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Summary. We present a double-yield-surface plasticity theory for transversely
isotropic rocks that distinguishes between plastic deformation through the solid
matrix and localized plasticity along the weak bedding planes. A recently developed
anisotropic modified Cam-Clay model is adopted to model the plastic response of
the solid matrix, while the Mohr-Coulomb friction law is used to represent the slid-
ing mechanism along the weak bedding planes. For its numerical implementation,
we derive an implicit return mapping algorithm for both the semi-plastic and fully
plastic loading processes, as well as the corresponding algorithmic tangent operator
for finite element problems. We validate the model with triaxial compression test
data for three different transversely isotropic rocks and reproduce the undulatory
variation of rock strength with bedding plane orientation. We also implement the
proposed model in a finite element setting and investigate the deformation of rock
surrounding a borehole subjected to fluid injection. We compare the results of sim-
ulations using the proposed double-yield-surface model with those generated using
each single yield criterion to highlight the features of the proposed theory.

Keywords: double yield surfaces; frictional sliding; plasticity; shale; trans-
versely isotropic rock

1 Introduction

Anisotropy is a ubiquitous property of natural rocks [108]. Typical anisotropic
rocks include sedimentary rocks that possess marked depositional layers such
as shale, and foliated metamorphic rocks such as slates, gneisses, phyllites, and
schists. The most common type of anisotropy is that of transverse isotropy
characterized by parallel or nearly parallel sets of depositional layers or folia-
tions forming a simple laminated structure. Such a laminated internal struc-
ture plays a critical role in determining the geophysical [27, 35, 110], hydro-
logic [44, 45, 103, 104, 106, 107], and mechanical [25, 50, 68, 69, 81, 85, 100]
properties of transversely isotropic rocks.
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In recent years, numerous investigators have conducted laboratory exper-
iments to quantify and analyze the influence of material anisotropy on the
mechanical behaviors of transversely isotropic rocks [2, 10, 19, 27, 54, 56,
60, 73, 98]. Unlike isotropic materials, both the stiffness and the strength of
transversely isotropic rocks are dependent on the bedding plane orientation θ
in the test specimens, varying in a highly nonlinear fashion. In terms of rock
stiffness, the apparent Young’s modulus of transversely isotropic rocks often
varies with bedding plane orientation as a U-shaped curve [93] or an S-shaped
curve [1]. When it comes to rock strength, Ramamurthy [70] classified the
variation curves into three groups, namely, (a) U-type, (b) shoulder type, and
(c) undulatory type of variation [83], as demonstrated in Figure 1. Among
them, the undulatory type exhibits the most complicated characteristics that
could be regarded either as a U-type or a shoulder type curve with an addi-
tional concave portion within the range 45◦ < θ < 90◦, which is the range of
bedding plane orientations in rock specimens under which condition of failure
along the bedding plane is likely to occur [33, 64, 84, 95].

Fig. 1. Variation of rock strength with bedding plane orientation for transversely
isotropic rocks. Modified from [70].

To describe the variation of rock strength with bedding plane orientation,
one common approach is to regard transversely isotropic rocks as a continuum
and develop the corresponding anisotropic elastoplastic constitutive model il-
lustrating their mechanical responses [28, 47, 78, 87, 88, 96]. For anisotropic
materials, Gol’denblat and Kopnov [34] proposed a general formulation ex-
pressing the yield criterion as a polynomial of stress components for glass-
reinforced plastics. Tsai and Wu [86] proposed a yield criterion for filamentary
composites as a polynomial that only contains the linear and quadratic terms
of stress components.

Alternatively, instead of developing a general expression of the yield cri-
terion for anisotropic materials, a vast majority of the models in the litera-
ture extend existing isotropic yield criteria to account for material anisotropy.
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Hill [40] extended the Von Mises yield criterion for metals using six mate-
rial parameters that scale the second-order stress terms in the yield criterion.
Wang et al. [92] extended Hill’s criterion by considering the impact of the
hydrostatic stress on the yield function, which resulted in an anisotropic ver-
sion of Drucker-Prager model for transversely isotropic rocks. Boehler and
Sawczuk [11] introduced a general method that takes advantage of isotropic
plasticity models by substituting a fictitious stress state projected with a
rank-4 tensor into the yield criterion. Based on this concept, Bennett et al. [9]
developed a generalized capped Drucker-Prager model for anisotropic geoma-
terials with finite deformation. Nova [65] extended the Cam-clay model for
transversely isotropic rocks. Crook et al. [24] extended the modified Cam-clay
model using a projection tensor similar to that adopted by Hashagen and
de Borst [38]. Semnani et al. [74] and Zhao et al. [108] also enhanced the
modified Cam-Clay model with a projection tensor that only has three pa-
rameters for transversely isotropic rocks. Borja et al. [17] further enriched this
model to consider material heterogeneity and viscoplasticity for shale rocks.
Bryant and Sun [18] also refined this model with micromorphic regularization
to accommodate size-dependent anisotropy of geomaterials.

Another approach to modeling the behavior of transversely isotropic rocks
is to represent the laminated structure or the matrix-foliation system of the
rock explicitly. Representative works include the microplane model [6–8] and
the multi-laminate model [66, 111], both of which are based on the concept
of angular discretization of space in which the overall material behavior is
quantified as the aggregated response on several so-called integration planes
where plasticity models are applied. By assigning different plastic parameters
to the integration planes according to their spatial angle, this class of mod-
els can be used for materials with inherent anisotropy [26, 51, 52]. Crystal
plasticity [4, 13, 15, 16, 39, 48, 49, 63, 71] is another common technique to
handle materials with inherent microstructures, which adopts multi-plane slip
systems determined by the crystalline microstructures to describe the plastic
responses of single crystals. Semnani and White [72] introduced an inelastic
homogenization framework for layered materials. They assumed a laminated
microstructure with weak planes where the layers and the interfaces are mod-
eled with various isotropic plasticity models. Through homogenization over
such a microstructure, the macroscopic anisotropic responses of transversely
isotropic rocks can then be calculated. Choo et al. [23] extended this frame-
work to consider time-dependent responses in the constituent layers and pro-
posed an anisotropic viscoplastic model for shale.

