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Abstract

We develop a novel exploratory tool for non-Euclidean object data based on data
depth, extending celebrated Tukey’s depth for Euclidean data. The proposed metric
halfspace depth, applicable to data objects in a general metric space, assigns to data
points depth values that characterize the centrality of these points with respect to
the distribution and provides an interpretable center-outward ranking. Desirable the-
oretical properties that generalize standard depth properties postulated for Euclidean
data are established for the metric halfspace depth. The depth median, defined as the
deepest point, is shown to have high robustness as a location descriptor both in the-
ory and in simulation. We propose an efficient algorithm to approximate the metric
halfspace depth and illustrate its ability to adapt to the intrinsic data geometry. The
metric halfspace depth was applied to an Alzheimer’s disease study, revealing group
differences in the brain connectivity, modeled as covariance matrices, for subjects in
different stages of dementia. Based on phylogenetic trees of 7 pathogenic parasites, our
proposed metric halfspace depth was also used to construct a meaningful consensus
estimate of the evolutionary history and to identify potential outlier trees.
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1 Introduction

1.1 Backgrounds

Complex data objects are increasingly generated across science and rapidly gaining rele-
vance. Finite-dimensional non-Euclidean data is an important class of object data (Marron
and Alonso, 2014), which models, for example, directions (Mardia and Jupp, 2009), covari-
ance matrices (Pennec et al., 2006), and trees (Billera et al., 2001). There has been extensive
development in methods and theory to address the complexity of these objects, including
location measures (Fréchet, 1948), statistical inference (Bhattacharya and Patrangenaru,
2005), and classification (Dai and Miiller, 2018). However, exploratory data analysis is a
crucial paradigm that lacks development for these nonstandard data. As the basic data
units become more complex and multifaceted, there is an escalated need for an agnostic
exploratory data analysis. Data exploration before modeling will reveal properties of the
data distribution and help identify extreme versus typical observations. In this regard,
a first step is to overcome the absence of a canonical ordering for complex objects and
propose principled definitions of rank, median, and order statistics.

Data depth has been proven to be a powerful exploratory and data-driven tool that
can be used to rank observations and reveal features of the underlying data distribution.
The notion of data depth was originally introduced for multivariate Euclidean data and
provides a way of measuring how ‘representative” or “outlying” an observation is with
respect to a probability distribution. In particular, a depth function assigns a non-negative
depth value to a given observation within a distribution, where the larger this value is the
more central/deep the observation is within the distribution. Points with low depth values
correspond to observations near the outskirt of the distribution and “far” from the center.
These observations could be potential outliers worthwhile of investigation. Hence, a notion
of depth provides a “center-outward” ordering for a sample of multivariate observations and
allows generalization of ranks, order statistics, central regions (see Zuo and Serfling, 2000),
and robust inferential and classification methods to multivariate data (Li et al., 2012).

For multivariate Euclidean data, Tukey’s halfspace depth (Tukey, 1975) has attracted



much attention. Due to its intuitive properties (Zuo and Serfling, 2000) and the robustness
of depth induced median (Donoho and Gasko, 1992), Tukey’s depth stands out as the first
and one of the most popular among a rich body of depth notions proposed for multivariate
data (e.g., Oja, 1983; Liu, 1990; Einmahl et al., 2015). It not only leads to an intuitive
center-outward ranking for multivariate data, but also enables the development of graphical
data summaries (Tukey, 1975; Rousseeuw et al., 1999) and robust nonparametric rank tests
(Liu and Singh, 1993; Chenouri and Small, 2012). However, Tukey’s depth relies on the
Euclidean geometry and is inappropriate for non-Euclidean data objects.

Though defining depth notions for non-Euclidean data has garnered wide interest, the
literature has focused on specialized spaces, such as a unit sphere (Small, 1987; Liu and
Singh, 1992; Pandolfo et al., 2018), positive definite matrices (Fletcher et al., 2011; Chau
et al., 2019), networks (Fraiman et al., 2017), data on a graph (Small, 1997), and infinite-
dimensional functional data (Fraiman and Muniz, 2001; Lopez-Pintado and Romo, 2009).
Chen et al. (2018) and Paindaveine and Van Bever (2018) considered halfspace depth for
the scatter matrix of Euclidean data points. Fraiman et al. (2019) proposed a spherical
depth that applies to Riemannian manifold data. Targeting general settings, Carrizosa
(1996) sketched a halfspace depth based on dissimilarity measures without methodological
development, which differs from our proposal in general; see Section S5 in the Supplemen-
tal Materials. Carrizosa (1996) also introduced an extension of the halfspace depth to a
regression setting closely related to the regression depth proposed by Rousseeuw and Hu-
bert (1999); see also Zuo (2021) for a discussion of the theoretical properties of regression

depths.

1.2 Our Contributions

The goal of our work is to generalize Tukey’s depth to data objects taking values on an
arbitrary metric space, defining a general depth notion that shares the desirable properties
of Tukey’s depth. This will make available depth-based exploratory and robust inferential
toolsets to general object data.

We propose the metric halfspace depth in Section 2.1, which is a generalization of

Tukey’s depth to object data on a general metric space. Metric halfspace depth incorporates



the data space geometry through the distance metric d, a feature available on any metric
space. The proposed metric halfspace depth, therefore, applies to a wide range of non-
Euclidean data objects. This includes data lying on smooth Riemannian manifolds such as
directional data on a sphere (Mardia and Jupp, 2009); bivariate molecular torsion angles
on a flat torus (Eltzner et al., 2018); and constrained matrix-valued data, such as rotations
(Bingham et al., 2009) and covariance matrices (Dai et al., 2020). Nonsmooth objects with
possible degeneracy lying on a geodesic space, such as phylogenetic trees (Feragen and Nye,
2020), networks (Kolaczyk et al., 2020), and shapes (Dryden and Mardia, 2016) can also
be investigated by the proposed depth.

We establish desirable properties of the metric halfspace depth in Section 3, extending
much of the properties enjoyed by Tukey’s depth (Tukey, 1975) for Euclidean data. The
axiomatic properties of depth notions introduced in Zuo and Serfling (2000) are satisfied
to a great extent in many commonly investigated data spaces. The metric halfspace depth
is invariant to a large class of transformations; if the data are symmetrically distributed
around a center, then the center has the maximal metric halfspace depth; the depth values
have a center-outward tendency and monotonically decrease from the deepest point to the
peripheral points; and the depth vanishes as one moves away from the center. The metric
halfspace depth function is upper semi-continuous, which implies that the nested deepest
regions are compact. We establish a root-n rate of convergence of the sample depth to the
true depth function, and the consistency of the sample deepest point to the population
deepest point, assuming uniqueness of the latter. Moreover, the metric halfspace depth
is shown to be robust to contamination, having a high breakdown point for symmetric
distributions regardless of the dimension of the data space. All proofs are included in the
Supplemental Materials.

Tukey’s depth for Euclidean data has a well-known weakness in its high computation
cost even in moderate dimensions. To overcome this obstacle, we propose efficient algo-
rithms in Section 4 to approximate the metric halfspace depth by looking into finitely many
halfspaces as informed by the dataset. Our proposed approximation algorithm for calcu-

lating the depth function and the deepest point has a complexity of O(n®) with respect



to the sample size n, independent of the dimension of the data space. The approximation
algorithm is able to achieve arbitrary precision to the truth by densening the discretization
of the space, which we establish in our theoretical results and demonstrate in simulation
studies. The proposed depth is shown to have excellent numerical performance in terms
of efficiency and robustness in Section 5. The approximate depth algorithm respects the
intrinsic data geometry independent of the ambient space as demonstrated in Section S10
in the Supplemental Materials.

