important notions such as metric and topological entropy,
pressure from the theory of dynamical systems.

The WE of a random element X taking values in a standard measure space
(SMS) (X, 9, v) with a WF: 2 € X — p(z) > 0 is defined by

hg (X) = hg(f):=—Elp(X)log f(X)] = */@(x)f(x) log f(z)v(dz), (1.1)
X
assuming that ¢ is measurable and the integral in the right-hand side of (1.1)
is absolutely convergent. Here f = f(x) is the probability mass/density func-
tion (PM/DF) of X relative to measure v. The symbol E stands for the ex-
pected value (relative to a probability distribution that is explicitly specified
or emerges from the context in an unambiguous manner). This definition is
immediately extended to a pair of random elements X7, Xs with values in
(X1, 9, 11) and (Xa, My, 1) with a joint PM/DF f = fx, x, and marginals
fi = fx;- Writing fx, x, (21, 22) = fo(z2) fij2(21|22), 7; € Aj, leads to the
definition of the conditional WE
Ry (X1]1X3) = —E [p(X1, Xa)log fi2(X1|X2)] = (X1, X2) — Ay, (Xa2)

= _/ o(x1,22) f (71, 72) log f1\2(901|952)1/1(del)V2(d$2),
XlXXQ
(1.2)
where 15 is a reduced WF: 15 (x2) le (w1, 22) frj2(z1|z2)V1 (d2y ). Further,
the mutual weighted information (WI) between X; and X5 is given by
(X1, Xo)
J1(X1) f2(X2)
f(thz)
fi(@1) f2(22)

ZZZ(Xl, XQ) =K |:(p(X1,X2) 10g

I/l(dxl)l/z(dxg).
(1.3)

= / o(x1,m2) f(71,22) log
Xl ><X2
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For p(z1,22) = 1, the above concepts are reduced to the corresponding stan-
dard ones.
In particular, the WE of a d-variate Gaussian random vector X with PDF
go, with mean zero and covariance matrix C, has the form

B (X) = B (F3) = @ log ((2)" det ©) + £ %1 (C'@)

wherea(C) = Ep(X)and® = E [@(X)XXT} ;

for ¢ =1, we get the ‘standard’ Gaussian differential entropy

(1.4)

h(f&°) = %log ((27re)ddet C).

Accordingly, we speak here of WE inequalities, in particular, weighted de-
terminant inequalities (WDIs). The WDIs offered in the present paper are
novel, at least to the best of our knowledge. In fact, the essence of this work
is that we subsequently examined DIs from [3,6] for a possibility of a (direct)
extension to non-constant weight functions; successful attempts are presented
in the current paper. This reflects a particular feature of the present work: a
host of new inequalities are obtained by an old method while [3,6] re-establish
old inequalities by using a new method. An example is the so-called weighted
Fano, Ky Fan, Hadamard, Cramér-Rao and Kullback inequalities (see [[16],
Theorems 2.5, 3.5, 3.7, 5.1, 5.4, 5.3]); in this paper we continue this line of
study by offering additional WDIs, although their list here is by no means
complete.

To illustrate the situation, we mention here the weighted Ky Fan inequality
(see [16, Theorem 3.5]). The original inequality asserts that o : C — logdet C
is a concave function on the set of d x d positive-definite matrices; it is proved
in [3,6] by using an elegant and short argument based on properties of the
standard entropy. Formally: ¥V A1, Ao > 0 with A\ + Ay =1,

0(A1C1 + A2C2) — Ao (Cy) — A20(Cg2) > 0,
or, equivalently, h(f)lrllocﬁ)\?c?) — Arth( g?) — )\Qh(fg;)) > 0.

The weighted Ky Fan inequality reads

hg(f>1\\11001+,\202) - AthZ(fg?) - )\2hg(fg§> > 0. (1.6)
It involves an additional ingredient, a WF ¢, and it holds provided that ¢
satisfies certain conditions involving A; and C;. For ¢ = 1 these conditions
are automatically satisfied. For a judicial choice of ¢, the weighted inequality
may lead to a positive right-hand side in (1.5), i.e., to an improvement of the
original one. A similar picture emerges for other DIs. However, this direction
needs further studies, including numerical simulations, which is beyond the
scope of the current paper.
The present text is organized as follows. In Sect. 2 we work with a general
setting, elaborating on properties of WEs which have been established earlier in
[18]. Next, Sect. 3 summarizes some properties of Gaussian weighted entropies

(1.5)
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while Sect. 4 analyzes the behavior of weighted entropies under mappings;
these sections also rely on Ref. [18]. The WDIs are presented in Sects. 5 and
6 as a sequel to the material from Sects. 2-4.

2. Random strings and reduced weight functions

A number of properties of the WE are related to a Cartesian product structure.
Let random elements X1, ..., X,, be given, taking values in SMSs (X;, M, v;),
1 <i<n. Set X! ={Xj,...,X,} and assume that Xi,..., X, have a joint

PM/DF fxn(x}),x] € &' = x A, relative to the measure 7' =  x v
—l =7 = 1<i<n 1<i<n

for brevity we will sometimes set f§? = f. The joint WE of string X? is
defined as

hY (X)) = —E [o(X!) log f(X])]

—— [ o)) o £ (Ax). 1)

xp
Given a set S C T ={1,2,...,n}, define: S = I'\'S, and
X(S) ={X;:i€ S}, X(5°) = {X;:ie S, x(9)
={z;:ie S}, x(S%) = {w; :i e S°Y,
X(S) = xiesXi, X(SC) = x;cqei.

Accordingly, the marginal PD/MF fx g)(x(S)) emerges, for which we will
often write fg(x(S)) or even f(x(S)) for short. Furthermore, given a WE:

x" = p(x]) > 0, we define the function (5) : x(S) — ¥(5;x(S)) > 0

involving the conditional PM/DF fx ge)x (s (§(Sc) |§(S)):

wSxE) = [ ot xsmpes (x(5D) x(8)Jrase @x(s7)  (2:2)

x(S%)

where vy goy = X v;. For brevity sometimes we again write fgo)¢ instead
ieSt
of fx (s0)x(s) O omit subscripts altogether. We also write dx () and dE(SC)
instead of vy (g)(dx(S)) and VX(S)(d§(SC)) and dx instead of v{'(dx).
The function ¥ (S; -) will play the role of a reduced (or induced) WF when
we pass from X" to a sub-string X (5). More precisely, set

B ) (X(S)) = —E [5(: X(S) log fs(X(S))]
_ / WS x(5)) s (x(9)) log fs(x(S))dx(S).  (23)

x(S)