In addition to micromechanical modeling and computational homogeniza-
tion, the foliations can also be modeled explicitly at the macroscopic level.
Tang et al. [82] conducted finite element simulations of uniaxial compression
tests on stratified geomaterials in which the foliations were explicitly modeled
as bands with a finite width in the simulated specimen with weaker materials.
Their simulation can capture different failure modes either through the rock
matrix or along the weak planes for specimens with different bedding plane ori-
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entation. Various authors have also attempted to explicitly model the matrix-
foliation system with discrete element method [32, 55, 61, 67, 75, 94, 99],
where the foliation is idealized as bonds between discrete solid particles at
the weak planes governed by discrete constitutive laws that allows for shear
or tensile failure, with which macroscopic failure of the specimens along the
weak planes can be captured.

Focusing on the strength instead of the constitutive responses, various in-
vestigators have also proposed discontinuous failure criteria for transversely
isotropic rocks that can account for different failure modes. Pioneering works
in this category include the single plane of weakness theory of Jaeger [46],
which generalized the Coulomb-Navier criterion for laminated rocks by con-
sidering two failure modes, namely, failure along the weak planes or through
the rock matrix. Based on this idea, Walsh and Brace [89] proposed a failure
criterion where the failure of the schistosity planes is governed by a modified
Griffith theory. Hoek [41] extended Jaeger’s theory through the application
of the Hoek-Brown failure criterion [42] to both the weak planes and the
rock matrix. Tien and Kuo [83] extended Jaeger’s theory and proposed a
more elaborate criterion for failure through the solid matrix, which adopted
the Hoek-Brown failure criterion to distinguish rock strength at θ = 0◦ and
θ = 90◦. A maximum axial strain criterion was then introduced to calibrate
the strength of specimens with inclined bedding planes. Jaeger’s theory has
also been extended to model rocks with multiple groups of weak planes or
joints, see [37, 62, 90].

Each of the three types of models for the description of the strength of
transversely isotropic rocks has its own pros and cons. With the first two
types of models, one can reproduce the stress-strain curve of transversely
isotropic rocks measured in laboratory tests and capture rock strength nat-
urally [74, 108]. However, for continuum models, the rock is treated as an
anisotropic continuum, and the plastic sliding failure mode along the weak
planes is seldom considered, making them incapable of reproducing the un-
dulatory type strength variation curve with bedding planes. For models that
consider the weak planes explicitly, in theory, they can capture all three types
of strength variation curves, but it comes with the disadvantage that many
more microscale parameters are needed to calibrate them, accompanied with
significant computational costs. For the discontinuous failure criteria, differ-
ent failure modes are considered and the plastic sliding failure mode along the
weak planes is properly captured, and thus the additional concave portion in
the undulatory type strength variation curve governed by failure along the
weak planes can be modeled. However, the disadvantage of this method is
that the failure criterion for the rock matrix has been over-simplified, and it
is hard to capture the nonlinearity in the strength variation curve governed
by this failure mode. For example, in Jaeger’s theory where the isotropic
Coulomb-Navier criterion is adopted for the rock matrix, rock strength is a
constant when the failure mode is through the matrix, which is insufficient
to reflect experimental observations demonstrated in Figure 1. Efforts such
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as the work of Tien and Kuo [83] tried to make up for this disadvantage by
using a more complicated criterion for the rock matrix. Such an enhancement,
however, is highly empirical and lacks mathematical foundations.

In this paper, we introduce a double-yield-surface plasticity model for
transversely isotropic rocks that combines the advantages of the continuum
constitutive model formulation and the discontinuous failure criteria. In the
proposed model, we make a clear distinction between bulk plasticity in the
rock matrix and sliding mechanism along the weak bedding planes. A recently
developed anisotropic modified Cam-Clay model is adopted to model the plas-
tic response of the rock matrix, while the Mohr-Coulomb friction law is used
to represent sliding deformation along the weak bedding planes. For the nu-
merical implementation of the proposed model, we derive an implicit return
mapping algorithm for different loading processes along with the correspond-
ing algorithmic tangent operator for the solution of finite element problems.
We then validate the model by reproducing the undulatory variation of rock
strength with bedding plane orientation observed in triaxial compression tests
for three different transversely isotropic rocks. Lastly, we implement the model
in a finite element framework and conduct boundary value problem simula-
tions to investigate the deformation of surrounding rocks around a borehole
subjected to fluid injection.

As for notations and symbols, we use boldfaced characters (e.g., a) to rep-
resent vectors and rank-two tensors, and blackboard bold letters (e.g., I) to
represent rank-four tensors. 1 and I stand for rank-two and rank-four sym-
metric identity tensors respectively, and O is the rank-four zero tensor. Dot
product and double dot product are defined with symbols · and : respectively.
Tensorial operators ⊗,⊕ and ⊖ are defined such that (• ⊗ ◦)ijkl = (•)ij(◦)kl,
(• ⊕ ◦)ijkl = (•)jl(◦)ik, and (• ⊖ ◦)ijkl = (•)il(◦)jk.

2 Theoretical formulation

In this section, we introduce the theoretical formulation of the proposed
double-yield-surface plasticity model for transversely isotropic rocks. We first
introduce the underlying assumptions and the constitutive laws of the pro-
posed model. Next, we present a formulation for double-yield-surface plasticity
model, adapted from [12, 43], with explicit definitions of different loading and
unloading processes.

2.1 Double-yield-surface formulation

In this model, we assume that a rock can be regarded as a homogenized
elastoplastic transversely isotropic continuum. The laminated structure would
result in the anisotropic continuous response of the rock matrix, and besides
that, the bedding direction of the laminated structure would serve as a weak
direction along which plastic sliding could occur. Based on this assumption,
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the plastic deformation in transversely isotropic rocks can be decomposed into
two mechanisms: yielding in the rock matrix and/or yielding along the weak
bedding planes. The total strain can thus be expressed as

ϵ = ϵe + ϵpm + ϵpw . (1)

In this expression, the superscripts e and p refer to the elastic and plastic parts
of the strain tensor, respectively; the subscriptsm and w indicate plastic strain
in the rock matrix and along the weak planes, respectively.