We showcase the practical relevance of the metric halfspace depth in two applications
in Section 6, which include (a) neuro-connectivity matrices from functional magnetic reso-
nance imaging (fMRI) data of patients with dementia and healthy controls and (b) phyloge-
netic trees comparing the genetic materials from different species. The application to fMRI
data discovered differences in the brain connectivity among groups of normal controls and
patients at different dementia stages progressing to Alzheimer’s disease using depth-based
rank tests. The second application considers estimating the phylogenetic history of seven
Apicomplexan species, which are pathogenic parasites, in the tree space of Billera et al.
(2001). We obtained the most representative tree for estimating a consensus evolutionary

history of the Apicomplexa and also identified outliers in the individual gene trees.

2 Metric Halfspace Depth

2.1 General Definition

We consider extending the concept of data depth to data objects taking values on a general
metric space. Let M be a metric space equipped with distance d, and X be an M-valued
random object defined on probability space (£2, F, P) and measurable with respect to the
Borel g-algebra B(M). To define a halfspace depth, the key lies in suitably generalizing
the notion of halfspaces. For two points x1, 29 € M on the metric space, we denote the

metric halfspace, or halfspace for brevity, as

oy = {y € M| d(y,21) < d(y,22)}, (1)



which is said to be anchored at (xy,z5). Halfspace H,,,, contains all points of M that lie
no further away from z; than from z,. Let H = {H,,., | 1 # x2 € M} be the collection
of all halfspaces and H, = {Hyz, € H | © € Hypuy} the set of halfspaces containing
x, understanding that the same halfspace may arise from different pairs of anchors. The
proposed metric halfspace depth (MHD) at x € M w.r.t. the probability measure Py
induced by X is defined as

D(x):D(ﬂPX):}}Q?iPX(H) (2)
= II;IJEM P(d(X,z1) < d(X,z3)). (3)

d(z1,x)<d(z2,r)

Depth D(x) is the least probability measure of the halfspaces containing x, which is well-
defined since the halfspaces are closed and thus measurable. Analogously, given i.i.d. obser-
vations X1i,..., X, € M, the sample metric halfspace depth at + € M w.r.t. the empirical

distribution P, is

D,(x) = D(z; P,) = inf P,(H)

HeH,
= ; -1 ' - |
1'1711‘r21£/\/l " Zl{d(X“xl) — d(XlaxQ)}7 (4)
d(z1,x)<d(x2,r) i=1

where I{-} is the indicator function.

It is immediately seen that if M is a Euclidean space, then each halfspace is a closed
Euclidean halfspace of the form {z € R™ | 2Tv < ¢} for some vector v € R™ and ¢ € R,
and the metric halfspace depth coincides with Tukey’s halfspace depth (Tukey, 1975). The
metric halfspace depth specializes to angular Tukey’s depth proposed by Liu and Singh
(1992) for data lying on a sphere. The metric halfspace depth D(z) captures the geometry
of a general metric space M through the halfspaces defined by the distance metric d.

The proposed metric halfspace depth measures how central or representative an ob-
servation is with respect to the distribution. In the context of social choice (Caplin and

Nalebuff, 1988), a point x € S is an ideology, i.e., the favorite proposal shared by a group



of voters. Given two proposals x; and x5y, ideology x prefers the one closer to itself under
distance d. The halfspace probability Px(H,,.,) is the proportion of votes received by
proposal 21 when posed against xo. Depth value D(x) is the least popularity of a proposal
that would appeal to x; in other words, = would not favor an unpopular proposal that wins
less than D(z) proportion of votes. A related interpretation in facility location problems

for a different depth definition can be found in Carrizosa (1996).
2.2 Preliminaries on Metric Spaces

A map v from a closed interval I C R to M is said to be a geodesic if there exists a constant
A such that d(y(t),vy(t")) = A |t — ¢| for all ¢,¢" € I; if further A = 1, then + is said to be a
unit speed geodesic. We say that a geodesic 7 joins x € M toy € M if I =[0,1], v(0) = =,
and 7(l) = y for some constant {. Now, (M,d) is said to be a geodesic space if any two
points x,y € M are joined by a geodesic. Riemannian manifolds are smooth submanifolds
embedded in an ambient Euclidean space. The definitions of the manifolds and additional
geometrical quantities, such as the tangent space 7T, M and exponential map exp,, are
reviewed in Section S1 in the Supplemental Materials. The distance between two points
x,y on a Riemannian manifold M is the length of the shortest path on M connecting
them. Riemannian manifolds are geodesic spaces by the Hopf-Rinow theorem (Lee, 2018).

The left panel in Figure 1 illustrates the relationship between different types of complete
and connected metric spaces and highlights four common examples. The unit sphere S? in
R3 is a Riemannian manifold where a geodesic is a segment of a great circle (upper right,
Figure 1), and the 3-spider that models trees with three leaves (lower right, Figure 1)
is an example of a geodesic space that is not a Riemannian manifold, since the origin is
degenerate and does not have a neighborhood resembling a real interval.

If M is an unbounded Riemannian manifold such as the space of symmetric positive
definite matrices and the hyperbolic space, depth notions could alternatively be developed
through mapping data on M to a tangent space T, M through the inverse exponential map
exp, ' : M — T, M, and then employing Euclidean depth notions such as Tukey’s depth
on the linear tangent space. However, this tangent space approach has limited applicability

since it relies on the exponential map being injective, which is violated on bounded spaces
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Figure 1: Left: Relationship between different complete and connected metric spaces,
with a few commonly investigated metric spaces shown in dots. Upper right: The two-
dimensional unit sphere S? is a Riemannian manifold that is smooth at all points. The
distance between two points (solid dots) is given by the length of the segment of a great
circle connecting them. Lower right: The space of 3-spider consisting of three Fuclidean
positive axes issuing from the origin. This is a geodesic space but not a Riemannian
manifold due to the singularity at the origin. A geodesic connecting two points on different
branches is highlighted, and the distance between points is the length of the geodesic.

such as the unit sphere S¥ and the rotational group SO(k); even if this approach can be
applied, it is in general not possible to fully preserve the data geometry reflected by the
distance metric while working on the linear tangent space T, M; and the base point  must
be chosen. In contrast, our metric halfspace depth is well-defined and geometry preserving

on any metric space.
2.3 Examples: Metric Halfspace Depth in Common Spaces

In what follows, we provide examples of commonly investigated data spaces and illustrate
metric halfspace depth in these spaces. Example 1-Example 3 concern Riemannian mani-
folds, and Example 4 considers the tree space as a geodesic space that is not a Riemannian
manifold. Depth values in the examples are calculated using the approximation algorithm

described in Section 4.1. More details about the setups can be found in Section S3.3.

