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Abstract

We develop a novel exploratory tool for non-Euclidean object data based on data
depth, extending celebrated Tukey’s depth for Euclidean data. The proposed metric
halfspace depth, applicable to data objects in a general metric space, assigns to data
points depth values that characterize the centrality of these points with respect to
the distribution and provides an interpretable center-outward ranking. Desirable the-
oretical properties that generalize standard depth properties postulated for Euclidean
data are established for the metric halfspace depth. The depth median, defined as the
deepest point, is shown to have high robustness as a location descriptor both in the-
ory and in simulation. We propose an efficient algorithm to approximate the metric
halfspace depth and illustrate its ability to adapt to the intrinsic data geometry. The
metric halfspace depth was applied to an Alzheimer’s disease study, revealing group
differences in the brain connectivity, modeled as covariance matrices, for subjects in
different stages of dementia. Based on phylogenetic trees of 7 pathogenic parasites, our
proposed metric halfspace depth was also used to construct a meaningful consensus
estimate of the evolutionary history and to identify potential outlier trees.
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1 Introduction

1.1 Backgrounds

Complex data objects are increasingly generated across science and rapidly gaining rele-

vance. Finite-dimensional non-Euclidean data is an important class of object data (Marron

and Alonso, 2014), which models, for example, directions (Mardia and Jupp, 2009), covari-

ance matrices (Pennec et al., 2006), and trees (Billera et al., 2001). There has been extensive

development in methods and theory to address the complexity of these objects, including

location measures (Fréchet, 1948), statistical inference (Bhattacharya and Patrangenaru,

2005), and classification (Dai and Müller, 2018). However, exploratory data analysis is a

crucial paradigm that lacks development for these nonstandard data. As the basic data

units become more complex and multifaceted, there is an escalated need for an agnostic

exploratory data analysis. Data exploration before modeling will reveal properties of the

data distribution and help identify extreme versus typical observations. In this regard,

a first step is to overcome the absence of a canonical ordering for complex objects and

propose principled definitions of rank, median, and order statistics.

Data depth has been proven to be a powerful exploratory and data-driven tool that

can be used to rank observations and reveal features of the underlying data distribution.

The notion of data depth was originally introduced for multivariate Euclidean data and

provides a way of measuring how “representative” or “outlying” an observation is with

respect to a probability distribution. In particular, a depth function assigns a non-negative

depth value to a given observation within a distribution, where the larger this value is the

more central/deep the observation is within the distribution. Points with low depth values

correspond to observations near the outskirt of the distribution and “far” from the center.

These observations could be potential outliers worthwhile of investigation. Hence, a notion

of depth provides a “center-outward” ordering for a sample of multivariate observations and

allows generalization of ranks, order statistics, central regions (see Zuo and Serfling, 2000),

and robust inferential and classification methods to multivariate data (Li et al., 2012).

For multivariate Euclidean data, Tukey’s halfspace depth (Tukey, 1975) has attracted
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much attention. Due to its intuitive properties (Zuo and Serfling, 2000) and the robustness

of depth induced median (Donoho and Gasko, 1992), Tukey’s depth stands out as the first

and one of the most popular among a rich body of depth notions proposed for multivariate

data (e.g., Oja, 1983; Liu, 1990; Einmahl et al., 2015). It not only leads to an intuitive

center-outward ranking for multivariate data, but also enables the development of graphical

data summaries (Tukey, 1975; Rousseeuw et al., 1999) and robust nonparametric rank tests

(Liu and Singh, 1993; Chenouri and Small, 2012). However, Tukey’s depth relies on the

Euclidean geometry and is inappropriate for non-Euclidean data objects.

Though defining depth notions for non-Euclidean data has garnered wide interest, the

literature has focused on specialized spaces, such as a unit sphere (Small, 1987; Liu and

Singh, 1992; Pandolfo et al., 2018), positive definite matrices (Fletcher et al., 2011; Chau

et al., 2019), networks (Fraiman et al., 2017), data on a graph (Small, 1997), and infinite-

dimensional functional data (Fraiman and Muniz, 2001; López-Pintado and Romo, 2009).

Chen et al. (2018) and Paindaveine and Van Bever (2018) considered halfspace depth for

the scatter matrix of Euclidean data points. Fraiman et al. (2019) proposed a spherical

depth that applies to Riemannian manifold data. Targeting general settings, Carrizosa

(1996) sketched a halfspace depth based on dissimilarity measures without methodological

development, which differs from our proposal in general; see Section S5 in the Supplemen-

tal Materials. Carrizosa (1996) also introduced an extension of the halfspace depth to a

regression setting closely related to the regression depth proposed by Rousseeuw and Hu-

bert (1999); see also Zuo (2021) for a discussion of the theoretical properties of regression

depths.

1.2 Our Contributions

The goal of our work is to generalize Tukey’s depth to data objects taking values on an

arbitrary metric space, defining a general depth notion that shares the desirable properties

of Tukey’s depth. This will make available depth-based exploratory and robust inferential

toolsets to general object data.

We propose the metric halfspace depth in Section 2.1, which is a generalization of

Tukey’s depth to object data on a general metric space. Metric halfspace depth incorporates
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the data space geometry through the distance metric d, a feature available on any metric

space. The proposed metric halfspace depth, therefore, applies to a wide range of non-

Euclidean data objects. This includes data lying on smooth Riemannian manifolds such as

directional data on a sphere (Mardia and Jupp, 2009); bivariate molecular torsion angles

on a flat torus (Eltzner et al., 2018); and constrained matrix-valued data, such as rotations

(Bingham et al., 2009) and covariance matrices (Dai et al., 2020). Nonsmooth objects with

possible degeneracy lying on a geodesic space, such as phylogenetic trees (Feragen and Nye,

2020), networks (Kolaczyk et al., 2020), and shapes (Dryden and Mardia, 2016) can also

be investigated by the proposed depth.

We establish desirable properties of the metric halfspace depth in Section 3, extending

much of the properties enjoyed by Tukey’s depth (Tukey, 1975) for Euclidean data. The

axiomatic properties of depth notions introduced in Zuo and Serfling (2000) are satisfied

to a great extent in many commonly investigated data spaces. The metric halfspace depth

is invariant to a large class of transformations; if the data are symmetrically distributed

around a center, then the center has the maximal metric halfspace depth; the depth values

have a center-outward tendency and monotonically decrease from the deepest point to the

peripheral points; and the depth vanishes as one moves away from the center. The metric

halfspace depth function is upper semi-continuous, which implies that the nested deepest

regions are compact. We establish a root-n rate of convergence of the sample depth to the

true depth function, and the consistency of the sample deepest point to the population

deepest point, assuming uniqueness of the latter. Moreover, the metric halfspace depth

is shown to be robust to contamination, having a high breakdown point for symmetric

distributions regardless of the dimension of the data space. All proofs are included in the

Supplemental Materials.

Tukey’s depth for Euclidean data has a well-known weakness in its high computation

cost even in moderate dimensions. To overcome this obstacle, we propose efficient algo-

rithms in Section 4 to approximate the metric halfspace depth by looking into finitely many

halfspaces as informed by the dataset. Our proposed approximation algorithm for calcu-

lating the depth function and the deepest point has a complexity of O(n3) with respect
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to the sample size n, independent of the dimension of the data space. The approximation

algorithm is able to achieve arbitrary precision to the truth by densening the discretization

of the space, which we establish in our theoretical results and demonstrate in simulation

studies. The proposed depth is shown to have excellent numerical performance in terms

of efficiency and robustness in Section 5. The approximate depth algorithm respects the

intrinsic data geometry independent of the ambient space as demonstrated in Section S10

in the Supplemental Materials.

We showcase the practical relevance of the metric halfspace depth in two applications

in Section 6, which include (a) neuro-connectivity matrices from functional magnetic reso-

nance imaging (fMRI) data of patients with dementia and healthy controls and (b) phyloge-

netic trees comparing the genetic materials from different species. The application to fMRI

data discovered differences in the brain connectivity among groups of normal controls and

patients at different dementia stages progressing to Alzheimer’s disease using depth-based

rank tests. The second application considers estimating the phylogenetic history of seven

Apicomplexan species, which are pathogenic parasites, in the tree space of Billera et al.

(2001). We obtained the most representative tree for estimating a consensus evolutionary

history of the Apicomplexa and also identified outliers in the individual gene trees.

2 Metric Halfspace Depth

2.1 General Definition

We consider extending the concept of data depth to data objects taking values on a general

metric space. LetM be a metric space equipped with distance d, and X be anM-valued

random object defined on probability space (Ω,F , P ) and measurable with respect to the

Borel σ-algebra B(M). To define a halfspace depth, the key lies in suitably generalizing

the notion of halfspaces. For two points x1, x2 ∈ M on the metric space, we denote the

metric halfspace, or halfspace for brevity, as

Hx1x2 = {y ∈M | d(y, x1) ≤ d(y, x2)} , (1)
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which is said to be anchored at (x1, x2). Halfspace Hx1x2 contains all points ofM that lie

no further away from x1 than from x2. Let H = {Hx1x2 | x1 6= x2 ∈ M} be the collection

of all halfspaces and Hx = {Hx1x2 ∈ H | x ∈ Hx1x2} the set of halfspaces containing

x, understanding that the same halfspace may arise from different pairs of anchors. The

proposed metric halfspace depth (MHD) at x ∈ M w.r.t. the probability measure PX

induced by X is defined as

D(x) = D(x;PX) = inf
H∈Hx

PX(H) (2)

= inf
x1,x2∈M

d(x1,x)≤d(x2,x)

P (d(X, x1) ≤ d(X, x2)). (3)

Depth D(x) is the least probability measure of the halfspaces containing x, which is well-

defined since the halfspaces are closed and thus measurable. Analogously, given i.i.d. obser-

vations X1, . . . , Xn ∈M, the sample metric halfspace depth at x ∈M w.r.t. the empirical

distribution Pn is

Dn(x) = D(x;Pn) = inf
H∈Hx

Pn(H)

= inf
x1,x2∈M

d(x1,x)≤d(x2,x)

n−1
n∑
i=1

I{d(Xi, x1) ≤ d(Xi, x2)}, (4)

where I{·} is the indicator function.