Vol. 96 (2022) Weighted Gaussian entropy and determinant inequalities 89

Next, for kK =1,...,n define

n) ' his)(X(5))
h;y”:(k) > = (2.4)

SCI: #(S)=k

(Here and below, #(S) and #(SC) are the cardinalities of S and SC.) Here
hy™ renders the averaged WE (per string and per element) of a randomly
drawn k-element sub-string in &’f

Consider the following condition: for all S C I,

Vie S,withS; ={j € S: j<ilandS] ={j€S: j>i},
[ oSN {76x(5) - Fx(SONFix(57)

(2.5)
x(9)
X J(SH)Ix(S7)) px(S) = 0,

with standard agreements when one of the sets Sii = (). Pictorially, Eq. (2.5) is
an extension of inequality (1.27) from [18]; it means that for all i € S C I, the
induced WF 9(S; -) is correlated more positively with the marginal PM/DF
fs(x(S)) than with the dependence-broken product fs- (§(Si_))f{i}|5;

($i|§(5;))fs+\57 (x(S;7)|x(S;)). Another version of (essentially) the same
property is Eq. (2.18) below.
Remark 2.1. The special choice of sets SZ-jE is not particularly important: it

can be a general partition of S\ {¢} allowing us to use the chain rule for the
conditional WE (see below).

Theorem 2.2. (Cf. [[3], Lemma 7] or [[6], Theorem 1]) Let hy"" be defined as
in (2.4) and assume (2.5). Then

Y™ > hy ™ > >y > (2.6)

Remark 2.3. An overview of the proof of Theorem 2.3 below shows that its
structure is the same as that of the quoted assertions from [3] and [6]. The
noted differences are that (i) one uses the weighted Gibbs inequality in place
of the standard one, and (ii) at every technical step, one has to re-calculate the
involved WFs. Such a pattern persists in the proofs of the remaining statements
in this section (Theorems 2.4-2.7 below). Therefore, we only highlight the
notable differences in these proofs or entirely omit them from the paper.

Proof. Begin with the last inequality, h:’_"l > hY™. Let 1 <¢ <n and choose
S=18 =1 ={l,....i— 1} and S} = I} = {i +1,...,n}, with
{i}¢ = I UT;}. Then the condition

/ () [160) = fxir (T FalxT ST, x| dx > 0 (by virtue of (2.5)),
xp

(2.7)
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yields:

RE(XT) = Ry (XX ({i}%)) + kY 30, (X({i}%)) by the chain rule (2.8)
< B (XX 4 Ry ey (X X ({i}®)) by Theorem 1.3 from [18].
(2.9)

Here reduced WFs ¢ ({i}%) and Y(I;) are calculated according to the recipes
n (2.2), (2.3).
Taking the sum, we obtain:

w n i—1
nhY(X") <Zhw({}c) +Zhw (XX, (2.10)

By using the chain rule, Z hY (X |§21_1) = hy (X7). The proof can now be

1/1(1)
i=1

completed as in the proof of [[6], Theorem 1] and then extended to k-element
subsets S = {i1,...,ix} C I. (We again need to invoke condition (2.5).) O

In Theorem 2.4 we extend the result of Theorem 2.2 to exponents of WEs
for sub-strings in X'

Theorem 2.4. (Cf. [3, Corollary of Lemma 7] or [6, Corollary 1]) Given r > 0,

define:
n\ ! R sy (X(S
g = (k) Z exp [ ()(k())] ) (2.11)

SCI: #(S)=k
Then, under assumption (2.5),
g‘le 2 g;V,n 2 > gn 1 > gwn (212)

In Theorem 2.5 we analyse the averaged conditional WEs for sub-strings
in X"
29

Theorem 2.5. (Cf. [6, Theorem 2]) Let p;"" be defined as

—1 w C
oo (D) y EOKE) o1y

SCI: #(S)=k

Then, under assumption (2.5), we have that
Pyt Sy < Sy < (2.14)

The next step is to pass to the (non-normalised) mutual WI.
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Theorem 2.6. (Cf. [6, Corollary 2]) Consider the averaged mutual WI between
a subset (or a sub-string) and its complement:

1 0w (X(S)'X(SB))
w,n n P\— T—
=} % e
SCI: #(S)=k
and assume (2.5). Then
G Ze" >z > g (2.16)

Proof. The result is straightforward, from Theorems 2.2 and 2.5 and the fol-
lowing relation between the conditional WE and mutual WI:

2 (X(S)X(SY) = Wy (X(S) - h2 (X(S)[X(8).  217)
]

In Theorem 2.7 we consider the following condition: for all set S with
#S5 >2andi,je S with ¢ # 7,

[ e rx(SOlx(5) [ Fx(5))
xp
(S \ i 13) Flarlx(S\ {6, 3) Flagle(S)\ {7, 7)) dx > 0.
(2.18)

The meaning of (2.18) is that for all S and ,; as above, the reduced WF
Ps(x(9)) is correlated more positively with f(x(S)) than with the PM/DF

FE(S\ (i) F(ilx(S\ {i.4}) f(a;lx(S\ {i,j})) where the conditional
dependence between X; and X is broken, given X (S'\ {7, j}).

Theorem 2.7. (Cf. [6, Theorem 3]) Define the average mutual WI as
N
pr=(1) X a(xexE). (219)
SCI: #(8)=k

By the symmetry of the mutual WI, I}"" = I""", . Assume condition (2.18).
Then

LS It < ST (2.20)
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Proof. The proof follows that in [6]. Here a new concept is needed: mutual-
conditional WIs

i [X5 X(SOX(S\ {7})]

_ F(X5,X(SHIX(S\{G])
- ]E<9"(§) 108 S XS\ LGN X SOIX (NG

B . Olo (l'ja ( L))|X(S\{]})) x
_X[ PO B8 T S\ G (S0l )
: (2.21)
FX5, XS\ {7)IX () )
JXIX () { X(S\ {7IX(5))
(s

i [ X5 X\ (GDIX(S®)] = E((X) 1og

e T xS\ ()(E)
_X[ PRITE)108 F (S5 \ (5D
1 (2.22)
With this at hand, the formal argument from [6] is repeated. O

3. Gaussian weighted entropies

As we said in the introduction, WDIs are connected with the Gaussian WE
B = = [ o0 £ 00 og 3 (). (31)
Rd

Here f&° stands for a normal probability density function (PDF) with mean
0 and covariance matrix C:

1 1
No Tr-1 T d
cl(x) = eXp(—XC x), x = (x1,...,2,) €R%
(2m)4/2(det C) /* 2 "
(3.2)
The Gaussian WE in (3.1) admits the following representation:
C 1