Example 1 (Euclidean space). When data lie in the Euclidean space M = R™, the

8



proposed metric halfspace depth coincides with Tukey’s depth. With norm ||z|| = (27x)"/2,

distance d(x1,72) = ||21 — 22|, and Euclidean halfspace H), , = {y € R™ | (y—x¢)Tv < 0},

classical Tukey’s depth is,
DTukey(J:) = inf Px(H/), X € Rm, (5)

where the infimum is taken over all Euclidean halfspaces H' containing x. Any metric

halfspace H = H,,,, € H coincides with a Euclidean halfspace H( = {y € R™ |

20,0)
(y — xo)Tv < 0} with xg = (21 + 22)/2 and v = (22 — 1)/ ||xe — 21| if 21 # x9; Vice versa,
each Euclidean halfspace can be expressed as a metric halfspace. Thus, the metric halfspace
depth coincides with Tukey’s depth because the infimums are taken over an identical set,
noting that Px(H,,,,) = 1 if 1 = x5 which does not influence the infimum for the metric
halfspace depth.

Tukey’s depth in the Euclidean space satisfies all four axiomatic properties of a depth
function introduced in Zuo and Serfling (2000), is a continuous function of the depth
location (Massé, 2004) and can be consistently estimated by its sample version (Massé,
2004); moreover, the deepest point, i.e. Tukey’s median, has a high breakdown point
(Donoho and Gasko, 1992; Liu et al., 2017) and can also be consistently estimated (Bai
and He, 1999; Chen et al., 2018; Zuo, 2020). We will show in Section 3 that many of these

properties generalize on geodesic spaces.

Example 2 (Spheres). The m-dimensional unit sphere S™ = {z € R™" | 2Tz = 1} C
R™*! is a Riemannian manifold. The distance between z,y € S™ is the great arc distance
d(z,y) = arccos(z’y). The metric halfspace depth specializes to angular Tukey’s depth
for spherical data considered by Small (1987); Liu and Singh (1992), where the latter is
defined as the least probability measure of any hemisphere covering x. This is because a
metric halfspace H,,,, = {x € S™ | 27(x2 —x;) < 0} is a closed hemisphere in this context.

An example of the metric halfspace depth applied to data on S? is shown in the upper left
panel of Figure 2, where data were generated according to the wrapped normal distribution
with isotropic variance 1/2; the setup is described in Section S3.3. The depth values

follow a center-outward pattern, monotonically decreasing from the deepest point near the
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center of symmetry. The deepest point meaningfully characterizes a representative point
well-encompassed by the point cloud, and the points with the lowest depth all lie on the
peripheral.

Example 3 (Symmetric positive definite matrices). Let M = SPD(k) be the manifold
of k x k symmetric positive definite (SPD) matrices. This matrix manifold has seen wide
application in modeling brain connectivity matrices (Dai et al., 2020) and diffusion tensors
(Pennec et al., 2006). Endowed with the affine-invariant geometry (Pennec et al., 2006),
the geodesic distance on M is defined as d(P, Q) = Hlogm(P‘l/QQP_l/Q)”F for P,Q € M,
where ||-||» is the Frobenius norm, logm is the matrix logarithm, and P~1/2 is the inverse
of the symmetric positive definite square root P2 of P. The geometry is invariant under
affine transformations in the sense that d(APAT, AQAT) = d(P, Q) for any invertible matrix
A and thus have been widely adopted in applications. As the data space is non-Euclidean
with a complex geometry, the halfspaces in general have rather complex shapes. An example
of a halfspace H,,,, is shown in Figure S2. Here we evaluate the depth of an SPD matrix
with respect to a sample of SPD matrices as the data units, which is different from the
scenario considered for scatter depth (Chen et al., 2018; Paindaveine and Van Bever, 2018)
where the depth of an SPD matrix is evaluated with respect to Euclidean data units for
estimating the covariance matrix.

[lustrated for M = SPD(2), the lower panel of Figure 2 displays non-isotropic log-
normal matrix data points that are colored according to the proposed metric halfspace
depth. Each point represents the lower diagonal values of an SPD matrix (z y; y z). The
proposed depth produces reasonable results by showing a center-outward profile analogous
to Tukey’s depth in the Euclidean space. The deepest point in red is tightly surrounded by
data points with gradually decreasing depth values, and the deepest point is not heavily
drawn by data points with large values in the diagonal elements x and z. The peripheral

points all have the least depth.

Example 4 (BHV space of phylogenetic trees). We model phylogenetic trees in the Billera—
Holmes—Vogtmann (BHV) tree space (Billera et al., 2001), a widely investigated geodesic
space with nice geometry. Let M = T* denote the space of rooted phylogenetic trees with

10



k leaves endowed with the BHV geometry (Billera et al., 2001), where a brief summary for
the BHV geometry and the associated metric halfspaces is included in Section S2.4.

We illustrate here the geometry of the simplest tree space T? with three leaves and one
interior edges. The topology of the tree is the way leaves and interior nodes are connected.
There are three bifurcating tree topologies respectively corresponding to which of leaf A,
B, and C branches out first, and a star tree topology with a degenerate interior edge. Tree
space T? is represented by the 3-spider (Rso x {1,2,3})/ ~, formed by three rays identified
at the origin o. Coordinate (a,j) represents a point (tree) lying on the jth leg of the
3-spider at a distance a from the origin; we refer to this representation of the trees as the
(radius, branch)-coordinate. The equivalence relationship ~ is defined by (a1, j1) ~ (asg, j2)
if and only if (a1,71) = (ag,j2) for a; > 0 and for a; = ay = 0. The three legs of the
spider correspond to three different bifurcating tree topologies, and the position of a point
on a leg corresponds to the length of the interior edge, as illustrated in Figure 2. The
geodesic between two points on the same branch is the line segment connecting them;
analogously, the geodesic between two points on different branches consists of the line
segments connecting each to the origin. Thus, the distance between two points z,y on the
3-spider is the Euclidean distance if they are on the same branch, and d(z,0) + d(o,y) if
they are on different branches (see lower right panel, Figure 1).

An illustration of the metric halfspace depth for trees with three leaves on T? is shown
in Figure 2. The trees were generated according to a normal distribution centered at a tree
with leaf B branched out first (on the axis pointing to 8 o’clock). The proposed metric
halfspace depth assigned the largest value for trees around the center, and the depth values
gradually and monotonically decreased as data moved away from the center. The depths of
the most peripheral trees on each axis received the lowest depths. A small number of trees

had either leaf A or C branching out first, and these trees were all assigned low depths.
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Figure 2: Illustration of the proposed metric halfspace depth of 100 data points generated
on different manifolds. Upper left panel, data followed wrapped normal distribution on
the sphere M = S?. Upper right panel, data followed a normal distribution centered at
a tree that has leaf B branched out first (on the axis pointing to eight o’clock). Each
dot represents a tree and five trees are drawn for illustration. Each axis corresponds to a
different tree topology and the location on the axis corresponds to the length of the interior
edge (bolded). The origin corresponds to the star tree which trifurcates at the root node
and has a degenerate interior edge. Lower panel, 2 x 2 symmetric positive definite matrices
(x y; y z) were generated from a log-normal distribution.

3 Theoretical Properties

3.1 Desirable Depth Properties

For a data depth notion to quantify reasonably how representative data points are within
a distribution or sample, and define a center-outward ordering, Zuo and Serfling (2000)

postulated four properties that the depth function should satisfy when analyzing data in
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a Euclidean space, namely (a) Affine invariance, i.e. the depth of a point is invariant to
affine transformations; (b) Vanishing at infinity, namely the depth should approach 0 as one
moves away from the center of the data; (¢) Mazimality at the symmetric center, namely
if there is a “center”, such as a point of symmetry, in the data, then the depth achieves its
maximum at this center; and (d) Center-outward monotonicity, i.e. depth values gradually
decrease as one moves away from the deepest point. These properties are satisfied by
classical Tukey’s depth (Tukey, 1975).