It is immediately seen that if M is a Euclidean space, then each halfspace is a closed

Euclidean halfspace of the form {x ∈ Rm | xTv ≤ c} for some vector v ∈ Rm and c ∈ R,

and the metric halfspace depth coincides with Tukey’s halfspace depth (Tukey, 1975). The

metric halfspace depth specializes to angular Tukey’s depth proposed by Liu and Singh

(1992) for data lying on a sphere. The metric halfspace depth D(x) captures the geometry

of a general metric spaceM through the halfspaces defined by the distance metric d.

The proposed metric halfspace depth measures how central or representative an ob-

servation is with respect to the distribution. In the context of social choice (Caplin and

Nalebuff, 1988), a point x ∈ S is an ideology, i.e., the favorite proposal shared by a group
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of voters. Given two proposals x1 and x2, ideology x prefers the one closer to itself under

distance d. The halfspace probability PX(Hx1x2) is the proportion of votes received by

proposal x1 when posed against x2. Depth value D(x) is the least popularity of a proposal

that would appeal to x; in other words, x would not favor an unpopular proposal that wins

less than D(x) proportion of votes. A related interpretation in facility location problems

for a different depth definition can be found in Carrizosa (1996).

2.2 Preliminaries on Metric Spaces

A map γ from a closed interval I ⊂ R toM is said to be a geodesic if there exists a constant

λ such that d(γ(t), γ(t′)) = λ |t− t′| for all t, t′ ∈ I; if further λ = 1, then γ is said to be a

unit speed geodesic. We say that a geodesic γ joins x ∈M to y ∈M if I = [0, l], γ(0) = x,

and γ(l) = y for some constant l. Now, (M, d) is said to be a geodesic space if any two

points x, y ∈M are joined by a geodesic. Riemannian manifolds are smooth submanifolds

embedded in an ambient Euclidean space. The definitions of the manifolds and additional

geometrical quantities, such as the tangent space TxM and exponential map expx, are

reviewed in Section S1 in the Supplemental Materials. The distance between two points

x, y on a Riemannian manifold M is the length of the shortest path on M connecting

them. Riemannian manifolds are geodesic spaces by the Hopf–Rinow theorem (Lee, 2018).

The left panel in Figure 1 illustrates the relationship between different types of complete

and connected metric spaces and highlights four common examples. The unit sphere S2 in

R3 is a Riemannian manifold where a geodesic is a segment of a great circle (upper right,

Figure 1), and the 3-spider that models trees with three leaves (lower right, Figure 1)

is an example of a geodesic space that is not a Riemannian manifold, since the origin is

degenerate and does not have a neighborhood resembling a real interval.

If M is an unbounded Riemannian manifold such as the space of symmetric positive

definite matrices and the hyperbolic space, depth notions could alternatively be developed

through mapping data onM to a tangent space TxM through the inverse exponential map

exp−1x : M → TxM, and then employing Euclidean depth notions such as Tukey’s depth

on the linear tangent space. However, this tangent space approach has limited applicability

since it relies on the exponential map being injective, which is violated on bounded spaces
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Metric SpacesMetric Spaces

Geodesic SpacesGeodesic Spaces

Riemannian ManifoldsRiemannian Manifolds

Tree SpaceTree Space

Euclidean SpaceEuclidean Space

SphereSphere

Symmetric Positive Definite MatricesSymmetric Positive Definite Matrices

Figure 1: Left: Relationship between different complete and connected metric spaces,
with a few commonly investigated metric spaces shown in dots. Upper right: The two-
dimensional unit sphere S2 is a Riemannian manifold that is smooth at all points. The
distance between two points (solid dots) is given by the length of the segment of a great
circle connecting them. Lower right: The space of 3-spider consisting of three Euclidean
positive axes issuing from the origin. This is a geodesic space but not a Riemannian
manifold due to the singularity at the origin. A geodesic connecting two points on different
branches is highlighted, and the distance between points is the length of the geodesic.

such as the unit sphere Sk and the rotational group SO(k); even if this approach can be

applied, it is in general not possible to fully preserve the data geometry reflected by the

distance metric while working on the linear tangent space TxM; and the base point x must

be chosen. In contrast, our metric halfspace depth is well-defined and geometry preserving

on any metric space.

2.3 Examples: Metric Halfspace Depth in Common Spaces

In what follows, we provide examples of commonly investigated data spaces and illustrate

metric halfspace depth in these spaces. Example 1–Example 3 concern Riemannian mani-

folds, and Example 4 considers the tree space as a geodesic space that is not a Riemannian

manifold. Depth values in the examples are calculated using the approximation algorithm

described in Section 4.1. More details about the setups can be found in Section S3.3.

Example 1 (Euclidean space). When data lie in the Euclidean space M = Rm, the
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proposed metric halfspace depth coincides with Tukey’s depth. With norm ‖x‖ = (xᵀx)1/2,

distance d(x1, x2) = ‖x1 − x2‖, and Euclidean halfspace H ′x0,v = {y ∈ Rm | (y−x0)ᵀv ≤ 0},

classical Tukey’s depth is,

DTukey(x) = inf PX(H ′), x ∈ Rm, (5)

where the infimum is taken over all Euclidean halfspaces H ′ containing x. Any metric

halfspace H = Hx1x2 ∈ H coincides with a Euclidean halfspace H ′(x0,v) = {y ∈ Rm |

(y − x0)ᵀv ≤ 0} with x0 = (x1 + x2)/2 and v = (x2 − x1)/ ‖x2 − x1‖ if x1 6= x2; vice versa,

each Euclidean halfspace can be expressed as a metric halfspace. Thus, the metric halfspace

depth coincides with Tukey’s depth because the infimums are taken over an identical set,

noting that PX(Hx1x2) = 1 if x1 = x2 which does not influence the infimum for the metric

halfspace depth.

Tukey’s depth in the Euclidean space satisfies all four axiomatic properties of a depth

function introduced in Zuo and Serfling (2000), is a continuous function of the depth

location (Massé, 2004) and can be consistently estimated by its sample version (Massé,

2004); moreover, the deepest point, i.e. Tukey’s median, has a high breakdown point

(Donoho and Gasko, 1992; Liu et al., 2017) and can also be consistently estimated (Bai

and He, 1999; Chen et al., 2018; Zuo, 2020). We will show in Section 3 that many of these

properties generalize on geodesic spaces.

Example 2 (Spheres). The m-dimensional unit sphere Sm = {x ∈ Rm+1 | xᵀx = 1} ⊂

Rm+1 is a Riemannian manifold. The distance between x, y ∈ Sm is the great arc distance

d(x, y) = arccos(xTy). The metric halfspace depth specializes to angular Tukey’s depth

for spherical data considered by Small (1987); Liu and Singh (1992), where the latter is

defined as the least probability measure of any hemisphere covering x. This is because a

metric halfspace Hx1x2 = {x ∈ Sm | xᵀ(x2−x1) ≤ 0} is a closed hemisphere in this context.

An example of the metric halfspace depth applied to data on S2 is shown in the upper left

panel of Figure 2, where data were generated according to the wrapped normal distribution

with isotropic variance 1/2; the setup is described in Section S3.3. The depth values

follow a center-outward pattern, monotonically decreasing from the deepest point near the
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center of symmetry. The deepest point meaningfully characterizes a representative point

well-encompassed by the point cloud, and the points with the lowest depth all lie on the

peripheral.

Example 3 (Symmetric positive definite matrices). Let M = SPD(k) be the manifold

of k × k symmetric positive definite (SPD) matrices. This matrix manifold has seen wide

application in modeling brain connectivity matrices (Dai et al., 2020) and diffusion tensors

(Pennec et al., 2006). Endowed with the affine-invariant geometry (Pennec et al., 2006),

the geodesic distance onM is defined as d(P,Q) =
∥∥logm(P−1/2QP−1/2)

∥∥
F
for P,Q ∈M,

where ‖·‖F is the Frobenius norm, logm is the matrix logarithm, and P−1/2 is the inverse

of the symmetric positive definite square root P 1/2 of P . The geometry is invariant under

affine transformations in the sense that d(APAᵀ, AQAᵀ) = d(P,Q) for any invertible matrix

A and thus have been widely adopted in applications. As the data space is non-Euclidean

with a complex geometry, the halfspaces in general have rather complex shapes. An example

of a halfspace Hx1x2 is shown in Figure S2. Here we evaluate the depth of an SPD matrix

with respect to a sample of SPD matrices as the data units, which is different from the

scenario considered for scatter depth (Chen et al., 2018; Paindaveine and Van Bever, 2018)

where the depth of an SPD matrix is evaluated with respect to Euclidean data units for

estimating the covariance matrix.