By (£80) = %mg [(27)%(det C)] + Og Ctr (C*1<I>1§°). (3.3)

Here a,(C) > 0 and the positive-definite matrix ®¢&° are given by

o o T [¢]
0n(€) = [t ixtiaxt. @8 = [ () w8 (it (3.)
R4 Rd
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Throughout the paper we use a property of maximization of the WE h‘g( f) at
f=f&°. Given a PDF f on R4, set:

T
® =[x (xt) " o) £t (3.5)
Rd
Consider the following inequalities:

[ 9] 160 = 0G0 ax > 0
R4
log [(2m)"(det C)] /w(X) [f(X) - §°(x)}dx+tr [c—l <q>_q,go)] “0

“ (3.6)

Theorem 3.1. (Cf. [6, Example 3.2]) Let X = X¢ ~ f(x), x € R?, be a random
vector with PDF f, mean zero and covariance matriz

C=E[(X%) (X)T] = / xx f () dx. (3.7)
Set:
o = Ec [(X) (X{)"o(X])]
= /xngo(X) Jo(x)dx (3.8)
Rd
and suppose that (3.6) is fulfilled. Then
hy(f) < h3(f8°), (3.9)

with equality iff o(f — f8°) =0 a.s.

The proof of Theorem 3.1 follows the argument in Example 3.2 from [18].

A conditional form of Theorem 3.1 is Theorem 3.2 below. The correspond-
ing assertion for the standard entropy was noted in earlier literature. See, e.g.,
[3, p. 1516]: the proof of Theorem 29, item (c), the reference to a conditional
version of [3, Lemma 5].

Given a d x d positive-definite matrix C and p = 1,...,d — 1, write C in

the block form:
cr cr
C= ( 1 dp) (3.10)
civ i,
where Csfp and Cg_p are mutually transposed p x (d — p) and (d — p) x p
T

matrices: (Cg_p) — €. Set: D = € (CZ,,)~! and K! = C¥ —
Cl, (Ci,)~t Cd P If X = X¢{ is a random vector (RV) with PDF fx and
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covariance matrix C then C! represents the covariance matrix for vector X7,
with PDF fxr(x}). Let Xg 1 stand for the residual /remaining random vector

fx(x{)
and set fx{‘|xg+ (x{xd, ) = m. Also denote by N, Nf and N,
the corresponding Gaussian vectors, with PDFs fn(x) = f8°(x), far(x]) =

fg,l‘?(xzf) and fﬁ?INZH (xf|x%,,). Finally, for a given WF: x € R% — (x) set:

vt = [ 000 e, (KEIE

RP
a(CL, ) / V) s, (i i a(C) = [ () ()
R
‘I’Ng+1 = / [Xg-u (XZ-H)T} 7/’(Xg+1)ng+l(XZ+1)pr+1a
Rd-p
PN :/(XXT) P(x) frya (x)dx. (3.11)
R

Also, consider inequalities

L= / (%) Fcg,, (Kin) | Facpincg,, OKFIi) = v, (E I 1) ax > 0,

)
B = [ o)1) = )] { o [(2er (i)

R

+ (log e) [( DXPH) (KD)™! (] Dxp+1)} }dx <0. (3.12)

Theorem 3.2. Assume that inequalities (3.12) are satisfied. Then the following
inequality holds true:

LK) = [ o) felx) g i, (< e

R4

< hW(NP‘Np+1) =hg(N) — hyy (N p+1)

= Q log [(27)%det C] + log Ctr [C™'®N]
a(CZH)

—— log [(27r)d Pdet CZH]

loge 1
-t [(ch) ‘I’Niﬂ}' (3.13)
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Proof. Note that the conditional distribution Nf|N4,, coincides with Nk,
a Gaussian variable with mean Dx¢,, and covariance matrix K7. Denote the
random variable with conditional distribution X7|X4, | by Xf;l’d. Set:

DXE) = [ o) fxpixe,, etk )xt
]Rd

By the weighted Gibbs inequality, under assumption (3.12),
W .d
[t s XNy = 1> 0 (3.14)
Rd—p

Hence,

BEKTS) < 5 [ (0 el logl(2m) et ()

Rd

+ (log )[(x} — D)™ (K) ™' (x — Dty )] dx  (3.15)

implying (3.13) in view of the inequality I> < 0 in (3.12). O

4. Weighted entropies under mappings

In this section we give a series of general results (Theorems 4.1-4.3 and Theo-
rem 4.4) reflecting properties of WEs under mappings of random variables (an
example is a sum X +Y). Of a special importance for us is Theorem 4.3 used
in Sect. 5. In essence, Theorems 4.1-4.3 can be interpreted as versions of data-
processing inequalities for the WE, and directly generalize their counterparts
from [18]. Hence, we omit their proofs.

Let (X,%,vx), (V,9,vy) be a pair of SMSs and suppose X, Y are random
elements in (X, X), (V,9) and fx, fy are PM/DFs, relative to measures vy,
vy, respectively. Suppose 1 : (X, %) — (),92) is a measurable map onto, and
that vy(B) = vy (n~'B), B € 9. Consider the partition of X with elements
B(y) ={zx € X: nz =y} and let vy (-|y) be the family of induced measures

on B(y), y € Y. Suppose that fy(y) = fx(x)v(dzly) and for x € B(y)
B(y)

let fxy(zly) = ;ﬁ (z) denote the PM/DF of X conditional on Y = y. (Re-

call, fxjy(-ly) is a family of PM/DFs defined for fy-a.a y € ) such that
| G@ix@rtan) = [ [ 6y (sl o) o any
X Y JB(y)

non-negative measurable function G.)
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Theorem 4.1. (Cf. [16, Lemma 1.6]) Suppose that a WF: x € X — ¢(x) > 0
obeys

[ e@ @) fxv(aine) - 1]uetas) <o (11)
and set
v) = [ ele)y (alypdsly), v e y. (4.2)
B(y)
Then

B (X) > B (Y) = — / D)y () log fy (w)y(dy), or
Yy

B (X]Y) = / (@) fx (2) log fxiy (ely(@)va(dz) >0,  (43)
X

with equality iff o(x)[fx )y (zlnz) — 1] =0 for f-a.a. x € X.

In particular, suppose that for fy-a.a. y € Y a set B(y) contains at most
countably many values and v(-|y) is a counting measure with vi(x) = 1,
x € B(y). Then the value fx|y(xznx) yields the conditional probability P(X =
z|Y = nx), which is < 1 for fy-a.a. y € Y. Then h3(X|Y) > 0 and the
inequality is strict unless, modulo ¢, map n is one-to-one.