We will show that the four depth properties are satisfied to a great extent by the
proposed metric halfspace depth under regularity conditions as detailed in the next theorem.
To state these properties on a general metric space, due to the lack of a vector space
structure, we need to address the lack of affine data transformation and introduce an
invariance property, a notion of data symmetry, and monotonicity.

For an invariance property, let f be a transformation from (M, d) to another metric
space (N, e). Forany y € N, let Hye = {Hypoe | Y € Hyryoer Y1, Y2 € N'} be the collection
of halfspaces Hy y,. = {2 € N | e(z,y1) < e(z,y2)} C N containing y. We say that f
is halfspace preserving at x € M with respect to (M, d) and (N, e), or simply halfspace
preserving at x if My = f(He) = {f(H) | H € H,}, in which case the collection of
halfspaces containing z is preserved by f. We say that X is halfspace symmetric about
0 € Mif P(X € H) > 1/2 for all halfspace H containing 6, extending the same notion
defined in the Euclidean space by Zuo and Serfling (2000). To define monotonicity on a
metric space, we restrict attention to geodesic spaces, where monotonicity of the depth
function can be investigated along geodesics leaving from the deepest point.

For theory development, we require (M, d) to be a connected complete separable metric
space. For a subset S C M, let S°, S, 05, and S¢ denote the interior, closure, boundary,
and complement of S, respectively. Proofs for the theoretical results and additional analyt-

ical properties of the halfspaces are included in Section S7 and Section S2.5, respectively.
Theorem 1. The metric halfspace depth D(-) satisfies the following properties.

(a) (Transformation invariance) Let f : M — N be a bijective measurable map between

metric spaces (M, d) and (N, e), and Dy(y) = infpey,, Proxy(H') denote the depth
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at y € N with respect to the pushforward measure Pyxy = Px o f~' on N. If f is
halfspace preserving at x € M, then D(x) = Ds(f(z)).

(b) (Vanishing at infinity) Let o € M be an arbitrary point. Then sup,.q .~ D(x) =0

as L — 0o, taking the convention here that the supremum over an empty set is 0.

(¢) (Maximality at the symmetry center) If X is halfspace symmetric about a unique

center 0, then 0 is the unique deepest point, i.e., § = argmax,, D(x).

(d) (Center-outward monotonicity) Suppose M is a geodesic space. Let § € M be a
deepest point, x € M, and v : [0,1] = M a geodesic joining 0 to x. If any halfspace
Hg. .z, of M that has a nonempty intersect with v([0,1]) contains at least one of x
and 0, then D(x) < D(v(t)) holds for t € [0,1].

Theorem 1(a) states that the metric halfspace depth is invariant to transformation f
that preserves halfspaces. It is immediate that affine transformations and rotations are
halfspace preserving, respectively, between Euclidean spaces and between spheres of the
same dimension at all x € M. Thus, this result implies the transformation invariance
properties of Tukey’s depth (Donoho and Gasko, 1992) and angular Tukey’s depth (Liu and
Singh, 1992). More generally, a map f is halfspace preserving at z if it preserves the order
of distances at z, i.e., for z,z1, 29 € M, d(z1,2) < d(x9,x) if and only if e(f(xy), f(x)) <
e(f(x2), f(z)). This is clearly satisfied if f is an isometry, i.e., d(x,y) = e(f(z), f(y)) for
all x,y € M.

The depth follows a center-outward tendency. In a space where “infinite” is well-defined,
Theorem 1(b) states that the depth of a point vanishes as the point moves towards infinity.
Therefore, the peripheral data points will have a small depth. Theorem 1(c) states that if the
data distribution is halfspace symmetric about a unique center #, then the halfspace depth
is maximized at this center #. We consider halfspace symmetry to define data symmetry
on a general metric space, which does not require the space M itself to be symmetric,
thereby generalizing beyond the Euclidean space and spheres (Liu and Singh, 1992). In
the Euclidean space, Zuo and Serfling (2000) showed that halfspace symmetric is weaker

than alternative symmetry notions such as centrally symmetric,i.e. X —6 and # — X equal
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in distribution, and angularly symmetric, which requires (X — )/ ||X — 0|| to be centrally
symmetric.

Between the deepest # and an arbitrary location x, Theorem 1(d) states that the metric
halfspace depth is non-increasing along geodesics leaving from 6 if the metric space satisfies
a geometric condition. The geometric condition requires that the halfspaces in M are
not overly rich so they will not single out points on the geodesic connecting 6 and =z
while excluding the endpoints. This condition is satisfied by the model spaces, namely the

Euclidean space, sphere, and hyperbolic space, as stated in Proposition 1.

Proposition 1. Let M be one of the m-dimensional model spaces, namely, the Fuclidean
space R™, unit sphere S™, or hyperbolic space H™, and v : [0,1] — M be a geodesic joining
0 to x. Then any halfspace H C M with a nonempty intersect with v([0,1]) contains at

least one of 0 and x.

We next show the upper semi-continuity of the depth function D(-) and the compactness
and nestedness of the depth regions D* == {x € M | D(z) > a}, a > 0. Define Py :
M x M — R as Py(x1,22) = Px(Hy,) and let E, ., = {z € M | d(z,z1) = d(z,25)}
be the equidistance set anchored at x1, x5 € M. A metric space is locally compact if every
point has a compact neighborhood. All finite-dimensional manifolds and BHV tree spaces

are locally compact.
Proposition 2. Suppose that M is a complete and locally compact geodesic space.

(a) Pg(-,-) is upper-semi continuous. If further Px(E; .,) = 0 for all x1 # x9 € M,

then Py(-,-) is continuous.
(b) D(x) is upper semi-continuous.
(¢c) D% is nested, i.e. D** C D** for oy > o, and D® is compact for a > 0.

The additional condition in Proposition 2(a) is satisfied if M is a Riemannian manifold
and X has a density w.r.t. the Riemannian volume measure (Lee, 2018); for example, this

is satisfied if M is the unit sphere and X follows a warped normal distribution.
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3.2 Convergence of the Depth Function and Deepest Point

Next, we show that the metric halfspace depth can be estimated consistently by its sample
version uniformly over all locations by making use of empirical process theory. Let Lo(Q)
be the Ls-norm of measurable functions with respect to probability measure () on the
sigma-algebra of M, so Ly(Q)(f) = {[ f(2)*dQ(z)}'/%. For a set of measurable functions
F, the covering number N (e, F, L2(Q)) is the minimal number of balls in Ly(Q) with radius
€ required to cover F. The bracketing number Ny(e, F, Ly(Q)) is the minimal number of
e-brackets required to cover F. An e-bracket [I,u] is the set of functions f with | < f < u,
given two functions ! and u with [ju —I[|, o) < €. The covering and bracket numbers for
a collection of measurable sets are by convention those of the corresponding collection of
indicator functions. Either one of the following conditions is needed for the convergence

results.

(N1) supg [, [log N(e, H, L»(Q))]/*de < oo, where the supremum is taken over all finite

discrete probability measures () and H is the set of metric halfspaces.
(N2) [y [log Ny(e, H, La(Px))]/?de < oc.