Illustrated for M = SPD(2), the lower panel of Figure 2 displays non-isotropic log-

normal matrix data points that are colored according to the proposed metric halfspace

depth. Each point represents the lower diagonal values of an SPD matrix (x y; y z). The

proposed depth produces reasonable results by showing a center-outward profile analogous

to Tukey’s depth in the Euclidean space. The deepest point in red is tightly surrounded by

data points with gradually decreasing depth values, and the deepest point is not heavily

drawn by data points with large values in the diagonal elements x and z. The peripheral

points all have the least depth.

Example 4 (BHV space of phylogenetic trees). We model phylogenetic trees in the Billera–

Holmes–Vogtmann (BHV) tree space (Billera et al., 2001), a widely investigated geodesic

space with nice geometry. LetM = Tk denote the space of rooted phylogenetic trees with
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k leaves endowed with the BHV geometry (Billera et al., 2001), where a brief summary for

the BHV geometry and the associated metric halfspaces is included in Section S2.4.

We illustrate here the geometry of the simplest tree space T3 with three leaves and one

interior edges. The topology of the tree is the way leaves and interior nodes are connected.

There are three bifurcating tree topologies respectively corresponding to which of leaf A,

B, and C branches out first, and a star tree topology with a degenerate interior edge. Tree

space T3 is represented by the 3-spider (R≥0×{1, 2, 3})/ ∼, formed by three rays identified

at the origin o. Coordinate (a, j) represents a point (tree) lying on the jth leg of the

3-spider at a distance a from the origin; we refer to this representation of the trees as the

(radius, branch)-coordinate. The equivalence relationship ∼ is defined by (a1, j1) ∼ (a2, j2)

if and only if (a1, j1) = (a2, j2) for a1 > 0 and for a1 = a2 = 0. The three legs of the

spider correspond to three different bifurcating tree topologies, and the position of a point

on a leg corresponds to the length of the interior edge, as illustrated in Figure 2. The

geodesic between two points on the same branch is the line segment connecting them;

analogously, the geodesic between two points on different branches consists of the line

segments connecting each to the origin. Thus, the distance between two points x, y on the

3-spider is the Euclidean distance if they are on the same branch, and d(x, o) + d(o, y) if

they are on different branches (see lower right panel, Figure 1).

An illustration of the metric halfspace depth for trees with three leaves on T3 is shown

in Figure 2. The trees were generated according to a normal distribution centered at a tree

with leaf B branched out first (on the axis pointing to 8 o’clock). The proposed metric

halfspace depth assigned the largest value for trees around the center, and the depth values

gradually and monotonically decreased as data moved away from the center. The depths of

the most peripheral trees on each axis received the lowest depths. A small number of trees

had either leaf A or C branching out first, and these trees were all assigned low depths.
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Figure 2: Illustration of the proposed metric halfspace depth of 100 data points generated
on different manifolds. Upper left panel, data followed wrapped normal distribution on
the sphere M = S2. Upper right panel, data followed a normal distribution centered at
a tree that has leaf B branched out first (on the axis pointing to eight o’clock). Each
dot represents a tree and five trees are drawn for illustration. Each axis corresponds to a
different tree topology and the location on the axis corresponds to the length of the interior
edge (bolded). The origin corresponds to the star tree which trifurcates at the root node
and has a degenerate interior edge. Lower panel, 2×2 symmetric positive definite matrices
(x y; y z) were generated from a log-normal distribution.

3 Theoretical Properties

3.1 Desirable Depth Properties

For a data depth notion to quantify reasonably how representative data points are within

a distribution or sample, and define a center-outward ordering, Zuo and Serfling (2000)

postulated four properties that the depth function should satisfy when analyzing data in
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a Euclidean space, namely (a) Affine invariance, i.e. the depth of a point is invariant to

affine transformations; (b) Vanishing at infinity, namely the depth should approach 0 as one

moves away from the center of the data; (c) Maximality at the symmetric center, namely

if there is a “center”, such as a point of symmetry, in the data, then the depth achieves its

maximum at this center; and (d) Center-outward monotonicity, i.e. depth values gradually

decrease as one moves away from the deepest point. These properties are satisfied by

classical Tukey’s depth (Tukey, 1975).

We will show that the four depth properties are satisfied to a great extent by the

proposed metric halfspace depth under regularity conditions as detailed in the next theorem.

To state these properties on a general metric space, due to the lack of a vector space

structure, we need to address the lack of affine data transformation and introduce an

invariance property, a notion of data symmetry, and monotonicity.

For an invariance property, let f be a transformation from (M, d) to another metric

space (N , e). For any y ∈ N , let Hy,e = {Hy1y2,e | y ∈ Hy1y2,e, y1, y2 ∈ N} be the collection

of halfspaces Hy1y2,e = {z ∈ N | e(z, y1) ≤ e(z, y2)} ⊂ N containing y. We say that f

is halfspace preserving at x ∈ M with respect to (M, d) and (N , e), or simply halfspace

preserving at x if Hf(x),e = f(Hx) := {f(H) | H ∈ Hx}, in which case the collection of

halfspaces containing x is preserved by f . We say that X is halfspace symmetric about

θ ∈ M if P (X ∈ H) ≥ 1/2 for all halfspace H containing θ, extending the same notion

defined in the Euclidean space by Zuo and Serfling (2000). To define monotonicity on a

metric space, we restrict attention to geodesic spaces, where monotonicity of the depth

function can be investigated along geodesics leaving from the deepest point.

For theory development, we require (M, d) to be a connected complete separable metric

space. For a subset S ⊂ M, let S◦, S, ∂S, and Sc denote the interior, closure, boundary,

and complement of S, respectively. Proofs for the theoretical results and additional analyt-

ical properties of the halfspaces are included in Section S7 and Section S2.5, respectively.

Theorem 1. The metric halfspace depth D(·) satisfies the following properties.

(a) (Transformation invariance) Let f : M→ N be a bijective measurable map between

metric spaces (M, d) and (N , e), and Df (y) = infH′∈Hy,e Pf(X)(H
′) denote the depth
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at y ∈ N with respect to the pushforward measure Pf(X) = PX ◦ f−1 on N . If f is

halfspace preserving at x ∈M, then D(x) = Df (f(x)).

(b) (Vanishing at infinity) Let o ∈M be an arbitrary point. Then supx:d(o,x)>LD(x)→ 0

as L→∞, taking the convention here that the supremum over an empty set is 0.

(c) (Maximality at the symmetry center) If X is halfspace symmetric about a unique

center θ, then θ is the unique deepest point, i.e., θ = arg maxx∈MD(x).

(d) (Center-outward monotonicity) Suppose M is a geodesic space. Let θ ∈ M be a

deepest point, x ∈ M, and γ : [0, 1]→M a geodesic joining θ to x. If any halfspace

Hx1x2 of M that has a nonempty intersect with γ([0, 1]) contains at least one of x

and θ, then D(x) ≤ D(γ(t)) holds for t ∈ [0, 1].

Theorem 1(a) states that the metric halfspace depth is invariant to transformation f

that preserves halfspaces. It is immediate that affine transformations and rotations are

halfspace preserving, respectively, between Euclidean spaces and between spheres of the

same dimension at all x ∈ M. Thus, this result implies the transformation invariance

properties of Tukey’s depth (Donoho and Gasko, 1992) and angular Tukey’s depth (Liu and

Singh, 1992). More generally, a map f is halfspace preserving at x if it preserves the order

of distances at x, i.e., for x, x1, x2 ∈ M, d(x1, x) ≤ d(x2, x) if and only if e(f(x1), f(x)) ≤

e(f(x2), f(x)). This is clearly satisfied if f is an isometry, i.e., d(x, y) = e(f(x), f(y)) for

all x, y ∈M.

The depth follows a center-outward tendency. In a space where “infinite” is well-defined,

Theorem 1(b) states that the depth of a point vanishes as the point moves towards infinity.

Therefore, the peripheral data points will have a small depth. Theorem 1(c) states that if the

data distribution is halfspace symmetric about a unique center θ, then the halfspace depth

is maximized at this center θ. We consider halfspace symmetry to define data symmetry

on a general metric space, which does not require the space M itself to be symmetric,

thereby generalizing beyond the Euclidean space and spheres (Liu and Singh, 1992). In

the Euclidean space, Zuo and Serfling (2000) showed that halfspace symmetric is weaker

than alternative symmetry notions such as centrally symmetric, i.e. X− θ and θ−X equal
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in distribution, and angularly symmetric, which requires (X − θ)/ ‖X − θ‖ to be centrally

symmetric.

Between the deepest θ and an arbitrary location x, Theorem 1(d) states that the metric

halfspace depth is non-increasing along geodesics leaving from θ if the metric space satisfies

a geometric condition. The geometric condition requires that the halfspaces in M are

not overly rich so they will not single out points on the geodesic connecting θ and x

while excluding the endpoints. This condition is satisfied by the model spaces, namely the

Euclidean space, sphere, and hyperbolic space, as stated in Proposition 1.