Let (X,X,vy), (V,D,vy), (£,3,vz) be a triple of SMSs and suppose X,
Y, Z are random elements in (X,X), (,9), (£,3). Let fx be the PM/DF
for X relative to measure vy and fy, z the joint PM/DF for Y, Z relative to

the measures vy X vz. Further, set fz(z) = / [y, z)vy(dy) and fyz(y|z)
Y
fY,Z(yv Z)

fz(2)

Consider the partition of X with elements B(y,z) = {zr € X : nz =
y,Cx = z}, and let vy (- |y, 2) be the family of induced measures on B(y, z),
(y,z) € Y x Z. Set:

frz(y.2) = / fx (@wa(dely, 2) (4.4)
B(y,z)

fx(z)

B fY,Z(ya Z)
conditional on Y =y, Z = z. (Recall, fx|y,z(-|y,2) is a family of PM/DFs

and for x € B(y, z) let fxy,z(xly,2) denote the PM/DF of X
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defined for fy z-a.a (y,z) € Y x Z such that

/ G() fx () (da)
X

= [ [ G@fxyataly sl )zt vy (dnrz(dz) @5)
VX Z B(y,z)
for any non-negative measurable function G.)
Theorem 4.2. (Cf. [16, Lemma 1.9]) Suppose that
n:(X,X)—,9), (:(X,%X)—(2,3) (4.6)
s a pair of measurable maps onto, and that
vy(A) =vx(n'A), A€, vz(B)=vx(("'B), B€3. (4.7)
Assume that a WF: x — p(z) > 0 obeys

| e@r@)|1xv.ztelne, o) = 1a(dn) <o (48)
and set
By, 2) = / (@) Fxiy.z (aly, 2)v(daly, ). (4.9)
B(y,z)
Then

- / By, 2) 2y, 2)0g Fyiz 52wy (dy)vz(dz)
YxZ

— W(Y|Z) < hY(X|Z) = / (@) fx (@) log fxz(elCay(da):
" (4.10)

equality iff ()| fx|v,z(x|nz,(x) — 1] =0 for fx-a.a. x € X.

As in Theorem 4.1, assume B(y,z) consists of at most countably many
values and v(zly,z) = 1, x € B(y, 2) for fy.z-a.a. (y,2) € ¥ x Z. Then the
value fx|y,z(xly, z) yields the conditional probability P(X = z|Y =y, 7 = z),
for fy.z-a.a. y,z € YxZ. Then hiy(X|Z) > hy(Y|Z), with equality iff, modulo
@, the map x — (nz,{x) is one-to-one.

Let fxy be the joint PM/DF for X,Y relative to measure vy x vy and set

fy(y) = /fX,Y(xvy)VX(dx)v Ixy(zly) = M (4.11)
X

Ty (y)

Suppose that
£:(.9) — (2,3) (4.12)
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is a measurable map onto, and that
vz(C) =vy(E710), C € 3. (4.13)

Consider a partition of ) with elements C(z) = {y € Y : {y = z} and let
vy (- |2) be the family of induced measures on C(z), z € Z. Given (z,2) € Xx Z
and y € C(z), let

Ixz(v,2) = /fX,Y(x»y)Vy(dy\Z)a fz(2) :/fX,Z(va)VX(dx)a (4.14)

C(2) X

and

fy (y)
fz(2)

[x.z(x,2)

fz(2)

Ix|z(z|z) = » fyiz(ylz) = (4.15)

Theorem 4.3. (Cf. [16, Lemma 1.11]) Assume that a WF: (z,y) — ¢(z,y) >0
obeys

/ o(x,y) [fxv(x,y) = f2(69) Fx)2(2|€y) fy 2 (Y]€y)] va (dx)vy(dy) > 0

XxY

(4.16)

and set
viz2) = [ elepzlsie) (4.17)

C(z)
Then
- / W, 2) fx.z(2,2) log fx|2(yl2)va(de)vz(dz)
XxXZ
— (X]Z) > R (X]Y) = / (. y) fx () log Fx v (aly)vx (da)vy (dy).

S (4.18)

Furthermore, equality in (4.18) holds iff X andY are conditionally independent
given Z modulo p, i.e. p(z,y) [fxy(2,y) — fz(&y) fx12(x[€y) fr12(yI€y)] = 0.

We will use an alternative notation h¥(X) = h¥(fx) where X = X{ =
(X1,...,Xq)T is a d-dimensional random vector with PDF fx(x). (A change
in the notation is motivated by the emphasis on linearity properties in R?
absent in X™.) In this context, we employ the notation X ~ fx, Y ~ fy,

_ fX,Y(Xay)

(X.Y) ~ fxy and (X]Y) ~ fy where fiy (xly) = 50 552,
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Theorem 4.4 below mimics a result in [3, Lemma 5] extending from the
case of a standard entropy to that of the WE. A number of facts are related
to the conditional WE

MUXIY) == [ ety bey)los fxlyiixdy (119
or, more generally,

hg(U|V) = f/RdXRd o(u,v) fuv(u,v)log fuv(ulv)dudv. (4.20)
Here a pair (U, V) is a function of (X,Y) with a joint PM/DF fy v, marginal

PM/DFs fu, fv and conditional PM/DF fyv(ulv) = fov((u,)v) (Viz.,
vIiVv

U=Y,V =X+Y.) WF ¢ may or may not be involved with the map
(X,Y) — (U, V).

Theorem 4.4. (Cf. [3, Lemma 5]) Suppose X and Y are independent random
vectors of dimension d, with PDFs fx and fy:

(X,Y) ~ fx;y where fxv(x,y)=fx(x)fy(y), xy€eR.  (4.21)

Assume that WF: (x,y) € R* x RY — o*(x,y) = o(x+y,y) > 0 obeys

¢ (V) ) [Py (x+y) = fx(x)|dxdy 20 (4.22)

Rd x R4

and set

o) = [ olx+ .3 e (vl + 9)dy

]Rd
0*(x) = /tp(x +v.y)fy(y)dy, xeR% (4.23)
Rd
Then
(X +Y) > hy(X), (4.24)

with equality iff p(x,y)fy(y) [fx(x) — fx+y(x+ y)} = 0 for Lebesgue-a.a.
(x,y) € R? x R4,

Proof. The following relations (a)—(c) hold true:
(a) WY(X+Y) > RYX + YY),
(b) hy(X+Y[Y) = hy. (X]Y),
(¢) h3-(X[Y) = hye(X). (4.25)
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Here inequality (a) comes from the sub-additivity of the WE, see [6, Theorem
1.8] or Eq. (1.32) from [18]. Next, (b) and (c) are derived by applying the
following equations:

B (X + YY) = / Fr@)RE(X +Y[Y = y)dy
Rd

. / o(X + ¥, ) Fr (9) Feav iy (6 + 1y) 1og fxeryiv (¢ + yly)dxdy
R4 x R4

=— / o(x+y,y)fxy(x¥)log fxivy(x+ yly)dx)dy
R4 xRd

_ / / o4y ¥) Fy )y | fx (%) log fx (x)dx = R (X[Y) = A (X).