Theorem 2. Given i.i.d. observations X1, ..., X, from Px, if either (N1) or (N2) holds,

E sup |D,(z) — D(z)| = O(n~?).
zeM
Condition (N1) and (N2) are common entropy /bracketing integral conditions imposed on the
complexity of the collection of halfspaces in order to guarantee convergence of the empirical
process. If (N1) holds, then the statement of Theorem 2 is uniform not only in = but also
over the underlying distribution Px. Condition (N1) holds if the Vapnik—Chervonenkis
(VC) dimension of H is finite (Theorem 2.6.4, van der Vaart and Wellner, 1996). Let C be
a collection of subsets of M. We say that C shatters a finite subset F' = {xy,...,2,} C M
ifCNF:={CNF|C eC} is the collection of all subsets of F'. The Vapnik—Chervonenkis

(VC) dimension of C is the smallest n for which no set of size n is shattered by C, formally
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defined by

VC(C) = inf{n | max A,(C,z1,...,z,) < 2"},

L1y Tn

where A, (C, zq, ..., x,) = [{CN{x1,...,2,} | ¢ € C}| is the number of subsets of {z1, ..., z,}
picked out by C. It is well known that the VC dimension of halfspaces in the Euclidean
space R™ is m 4+ 2 (Wenocur and Dudley, 1981). Theory on the VC dimensions of subsets
of a Riemannian manifold (Narayanan and Niyogi, 2009) or of a general metric space has
been highly limited. That said, since the collection of halfspaces H is indexed by two points
on the metric space, it may be reasonable to expect VC(H) to be finite if the geometry of
M is regular enough. We establish the boundedness of VC dimensions for the collections

of halfspaces on the sphere S™ and the space T? of phylogenetic trees with 3 leaves.
Proposition 3. The following holds:

(a) On an m-dimensional sphere M =S™, VC(H) < m + 3.

(b) On the space of phylogenetic trees M = T2 with 3 leaves, VC(H) = 4.

By Theorem 2, Proposition 3 implies n'/?-convergence for the empirical metric halfspace
depth on these spaces.
A deepest point w.r.t. the sample is a consistent estimator of the population deepest

point by M-estimation theory.

Proposition 4. Suppose that M is a complete and locally compact geodesic space, D(-)
has a unique maximum 6 = arg max,, D(z), and the conditions of Theorem 2 hold. Let

0, be an arbitrary point in the deepest set S, = argmax, s Dp(x). Then
d(0,,0) -0 a.s.

as n — Q.

By Theorem 1(a), the deepest set S,, is invariant to halfspace preserving transformations.
In the asymptotic limit, the deepest set shrinks to the population deepest point if the latter

is unique, so any sample deepest point is near-invariant.
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3.3 Robustness

A depth median is defined as an estimator T'(-) that takes a point cloud Z = {z,...,2,}
on M to a choice of point T(Z) € argmax, ., D(z; Pz) in the deepest set w.r.t. metric
halfspace depth, where Pz is the empirical measure placing equal point mass on each point
in Z. Given a sample, a depth median yields a (unique) point as output, but there exists
potentially more than one depth medians (as estimators) in general if the deepest set is
non-singleton. The depth median of a point cloud is interpreted as the most representative
point of the data and can be used as a location descriptor/estimator. In the Euclidean
case, Tukey’s depth median is a generalization of the classical median on the real line.
Robustness and asymptotic properties were investigated in Donoho and Gasko (1992) and
Massé (2004), respectively.

The breakdown property of the metric halfspace median, which is the depth median
based on our metric halfspace depth, is analyzed next. Intuitively, the breakdown point
is the smallest fraction of contamination that brings an estimator to infinity. Formally,
let X = {X),...,X,} be a sample of n observations and Y = {y,...,y} be I con-
tamination points. The breakdown point €* of a metric halfspace median T'(-) in a sample
X™ is the smallest fraction of contamination to bring the estimate in the contaminated
sample arbitrarily far away from that of the uncontaminated sample. The finite-sample

(additional) breakdown point is defined as

l n+1

e = (T; X™) := min
Yy

sup d(T(xX™), T(x™, Y1) = oo } ,

where we set ¢ = 1 if the set being minimized is empty. The next proposition and
its corollary analyze the finite-sample and asymptotic behavior of the breakdown point,

respectively.

Proposition 5. Let M be an arbitrary metric space. For any metric halfspace median

T(-), it holds that
D, (6,)

~— 1+ D,(6,)’

*
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where 0,, = T(X™) is a deepest point w.r.t. sample X™.
Corollary 1. If (N1) or (N2) holds, then as n — oo,

€ >ﬂ a.s.,

1+ D(0)
where 0 € arg max, ¢, D(z) is any deepest point w.r.t. the distribution Px of X.

Corollary 1 implies that the breakdown point for the metric halfspace median for any
halfspace symmetric distribution is at least 1/3 regardless of the dimensions, extending the

results for Tukey’s median in the Euclidean case (Donoho and Gasko, 1992).

4 Efficient Computation

4.1 Approximation Algorithms

In the Euclidean space, exact computation of Tukey’s depth and deepest point are pro-
hibitively slow if the dimension is higher than 3 even with efficient algorithms (Dyckerhoff
and Mozharovskyi, 2016). On a general metric space, the evaluation of the metric halfspace
depth as an infimum faces additional difficulty and would require optimization algorithms
that adapt to specific manifolds (Yang, 2007). Moreover, the search for the deepest point
requires difficult optimization of a discontinuous function D,(-). This motivates us to
develop fast approximation algorithms for the metric halfspace depth and deepest point.
Let X = {X3,...,X,} C M be the collection of observations, and also denote A C M
as the anchor set containing |A| = n4 anchor points of halfspaces. We approximate D,,(x)
w.r.t. X by taking the infimum over only halfspaces anchored at points in .A. The proposed

metric halfspace depth approximation is

D, (z) = Dy(z; A) = inf )n_l ZI{d(Xi,xl) < d(X;,x9)}. (6)

r1F#x2€A: d(x,x1)<d(x,z2 3
1=

The infimum is taken over at most ny(n4 — 1) ordered pairs of anchors. The number of
anchors controls the tradeoff between computational cost and accuracy, in that using a

larger number of anchors results in a better approximation but at a higher cost. In most
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applications, the anchor points A can be set to the sample points X, and for improving
approximation, one can enlarge the set of anchor points by including “jiggled” versions of
these points; more information is included in Section S3.2. The deepest point is approx-
imated by the in- and out-of-sample points with the largest approximate depth, defined
respectively by

0 = argmax D,,(z), 0 = argmax D, (). (7)
zeX zeM

The in-sample deepest point 6 can serve as a good initial value in numerical optimization
procedures to search for the out-of-sample deepest 00, where the latter is a more accurate
approximation of 0.

Like their population and sample versions, the approximate depth and deepest points
incorporate the geometry of M through the metric d and thus avoids the choice of a
parametrization of the metric space or linearization onto the tangent space, both of which
could be ill-defined. The approximate depth is defined as long as the discrete graph of
pairwise geodesic distances is given, and thus the proposed depth is applicable to a wide
range of scenarios where the available data are nodes and edges of a graph (Small, 1997) or
where the pairwise geodesics are estimated from a point cloud using a graph-based method
(Tenenbaum et al., 2000). Algorithms for computing depth and the deepest point are

summarized in Algorithm 1 and Algorithm 2, respectively.