Proposition 1. LetM be one of the m-dimensional model spaces, namely, the Euclidean

space Rm, unit sphere Sm, or hyperbolic space Hm, and γ : [0, 1]→M be a geodesic joining

θ to x. Then any halfspace H ⊂ M with a nonempty intersect with γ([0, 1]) contains at

least one of θ and x.

We next show the upper semi-continuity of the depth function D(·) and the compactness

and nestedness of the depth regions Dα := {x ∈ M | D(x) ≥ α}, α > 0. Define PH :

M×M → R as PH(x1, x2) = PX(Hx1x2) and let Ex1x2 = {x ∈ M | d(x, x1) = d(x, x2)}

be the equidistance set anchored at x1, x2 ∈M. A metric space is locally compact if every

point has a compact neighborhood. All finite-dimensional manifolds and BHV tree spaces

are locally compact.

Proposition 2. Suppose thatM is a complete and locally compact geodesic space.

(a) PH(·, ·) is upper-semi continuous. If further PX(Ex1x2) = 0 for all x1 6= x2 ∈ M,

then PH(·, ·) is continuous.

(b) D(x) is upper semi-continuous.

(c) Dα is nested, i.e. Dα1 ⊂ Dα2 for α1 ≥ α2, and Dα is compact for α > 0.

The additional condition in Proposition 2(a) is satisfied ifM is a Riemannian manifold

and X has a density w.r.t. the Riemannian volume measure (Lee, 2018); for example, this

is satisfied ifM is the unit sphere and X follows a warped normal distribution.
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3.2 Convergence of the Depth Function and Deepest Point

Next, we show that the metric halfspace depth can be estimated consistently by its sample

version uniformly over all locations by making use of empirical process theory. Let L2(Q)

be the L2-norm of measurable functions with respect to probability measure Q on the

sigma-algebra ofM, so L2(Q)(f) = {
∫
f(x)2dQ(x)}1/2. For a set of measurable functions

F , the covering number N(ε,F , L2(Q)) is the minimal number of balls in L2(Q) with radius

ε required to cover F . The bracketing number N[](ε,F , L2(Q)) is the minimal number of

ε-brackets required to cover F . An ε-bracket [l, u] is the set of functions f with l ≤ f ≤ u,

given two functions l and u with ‖u− l‖L2(Q) < ε. The covering and bracket numbers for

a collection of measurable sets are by convention those of the corresponding collection of

indicator functions. Either one of the following conditions is needed for the convergence

results.

(N1) supQ
∫∞
0

[logN(ε,H, L2(Q))]1/2dε < ∞, where the supremum is taken over all finite

discrete probability measures Q and H is the set of metric halfspaces.

(N2)
∫∞
0

[logN[](ε,H, L2(PX))]1/2dε <∞.

Theorem 2. Given i.i.d. observations X1, . . . , Xn from PX , if either (N1) or (N2) holds,

E sup
x∈M
|Dn(x)−D(x)| = O(n−1/2).

Condition(N1) and(N2) are common entropy/bracketing integral conditions imposed on the

complexity of the collection of halfspaces in order to guarantee convergence of the empirical

process. If (N1) holds, then the statement of Theorem 2 is uniform not only in x but also

over the underlying distribution PX . Condition (N1) holds if the Vapnik–Chervonenkis

(VC) dimension of H is finite (Theorem 2.6.4, van der Vaart and Wellner, 1996). Let C be

a collection of subsets ofM. We say that C shatters a finite subset F = {x1, . . . , xn} ⊂ M

if C ∩F := {C ∩F | C ∈ C} is the collection of all subsets of F . The Vapnik–Chervonenkis

(VC) dimension of C is the smallest n for which no set of size n is shattered by C, formally

16



defined by

VC(C) = inf{n | max
x1,...,xn

∆n(C, x1, . . . , xn) < 2n},

where ∆n(C, x1, . . . , xn) = |{C ∩ {x1, . . . , xn} | c ∈ C}| is the number of subsets of {x1, . . . , xn}

picked out by C. It is well known that the VC dimension of halfspaces in the Euclidean

space Rm is m+ 2 (Wenocur and Dudley, 1981). Theory on the VC dimensions of subsets

of a Riemannian manifold (Narayanan and Niyogi, 2009) or of a general metric space has

been highly limited. That said, since the collection of halfspaces H is indexed by two points

on the metric space, it may be reasonable to expect VC(H) to be finite if the geometry of

M is regular enough. We establish the boundedness of VC dimensions for the collections

of halfspaces on the sphere Sm and the space T3 of phylogenetic trees with 3 leaves.

Proposition 3. The following holds:

(a) On an m-dimensional sphere M = Sm, VC(H) ≤ m+ 3.

(b) On the space of phylogenetic trees M = T3 with 3 leaves, VC(H) = 4.

By Theorem 2, Proposition 3 implies n1/2-convergence for the empirical metric halfspace

depth on these spaces.

A deepest point w.r.t. the sample is a consistent estimator of the population deepest

point by M -estimation theory.

Proposition 4. Suppose that M is a complete and locally compact geodesic space, D(·)

has a unique maximum θ = arg maxx∈MD(x), and the conditions of Theorem 2 hold. Let

θn be an arbitrary point in the deepest set Sn := arg maxx∈MDn(x). Then

d(θn, θ)→ 0 a.s.

as n→∞.

By Theorem 1(a), the deepest set Sn is invariant to halfspace preserving transformations.

In the asymptotic limit, the deepest set shrinks to the population deepest point if the latter

is unique, so any sample deepest point is near-invariant.
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3.3 Robustness

A depth median is defined as an estimator T (·) that takes a point cloud Z = {z1, . . . , zn}

on M to a choice of point T (Z) ∈ arg maxx∈MD(x;PZ) in the deepest set w.r.t. metric

halfspace depth, where PZ is the empirical measure placing equal point mass on each point

in Z. Given a sample, a depth median yields a (unique) point as output, but there exists

potentially more than one depth medians (as estimators) in general if the deepest set is

non-singleton. The depth median of a point cloud is interpreted as the most representative

point of the data and can be used as a location descriptor/estimator. In the Euclidean

case, Tukey’s depth median is a generalization of the classical median on the real line.

Robustness and asymptotic properties were investigated in Donoho and Gasko (1992) and

Massé (2004), respectively.

The breakdown property of the metric halfspace median, which is the depth median

based on our metric halfspace depth, is analyzed next. Intuitively, the breakdown point

is the smallest fraction of contamination that brings an estimator to infinity. Formally,

let X (n) = {X1, . . . , Xn} be a sample of n observations and Y(l) = {y1, . . . , yl} be l con-

tamination points. The breakdown point ε∗ of a metric halfspace median T (·) in a sample

X (n) is the smallest fraction of contamination to bring the estimate in the contaminated

sample arbitrarily far away from that of the uncontaminated sample. The finite-sample

(additional) breakdown point is defined as

ε∗ = ε∗(T ;X (n)) := min
l

{
l

n+ l

∣∣∣∣∣sup
Y(l)

d(T (X (n)), T (X (n),Y(l))) =∞

}
,

where we set ε∗ = 1 if the set being minimized is empty. The next proposition and

its corollary analyze the finite-sample and asymptotic behavior of the breakdown point,

respectively.

Proposition 5. Let M be an arbitrary metric space. For any metric halfspace median

T (·), it holds that

ε∗ ≥ Dn(θn)

1 +Dn(θn)
,
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where θn = T (X (n)) is a deepest point w.r.t. sample X (n).

Corollary 1. If (N1) or (N2) holds, then as n→∞,

ε∗ ≥ D(θ)

1 +D(θ)
a.s.,

where θ ∈ arg maxx∈MD(x) is any deepest point w.r.t. the distribution PX of X.

Corollary 1 implies that the breakdown point for the metric halfspace median for any

halfspace symmetric distribution is at least 1/3 regardless of the dimensions, extending the

results for Tukey’s median in the Euclidean case (Donoho and Gasko, 1992).

4 Efficient Computation

4.1 Approximation Algorithms

In the Euclidean space, exact computation of Tukey’s depth and deepest point are pro-

hibitively slow if the dimension is higher than 3 even with efficient algorithms (Dyckerhoff

and Mozharovskyi, 2016). On a general metric space, the evaluation of the metric halfspace

depth as an infimum faces additional difficulty and would require optimization algorithms

that adapt to specific manifolds (Yang, 2007). Moreover, the search for the deepest point

requires difficult optimization of a discontinuous function Dn(·). This motivates us to

develop fast approximation algorithms for the metric halfspace depth and deepest point.

Let X = {X1, . . . , Xn} ⊂ M be the collection of observations, and also denote A ⊂M

as the anchor set containing |A| = nA anchor points of halfspaces. We approximate Dn(x)

w.r.t. X by taking the infimum over only halfspaces anchored at points in A. The proposed

metric halfspace depth approximation is

D̃n(x) = D̃n(x;A) = inf
x1 6=x2∈A: d(x,x1)≤d(x,x2)

n−1
n∑
i=1

I{d(Xi, x1) ≤ d(Xi, x2)}. (6)

The infimum is taken over at most nA(nA − 1) ordered pairs of anchors. The number of

anchors controls the tradeoff between computational cost and accuracy, in that using a

larger number of anchors results in a better approximation but at a higher cost. In most
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applications, the anchor points A can be set to the sample points X , and for improving

approximation, one can enlarge the set of anchor points by including “jiggled” versions of

these points; more information is included in Section S3.2. The deepest point is approx-

imated by the in- and out-of-sample points with the largest approximate depth, defined

respectively by

θ̃ = arg max
x∈X

D̃n(x), θ̊ = arg max
x∈M

D̃n(x). (7)

The in-sample deepest point θ̃ can serve as a good initial value in numerical optimization

procedures to search for the out-of-sample deepest θ̊, where the latter is a more accurate

approximation of θ̂.