Rd d
(4.26)

These equations also allow us to complete the proof of Theorem 4.4. O

5. Miscellaneous weighted determinant inequalities

In this section we present a host of WDIs derived from the properties of WEs.
As we said before, the proposed inequalities hold when WF ¢ = 1 (in this case
the stated conditions are trivially fulfilled). To stress parallels with ‘standard’
DIs, we provide references to [3] or [6] in each case under consideration.

Theorem 5.1. (Cf. [3, Theorem 2]) Let X, Y be independent d-variate nor-
mal vectors with zero means and covariance matrices C1, Co, respectively:
fxy(xy) = fx(x)fy(y), x,y € RY, where fx = f&°, fy = f&. Given a
WF: (x,y) € R? x R?  ©(x,y) > 0, positive on an open domain in R? x R,
consider a quantity 8 and d X d matrices ©®, O*:

B /9 Cl+02 )d)(7

0= /xx x)f&lsc,(x)dx, ©F = /XXTG*(x)fgf(x)dx (5.1)
R4
where 0 and 0* are as in (4.23):

b(x) = / o+, ¥) ey (vix - y)dy, 6%(x) = / o+ ¥, %) Fy )y

Rd Rd
(5.2)
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Assume the condition emulating (4.22):

| ety 0 [ x4 y) - R )|axdy 20, (53
Re xR
Then
det (Cy + Cq) 1 1o
_ = - > 0.
ﬁlog{ c ] + (loge) {tr[(Cl +Cy) @] tr(C7'® )} >0
(5.4)
Proof. Using Theorem 4.4 and Eq. (3.3), we can write:
%log [(2m)(det (C1 + C2)) /9(x)fg§’+02 ()dx + B 4 [(C1 + C2) @)
Rd
> 5 log [(2m)"(det )| [ 67 (018 (00x + S (C10")
Rd
(5.5)
Next, [ 6*(x)f&°(x)dx = 3. The inequality in (5.4) then follows. O
Rd

Remark 5.2. Note that (5.4) is equivalent to:
Blog [det (I+ C;'Cs)]
+ (loge)tr [(01 +Cy)le — Tl + (Cy + cg)flé} >0
(5.6)

where

e = / (xyT +yxT +yy") o(x +y, ¥) () fE0(x)dydx.  (5.7)
Rd xRd

This claim is verified by observing that ® = ©* + e.

Remark 5.3. As above, we can assume that C, is a matrix of size d' x d’,
agreeing that in the sum C; + Cs, matrix Cs is identified as a top left block
(say). This is possible because in Egs. (5.4) and (5.6) we do not use the inverse
C; ! or the determinant det Cs.

To this end, recall the following theorem from [16]:

Theorem 5.4. Let G and G + E be non-singular matrices where E is a matrix
of rank one. Let g = tr (EG’l). Then g # —1 and

1
(G+E)'=G" - ﬁG-—1 EG L (5.8)
g
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The above equation is essentially the Sherman-Morrison formula (see [5],
p. 161).

Assuming that C; = E has rank 1 and letting g = tr (EC; "), inequality
(5.4) turns into the following inequality:

det(Cl—i—E)
mog[ det C, }

+ (log ¢) {-u(W@*)ug(CﬁE)lé}) >0, (5.9)

The techniques developed so far allow us to prove Theorem 5.5 below ren-
dering a weighted form of the Szasz theorem. Suppose C is a positive definite
d x d matrix. Given 1 <k < d and aset S C I'D = {1,...,d} with #(S) =
let C(S) be the k x k sub-matrix of C formed by the rows and columns
with indices i € S. With every S we associate a Gaussian random vector

X(S) ~ fc( ) considered as a sub-collection of X ~ f&°. Accordingly, condi-

tional PDFs emerge, fg |s'( x(9)[x(S")), for pairs of sets S, S" with SN.S" =0,
where x(5) € R#(5), x(5") € R#(5"), [The PDF fglos, is expressed in terms of
block sub-matrices formlng the inverse matrix C(SU S")71]

Further, let a function ¢(x) > 0, x € R?, be given, which is positive on an
open domain in R? and set, as in (2.2),

wSxE) = [ el (S0 xS (5.10)
R#(s0)
Furthermore, define:
7(S) = tr [C(S)'®(5)], T(k)= 19 (5.11)
SCI):#(8)=k

where matrix ®(5) is given by

®(5) = ®(C(9)) = / x(8)x(8) (85 x(8)) f&ls) (x(5))dx(S).  (5.12)
R#(S)

(For S = I'D | we write simply ®; cf. (3.4).) Finally, set:
a(8) =a(C(S) = [ B(Six(5)1&s (x(S)dx(S),

R#(S)
Ak) = > als) (5.13)
SCI):#(S)=k
and
A(S) = a(S)log det C(S), A(k) = S AS). (5.14)
SCID:4(8)=k
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Consider the following condition repeating (2.5) for the Gaussian case:

Vie S CI,withS; ={j€S: j<itandS; ={jeS: j>i},

(8 x(S){ f8s) (x(5))

(R#(S)
8o (KOS - (@il X(ST)) £ - (x(ST)IX(S7) fdx(S) = 0.