To reflect the influence of the laminated structure on the mechanical
response of transversely isotropic rocks, we first introduce a rank-two mi-
crostructure tensor m defined as

m = n⊗ n , (2)

where n stands for the unit normal vector to the bedding planes.
Assuming a linearly elastic material response,

σ = Ce : ϵe , (3)

where σ is the Cauchy stress tensor and Ce is the elastic tangent operator.
For transversely isotropic rocks, the expression for Ce is given by [79]

Ce =λ1⊗ 1+ 2µT I+ a(1⊗m+m⊗ 1) + bm⊗m

+ (µL − µT )(1⊕m+m⊕ 1+ 1⊖m+m⊖ 1) ,
(4)

where λ, a, b, µL, µT are five material constants.
As for the plastic response, we use two different yield criteria to model

ductile deformation mechanisms in the rock matrix and sliding along the weak
planes. For the first part, we adopt an anisotropic modified Cam-Clay model
introduced by Semnani et al. [74] and Zhao et al. [105, 108] to represent the
anisotropic response of the rock matrix. To this end, we introduce a fictitious
stress state σ∗ as

σ∗ = P : σ , (5)

where P is a rank-four projection tensor defined as

P =c1I+
c2
2
(m⊕m+m⊖m)

+
c3
4
(1⊕m+m⊕ 1+ 1⊖m+m⊖ 1) ,

(6)

in which c1, c2, c3 are parameters that control the degree of anisotropy of the
yield surface. The projection tensor P contains the anisotropy information
through the microstructure tensor m. Inserting σ∗ into the isotropic modi-
fied Cam-Clay yield surface yields the anisotropic yield function for the rock
matrix as

fm(σ∗, pc) =
q∗2

M2
+ p∗(p∗ − pc) ≤ 0, (7)
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where p∗ = tr(σ∗), q∗ =
√
3/2∥s∗∥, s∗ = σ∗ − p∗1, and pc < 0 is the

preconsolidation stress. In terms of the Cauchy stress tensor σ, we have

fm(σ, pc) =
σ : A∗ : σ

2M2
+ (a∗ : σ)(a∗ : σ − pc) ≤ 0 , (8)

where

a∗ =
1

3
P : 1 , A∗ = 3P :

(
I− 1

3
1⊗ 1

)
: P . (9)

Assuming an associative flow rule, we can derive the rate of plastic defor-
mation in the rock matrix as

ϵ̇pm = λ̇m
∂fm
∂σ

= λ̇m
∂fm
∂σ∗ :

∂σ∗

∂σ
= λ̇mP :

∂fm
∂σ∗ , (10)

where λ̇m ≥ 0 is a plastic multiplier for the rock matrix. As for the hardening
law, we correlate the preconsolidation stress pc to the volumetric part of the
plastic strain ϵpv as

pc = pc0exp

(
− ϵpv
λp

)
, (11)

where λp is a plastic compressibility index and ϵpv = 1 : ϵpm. Plastic dilation is
characterized by ϵpv > 0 while plastic compression is defined by ϵpv < 0.

For sliding mechanism along the weak bedding planes, we adopt the Mohr-
Coulomb failure criterion

fw(τ, σn) = |τ | − (cw − σntanϕw) ≤ 0 , (12)

where cw and ϕw are the cohesion and friction angle, and τ and σn are the
shear and normal stresses on the weak planes, which can be calculated as

σn = n · σ · n = σ : m , |τ | =
√
|σ · n|2 − σ2

n . (13)

To prescribe the plastic flow direction, we define the plastic potential function
as

gw(τ, σn) = |τ |+ σntanψw , (14)

where ψw ≤ ϕw is the dilatancy angle on the weak planes. The rate of plastic
deformation can then be expressed as

ϵ̇pw = λ̇w
∂gw
∂σ

= λ̇w
∂gw
∂τ

∂τ

∂σ
+ λ̇w

∂gw
∂σn

∂σn
∂σ

, (15)

where λ̇w ≥ 0 is a plastic multiplier for sliding along the weak planes [14].
Figure 2 depicts the yield surfaces under a biaxial compression stress state.

The rotated ellipse is the anisotropic modified Cam-Clay yield surface fm for
the solid matrix, while the two rays are the projections of the yield surface
fw for the weak planes. The shaded area represents the elastic region, which
is now bounded by the two yield surfaces. For a stress state within the elastic
region, both yield functions fm and fw are less than zero.
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σa

σc

σa

σc

Fig. 2. Sketch of the yield surfaces in the proposed plasticity model for transversely
isotropic rocks given a biaxial compression stress state shown in the right figure.
The shaded area represents the elastic regime of the proposed plasticity model.

2.2 Definitions of various processes

To illustrate the plastic deformation of transversely isotropic rocks modeled
with two distinct yield surfaces fm and fw, we first define all possible cases of
loading and unloading. Let δσ be the variation of stress state, i.e., the stress
probe. Various processes can be defined as follows:
(a) Elastic process:

fm < 0 or (fm = 0 and
∂fm
∂σ

: δσ < 0) , (16a)

and fw < 0 or (fw = 0 and
∂fw
∂σ

: δσ < 0) . (16b)

The two equations in (16) refer to the process in which the stress state is
either inside the yield surface or on the yield surface but unloading.
(b) Semi-plastic loading process on fm:

fm = 0 and
∂fm
∂σ

: δσ > 0 , (17a)

and fw < 0 or (fw = 0 and
∂fw
∂σ

: δσ ≤ 0) . (17b)

For this process, the material yields according to the yield criterion fm alone.
(c) Semi-plastic loading process on fw:
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fm < 0 or (fm = 0 and
∂fm
∂σ

: δσ ≤ 0) , (18a)

and fw = 0 and
∂fw
∂σ

: δσ > 0 . (18b)

For this process, the material yields according to the yield criterion fw alone.
(d) Fully plastic loading process:

fm = 0 and
∂fm
∂σ

: δσ > 0 , (19a)

and fw = 0 and
∂fw
∂σ

: δσ > 0 . (19b)

For this process, the material yields according to the combined yield criteria
fm and fw.
(e) Semi-neutral process on fm:

fm = 0 and
∂fm
∂σ

: δσ = 0 , (20a)

and fw < 0 or (fw = 0 and
∂fw
∂σ

: δσ < 0) . (20b)

For this process, the stress state moves tangentially to the yield surface fm.
(f) Semi-neutral process on fw:

fm < 0 or (fm = 0 and
∂fm
∂σ

: δσ < 0) , (21a)

and fw = 0 and
∂fw
∂σ

: δσ = 0 . (21b)

For this process, the stress state moves tangentially to the yield surface fw.
(g) Fully neutral process:

fm = 0 and
∂fm
∂σ

: δσ = 0 , (22a)

and fw = 0 and
∂fw
∂σ

: δσ = 0 . (22b)

For this process, the stress state moves tangentially to both yield surfaces.