Like their population and sample versions, the approximate depth and deepest points

incorporate the geometry of M through the metric d and thus avoids the choice of a

parametrization of the metric space or linearization onto the tangent space, both of which

could be ill-defined. The approximate depth is defined as long as the discrete graph of

pairwise geodesic distances is given, and thus the proposed depth is applicable to a wide

range of scenarios where the available data are nodes and edges of a graph (Small, 1997) or

where the pairwise geodesics are estimated from a point cloud using a graph-based method

(Tenenbaum et al., 2000). Algorithms for computing depth and the deepest point are

summarized in Algorithm 1 and Algorithm 2, respectively.

Algorithm 1: Evaluate depth at points in Y w.r.t. X
Data: Random sample X , depth evaluation points Y, and halfspace anchors A
Result: Depths D(y) for y ∈ Y

1 for x1 6= x2 ∈ A do
2 px1,x2 ← Pn(Hx1x2)

3 end
4 for y ∈ Y do
5 Q← ∅
6 for x1 6= x2 ∈ A do
7 if d(y, x1) ≤ d(y, x2) then
8 Add px1,x2 to Q
9 end

10 end
11 D(y)← minQ

12 end

20



Algorithm 2: Locate the deepest point in X
Data: Random sample X and anchor points A
Result: Deepest point θ̃

1 Obtain D̃n(x), x ∈ X by invoking Algorithm 1 with Y = X
2 θ̃ ← arg minx∈X D̃n(x)

The complexity of Algorithm 1 is O(nYn
2+n3) for evaluating depth at points in Y w.r.t.

sample X and anchor points A = X , where nY = |Y|. The rate of complexity does not have

an exponent involving dimension m, similar to those of the approximation algorithms (e.g.,

Bogićević and Merkle, 2018; Zuo, 2019, and the references therein) for computing Tukey’s

depth in the Euclidean space. This contrasts with the exact algorithms (e.g., Dyckerhoff

and Mozharovskyi, 2016; Zuo, 2019) for computing Tukey’s depth where the complexity is

typically O(nYn
m) or O(nYn

m−1 log(n)). Algorithm 2 takes O(n3) since nY = n.

4.2 Theoretical Properties for the Approximation

We establish that the approximate depth converges to the truth if the anchor points are

dense enough inM. Halfspace Hz1z2 is said to be a minimizing halfspace at x if x ∈ Hz1z2

and PX(Hz1z2) = D(x). The following theorem derives the rate of convergence for the

approximation if a minimizing halfspace exists, and the consistency result otherwise. To

obtain the rate of convergence, for zj ∈ M let Dj = d(X, zj), j = 1, 2 and assume the

following conditions.

(P1) For some ε > 0 and c1 > 0, Dj has a small ball probability near 0 satisfying P (Dj ≤

t) ≥ c1t
m0 for j = 1, 2 and t ≤ ε.

(P2) For some ε > 0 and c2 > 0, P (|D1 −D2| ≤ t) ≤ c2t holds for t ≤ ε.

Theorem 3. Suppose that either (N1) or (N2) holds, and the approximation algorithm

uses the sample points X as the anchor points A. Let x be a point onM.

(a) If the infimum in D(x) = infH∈Hx PX(H) is achieved by a halfspace Hz1z2, i.e., D(x) =

PX(Hz1z2), and (P1) and (P2) hold for (z1, z2), then as n→∞,

∣∣∣D̃n(x)−D(x)
∣∣∣ = Op(n

−1/m0).
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(b) Suppose that the infimum of D(x) = infH∈Hx PX(H) is not achieved by any halfspace.

If P (d(z,X) < r) > 0 for all z ∈M and r > 0 and PX(Ex1x2) = 0 for all x1, x2 ∈M,

then as n→∞, ∣∣∣D̃n(x)−D(x)
∣∣∣ = op(1).

The idea of proof for Theorem 3 is to approximate the minimizing halfspace probabilities

by random halfspaces. The halfspace where the infimum is attained does not need to be

unique. Conditions (P1) and (P2) are requirements on both the distribution of X and on

the geometry ofM. They ensure that if the random anchor points lie close enough to the

anchor points of a minimizing halfspace, then the halfspace probabilities are close. If M

is a Riemannian manifold and X has a density bounded away from 0 w.r.t. the Riemannian

volume measure, then m0 in (P1) is the intrinsic dimension m of M. Thus, the rate of

convergence of the approximation algorithm given by Theorem 3(a) is as fast as Op(n
−1/m)

on an m-dimensional Riemannian manifold. Conditions (P1) and (P2) hold in a Euclidean

space if X has a finite first moment and density bounded away from zero and infinity, and

(P2) is violated if the distribution of d(X, z1) is overly concentrated around d(X, z2). To give

details, we describe two examples when (P1) and (P2) are satisfied and a counter-example

in Section S8, and additional properties of the approximate depth in Section S9.

5 Numerical Experiments
We investigate the performance of the metric halfspace median as a robust estimate for

the center of a distribution. Three Riemannian manifolds were considered for the data

space M, namely the k × k symmetric positive definite matrices SPD(k) with the affine

invariant metric; the k-dimensional unit sphere Sk; and the rotational group SO(k) of k×k

orthogonal matrices with determinant 1. The intrinsic dimensions m for these manifolds

equal, respectively, k(k + 1)/2, k, and k(k − 1)/2. The definitions of the tangent spaces

and their bases, and exponential maps are described in Section S1 and Section S2.

For each metric space M, we considered four cases where i.i.d. data were generated

according to either an uncontaminated distribution P = P1 for Case 1 or contaminated

distribution P = 0.9P1 + 0.1P2 for Cases 2 to 4. Under Case 1, independent samples
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Xi, i = 1, . . . , n were generated according to P = P1, where P1 is the law of random

variable X = expθ1 V1; expθ1 : Tθ1M→M is the exponential map at the center θ1 ∈M of

the uncontaminated distribution; Tθ1M is the tangent space at θ1; and V1 is a non-isotropic

normal random variable lying on Tθ1M. Let B1j, j = 1, . . . ,m be an orthonormal basis on

Tθ1M, and set V1 =
∑m

j=1 ZjB1j where Zj follows independent N(0, σ2
j ) with σj/σj+1 = 3

for j = 1, . . . ,m− 1, having a total variance
∑m

j=1 σ
2
j = 1. For Cases 2 to 4, i.i.d. data Xi

were generated under mixture distributions P = 0.9P1+0.1P2 with 10% of data coming from

the contaminating distribution P2 that varied between different cases. In Case 2, P2 was

set as a location contamination with the same distribution as expθ2 V2, where θ2 = expθ1 U

is a random location at a unit distance away from θ1, U is sampled (once per Monte Carlo

repeat) from the uniform distribution on the unit sphere on Tθ1M, V2 = V ′1 :=
∑m

j=1 Z
′
jB2j,

Z ′j follows independent N(0, σ2
j ), and B2j is an orthonormal basis of Tθ2M, j = 1, . . . ,m;

in Case 3, P2 was a scale contamination sharing the same distribution as expθ2 V2 where

θ2 = θ1 and V2 = S :=
∑m

j=1WjB1j is a zero-mean multivariate normal distribution on

Tθ2M, and Wj follows independent N(0, s2j) with variance sj = σm−j+1, j = 1, . . . ,m,

differing from that for P1; in Case 4, P2 was a location-and-scale contamination sharing

the same distribution as expθ2 V2 where θ2 is the same as in Case 2 and V2 is the same as

in Case 3.

Our target is to estimate robustly the center θ1 of the uncontaminated distribution P1,

with the center and random tangent vector varying between simulation cases. The contami-

nation distribution P2 was set to a distribution that differed from P1, in the location, scale,

and location-and-scale for Case 2, 3, and 4, respectively. To summarize, the simulation

scenarios considered were

• Case 1, uncontaminated distribution centered at θ1,

• Case 2, contaminated distribution with location outliers,

• Case 3, contaminated distribution with scale outliers, and

• Case 4, contaminated distribution with location-and-scale outliers.

For example, on S2, a location outlier is centered around θ2 that lies far away from the

center θ1 of the uncontaminated distribution P1. A scale outlier is generated from V2 which
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has a different covariance matrix than V1; therefore, a scale outlier may lie away from its

center in a direction uncommon to the inliers. We varied the sample size n ∈ {50, 100, 200}

and the manifold parameter k ∈ {2, 3, 4} in each case.