(5.15)

Theorem 5.5 below follows from Theorem 2.2:

Theorem 5.5. (Cf. [3, Theorem 4] or [6, Theorem 31]) Assume condition (5.15).
Then the quantity m(k) = m(k, C,¢) defined by

m(k) = (Z) {log 22(]“) + log;%)A(k) n lozgkeT(lc)] (5.16)
1s decreasing in 'k =1,...,d:
m(l) > --- > m(d). (5.17)

Proof. For X(S) ~ fg?s) we have, by using (3.3):

Wi (X(S))  a(9)

= log [(2m)"det C(S)] + log e

tr [C(S) ' ®(S)]. (5.18)

k 2k 2k
Therefore,
A hys)(X(9))
m(k) = <k) > — (5.19)
S:|S|=Fk
Invoking Theorem 2.2 completes the proof. O

Theorem 5.6. (Cf. [3, Theorem 5] or [6, Theorem 32]) Assuming (5.15), for
all > 0 the values

s(k)<Z)_l 3 A(k)l/%exp{r[l‘)gf”)A(k)+k;gkeT(k)”

SCIW@: #(8)=k

(5.20)

obey
s(1) > -+ > s(d). (5.21)
Proof. The assertion follows readily from Theorem 2.4. O

Our next goal is to establish inequalities for Toeplitz determinants extend-
ing [3, Theorem 6] or [6, Theorem 27]. Recall, C = (C;;) is a d x d Toeplitz
matrix if C;; = Cy; whenever i — j| = |k —{|]. A more restrictive property
is cyclic Toeplitz where C;; = Cy; whenever distq(i, j) = distq(k, (). Here, for
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1 < < j <d the cyclic distance disty(, j) = min [j —4,d — j +1]; it is then ex-
tended to a metric with disty(4, j) = distq(4, ) and dlStd(Z, i) = 0. As before, we

consider sub-matrices C(S) where S C IY) = {1,...,d} and the Gaussian ran-
dom vectors X(S) ~ fg‘(’s) as sub-collections in X{ = (X71,...,X4)T ~ f&°.

A special role is played by S = I, ; where I; ; stands for a segment of posi-
tive integers {i,i + 1,...,j} of cardinality j —i + 1 where 1 <i < j < d. In
particular, for S = I ;, we set: C(S) = Cj, and deal with vectors X% ~ g;?’
1<k <d, with Cy=C.

Accordingly, we say that WF: x € R? s ¢(x) > 0 has a Toeplitz property

if the value of the reduced WF ¢(I; ;; %)) coincides with (I p jik; X lik)

provided that arguments x! = x(I; ;) and xﬁ: = X(Liyk,j+k) are shifts of

each other (with xis(l; ;) = @ithts(Litr,j+r), for 0 < s < j — i), where
1<i<j<dandl<i+k<j+k <d. An example is where C is cyclic

Toeplitz and ¢ has a product-form: ¢(x) = [[ @(z;). Recall, the reduced
1<7,<d

WF in question involves the conditional PDF IG 5 (x (IE])|xz)

W(Ligix]) = / PN, (xUIE)x)AX(IE;) where IF; = 1a\ L.

Rd—j+i—1
(5.22)
For S =11, 1 <k <d, in accordance with (3.3),
a(C loge _
Py (X M=h Ilk)(X’f) (Qk) log [(2 )kdetCk] + 8% [CkllIlk].
(5.23)

Here the value a(Cy) = a(k,C, ) and the k x k matrix ¥;, = ¥, (k, C,v)
are given by

a(Cy) / k) fo (e )k, Wy = / ()™ 4 (ks ) 0 (38

]Rk
(5.24)

and ¥ (k) = ¥(I1 ). (For k = d, the subscript k will be omitted.)

Theorem 5.7. (Cf. [3, Theorem 6] or [6, Theorem 27]) Suppose Cg4 is a positive
definite d x d Toeplitz matriz and ¢ has the Toeplitz property. Consider the
map k € {1,...,d} — a(k) = a(k,C, ) where

a(k) = (Cy) {log(2m) + log [(det C) ]} +

Assuming condition (5.15), the value a(k) is decreasing in k: a(1) > --- > a(d).

gc rotw,].  (5.25)

Proof. By using the Toeplitz property of C and ¢, we can write
hl(fl,k)(XHXIf_l) = h"‘Z(IZ,k+1)(Xk+1|X§). (5'26)
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Next, Theorem 4.3 yields:
k
) X1 X5) = R, (X [XT). (5.27)

From (5.26) and (5.27) we conclude that Ay, k)(Xk|X’f71) is decreasing in
k. Thus the running average also decreases. On the other hand, by the chain
rule

T hw(ll o(Xi) = Zhwl (X xih. (5.28)

1
Consequently Z hw(h‘k)(X’f) decreases in k too. Referring to Egs. (5.24) and
(5.23) leads directly to the result. O

Theorem 5.8. (Cf. [6, Theorem 33]) Given a WF: x € R? — (x), assume

condition
/ p(x l H c”

R4

dx > 0. (5.29)

Then the quantity

- /d —1@ (2m)4(det C)
wik) = wik, G, ) = (k) T Lcu:l;ﬁ[(s)—;c (2m) =¥ (det C(S*))

() S {elere) - fostrieet])

SCI,: #(S)=k

1s increasing in k, with

Proof. Using the chain rule for the conditional WE, we can write

R (X(S)[X(S%)) = h(X(S), X(SB)) = B g0, (X(SP))

- @ log [(2m)*(detC)] + 102 ‘o [C @]
- “(2@ log [(Qﬁ)d’k(detC(SB))} _logey, [C(SC)*@(SC)} . (5.32)
Here o(C) :Rf e(x)fSo(x)dx = [ (x(S®)fN 0ge) (X (5%))dx(SC). There-
d R#(S0)

fore,
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Ky (X(8)1X(S°))

a(C) (2m)?(det C) } log e “1 C\—1 a4, oC
= ! - .
2 %8 | 2m)dF(det C(S)) ] T 2 {irlc @] —ur[o(s®) e}
(5.33)
After that we apply Theorem 2.5 which completes the proof. 0

Remark 5.9. Note that the outermost inequality, w(1) < w(d), can be rewrit-
ten as

d
a(C) log [(27r)d(det C)} +log e tr [CT'®] > a(C)log {1:[1 = gfff S)Igﬂ)}
+log ey {tr [C'®] - tr [0(1;’1 UL, el u 1;11)] } . (5.34)

One can note that for ordinary entropies, the outermost inequality can be
interpreted as an inequality involving estimation errors; see [6, p. 1517].

Our next goal is to establish additional WDIs by using Theorem 2.7. For
this purpose, we first analyse the mutual Gaussian WI, 7% (X(5); X(S%)). Ac-
cording to the definition of the mutual WT in [18], we can write

i (X(8);X(S%)) = A g (X(S)) — b (X(S)|X(S%)). (5.35)

)

Then, in accordance with (5.33), we have

« e e C
i (X(9); X (%)) = (20) log (d tc(s(ii)egdc)t(:(s ))1
n log e {tr [C(S)flq,(s)] 4+ tr [C(SG)A,I)(SC)} . [C*cp] }

(5.36)

In Theorems 5.10 and 5.11 we consider the following condition (5.37) stem-
ming from (2.18): V S C {1,...,n} with #S > 2 and 4,j € S with i # j,

[ #0138 5 x(5)x(5)) [ £ (x(5))

—f&0s\ (i RS\ 5, 51)) Fo iy RS\ A{E,51) F118 iy (5 1x(S\ {i»j}))} dx > 0.