2.3 Continuum formulation

In what follows, we consider the continuum formulations for all possible load-
ing/unloading scenarios.

(a) Fully plastic loading process:
The consistency conditions for the two yield surfaces are given by
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ḟm =
∂fm
∂σ

: σ̇ +
∂fm
∂pc

ṗc = 0 , (23a)

ḟw =
∂fw
∂σ

: σ̇ = 0 . (23b)

Combining Equations (10) and (15), together with the rate form of the
elastic constitutive response σ̇ = Ce : (ϵ̇ − ϵ̇pm − ϵ̇pw), we can rewrite the
consistency conditions as

∂fm
∂σ

: Ce :

(
ϵ̇− λ̇m

∂fm
∂σ

− λ̇w
∂gw
∂σ

)
+
∂fm
∂pc

∂pc
∂ϵpv

λ̇m1 :
∂fm
∂σ

= 0 , (24a)

∂fw
∂σ

: Ce :

(
ϵ̇− λ̇m

∂fm
∂σ

− λ̇w
∂gw
∂σ

)
= 0 . (24b)

We can then solve for λ̇m and λ̇w using the equations above. By collecting
terms and rearranging the expressions, we can reorganize the two equations
into matrix form,  α11 α12

α21 α22

 λ̇m

λ̇w

 =

 b1

b2

 (25)

where

α11 =
∂fm
∂σ

: Ce :
∂fm
∂σ

− ∂fm
∂pc

∂pc
∂ϵpv

1 :
∂fm
∂σ

, (26a)

α12 = α21 =
∂fm
∂σ

: Ce :
∂gw
∂σ

, (26b)

α22 =
∂fw
∂σ

: Ce :
∂gw
∂σ

. (26c)

and

b1 =
∂fm
∂σ

: Ce : ϵ̇ , (27a)

b2 =
∂fw
∂σ

: Ce : ϵ̇ . (27b)

From Equation (25), we can see that λ̇m and λ̇w can be solved when the
parameter matrix is invertible, and λ̇m

λ̇w

 =

 α′
11 α′

12

α′
21 α′

22

 b1

b2

 (28)

where  α′
11 α′

12

α′
21 α′

22

 =

 α11 α12

α21 α22

−1

(29)
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is the inverse of the parameter matrix.
Inserting Equation (28) into the rate form of the elastic constitutive re-

sponse gives

σ̇ = Ce : (ϵ̇− ϵ̇pm − ϵ̇pw),

=

(
Ce − α′

11Ce :
∂fm
∂σ

⊗ ∂fm
∂σ

: Ce − α′
12Ce :

∂fm
∂σ

⊗ ∂fw
∂σ

: Ce

−α′
21Ce :

∂gw
∂σ

⊗ ∂fm
∂σ

: Ce − α′
22Ce :

∂gw
∂σ

⊗ ∂fw
∂σ

: Ce

)
: ϵ̇

= Cep : ϵ̇ ,

(30)

From the expression above, we see that the elastoplastic tangent operator of
the material is given as

Cep = Ce − α′
11Ce :

∂fm
∂σ

⊗ ∂fm
∂σ

: Ce − α′
12Ce :

∂fm
∂σ

⊗ ∂fw
∂σ

: Ce

− α′
21Ce :

∂gw
∂σ

⊗ ∂fm
∂σ

: Ce − α′
22Ce :

∂gw
∂σ

⊗ ∂fw
∂σ

: Ce .

(31)

(b) Semi-plastic loading process on fm:
For this case, the plastic deformation of the material is governed by the

yield surface fm while the yield surface fw is inactive. We can write the elastic
constitutive response as

σ̇ = Ce : (ϵ̇− ϵ̇pm) = Cep : ϵ̇ , (32)

and the simplified consistency condition shown in Equation (24a) as

∂fm
∂σ

: Ce :

(
ϵ̇− λ̇m

∂fm
∂σ

)
+
∂fm
∂pc

∂pc
∂ϵpv

λ̇m1 :
∂fm
∂σ

= 0 , (33)

from which we can solve for the plastic multiplier λ̇m:

α11λ̇m = b1, , (34)

where

α11 =
∂fm
∂σ

: Ce :
∂fm
∂σ

− ∂fm
∂pc

∂pc
∂ϵpv

1 :
∂fm
∂σ

, (35)

and

b1 =
∂fm
∂σ

: Ce : ϵ̇ . (36)

The elastoplastic tangent operator for this process can be expressed as

Cep = Ce − α−1
11 C

e :
∂fm
∂σ

⊗ ∂fm
∂σ

: Ce . (37)

(c) Semi-plastic loading process on fw:
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For this case, the plastic deformation of the material is governed by the
yield surface fw while the yield surface fm is inactive. Again, we can write
the elastic constitutive response as

σ̇ = Ce : (ϵ̇− ϵ̇pw) = Cep : ϵ̇ , (38)

and for this case, the simplified consistency condition shown in Equation (24b)
as

∂fw
∂σ

: Ce :

(
ϵ̇− λ̇w

∂gw
∂σ

)
= 0 , (39)

from which we can solve for the plastic multiplier λ̇w:

α22λ̇w = b2 , (40)

where

α22 =
∂fw
∂σ

: Ce :
∂gw
∂σ

, (41)

and

b2 =
∂fw
∂σ

: Ce : ϵ̇ . (42)

The elastoplastic tangent operator for this process can be expressed as

Cep = Ce − α−1
22 C

e :
∂gw
∂σ

⊗ ∂fw
∂σ

: Ce . (43)

The relevant partial derivatives are summarized in Appendix A.

3 Numerical implementation

This section presents the numerical implementation of the double-yield-surface
plasticity model at the stress point level, covering both an implicit return
mapping algorithm and the derivation of the algorithmic tangent operator.