As estimators of the center, we compared the proposed metric halfspace median µ̂MHD =

θ̊ as defined in (7) and the Fréchet mean µ̂FM. The Fréchet mean (Fréchet, 1948) of the

sampleXi, i = 1, . . . , n under distance d is µ̂FM = arg minx∈M n−1
∑n

i=1 d
2(x,Xi), which is a

generalization of the classical mean. For calculating the metric halfspace median, 10 jiggled

points were added to the anchor set around each sample point. We also compared with the

Fréchet median µ̂FMd = arg minx∈M n−1
∑n

i=1 d(x,Xi), which coincides with the deepest

point w.r.t. the geodesic distance depth proposed by Chau et al. (2019) onM = SPD(k).

These location estimators µ̂ were evaluated according to the median geodesic distance to

the true mean d(µ̂, µ) out of 1024 Monte Carlo repeats.

Results forM = SPD(k) displayed in Table 1 show that the proposed metric halfspace

median performs well in general. In Case 1 without contamination, the Fréchet mean

was the most efficient overall, especially for smaller sample sizes n = 50 and 100, while

the metric halfspace median and the Fréchet median are competitive. In the presence

of contamination, both deepest points µ̂MHD and µ̂FMd dominated µ̂FM and demonstrated

robustness by producing estimates that were close in performance to those in Case 1 without

contamination. The proposed metric halfspace median outperformed the Fréchet median in

the contaminated scenarios. A reason for this is that the Fréchet median only considers the

sum
∑n

i=1 d(x,Xi) of geodesic distances from the data points to x, disregarding the relative

locations of the data points within the point clouds and thus having weaker invariant

properties than the metric halfspace depth. The advantage of µ̂MHD over µ̂FMd becomes

more significant when the sample size is larger, in which case the approximation of the

metric halfspace depth through D̃n is improved.

Results for two bounded manifolds are shown in Table 2, where the exponential maps

are not injective on these manifolds and thus depth concepts cannot be defined in general

through mapping data onto the tangent space. The metric halfspace median is overall

superior to the Fréchet mean in the presence of contamination, especially when the intrinsic
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Table 1: Median distances over the replicates between the estimated center and the actual
center of P1 for data being symmetric positive definite matrices on M = SPD(k). The
dimensions of the manifold for parameters k = 2, 3, and 4 are 3, 6, and 10, respectively.
The standard errors of the reported median distances for n = 50, 100, and 200 were less
than 0.003, 0.002, and 0.002, respectively. MHD, the proposed metric halfspace depth
median; FM, Fréchet mean; FMd, Fréchet median.

k = 2 k = 3 k = 4
n = MHD FM FMd MHD FM FMd MHD FM FMd

Case 1
50 .117 .103 .122 .116 .103 .121 .114 .103 .121
100 .075 .071 .081 .076 .071 .080 .078 .071 .080
200 .053 .049 .054 .053 .048 .054 .055 .048 .054

Case 2
50 .124 .140 .136 .114 .140 .124 .119 .145 .126
100 .091 .120 .101 .084 .121 .097 .083 .121 .094
200 .070 .108 .084 .064 .110 .079 .059 .110 .077

Case 3
50 .104 .107 .108 .102 .108 .104 .103 .105 .105
100 .072 .075 .074 .064 .075 .071 .063 .075 .071
200 .051 .054 .051 .042 .053 .050 .040 .054 .050

Case 4
50 .123 .142 .133 .122 .145 .124 .120 .144 .125
100 .087 .124 .102 .084 .124 .094 .083 .125 .091
200 .065 .110 .086 .061 .112 .078 .062 .113 .077

dimension is large. Even in Case 3, where the scale-only outliers do not affect the true

center, the metric halfspace median was, in many cases, more efficient than the Fréchet

mean on spheres. This could be due to the low rate of convergence of the sample Fréchet

mean for data that extends the entire manifold (Eltzner and Huckemann, 2019). On the

bounded manifolds, the metric halfspace median was overall comparable with the Fréchet

median, slightly outperforming the latter on Sk in Case 4 when n = 200, and slightly under-

performing it on SO(k). The advantage of the metric halfspace median over the Fréchet

median is clearly more significant on SPD(k) than on Sk and SO(k). Some possible reasons

for this are that the directionality of the outliers and the transformation invariance property

of the proposed metric halfspace depth are more relevant on the unbounded SPD(k) than

on the bounded manifolds.

Overall, results for the different manifolds demonstrate that the proposed metric half-

space median is in general a valid robust measure of centrality. Moreover, our proposed

depth can be generally applied to rank general data objects in a center-outward fashion,

as demonstrated in the real data applications.
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Table 2: Median distances over the replicates between the estimated and the actual centers
when data lie on the sphere Sk and the rotational group SO(k). The standard errors of
the reported median distances for n = 50, 100, and 200 were less than 0.005, 0.003, and
0.004, respectively. MHD, the proposed metric halfspace depth; FM, Fréchet mean; FMd,
Fréchet median.

M = Sk M = SO(k)
k = 2 k = 3 k = 4 k = 2 k = 3 k = 4

n = MHD FM FMd MHD FM FMd MHD FM FMd MHD FM FMd MHD FM FMd MHD FM FMd

Case 1
50 .146 .127 .141 .144 .132 .141 .147 .132 .141 .120 .098 .122 .128 .107 .129 .133 .107 .129
100 .096 .091 .093 .096 .092 .092 .098 .092 .092 .082 .068 .083 .091 .076 .084 .095 .076 .084
200 .070 .063 .063 .069 .064 .064 .070 .064 .064 .057 .047 .059 .083 .052 .058 .081 .052 .058

Case 2
50 .155 .152 .149 .164 .170 .158 .158 .172 .152 .144 .125 .141 .142 .149 .143 .133 .147 .131
100 .117 .133 .115 .115 .137 .113 .110 .141 .113 .101 .105 .105 .118 .124 .106 .107 .125 .100
200 .095 .113 .096 .087 .120 .089 .084 .124 .088 .092 .098 .092 .119 .110 .086 .100 .112 .082

Case 3
50 .137 .137 .135 .140 .147 .130 .130 .146 .125 .120 .098 .123 .119 .114 .114 .111 .112 .110
100 .097 .096 .095 .091 .104 .088 .089 .106 .086 .082 .068 .083 .087 .080 .078 .076 .079 .074
200 .069 .069 .065 .066 .076 .061 .059 .077 .060 .057 .047 .059 .075 .057 .054 .066 .056 .052

Case 4
50 .152 .167 .149 .154 .182 .153 .153 .187 .149 .144 .125 .141 .136 .149 .139 .137 .149 .130
100 .114 .146 .116 .112 .157 .113 .109 .157 .112 .101 .105 .105 .113 .129 .108 .101 .125 .098
200 .091 .128 .098 .083 .135 .090 .081 .135 .088 .092 .098 .092 .114 .113 .090 .091 .112 .081

6 Real Data Applications

6.1 Functional Connectivity in Alzheimer’s Disease Patients

The first data application considers symmetric positive definite (SPD) matrices that rep-

resent brain connectivity, which are widely used as a biomarker of brain function. The

connectivity between defined regions of interest is calculated as the temporal association

between their blood-oxygen-level-dependent (BOLD) signals in functional magnetic reso-

nance imaging (fMRI) scans when the subjects are in a resting state. We analyzed fMRI

scans recorded in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) with the goal

of making inference regarding brain connectivity in different dementia study groups. Our

analysis included n = 181 subjects who, according to the severity of cognitive decline, were

classified at enrollment as: cognitively normal (CN), early mild cognitive impaired (EMCI),

late mild cognitive impaired (LMCI), or Alzheimer’s disease (AD) patients. The fMRI data

were preprocessed by following a standard protocol to remove motion and timing artifacts,

scaling effects, and trends, and we considered only the fMRI scans at the participants’ first

visits. Problematic scans are not uncommon in fMRI studies as a result of imaging artifacts
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that come from head motion and cognitive state (Laumann et al., 2017). Statistical depth

approaches are appealing for analyzing imaging data since they are fully nonparametric

and robust to outliers. Here we compare the proposed metric halfspace depth with the

geodesic distance depth (Chau et al., 2019).

For each subject, the average bold signals in each of the 10 defined brain regions (Buck-

ner’s hubs) in a subject’s brain were first calculated, obtaining a 10-dimensional times

series (Buckner et al., 2009). Next, brain connectivity is represented by the covariance

(at lag 0) of the average bold signals, obtaining 10 × 10 covariance matrices as the data

observations Xi. The left panel of Figure 3 illustrates the connectivity covariance matri-

ces of four random subjects in the cognitively normal group. We analyzed the covariance

matrices inM = SPD(10) with the affine invariant metric. The deepest covariance matrix

in the cognitively normal group with respect to metric halfspace depth (upper right panel

of Figure 3) exhibits non-zero cross-covariances between different brain regions, resembling

the original sample matrices; in contrast, the deepest image w.r.t. the geodesic distance

depth (Chau et al., 2019) (lower right panel) has near 0 cross-covariances, which is not

commonly observed in the sample.

We next investigated whether group differences exist among the four groups of patients

studied. We applied the depth-based Kruskal–Wallis test proposed by Chenouri and Small

(2012) based on both the proposed metric halfspace depth and the geodesic distance depth

(Chau et al., 2019). The Kruskal–Wallis test is designed to be sensitive to both location and

scale changes by calculating the depth of the observations with respect to each group and

aggregating the depth ranks. Using the permutation null distribution, a p-value of 0.0194

was produced using the proposed metric halfspace depth, and a p-value of 0.0652 for the

geodesic distance depth. Further, pairwise comparisons of the dementia groups using the

depth-based Wilcoxon test (Chenouri and Small, 2012) revealed that the most significant

difference exists between the Alzheimer’s disease and the cognitively normal groups as

shown in Table 3. This demonstrates the potential utility of fMRI-based connectivity

measures and depth-based methods for studying Alzheimer’s disease.