(5.37)
The proof of Theorems 5.10 and 5.11 is done with the help of Theorem 2.6,
assuming that X7, Xo, ..., X4 are normally distributed with covariance matrix

C.
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Theorem 5.10. (Cf. [6, Theorem 34]) Assume condition (5.37). Let

“la e e c
u(k) = (Z) O g 11 (detC(S)) (detC(S™))

2k SCIW: #(S)=k (detC)

+<d>*1log e Z {tr [C(S)flq,(s)} T tr [C(SB)*%}(S“)] . [071(1)]}_

k 2k SCI,: #(S)=k

(5.38)

Then
w(1) > u(2) > - > u(d— 1) > u(d). (5.39)

Theorem 5.11. (Cf. [6, Theorem 35]) Under condition (5.37), let
d\ ~1a(C) (detC(S)) (detC(S%))
=(k) = (k) Ty o8 11 (detC)
SCIW: #(5)=k
d\ " tlog e
() 73
SCIW: #(5)=k

{tr [C(S)"1®(S)] + tr [C(SG)*@(SG)] —tr[CT1®] } (5.40)

Then
2(1) > 2(2) > -+ > 2(d/2]). (5.41)

6. Weighted Hadamard-type inequalities

In this section we group several results related to the weighted Hadamard
inequality (WHI); cf. [6, Theorem 3.7]. The WHI inequality asserts that for a
d x d positive definite matrix C, under condition (5.29) we have:

a(C) log((2m)? H Cii) + (log €) Z C;lo,

—a(C) log((27)%det C) (log e)tr (C™'®) > 0, (6.1)

with equality iff C is diagonal. Recall, a(C) = « (C) and ® = ®¢c = Pc,

are as in (3.4). For ¢ = 1, it becomes det C < [[ Cj;, the famous inequality
1<i<d

due to Hadamard. -

We begin with the weighted version of the strong Hadamard inequality
(WSHI). This inequality (and other inequalities in this section) will involve
determinants det C(S) of sub-matrices C(S) in C where, as before, S is a
subset of I(D = {1,... d} of a special type. Namely, we fix p € {1,...,d — 1}
and consider the segment I,114 = {p+1,...,d}, segment I, , = {1,...,p}
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and unions {i} U L,11 4 and Iy ; UIpiq 4 = Iic+1,p where ¢ € I; ,. We deal with
the related entry Cj; in C and sub-matrices

C$+1 = C(Ips1,a), CT " =C(I1,i-1), CH{i} Ulpi1,a) and C(I1; U Lpi1.4)

and Gaussian random variables X; and vectors Xg_H = X(Ipy1.4), X7t =
X(Ii-1), Xi VXG g = X({i} U lpi1,4) and X§ VX7, = X(I1,; U Tpi14)
using symbols x;, Xg-s-la X’l_l, and xj V xg_H for their respective values. For
simplicity, let us omit henceforth the subscript No indicating normality. Then
the PDFs

d d L d ] d
Fxa, (p11) = foa, (Xpp) and fxiyxa, (X1 VXp11) = fou ;0,0 (X1 V Xp11)

o . d
emerge, as well as conditional PDFs f X Ixd, (zilx54q)  and
) i—1),d ; i d 7 d
fxi_l‘xz+1 (%1 [xp4q)- Viz., XV XT, and x7 V xj,,; stand for the concate-
nated vectors (X1,..., X4, Xpi1,---,Xa)T and (21,..., %, Tpi1,- - ., 2d), each

with i + d — p entries. As above (see (3.4)), for a given WF: x € R? — (x)
we consider numbers a(CY) = a,(p, C) and matrices ®cr = @, ¢ o

a(CY) =/¢(X]f)fc§(X’1’)dX'f, Py :/x’f ()" () fo (xF)dxt. (6.2)

R4 Rd

We also set

d d d \T d d d
P, = / Xpt+1 (Xp+1) w(Ip-H,d?xp-i-l) fxg+1(xp+1) dxpq,

Rp—d

({i}Ulp1,a) = / (@ Vxpy) (23 V XZH)T

Rp—d+1

X P({i} U lpyr,a57: V Xg+1)fxivxg+l (zi vV X§+1)d($i N Xz+1)a (6.3)

with reduced WFs (I,41,4) and ¢ ({i} U I,41,4) calculated as in (2.2), for
S = Iypi1,q and S = {Z} Ulpti,d-

Furthermore, we will assume in Theorem 6.1 that, V¢ = 1,...,p, the re-
duced WF 4(S) with § = {1,...4,p+1,...d} = I, , obeys

C Lol d i d
/ V(L X1V Xp+1){fxgvxg+l(xﬁ VXpi1)
Ri+d—p

— Jxa

d d i — d i d
4 K0 ) e (ilXi) f e, () fa(xd Vi) 2 0.

" (6.4)
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The ‘standard’ SHI is

det C < H det C({i} UIpi1.q)

d d
det Cp 4 1 Zicp det Cjp g

or log det C + (p — 1) log det CZ_H < Z log det C({i} U Ipi1,q).

1<i<p

(6.5)
The WE approach offers the following WSHI:

Theorem 6.1. (Cf. [3, Theorem 8] or [6, Theorem 28]) Under condition (6.4),
for 1 <p<d,
a(C)log [(2m)? det C] + (log e)tr (C™'®)

+ (p = D{a(Cl1) log [(2m)7 det ] + (log e)tr[(CLy) '@,

<y {a<c<{z‘}u1p+1,d>>log [(2m)" 7+ det C({i} U L1 4)]

1<i<p
#(log O C(I}U Ty ) (1) Uy )] - (6.6)

Proof. We use the same idea as in [6, Theorem 3.7]. Recalling (6.13) we can
write

1 1
B (XEIXi) = 5 log [(27)" det €] a(C) + %n (C'®)

1 _ log e
~5 log [(2m)?7* det CngJ a(CgH) ——

Cf. Egs. (5.12), (5.13), (5.24). Furthermore, by the subadditivity of the condi-
tional WE (see [6, Theorem 1.8]), under assumption (6.4) we can write

tr[(CﬁH)_l‘I’ZHL (6.7)

p
(XX 1) < D Y ((iyor,a. (XilXpa)- (6.8)

i=1

Here for i = 1,...,p, again in agreement with (6.13),

w 1 _ ‘ ,
h¢({i}u1p+1,d)(Xi|Xg+1) =3 log [(2m)"P* et C({i} U Ip11,0)] «(C{i} U Ipy1.a))

log e

+ tr C({i} U Ipt1.0) "' ®({i} U lps1.0)

1 _
- ilog [(2%)‘1 P det Cgﬂ] a(CgH)

log e

tr [(CZH)’I‘I’ﬁH}- (6.9)

Substituting into (6.8) yields the assertion of the theorem. O
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Our next result, Theorem 6.2, gives an extension of [3, Lemma 9] (or [6,
Lemma 8]). Let Cgqg = Cyqq — CL_, (C‘f‘l)_1 (Céfl)T be the mean square
error of estimate of Xy by observations Xilil. Then
det C

Teci T or log Cyq + log det C{™' —log det C = 0. (6.10)
ety

Caa =
Remarkably, Theorem 6.2 does not require assumption (6.4), in fact, this is a

purely algebraic identity.