From loading step n to loading step n+1, the return mapping algorithm it-
eratively calculates the state variables ϵen+1, ϵ

p
m,n+1, ϵ

p
w,n+1, σn+1, and pc,n+1

from given incremental strain tensor ∆ϵ and starting values of the state vari-
ables at loading step n. The iteration is based on a predictor-corrector scheme.
First, a trial elastic stress predictor σtr

n+1 is calculated as

σtr
n+1 = σn + Ce : ∆ϵ , (44)

which is then used to identify the active constraint(s).
In single yield surface plasticity theory, a trial elastic stress predictor σtr

n+1

that lies outside the yield surface automatically implies that the yield surface
is active. However, this is not necessarily the case for double-yield-surface
plasticity theory. Figure 3 portrays three possible regions outside the two yield
surfaces where the elastic stress predictor σtr

n+1 could land. When σtr
n+1 lands
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in Region I, the process is semi-plastic on fm even though fw(σ
tr
n+1) > 0. In

Region II, the process is semi-plastic on fw for the same reason. The process is
fully plastic only when σtr

n+1 lands in Region III, requiring that the predictor
stress be corrected and mapped back to the intersection of the two yield
surfaces. In addition, the hardening or softening of fm can also impact the
final process as well as the final position of the stress point σn+1.

Simo et al. [76] introduced a general return mapping algorithm for multi-
surface plasticity model in which the potentially active yield surfaces are first
identified based on the value of the trial elastic stress predictor. A first sweep is
conducted to calculate the preliminary values of the plastic multipliers for the
potentially active constraints. Yield surfaces for which the incremental plastic
multipliers are negative are eliminated. The iteration is considered to have
converged when all yield criteria are satisfied and all plastic multipliers are
nonnegative, i.e., when the discrete Kuhn-Tucker conditions are satisfied on all
yield constraints. However, Borja and Wren [13] noted that this algorithm can
fail to identify some active constraints, particularly when they are redundant
constraints, which led them to develop an ‘ultimate algorithm’ for identifying
active constraints in crystals.

We adopt a slightly different approach in the present work. Instead, we
first assume that the process is semi-plastic on either fw or fm. Then, we
assume a fully plastic process if the corrected stress state does not satisfy the
yield criterion for the other yield surface. A final correction is made if it was
the other yield surface that was active. Figure 4 summarizes the return map-
ping algorithm adopted in this paper. Details of the formulations are given
below.

(a) Fully plastic loading process:
For the fully plastic loading process, both yield surfaces fm and fw are

active and the stress state is mapped back to the intersection of the two yield
surfaces. In this case, we impose the discrete consistency conditions for both
yield surfaces

fm(σn+1, pc,n+1) = 0 , (45a)

fw(σn+1) = 0 , (45b)

and the discrete versions of the flow rules

ϵpm,n+1 − ϵpm,n = ∆λm
∂fm
∂σ

, (46a)

ϵpw,n+1 − ϵpw,n = ∆λw
∂gw
∂σ

. (46b)

The aim is to update the state variables ϵpm,n+1, ϵ
p
w,n+1 and the two plas-

tic multipliers ∆λm and ∆λw. To this end, we employ the Newton-Raphson
scheme and define the residuals as
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σa

σc

Region II

Region III

Region I

Fig. 3. Possible locations of the trial stress state σtr
n+1 outside the two yield surfaces.

Arrows represent the normal vectors to the yield surfaces.

R1 = fm(σn+1, pc,n+1) , (47a)

R2 = −ϵpm,n+1 + ϵpm,n +∆λm
∂fm
∂σ

, (47b)

R3 = fw(σn+1) , (47c)

R4 = −ϵpw,n+1 + ϵpw,n +∆λw
∂gw
∂σ

, (47d)

where R1 and R3 are scalars, while R2 and R4 are 6× 1 vectors converted
from rank-2 tensors in Voigt notation. We define the total residual vector R
as

R =
[
R1 R2 R3 R4

]
T (48)

and the total unknown vector x as

x =
[
∆λm ϵpm,n+1 ∆λw ϵpw,n+1

]
T . (49)

Both R and x are of size 14× 1 in 3D.
The linearized system takes the form

J δx = −R , (50)

where J = ∂R/∂x is the Jacobian matrix and δx is the search direction [14].
To be more specific, the equation above can be expanded as
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ϵpm,n+1 = ϵpm,n

ϵpw,n+1 = ϵpw,n

pc,n+1 = pc,n

Assume semi-plasticity on fw:
Return mapping with fw,
get intermediate solution
σ

(∗)
n+1, ϵ

e(∗)
n+1, ϵ

p(∗)
w,n+1

Semi-plasticity on fm:
Return mapping with fm,
update:
σn+1, ϵ

e
n+1, ϵ

p
m,n+1, pc,n+1

fm(σ
(∗)
n+1, pc,n) < 0?

Assumption is valid:
Semi-plasticity on fw:
σn+1 = σ

(∗)
n+1

ϵpw,n+1 = ϵ
p(∗)
w,n+1

ϵen+1 = ϵ
e(∗)
n+1

Assume fully plastic process:
Return mapping on fw and fm,
get intermediate solution:
σ

(∗)
n+1, ϵ

p(∗)
m,n+1, ϵ

p(∗)
w,n+1, ϵ

e(∗)
n+1

p
(∗)
c,n+1,∆λ

(∗)
m ,∆λ

(∗)
w

∆λ
(∗)
w > 0?

Assumption is valid:
Fully plastic process:
σn+1 = σ

(∗)
n+1

ϵpm,n+1 = ϵ
p(∗)
m,n+1

ϵpw,n+1 = ϵ
p(∗)
w,n+1

ϵen+1 = ϵ
e(∗)
n+1

pc,n+1 = p
(∗)
c,n+1

Semi-plasticity on fm:
Return mapping with fm,
update:
σn+1, ϵ

e
n+1, ϵ

p
m,n+1, pc,n+1

end

yes

no no

yes

yes

no

yes

no

Fig. 4. Return mapping algorithm for the double-yield-surface plasticity model.
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J 11 J 12 J 13 J 14

J 21 J 22 J 23 J 24

J 31 J 32 J 33 J 34

J 41 J 42 J 43 J 44





δ∆λm

δϵpm,n+1

δ∆λw

δϵpw,n+1


= −



R1

R2

R3

R4


, (51)

where the components of J are derived in Appendix B. We note that the
following state variables vary with the unknown vector x:

ϵen+1 = ϵn+1 − ϵpm,n+1 − ϵpw,n+1 , (52a)