Algorithm 1: Evaluate depth at points in ) w.r.t. X
Data: Random sample X, depth evaluation points ), and halfspace anchors A
Result: Depths D(y) for y € Y

1 for x1 # z2 € A do

2 | Peras & Pu(Hepay)
3 end
4 for y € Y do
5 Q<0
6 for 1 # z2 € A do
7 if d(y,z1) < d(y,x2) then
8 ‘ Add pg, 2, to Q
9 end
10 end
11 D(y) + min@
12 end
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Algorithm 2: Locate the deepest point in X

Data: Random sample X’ and anchor points A

Result: Deepest point 0
1 Obtain D, (z), x € X by invoking Algorithm 1 with Y = X
2 0 « argmin,_y D, (z)

The complexity of Algorithm 1 is O(nyn?+n3) for evaluating depth at points in ) w.r.t.
sample X and anchor points A = X', where ny = |Y|. The rate of complexity does not have
an exponent involving dimension m, similar to those of the approximation algorithms (e.g.,
Bogic¢evi¢ and Merkle, 2018; Zuo, 2019, and the references therein) for computing Tukey’s
depth in the Euclidean space. This contrasts with the exact algorithms (e.g., Dyckerhoff
and Mozharovskyi, 2016; Zuo, 2019) for computing Tukey’s depth where the complexity is
typically O(nyn™) or O(nyn™ 'log(n)). Algorithm 2 takes O(n?) since ny = n.

4.2 Theoretical Properties for the Approximation

We establish that the approximate depth converges to the truth if the anchor points are
dense enough in M. Halfspace H.,,, is said to be a minimizing halfspace at x if x € H,,,,
and Px(H.,.,) = D(z). The following theorem derives the rate of convergence for the
approximation if a minimizing halfspace exists, and the consistency result otherwise. To
obtain the rate of convergence, for z; € M let D; = d(X,z;), 7 = 1,2 and assume the

following conditions.

(P1) For some € > 0 and ¢; > 0, D; has a small ball probability near 0 satisfying P(D; <
t) > it for j=1,2 and t <e.

(P2) For some € > 0 and ¢y > 0, P(|D; — Do| <t) < cot holds for t <.

Theorem 3. Suppose that either (N1) or (N2) holds, and the approximation algorithm

uses the sample points X as the anchor points A. Let x be a point on M.

(a) If the infimum in D(x) = inf geqy, Px(H) is achieved by a halfspace H,, ,,, i.e., D(z) =
Px(H.,.,), and (P1) and (P2) hold for (z1, z2), then as n — oo,

D, (x) — D(z)| = O,(n~ ™).
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(b) Suppose that the infimum of D(x) = infyey, Px(H) is not achieved by any halfspace.
If P(d(z,X) <) >0 forallz € M andr > 0 and Px(E,,+,) = 0 for all x1,z5 € M,
then as n — oo,

D, (z) — D(z)| = 0,(1).

The idea of proof for Theorem 3 is to approximate the minimizing halfspace probabilities
by random halfspaces. The halfspace where the infimum is attained does not need to be
unique. Conditions (P1) and (P2) are requirements on both the distribution of X and on
the geometry of M. They ensure that if the random anchor points lie close enough to the
anchor points of a minimizing halfspace, then the halfspace probabilities are close. If M
is a Riemannian manifold and X has a density bounded away from 0 w.r.t. the Riemannian
volume measure, then mg in (P1) is the intrinsic dimension m of M. Thus, the rate of
convergence of the approximation algorithm given by Theorem 3(a) is as fast as O,(n~1/™)
on an m-dimensional Riemannian manifold. Conditions (P1) and (P2) hold in a Euclidean
space if X has a finite first moment and density bounded away from zero and infinity, and
(P2) is violated if the distribution of d(X, z1) is overly concentrated around d(X, z5). To give
details, we describe two examples when (P1) and (P2) are satisfied and a counter-example

in Section S8, and additional properties of the approximate depth in Section S9.

5 Numerical Experiments

We investigate the performance of the metric halfspace median as a robust estimate for
the center of a distribution. Three Riemannian manifolds were considered for the data
space M, namely the k x k symmetric positive definite matrices SPD(k) with the affine
invariant metric; the k-dimensional unit sphere S¥; and the rotational group SO(k) of k x k
orthogonal matrices with determinant 1. The intrinsic dimensions m for these manifolds
equal, respectively, k(k + 1)/2, k, and k(k — 1)/2. The definitions of the tangent spaces
and their bases, and exponential maps are described in Section S1 and Section S2.

For each metric space M, we considered four cases where i.i.d. data were generated
according to either an uncontaminated distribution P = P; for Case 1 or contaminated

distribution P = 0.9P; + 0.1Py for Cases 2 to 4. Under Case 1, independent samples

22



X;,1 = 1,...,n were generated according to P = P, where P; is the law of random
variable X = expy, V1; expg, : Tp, M — M is the exponential map at the center 6; € M of
the uncontaminated distribution; 7y, M is the tangent space at #; and V; is a non-isotropic
normal random variable lying on 7Ty, M. Let B;;,j7 = 1,...,m be an orthonormal basis on
Ty, M, and set Vi = 3" | Z;By; where Z; follows independent N(0,07) with ¢;/0;,1 =3
for j =1,...,m — 1, having a total variance Z;n:l 032- = 1. For Cases 2 to 4, i.i.d. data X
were generated under mixture distributions P = 0.9P;+0.1P, with 10% of data coming from
the contaminating distribution P, that varied between different cases. In Case 2, P, was
set as a location contamination with the same distribution as expy, V3, where 0 = expy, U
is a random location at a unit distance away from 6, U is sampled (once per Monte Carlo
repeat) from the uniform distribution on the unit sphere on Ty, M, Vo = V{ == 37" | Z! By,
7} follows independent N (0, 0‘]2), and By; is an orthonormal basis of Ty, M, 7 =1,...,m;
in Case 3, P, was a scale contamination sharing the same distribution as expg, V2 where
Oy = 0, and Vo = § = 27:1 W;By; is a zero-mean multivariate normal distribution on
Ty, M, and W; follows independent N(O,s?) with variance s; = op—jy1, 7 = 1,...,m,
differing from that for PP;; in Case 4, Py was a location-and-scale contamination sharing
the same distribution as exp,, Vo where 6 is the same as in Case 2 and V3 is the same as
in Case 3.

Our target is to estimate robustly the center #; of the uncontaminated distribution Py,
with the center and random tangent vector varying between simulation cases. The contami-
nation distribution P, was set to a distribution that differed from P¢, in the location, scale,
and location-and-scale for Case 2, 3, and 4, respectively. To summarize, the simulation

scenarios considered were

e Case 1, uncontaminated distribution centered at 61,

e Case 2, contaminated distribution with location outliers,

e Case 3, contaminated distribution with scale outliers, and

e Case 4, contaminated distribution with location-and-scale outliers.

For example, on S?, a location outlier is centered around 6, that lies far away from the

center ¢, of the uncontaminated distribution P;. A scale outlier is generated from V5 which
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has a different covariance matrix than V;; therefore, a scale outlier may lie away from its
center in a direction uncommon to the inliers. We varied the sample size n € {50, 100,200}
and the manifold parameter k € {2,3,4} in each case.