Theorem 6.2. (Cf. [3, Lemma 9] or [6, Lemma 8]) The following equality holds
true:

a(Cyq) log [(QW)(A]dd} + a(C4 1) log [(27T)d_1det C‘li_l] —a(C) log [(27r)ddet C|
= (log e) tr [C™'®] — (log e) tr [(Cil71)71 @‘f_l} — (log €) a;dl@dd.

(6.11)
Proof. Using the conditional normality of X; given X‘f_l, we can write
_ a(C ~ loge ~_
mealxg) = XS 1o (28] + 25 El o
On the other hand,
Ry (XalX$™) = (X)) = By, (XEH), (6.12)
and therefore
a(C ~ loge ~_
%k)g [(27T)Cdd] + % Cddlq)dd
C 1
= a(2 ) log [(2m)%det C] + % trC'®
cit 1 1 (a-
_ oG 21 ) log [(2m)*'det C{~'] — —Og ©tr [(C‘f‘l) ' ! 1)} .
(6.13)
The result then follows. O

The next assertion, Theorem 6.3, extends the result of [3, Theorem 9] (or
det C

[3, Theorem 29]) that, Vp=1,...,d, C — log # is a concave function of
et

a positive definite d x d matrix C. We will write matrix C in the block form

similar to (3.10):
c? c?
C= ( 1 d—P) ; (6.14)
o i,
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T
with (C_,) = Ci7 Set D = Cj, (Ci,)™" and Ki = Cf

-CL, (C,,)~! CLP. Consider the following inequalities

/@(X)fxgﬂ(xﬁﬂ) {fx;qxd (X€|Xz+1) - fo|Yg+1(XI1)|X2+1)}dX >0 (6.15)

and
[ 960 [xt) - fe0]  10g [(2m)7aer xch)

+ (log e) [(X’f - DXZH)T (K’f)_l (x] — ngﬂ)] }dx <0. (6.16)

Theorem 6.3. (Cf. [3, Theorem 9] or [6, Theorem 29]) Assume that C = \C'+
(1=X)C” where C, C’ and C" are positive definite dxd matrices and A € [0, 1].
Given a WF: x — p(x) > 0 and 1 < p < d, define:
w(C) = hZ,Y(X’i'IX§+1)
1

— 2{04(0) log [(2m)%det C] + (log €) tr [CT'®(]

—1
_ a(Cg_H) log [(2m)Pdet CgH} — (log e) tr [(CZH) <I>C§+1} },

(6.17)
and similarly with u(C") and u(C"). Then, under conditions (6.15) and (6.16),
#(C) > Au(C) + (1 = \u(C”). (6.18)

Proof. Again we essentially follow the method in [3] with modifications de-
veloped in [18]. Fix two d x d positive definite matrices C’' and C” and set
X' ~ for, X" ~ fer. Given X € [0, 1], consider a random variable © taking
values ¥ = 1,2 with probabilities A and 1 — A independently of (X', X"). Next,
set

X", when® = 2.

Then X ~ (Afcr + (1 — A) fer) and the covariance matrix Cov X = AC'+(1—
A)C" =C.

With the WF @(x¢,9) = ¢(x$), use [6, Theorem 2.1] and Theorem 3.2
from Sect. 3 (which is possible under (6.15) and (6.16)) and write:

RY (X9 [XE,0) < (X4 [XD) < R (YL, [YD). (6.19)

Here Y stands for the Gaussian random vector with the PDF fc(x{). The
LHS in (6.19) coincides with Au(C’) 4+ (1 — A\)u(C”) and the RHS with u(C).
This completes the proof. O

X — {X’, when® = 1,
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det C
In a particular case p = d — 1, the function C — ———— is also con-
det C{™

cave. (See [3, Theorem 10] or [6, Theorem 30].) It is challenging to establish a
weighted version of this assertion. In this paper we make a step towards such
a result: see Theorem 6.5 below. A crucial part is played by Theorem 4.3, with
X represented by the random variable Zg ~ fa,,+B,, and Y associated with
the independent Gaussian pair of vectors (X‘ffl,Yffl) having the joint PDF

Fxttya 1 (YT = faaa () fga (v,

The random element Z from Theorem 4.3 is represented by Z{ ' = X{~* +
Y{™!, and the map ¢ takes (x{ 7, y9™ 1) — x4yt
Next, introduce a WF
(5% y1 ™) ERXRT X R = (2, x{ 7 y{ ) (6.20)
and consider the following inequality involving conditional normal PDFs
de\Xf’l,Yf’l and de‘chi—l:

d—1 _d—1 d—1 d—1
ez, %1 Y] )fA‘f*‘(xl )fB(llfl(}ﬁ )
RxRI-1 xRd-1
d—1 d—1 d—1 d—1 d—1_d—1
X [fzd\x‘;‘*l,yffl(z|x1 Y1) = Sz ze (X7 4yl ) |dzdxT Ty 2 0.

(6.21)

Theorem 6.4. Let A, B be two positive definite d x d matrices and X ~ fa,
Y ~ fg be the corresponding independent Gaussian vectors, with Z:=X+Y ~
fa+s. Then, under condition (6.21),

W (Za|Z97Y) > hy(Xa + Yo X Y. (6.22)
Proof. The assertion follows by virtue of (3.13) and Theorem 4.3. O
Finally, combining (5.34) and (6.1), we offer

Theorem 6.5. (Cf. [6, Corollary 4]) Given a d x d positive definite matriz C,
assume condition (5.29). Then

d

H 27r(det C)

a(C)lo .
(C)log det C(II T UL

=1
d

+log ey {tr[CT'®] —tr [C(I; UL )R UL )]}
=1

< a(C)log ( (2m)%det C) + (log e)tr [C™'®)]

< a(C)log ((27r)d I1 C) + (log ©) Y C5' s (6.23)
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