27



002_S_4225 019_S_4835

002_S_0685 002_S_1261

L I
/S

 pa
rie

tal
 lo

bu
le

L m
id 

fro
nta

l

L m
id 

tem
po

ral

M pr
efr

on
tal

M S
 fro

nta
l

Pos
t c

ing
ula

te/
pre

cu
ne

us

R I/S
 pa

rie
tal

 lo
bu

le

R m
id 

fro
nta

l

R m
id 

tem
po

ral

R su
pra

marg
ina

l

L I
/S

 pa
rie

tal
 lo

bu
le

L m
id 

fro
nta

l

L m
id 

tem
po

ral

M pr
efr

on
tal

M S
 fro

nta
l

Pos
t c

ing
ula

te/
pre

cu
ne

us

R I/S
 pa

rie
tal

 lo
bu

le

R m
id 

fro
nta

l

R m
id 

tem
po

ral

R su
pra

marg
ina

l

L I/S parietal lobule
L mid frontal

L mid temporal
M prefrontal
M S frontal

Post cingulate/precuneus
R I/S parietal lobule

R mid frontal
R mid temporal

R supramarginal

L I/S parietal lobule
L mid frontal

L mid temporal
M prefrontal
M S frontal

Post cingulate/precuneus
R I/S parietal lobule

R mid frontal
R mid temporal

R supramarginal 0.000

0.001

0.002

GDD

MHD

L I
/S

 pa
rie

tal
 lo

bu
le

L m
id 

fro
nta

l

L m
id 

tem
po

ral

M pr
efr

on
tal

M S
 fro

nta
l

Pos
t c

ing
ula

te/
pre

cu
ne

us

R I/S
 pa

rie
tal

 lo
bu

le

R m
id 

fro
nta

l

R m
id 

tem
po

ral

R su
pra

marg
ina

l

L I/S parietal lobule
L mid frontal

L mid temporal
M prefrontal
M S frontal

Post cingulate/precuneus
R I/S parietal lobule

R mid frontal
R mid temporal

R supramarginal

L I/S parietal lobule
L mid frontal

L mid temporal
M prefrontal
M S frontal

Post cingulate/precuneus
R I/S parietal lobule

R mid frontal
R mid temporal

R supramarginal
0.0000

0.0005

0.0010

0.0015

Figure 3: Left: Connectivity covariance matrices for four cognitively normal individuals.
Right: Deepest matrices among cognitively normal individuals in terms of metric halfspace
depth (MHD, upper panel) and geodesic distance depth (GDD, lower panel). Brain regions
used for creating the connectivity matrices are indicated.

Table 3: The p-values based on the metric halfspace depth-based Wilcoxon rank test for
the pairwise comparisons between the four dementia groups. CN, cognitively normal;
EMCI, Early Mild Cognitive Impairment; LMCI, Late Mild Cognitive Impairment; AD,
Alzheimer’s disease.

EMCI LMCI AD
CN 0.644 0.339 0.021

EMCI − 0.350 0.126
LMCI − − 0.074

6.2 Phylogenetic Tree Application

In evolutionary biology, the ancestral relationship among a fixed collection of species is

represented by a tree structure. Each leaf corresponds to a species, each interior node a

speciation event, an edge the transition from an ancestor to a descendant, and the edge

length the evolutionary divergence along the edge. A phylogenetic tree is constructed by

comparing genetic materials from different species and determining the divergence time

from the mismatches between nucleic acid sequences. Frequently, a collection of phylo-
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genetic trees are considered, where each individual tree is constructed from the sequence

of a specific gene present in the species in question. Collectively, this forms a sample

of gene trees where the sources of randomness come from biological variation, sequence

misalignment, and random subsampling in the individual genes.

It has been of great interest to construct a consensus tree that summarizes the in-

dividual trees to infer the evolutionary history. In addition to the complex structure of

the trees, this task is complicated by the stark heterogeneity in the individual trees due

to analytic artifacts such as sequence misalignment, remarkable biological variation, or

low signal-to-noise ratio in the random subsample. Recently, tree space geometry-aware

methods such as the Fréchet mean tree (e.g. Nye et al., 2017) have been proposed. These

methods have been shown to produce reliable inference of tree topology and edge lengths.

However, a preliminary outlier removal step (e.g., Weyenberg et al., 2014) is usually per-

formed since the Fréchet mean is a non-robust measure of location. Here, we apply the

metric halfspace depth to obtain a “summary tree” that best represents the data and to

identify potential outliers. We infer the phylogeny of 7 pathogenic Apicomplexan species

relative to an outgroup species using n = 268 individual gene trees constructed by Kuo et al.

(2008). The Apicomplexa phylum contains many important pathogenic parasites that are

detrimental to humans and livestock. The Apicomplexan species included the infamous

malaria pathogens Plasmodium falciparum (Pf) and Plasmodium vivax (Pv); tick-borne

haemopathogens Babesia bovis (Bb) and Theileria annulata (Ta); and coccidian parasites

Eimeria tenella (Et), Toxoplasma gondii (Tg), and Cryptosporidium parvum (Cp) which

infect intestines. The outgroup Tetrahymena thermophila (Tt) is a remotely related model

species included to root the phylogeny. We model the gene trees as rooted trees with the

root placed as the point where the outgroup joins with the apicomplexan species.

To model the evolutionary divergence between all species and their ancestors, we con-

sider T8 ×R8 with the product metric, where the BHV space T8 models the tree topology

and the interior edge lengths, and R8 models the pendant edge lengths. The proposed

metric halfspace depths were calculated at each of the individual trees, with 10 additional

jiggled trees added as anchors per original tree for improving approximation. In the deepest
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tree as displayed in Figure 4, tick parasites B. bovis and T. annulata and malaria parasites

P. falciparum and P. vivax are respectively monophyletic, i.e., sharing the same immedi-

ate ancestor; these haemoparasites descend from a common ancestor; coccidian species E.

tenella and T. gondii form a sister group to the former; C. parvum is the deepest root-

ing species. The deepest tree we produced is congruent to the consensus tree identified

by Kuo et al. (2008) constructed through maximum likelihood, maximum parsimony, and

neighbor-joining methods, and also agree with the Fréchet mean tree found by Nye et al.

(2017), who performed the analysis after removing 16 outliers. Our depth-based approach

has the advantage of being robust to extreme values and does not require separate outlier

identification and removal.

Tg

Et

Tt

Cp

Ta

Bb

Pv

Pf

Figure 4: The deepest tree with respect to the proposed metric halfspace depth. The tree
topology coincides with the known topology for the apicomplexan species tree.

We also identified 27 gene trees with the least metric halfspace depth, indicating that

they correspond to the most extreme trees. Among these trees four potential outliers are

displayed in Figure 5 and the rest are included in Figure S11. Trees 488 and 546 have

exceptionally long branches, and, in addition, the Plasmodium species in tree 488 (Pf and

Pv, hard to distinguish in the figure due to the long branch) and tick parasites B. bovis

and T. annulata in trees 625 and 703 are not monophyletic. These structures, which differ

from what has been reported in the literature (Kuo et al., 2008), demonstrate the utility

of the metric halfspace depth for highlighting outliers.
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Figure 5: Four individual gene trees with the least metric halfspace depth.

References
Bai, Z.-D. and He, X. (1999), “Asymptotic distributions of the maximal depth estimators

for regression and multivariate Location,” The Annals of Statistics, 27, 1616–1637.

Bhattacharya, R. and Patrangenaru, V. (2005), “Large sample theory of intrinsic and ex-

trinsic sample means on manifolds - II,” Annals of statistics, 33, 1225–1259.

Billera, L. J., Holmes, S. P., and Vogtmann, K. (2001), “Geometry of the space of phylo-

genetic trees,” Advances in Applied Mathematics, 27, 733–767.

Bingham, M. A., Nordman, D. J., and Vardeman, S. B. (2009), “Modeling and inference

for measured crystal orientations and a tractable class of symmetric distributions for

rotations in three dimensions,” Journal of the American Statistical Association, 104,

1385–1397.

Bogićević, M. and Merkle, M. (2018), “Approximate calculation of Tukey’s depth and

median with high-dimensional data,” Yugoslav Journal of Operations Research, 28, 475–

499.

Buckner, R. L., Sepulcre, J., Talukdar, T., Krienen, F. M., Liu, H., Hedden, T., Andrews-

Hanna, J. R., Sperling, R. A., and Johnson, K. A. (2009), “Cortical hubs revealed

by intrinsic functional connectivity: mapping, assessment of stability, and relation to

Alzheimer’s disease,” The Journal of Neuroscience, 29, 1860–1873.

Caplin, A. and Nalebuff, B. (1988), “On 64%-majority rule,” Econometrica, 56, 787–814.

31



Carrizosa, E. (1996), “A characterization of halfspace Depth,” Journal of Multivariate Anal-

ysis, 58, 21–26.

Chau, J., Ombao, H., and von Sachs, R. (2019), “Intrinsic data depth for Hermitian positive

definite matrices,” Journal of Computational and Graphical Statistics, 28, 427–439.