σn+1 = Ce : ϵen+1 , (52b)

pc,n+1 = pc0exp

(
−
1 : ϵpm,n+1

λp

)
. (52c)

In evaluating the algorithmic tangent operator C, we regard ∆ϵ and x as
functions of the prescribed total strain ϵn+1. Thus, we have

C = Ce :

(
I−

∂ϵpm,n+1

∂ϵn+1
−
∂ϵpw,n+1

∂ϵn+1

)
. (53)

To derive the expression ∂ϵpm,n+1/∂ϵn+1 and ∂ϵpw,n+1/∂ϵn+1, we make use of
the fact that at the locally converged state,

∂R
∂ϵn+1

=
∂R
∂x

∣∣∣∣
∆ϵ

∂x

∂ϵn+1
+
∂R
∂∆ϵ

∣∣∣∣
x

∂∆ϵ

∂ϵn+1
= 0 , (54)

where

∂R
∂x

∣∣∣∣
∆ϵ

= J , (55a)

∂∆ϵ

∂ϵn+1
= I . (55b)

Thus, we have
∂x

∂ϵn+1
= J −1 ∂R

∂∆ϵ

∣∣∣∣
x

, (56)

and the remaining term is derived as

∂R
∂∆ϵ

∣∣∣∣
x

=



∂fm
∂σ

: Ce

∆λm
∂2fm
∂σ2

: Ce

∂fw
∂σ

: Ce

∆λw
∂2gw
∂σ2

: Ce


14×6

, (57)



A double-yield-surface plasticity theory for transversely isotropic rocks 17

The components are expressed in tensorial form for brevity, but one should
note that the rank-2 and rank-4 tensors in 3D should be converted to 1 × 6
vectors and 6× 6 matrices in Voigt form, respectively.

By combining Equation (56) and (57), we can evaluate ∂x/∂ϵn+1 at the
converged configuration. We note that

∂x

∂ϵn+1
=



∂∆λm
∂ϵn+1

∂ϵpm,n+1

∂ϵn+1

∂∆λw
∂ϵn+1

∂ϵpw,n+1

∂ϵn+1


14×6

, (58)

and thus, we can evaluate ∂ϵpm,n+1/∂ϵn+1 and ∂ϵpw,n+1/∂ϵn+1.
The partial derivatives appearing in Equation (47) and Equation (57) are

elaborated further in Appendix A.

(b) Semi-plastic loading process on fm:
For the semi-plastic loading process on fm, only the yield surface fm is

active, and the plastic strain for fw remains unchanged, i.e., ϵpw,n+1 = ϵpw,n and
∆λw = 0. The return mapping algorithm reduces to that for the anisotropic
modified Cam-Clay model reported in [74, 108]. For this case, we just need
to solve the discrete consistency condition and incremental flow rule for fm
(Equations (45a) and (46a)) for ϵpm,n+1 and ∆λm.

The residual vector and the unknown vector reduces to

R =
[
R1 R2

]
T , (59)

and
x =

[
∆λm ϵpm,n+1

]
T . (60)

The linearized system for the Newton-Raphson scheme then takes the form J 11 J 12

J 21 J 22

 δ∆λm

δϵpm,n+1

 = −

 R1

R2

 , (61)

For the semi-plastic process on fm, the Jacobian matrix J becomes a 7 × 7
matrix. To calculate the algorithmic tangent operator C, we follow the same
step for the fully plastic process shown in Equation (53–58), which yields

C = Ce :

(
I−

∂ϵpm,n+1

∂ϵn+1

)
. (62)
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We solve Equation (56) again for ∂x/∂ϵn+1 with

∂R
∂∆ϵ

∣∣∣∣
x

=


∂fm
∂σ

: Ce

∆λm
∂2fm
∂σ2

: Ce


7×6

. (63)

Thus, we can evaluate ∂ϵpm,n+1/∂ϵn+1 from the submatrix of the expression

∂x

∂ϵn+1
=


∂∆λm
∂ϵn+1

∂ϵpm,n+1

∂ϵn+1


7×6

. (64)

(c) Semi-plastic loading process on fw:
The only difference here is that fw is the active yield surface. Plastic

strain for fm remains unchanged, and ϵpm,n+1 = ϵpm,n, pc,n+1 = pc,n, and
∆λm = 0. For the return mapping algorithm, we only need to solve the discrete
consistency condition and incremental flow rule for fw (Equation (45b) and
(46b)) for ϵpw,n+1 and ∆λw.

The residual vector and the unknown vector now reduce to

R =
[
R3 R4

]
T , (65)

and
x =

[
∆λw ϵpw,n+1

]
T . (66)

The linearized system for the Newton-Raphson scheme is J 33 J 34

J 43 J 44

 δ∆λw

δϵpw,n+1

 = −

 R3

R4

 , (67)

while the Jacobian J is now a 7 × 7 matrix. To calculate the algorithmic
tangent operator C, we again follow the same step for the fully plastic process
shown in Equation (53–58) and obtain

C = Ce :

(
I−

∂ϵpw,n+1

∂ϵn+1

)
. (68)

We solve Equation (56) again for ∂x/∂ϵn+1 with
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∂R
∂∆ϵ

∣∣∣∣
x

=


∂fw
∂σ

: Ce

∆λw
∂2gw
∂σ2

: Ce


7×6

. (69)

Again, we can evaluate ∂ϵpw,n+1/∂ϵn+1 as a submatrix in

∂x

∂ϵn+1
=


∂∆λw
∂ϵn+1

∂ϵpw,n+1

∂ϵn+1


7×6

. (70)

4 Model validation

In this section, we validate the double-yield-surface plasticity theory using
triaxial compression experimental data from three different types of trans-
versely isotropic rocks, namely, NW-Spain slate [1], Longmaxi shale [93], and
a synthetic transversely isotropic rock [84]. The aim of the validation is to
reproduce the experimentally observed undulatory variation of rock strength
with bedding orientation observed for these rocks.

4.1 Synthetic transversely isotropic rock

Synthetic rock is an artificially simulated material that has similar properties
to those of natural rocks. It is a common man-made material for physical
modeling produced by mixing water and rock-like components including sand,
kaolinite, cement, resin, and curing for a certain period of time. Tien et al. [84]
prepared two synthetic rocks with different weight ratios of water, cement,
and kaolinite to result in different strength and stiffness for the two materials.
They then layered the two materials in an alternating fashion to generate a
synthetic transversely isotropic rock. The joints of the layers then represent
the weak bedding planes of the rock.