As estimators of the center, we compared the proposed metric halfspace median fiyjup =
f as defined in (7) and the Fréchet mean jipy. The Fréchet mean (Fréchet, 1948) of the
sample X;, i = 1,..., nunder distance d is fipy = argming, g, n~ "> 1, d*(z, X;), which is a
generalization of the classical mean. For calculating the metric halfspace median, 10 jiggled
points were added to the anchor set around each sample point. We also compared with the
Fréchet median fippg = argming.,n~' >0 d(x, X;), which coincides with the deepest
point w.r.t. the geodesic distance depth proposed by Chau et al. (2019) on M = SPD(k).
These location estimators i were evaluated according to the median geodesic distance to
the true mean d(f, 1) out of 1024 Monte Carlo repeats.

Results for M = SPD(k) displayed in Table 1 show that the proposed metric halfspace
median performs well in general. In Case 1 without contamination, the Fréchet mean
was the most efficient overall, especially for smaller sample sizes n = 50 and 100, while
the metric halfspace median and the Fréchet median are competitive. In the presence
of contamination, both deepest points jiyup and fipng dominated fipy and demonstrated
robustness by producing estimates that were close in performance to those in Case 1 without
contamination. The proposed metric halfspace median outperformed the Fréchet median in
the contaminated scenarios. A reason for this is that the Fréchet median only considers the
sum Y d(x, X;) of geodesic distances from the data points to z, disregarding the relative
locations of the data points within the point clouds and thus having weaker invariant
properties than the metric halfspace depth. The advantage of fiyup over jipyg becomes
more significant when the sample size is larger, in which case the approximation of the
metric halfspace depth through D,, is improved.

Results for two bounded manifolds are shown in Table 2, where the exponential maps
are not injective on these manifolds and thus depth concepts cannot be defined in general
through mapping data onto the tangent space. The metric halfspace median is overall

superior to the Fréchet mean in the presence of contamination, especially when the intrinsic
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Table 1: Median distances over the replicates between the estimated center and the actual
center of P; for data being symmetric positive definite matrices on M = SPD(k). The
dimensions of the manifold for parameters k£ = 2,3, and 4 are 3,6, and 10, respectively.
The standard errors of the reported median distances for n = 50,100, and 200 were less
than 0.003, 0.002, and 0.002, respectively. MHD, the proposed metric halfspace depth
median; FM, Fréchet mean; FMd, Fréchet median.
k=2 k=3 k=4

n=|MHD FM FMd| MHD FM FMd | MHD FM FMd

50 | .117 103 122 | .116 103 121 | 114 103 121
Case 1 100 | .075 071 .081 | .076 .071 .080 | .078 .071  .080

200 | .053 .049 .054 | .053 .048 .054 | .055 .048  .054

50 | .124 140 136 | .114 140 124 | 119 145 126
Case 2 100 | .091 120 .101 | .084 121 .097 | .083 121 .094

200 | .070 108 .084 | .064 110 .079 | .059 110 .077

50 | .104 107 108 | .102 108 104 | .103 105 1105
Case 3 100 | .072 075 074 | .064 075 071 | .063 075 .071

200 | .051 .054 .051 | .042 .053 .050 | .040 .054 .050

o0 | .123 1420 133 | 122 145 124 | 120 144 125
Case 4 100 | .087 124 102 | .084 124 .094 | .083 125 .091

200 | .065 110 .086 | .061 A12.078 | .062 113 077

dimension is large. Even in Case 3, where the scale-only outliers do not affect the true
center, the metric halfspace median was, in many cases, more efficient than the Fréchet
mean on spheres. This could be due to the low rate of convergence of the sample Fréchet
mean for data that extends the entire manifold (Eltzner and Huckemann, 2019). On the
bounded manifolds, the metric halfspace median was overall comparable with the Fréchet
median, slightly outperforming the latter on S¥ in Case 4 when n = 200, and slightly under-
performing it on SO(k). The advantage of the metric halfspace median over the Fréchet
median is clearly more significant on SPD(k) than on S* and SO(k). Some possible reasons
for this are that the directionality of the outliers and the transformation invariance property
of the proposed metric halfspace depth are more relevant on the unbounded SPD(k) than
on the bounded manifolds.

Overall, results for the different manifolds demonstrate that the proposed metric half-
space median is in general a valid robust measure of centrality. Moreover, our proposed
depth can be generally applied to rank general data objects in a center-outward fashion,

as demonstrated in the real data applications.
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Table 2: Median distances over the replicates between the estimated and the actual centers
when data lie on the sphere S* and the rotational group SO(k). The standard errors of
the reported median distances for n = 50,100, and 200 were less than 0.005, 0.003, and
0.004, respectively. MHD, the proposed metric halfspace depth; FM, Fréchet mean; FMd,

Fréchet median.

n =

k=2
MHD FM FMd

M =Sk
k=3
MHD FM FMd

k=4
MHD FM FMd

k=2
MHD FM FMd

M = SO(k)
k=3
MHD FM FMd

k=4
MHD FM FMd

50
100
200

Case 1

146 .127 .141
.096 .091 .093
.070 .063 .063

144 132 .141
.096 .092 .092
.069 .064 .064

147 132 1141
.098 .092 .092
.070 .064 .064

.120 .098 .122
.082 .068 .083
.057 .047 .059

128 .107 .129
.091 .076 .084
.083 .052 .058

133 .107 .129
.095 .076 .084
.081 .052 .058

50
100
200

Case 2

.155 .152 .149
117 133 115
.095 .113 .096

.164 .170 .158
115 137 113
.087 .120 .089

.1568 172 .152
110 .141 .113
.084 .124 .088

144 125 .141
.101 .105 .105
.092 .098 .092

142149 143
118 .124 .106
119 .110 .086

133 .147 131
.107 .125 .100
.100 .112 .082

50
100
200

Case 3

137 137 135
.097 .096 .095
.069 .069 .065

.140 .147 .130
.091 .104 .088
.066 .076 .061

130 .146 .125
.089 .106 .086
.059 .077 .060

.120 .098 .123
.082 .068 .083
.057 .047 .059

119 114 114
.087 .080 .078
075 .057 .054

11 112 110
.076 .079 .074
.066 .056 .052

50
100
200

Case 4

152 .167 .149
114 .146 .116
.091 .128 .098

154 .182 .153
112 157 113
083 .135 .090

153 187 .149
109 157 .112
.081 .135 .088

144 125 141
.101 .105 .105
.092 .098 .092

136 .149 .139
113 .129 .108
114 113 .090

137 .149 .130
.101 .125 .098

.091 .112 .081

6 Real Data Applications

6.1 Functional Connectivity in Alzheimer’s Disease Patients

The first data application considers symmetric positive definite (SPD) matrices that rep-
resent brain connectivity, which are widely used as a biomarker of brain function. The
connectivity between defined regions of interest is calculated as the temporal association
between their blood-oxygen-level-dependent (BOLD) signals in functional magnetic reso-
nance imaging (fMRI) scans when the subjects are in a resting state. We analyzed fMRI
scans recorded in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) with the goal
of making inference regarding brain connectivity in different dementia study groups. Our
analysis included n = 181 subjects who, according to the severity of cognitive decline, were
classified at enrollment as: cognitively normal (CN), early mild cognitive impaired (EMCI),
late mild cognitive impaired (LMCI), or Alzheimer’s disease (AD) patients. The fMRI data
were preprocessed by following a standard protocol to remove motion and timing artifacts,
scaling effects, and trends, and we considered only the fMRI scans at the participants’ first

visits. Problematic scans are not uncommon in fMRI studies as a result of imaging artifacts
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that come from head motion and cognitive state (Laumann et al., 2017). Statistical depth
approaches are appealing for analyzing imaging data since they are fully nonparametric
and robust to outliers. Here we compare the proposed metric halfspace depth with the
geodesic distance depth (Chau et al., 2019).