Chen, M., Gao, C., and Ren, Z. (2018), “Robust covariance and scatter matrix estimation

under Huber’s contamination model,” The Annals of Statistics, 46, 1932–1960, publisher:

Institute of Mathematical Statistics.

Chenouri, S. and Small, C. G. (2012), “A nonparametric multivariate multisample test

based on data depth,” Electronic Journal of Statistics, 6, 760–782.

Dai, X., Lin, Z., and Müller, H.-G. (2020), “Modeling longitudinal data on Riemannian

manifolds,” Biometrics, Accepted.

Dai, X. and Müller, H.-G. (2018), “Principal component analysis for functional data on

Riemannian manifolds and spheres,” Annals of Statistics, 46, 3334–3361.

Donoho, D. L. and Gasko, M. (1992), “Breakdown properties of location estimates based

on halfspace depth and projected outlyingness,” The Annals of Statistics, 20, 1803–1827.

Dryden, I. L. and Mardia, K. V. (2016), Statistical Shape Analysis: With Applications in

R, Hoboken: John Wiley & Sons.

Dyckerhoff, R. and Mozharovskyi, P. (2016), “Exact computation of the halfspace depth,”

Computational Statistics & Data Analysis, 98, 19–30.

Einmahl, J. H. J., Li, J., and Liu, R. Y. (2015), “Bridging centrality and extremity: Refining

empirical data depth using extreme value statistics,” Annals of Statistics, 43, 2738–2765.

Eltzner, B., Huckemann, S., and Mardia, K. V. (2018), “Torus principal component analysis

with applications to RNA structure,” Annals of Applied Statistics, 12, 1332–1359.

Eltzner, B. and Huckemann, S. F. (2019), “A smeary central limit theorem for manifolds

with application to high-dimensional spheres,” The Annals of Statistics, 47, 3360–3381.

Feragen, A. and Nye, T. (2020), “Statistics on stratified spaces,” in Riemannian Geometric

Statistics in Medical Image Analysis, eds. Pennec, X., Sommer, S., and Fletcher, T., pp.

299–342.

32



Fletcher, P. T., Moeller, J., Phillips, J. M., and Venkatasubramanian, S. (2011), “Comput-

ing hulls, centerpoints, and VC-dimension in positive definite space,” in Algorithms and

Data Structures Symposium, New York.

Fraiman, D., Fraiman, N., and Fraiman, R. (2017), “Nonparametric statistics of dynamic

networks with distinguishable nodes,” TEST, 26, 546–573.

Fraiman, R., Gamboa, F., and Moreno, L. (2019), “Connecting pairwise geodesic spheres

by depth: DCOPS,” Journal of Multivariate Analysis, 169, 81–94.

Fraiman, R. and Muniz, G. (2001), “Trimmed means for functional data,” Test, 10, 419–440.

Fréchet, M. (1948), “Les éléments aléatoires de nature quelconque dans un espace distancié,”

Annales de l’Institut Henri Poincaré, 10, 215–310.

Kolaczyk, E. D., Lin, L., Rosenberg, S., Walters, J., and Xu, J. (2020), “Averages of

unlabeled networks: Geometric characterization and asymptotic behavior,” Annals of

Statistics, 48, 514–538.

Kuo, C.-H., Wares, J. P., and Kissinger, J. C. (2008), “The apicomplexan whole-genome

phylogeny: An analysis of incongruence among gene trees,” Molecular Biology and Evo-

lution, 25, 2689–2698.

Laumann, T. O., Snyder, A. Z., Mitra, A., Gordon, E. M., Gratton, C., Adeyemo, B.,

Gilmore, A. W., Nelson, S. M., Berg, J. J., Greene, D. J., McCarthy, J. E., Tagliazucchi,

E., Laufs, H., Schlaggar, B. L., Dosenbach, N. U. F., and Petersen, S. E. (2017), “On

the stability of BOLD fMRI correlations,” Cerebral Cortex (New York, N.Y.: 1991), 27,

4719–4732.

Lee, J. M. (2018), Introduction to Riemannian manifolds, Springer.

Li, J., Cuesta-Albertos, J. A., and Liu, R. Y. (2012), “DD-classifier: Nonparametric classi-

fication procedure based on DD-plot,” Journal of the American Statistical Association,

107, 737–753.

Liu, R. Y. (1990), “On a notion of data depth based on random simplices,” Annals of

Statistics, 18, 405–414.

Liu, R. Y. and Singh, K. (1992), “Ordering directional data: Concepts of data depth on

33



circles and spheres,” The Annals of Statistics, 20, 1468–1484.

— (1993), “A quality index based on data depth and multivariate rank tests,” Journal of

the American Statistical Association, 88, 252.

Liu, X., Zuo, Y., and Wang, Q. (2017), “Finite Sample Breakdown Point of Tukey’s Halfs-

pace Median,” Science China Mathematics, 60, 861–874.

López-Pintado, S. and Romo, J. (2009), “On the concept of depth for functional data,”

Journal of the American Statistical Association, 104, 718–734.

Mardia, K. V. and Jupp, P. E. (2009), Directional Statistics, Hoboken: John Wiley & Sons.

Marron, J. S. and Alonso, A. M. (2014), “Overview of object oriented data analysis: An

overview of object oriented data analysis,” Biometrical Journal, 56, 732–753.

Massé, J.-C. (2004), “Asymptotics for the Tukey depth process, with an application to a

multivariate trimmed mean,” Bernoulli, 10, 397–419.

Narayanan, H. and Niyogi, P. (2009), “On the sample complexity of learning smooth cuts

on a manifold,” in COLT.

Nye, T. M. W., Tang, X., Weyenberg, G., and Yoshida, R. (2017), “Principal component

analysis and the locus of the Fréchet mean in the space of phylogenetic trees,” Biometrika,

104, 901–922.

Oja, H. (1983), “Descriptive statistics for multivariate distributions,” Statistics & Probabil-

ity Letters, 1, 327–332.

Paindaveine, D. and Van Bever, G. (2018), “Halfspace depths for scatter, concentration

and shape matrices,” The Annals of Statistics, 46, 3276–3307.

Pandolfo, G., Paindaveine, D., and Porzio, G. C. (2018), “Distance-based depths for direc-

tional data: Distance-based depths for directional data,” Canadian Journal of Statistics,

46, 593–609.

Pennec, X., Fillard, P., and Ayache, N. (2006), “A Riemannian framework for tensor com-

puting,” International Journal of Computer Vision, 66, 41–66.

Rousseeuw, P. J. and Hubert, M. (1999), “Regression depth,” Journal of the American

Statistical Association, 94, 388–402.

34



Rousseeuw, P. J., Ruts, I., and Tukey, J. W. (1999), “The bagplot: A bivariate boxplot,”

The American Statistician, 53, 382–387.

Small, C. G. (1987), “Measures of centrality for multivariate and directional distributions,”

Canadian Journal of Statistics, 15, 31–39.

— (1997), “Multidimensional medians arising from geodesics on graphs,” The Annals of

Statistics, 25, 478–494.

Tenenbaum, J. B., De Silva, V., and Langford, J. C. (2000), “A global geometric framework

for nonlinear dimensionality reduction,” Science, 290, 2319–2323.

Tukey, J. W. (1975), “Mathematics and the picturing of data,” in Proceedings of the Inter-

national Congress of Mathematicians, Vancouver, vol. 2, pp. 523–531.

van der Vaart, A. and Wellner, J. (1996), Weak Convergence and Empirical Processes: With

Applications to Statistics, New York: Springer.

Wenocur, R. and Dudley, R. (1981), “Some special Vapnik-Chervonenkis classes,” Discrete

Mathematics, 33, 313–318.

Weyenberg, G., Huggins, P. M., Schardl, C. L., Howe, D. K., and Yoshida, R. (2014),

“kdetrees: non-parametric estimation of phylogenetic tree distributions,” Bioinformatics,

30, 2280–2287.

Yang, Y. (2007), “Globally convergent optimization algorithms on Riemannian manifolds:

Uniform framework for unconstrained and constrained optimization,” Journal of Opti-

mization Theory and Applications, 132, 245–265.

Zuo, Y. (2019), “A New Approach for the Computation of Halfspace Depth in High Di-

mensions,” Communications in Statistics - Simulation and Computation, 48, 900–921.

— (2020), “Large sample properties of the regression depth induced median,” Statistics &

Probability Letters, 166, 108879.

— (2021), “On general notions of depth for regression,” Statistical Science, 36, 142–157,

publisher: Institute of Mathematical Statistics.

Zuo, Y. and Serfling, R. (2000), “General notions of statistical depth function,” The Annals

of Statistics, 28, 461–482.

35


	Introduction
	Backgrounds
	Our Contributions

	Metric Halfspace Depth
	General Definition 
	Preliminaries on Metric Spaces
	Examples: Metric Halfspace Depth in Common Spaces

	Theoretical Properties
	Desirable Depth Properties 
	Convergence of the Depth Function and Deepest Point
	Robustness

	Efficient Computation
	Approximation Algorithms
	Theoretical Properties for the Approximation

	Numerical Experiments
	Real Data Applications
	Functional Connectivity in Alzheimer's Disease Patients
	Phylogenetic Tree Application