Zhao et al. [108] used the anisotropic modified Cam-Clay model described
in this paper to model plastic deformation in the solid matrix and repro-
duce the variation of rock strength with bedding orientation for the synthetic
transversely isotropic rock measured in triaxial compression under a confining
pressure of 14 MPa. Their result is shown by the dashed curve in Figure 5 and
reveals some deviation of an experimental data point at bedding plane orien-
tation of 60◦. Tien et al. [84] reported that the observed failure modes in the
tested rock included sliding along the weak planes. Such discrepancy high-
lights the need for additional modeling of the failure mechanism along the



20 Yang Zhao1 · Ronaldo I. Borja2,∗

Table 1. Parameters for synthetic transversely isotropic rocks

Value Unit

Elasticity:
λ 5335 MPa
a −400 MPa
b 1428 MPa
µT 6869 MPa
µL 6315 MPa
Parameters for fm:
c1 0.82 -
c2 −0.29 -
c3 0.36 -
M 1.7 -
λp 0.0026 -
pc0 −14 MPa
Parameters for fw:
cw 8.5 MPa
ϕw 24 Degrees
ψw 24 Degrees

weak planes on top of the plastic deformation predicted by the anisotropic
modified Cam-Clay model.

We use the proposed double-yield-surface plasticity theory to better fit
the experimental data of Tien et al. [84]. The parameters in the model are
reported in Table 1. The elastic parameters are determined through homog-
enization of the parameters of the two constituent materials of the synthetic
transversely isotropic rocks based on Backus average [5], while the plastic
parameters are calibrated to fit the experimental data. As one can see in
Figure 5, the calibrated model reproduces the undulatory variation of rock
strength with bedding orientation quite well. The portion of the curve that
protrudes downward is the result of the activation of yield surface fw. Besides,
we also observe two clear transition points on the curve that differentiates the
failure modes through the solid matrix and along the weak planes. The range
of bedding plane orientation for the sliding failure mode along the weak planes
is from 41 to 79◦, which perfectly matches the observed range of 45 to 75◦

reported by Tien et al. [84].
Lastly, we also conduct a parametric study to investigate how the parame-

ters in the yield function fw for sliding along the weak planes, the cohesion cw
and the friction angle ϕw, influence the shape of the variation curve between
rock strength and bedding orientation. As reported in Figure 6, a decrease
in both ϕw and cw expands the range of bedding plane orientation in which
the failure mode is governed by sliding along the weak planes, as well as re-
duces the minimum rock strength. The difference is that decreasing ϕw leads
to a lower bedding plane orientation that corresponds to the minimum rock
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strength, while cw does not have any impact on it. This is because the min-
imum rock strength is achieved when the bedding plane orientation is equal
to 45◦ + ϕw/2. We note that this critical bedding orientation depends solely
on the friction angle ϕw and not on the dilatancy angle ψw, since the weak
planes are prescribed in this case, as opposed to a continuum problem where
the dilatancy angle plays a role in the inception of a shear band, see [29, 30].

Fig. 5. Variation of rock strength with bedding orientation for synthetic transversely
isotropic rocks. Experimental data are from Tien et al. [84].

Fig. 6. Impact of mechanical parameters of the weak planes on the variation of rock
strength with bedding orientation. Left: Influence of ϕw, Right: Influence of cw.
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4.2 Longmaxi shale

Longmaxi shale is a black organic-rich shale from the Lower Silurian Longmaxi
formation in South China. The Lower Silurian shale formation was deposited
in a restricted marine basin environment and were formed under bottom wa-
ter anoxic conditions [80]. In terms of the lithological composition, laminated
and nonlaminated siliceous shale predominate in the Silurian Longmaxi for-
mation [93]. To analyze the mineral composition of Longmaxi shale, Liang et
al. [57] conducted X-ray diffraction analysis on 192 Longmaxi shale specimens.
Their study revealed that the major components in Longmaxi shale are quartz
and clay, with an average weight content of 43.2% and 39.6%, respectively.
Other minor mineral components include plagioclase, potassium feldspar, cal-
cite, dolomite, and pyrite. They also reported that the Longmaxi shale has a
Total Organic Carbon (TOC) content ranging up to 8.6%, with an average of
3.2%. The Lower Silurian Longmaxi formation has long been known as the
principal source rock for conventional petroleum reservoirs [102]. In recent
years, attempts have been made to exploit unconventional shale gas in this
formation. Wu et al. [93] conducted triaxial compression tests on Longmaxi
shale specimens extracted from the outcrops in the formation that constitutes
the Chongqing Jiaoshiba shale gas block reservoirs to investigate their me-
chanical properties and failure modes. In this study, we will use the proposed
model to reproduce the triaxial compression test response of Longmaxi shale
at a confining pressure of 40 MPa.

Table 2. Parameters for Longmaxi Shale

Value Unit

Elasticity:
λ 52817 MPa
a −1416 MPa
b 23340 MPa
µT 16644 MPa
µL 9000 MPa
Parameters for fm:
c1 0.85 -
c2 −0.25 -
c3 0.3 -
M 1.8 -
λp 0.0003 -
pc0 −40 MPa
Parameters for fw:
cw 50 MPa
ϕw 10 Degrees
ψw 10 Degrees
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Wu et al. [93] reported the apparent Young’s modulus and Poisson’s ratio
of Longmaxi shale as functions of bedding orientation in the test specimens.
We used these data to calibrate the elasticity parameters for the model as
shown in Table 2 and Figure 7. In Figure 7, we see that the calibrated model
can capture the U-shaped variation of the apparent Young’s modulus and the
reverse U-shaped variation of Poisson’s ratio with bedding orientation in the
specimens. We note that there exists a 10% error between the calibrated Pois-
son’s ratio against the measured data when the bedding orientation in the test
specimen is 45◦. This could be due to some adjoint plastic deformation along
the weak bedding planes that was not accounted for in the model calibration.

Fig. 7. Variation of elasticity parameters with bedding orientation. Left: Young’s
modulus, Right: Poisson’s ratio.