For each subject, the average bold signals in each of the 10 defined brain regions (Buck-
ner’s hubs) in a subject’s brain were first calculated, obtaining a 10-dimensional times
series (Buckner et al., 2009). Next, brain connectivity is represented by the covariance
(at lag 0) of the average bold signals, obtaining 10 x 10 covariance matrices as the data
observations X;. The left panel of Figure 3 illustrates the connectivity covariance matri-
ces of four random subjects in the cognitively normal group. We analyzed the covariance
matrices in M = SPD(10) with the affine invariant metric. The deepest covariance matrix
in the cognitively normal group with respect to metric halfspace depth (upper right panel
of Figure 3) exhibits non-zero cross-covariances between different brain regions, resembling
the original sample matrices; in contrast, the deepest image w.r.t. the geodesic distance
depth (Chau et al., 2019) (lower right panel) has near 0 cross-covariances, which is not
commonly observed in the sample.

We next investigated whether group differences exist among the four groups of patients
studied. We applied the depth-based Kruskal-Wallis test proposed by Chenouri and Small
(2012) based on both the proposed metric halfspace depth and the geodesic distance depth
(Chau et al., 2019). The Kruskal-Wallis test is designed to be sensitive to both location and
scale changes by calculating the depth of the observations with respect to each group and
aggregating the depth ranks. Using the permutation null distribution, a p-value of 0.0194
was produced using the proposed metric halfspace depth, and a p-value of 0.0652 for the
geodesic distance depth. Further, pairwise comparisons of the dementia groups using the
depth-based Wilcoxon test (Chenouri and Small, 2012) revealed that the most significant
difference exists between the Alzheimer’s disease and the cognitively normal groups as
shown in Table 3. This demonstrates the potential utility of fMRI-based connectivity

measures and depth-based methods for studying Alzheimer’s disease.
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Figure 3: Left: Connectivity covariance matrices for four cognitively normal individuals.
Right: Deepest matrices among cognitively normal individuals in terms of metric halfspace
depth (MHD, upper panel) and geodesic distance depth (GDD, lower panel). Brain regions
used for creating the connectivity matrices are indicated.

Table 3: The p-values based on the metric halfspace depth-based Wilcoxon rank test for
the pairwise comparisons between the four dementia groups. CN, cognitively normal;
EMCI, Early Mild Cognitive Impairment; LMCI, Late Mild Cognitive Impairment; AD,

Alzheimer’s disease.
| EMCI LMCI AD

CN 0.644 0.339 0.021
EMCI - 0.350 0.126
LMCI — — 0.074

6.2 Phylogenetic Tree Application

In evolutionary biology, the ancestral relationship among a fixed collection of species is
represented by a tree structure. Each leaf corresponds to a species, each interior node a
speciation event, an edge the transition from an ancestor to a descendant, and the edge
length the evolutionary divergence along the edge. A phylogenetic tree is constructed by
comparing genetic materials from different species and determining the divergence time

from the mismatches between nucleic acid sequences. Frequently, a collection of phylo-
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genetic trees are considered, where each individual tree is constructed from the sequence
of a specific gene present in the species in question. Collectively, this forms a sample
of gene trees where the sources of randomness come from biological variation, sequence
misalignment, and random subsampling in the individual genes.

It has been of great interest to construct a consensus tree that summarizes the in-
dividual trees to infer the evolutionary history. In addition to the complex structure of
the trees, this task is complicated by the stark heterogeneity in the individual trees due
to analytic artifacts such as sequence misalignment, remarkable biological variation, or
low signal-to-noise ratio in the random subsample. Recently, tree space geometry-aware
methods such as the Fréchet mean tree (e.g. Nye et al., 2017) have been proposed. These
methods have been shown to produce reliable inference of tree topology and edge lengths.
However, a preliminary outlier removal step (e.g., Weyenberg et al., 2014) is usually per-
formed since the Fréchet mean is a non-robust measure of location. Here, we apply the
metric halfspace depth to obtain a “summary tree” that best represents the data and to
identify potential outliers. We infer the phylogeny of 7 pathogenic Apicomplexan species
relative to an outgroup species using n = 268 individual gene trees constructed by Kuo et al.
(2008). The Apicomplexa phylum contains many important pathogenic parasites that are
detrimental to humans and livestock. The Apicomplexan species included the infamous
malaria pathogens Plasmodium falciparum (Pf) and Plasmodium vivax (Pv); tick-borne
haemopathogens Babesia bovis (Bb) and Theileria annulata (Ta); and coccidian parasites
FEimeria tenella (Et), Toxoplasma gondii (Tg), and Cryptosporidium parvum (Cp) which
infect intestines. The outgroup Tetrahymena thermophila (Tt) is a remotely related model
species included to root the phylogeny. We model the gene trees as rooted trees with the
root placed as the point where the outgroup joins with the apicomplexan species.

To model the evolutionary divergence between all species and their ancestors, we con-
sider T® x R® with the product metric, where the BHV space T® models the tree topology
and the interior edge lengths, and R® models the pendant edge lengths. The proposed
metric halfspace depths were calculated at each of the individual trees, with 10 additional

jiggled trees added as anchors per original tree for improving approximation. In the deepest
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tree as displayed in Figure 4, tick parasites B. bovis and T. annulata and malaria parasites
P. falciparum and P. vivax are respectively monophyletic, i.e., sharing the same immedi-
ate ancestor; these haemoparasites descend from a common ancestor; coccidian species F.
tenella and T. gondii form a sister group to the former; C. parvum is the deepest root-
ing species. The deepest tree we produced is congruent to the consensus tree identified
by Kuo et al. (2008) constructed through maximum likelihood, maximum parsimony, and
neighbor-joining methods, and also agree with the Fréchet mean tree found by Nye et al.
(2017), who performed the analysis after removing 16 outliers. Our depth-based approach
has the advantage of being robust to extreme values and does not require separate outlier

identification and removal.

Tt

Cp

m

Tg

Ta

Pv

Figure 4: The deepest tree with respect to the proposed metric halfspace depth. The tree
topology coincides with the known topology for the apicomplexan species tree.

We also identified 27 gene trees with the least metric halfspace depth, indicating that
they correspond to the most extreme trees. Among these trees four potential outliers are
displayed in Figure 5 and the rest are included in Figure S11. Trees 488 and 546 have
exceptionally long branches, and, in addition, the Plasmodium species in tree 488 (Pf and
Pv, hard to distinguish in the figure due to the long branch) and tick parasites B. bovis
and T. annulata in trees 625 and 703 are not monophyletic. These structures, which differ
from what has been reported in the literature (Kuo et al., 2008), demonstrate the utility
of the metric halfspace depth for highlighting outliers.
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Figure 5: Four individual gene trees with the least metric halfspace depth.
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