We next calibrate the plasticity parameters for the model shown in Table 2
by reproducing the stress-strain relationship in triaxial compression on speci-
mens with bedding orientations of θ = 0, 45, and 90◦. For θ = 0 and 90◦, the
yield surface fw remains inactive throughout the simulation, and the stress-
strain response is governed solely by yielding in the rock matrix. As a result,
the stress gradually approaches the peak strength defined by the critical-state
line of the anisotropic modified Cam-Clay model. For θ = 45◦, the material
response is initially governed by fm, but the stress state no longer hits the
critical-state line since the peak stress bounded by fw is lower. Once the stress
activates fw, it stops changing with strain increments.

With the calibrated parameters, Figure 9 shows the predicted variation of
rock strength with bedding orientation for Longmaxi shale. It is evident that
the simulation result fits the experimental data well. In addition, the model
predicts that the failure mode is sliding along the weak planes for specimens
with bedding orientations ranging from 27 to 76◦. Incidentally, the failure
modes reported by Wu et al. [93] indicate that specimens with θ = 45, 60, and
75◦ orientations tended to break down along the weak planes, in agreement
with the model prediction. For θ = 30◦, however, the specimen fractured
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Fig. 8. Calibrated stress-strain curve for Longmaxi Shale with various bedding
orientations.

along the diagonal direction across the rock matrix. The deviation in failure
modes between the experimental observation and model prediction may be
due to end constraints on the specimen. Besides, the orientation θ = 30◦ is
also near the lower limit of the predicted range, so small perturbations in the
experiment may lead to an opposite result.

Fig. 9. Variation of rock strength with bedding orientation for Longmaxi Shale.

4.3 NW-Spain slate

In this last example, we use the proposed model to reproduce the variation
of rock strength with bedding orientation for a NW-Spain slate reported by
Alejano et al. [1]. The rock specimens were acquired from a quarry site located
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in O Barco de Valdeorras in the northwest of Spain. The slate has a black
to very dark blue color and exhibits a high fissility. It possesses significant
foliation patterns and is easy to fracture along the weak planes, layers of
which were quarried to produce roofing slate tiles. Alejano et al. [1] conducted
a series of triaxial compression tests and wave velocity tests on this slate, and
showed that its mechanical behavior and failure modes are heavily dependent
on the orientation of the bedding structures.

Table 3. Parameters for NW-Spain slate

Value Unit

Elasticity:
λ 83216 MPa
a −8198 MPa
b 3947 MPa
µT 30447 MPa
µL 19520 MPa
Parameters for fm:
c1 0.82 -
c2 −0.45 -
c3 0.36 -
M 2 -
λp 0.001 -
pc0 −10 MPa
Parameters for fw:
cw 10.8 MPa
ϕw 17.8 Degrees
ψw 8.9 Degrees

We now conduct numerical simulations of triaxial compression tests on
NW-Spain slate at a confining pressure of 10 MPa. The calibrated model
parameters are shown in Table 3. Here, the elasticity parameters were con-
verted from those reported by Alejano et al. [1] measured from wave velocity
tests, while the plasticity parameters were calibrated from the experimental
variation of rock strength with bedding orientation in triaxial compression. As
shown in Figure 10, the model prediction fits the experimental data quite well,
and also indicates that the threshold for failure along the weak planes ranges
from 27 to 84◦. This range matches the experimental observations where spec-
imens with bedding orientations of 30, 45, 60, and 75◦ followed such a failure
mode.

Alejano et al. [1] also proposed several models to capture the relationship
between rock strength and bedding plane orientation for the NW-Spain slate.
Their prediction with the best performance is also shown in Figure 10. Their
model consisted of two failure criteria, one for the solid matrix and the other
for the weak bedding planes. For the weak planes, their failure criterion was
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Fig. 10. Variation of rock strength with bedding orientation for NW-Spain slate.

the same as the one used in our model. Since we used the same parameter ϕw
and cw for the weak planes, there is an overlap of predictions with our model
for cases where the failure of the slate is along the weak planes. For the rock
matrix, however, they assumed that the rock strength was a linear function of
the bedding plane orientation. They calibrated the model with Hoek-Brown
failure criterion for specimens with bedding orientations of 0 and 90◦, and
interpolated the strength linearly in between. However, it has been reported
by several investigators that in transversely isotropic rocks the dependence
of strength with bedding orientation follows a nonlinear U-shaped variation
when the sliding mechanism along the weak planes is not apparent. Thus,
their linear relationship was insufficient to describe the response of the rock
matrix. By comparing our prediction with that by Alejano et al. [1], it is
evident that our model more realistically captures the nonlinear variation of
rock strength with bedding orientation when the material fails through the
rock matrix. Our model prediction also exhibits a more natural transition of
the responses governed by the two failure modes.

5 Cylindrical cavity expansion in NW-Spain slate

We implement the proposed double-yield-surface plasticity model in a finite
element framework built upon an open source library Deal.II [3]. We use this
code to simulate the expansion of a cylindrical cavity in a transversely isotropic
rock. The problem of cylindrical cavity expansion in geomaterials is widely
encountered in numerous practical applications in geotechnical and petroleum
engineering [21, 31, 36, 97, 101]. Applications include pressuremeter testing in
shale formation [59], tunnel excavation [101], pile driving [77], and horizontal
wellbore drilling [109]. Research on this topic has been extensively carried out
with the surrounding geomaterials modeled by different constitutive laws. For



A double-yield-surface plasticity theory for transversely isotropic rocks 27

instance, Wang et al. [91] developed an analytical solution to cylindrical cav-
ity expansion in Mohr–Coulomb soils. Carter et al. [20] analyzed the problem
with the surrounding geomaterials modeled by the Cam-Clay model. Chen
and Abousleiman [22] introduced a semi-analytical method for the problem
with the modified Cam-Clay soils. Li et al. [53] and Liu and Chen [58] inves-
tigated the problem considering the anisotropic mechanical properties of the
surrounding soils. In this paper, we investigate the cylindrical cavity expan-
sion problem in transversely isotropic rocks containing a borehole subjected
to fluid injection.

Fig. 11. Setup for the cylindrical cavity expansion problem and finite element mesh.

The setup for the problem is shown on the left side of Figure 11. The sim-
ulation domain is a 10 m×10 m square with a bedding orientation of θ = 45◦

and deforming in plane strain. The outer boundaries of the domain are con-
strained with roller supports. In the middle of the domain is a cylindrical
cavity of radius 0.5 m. The surrounding rock is modeled with the parameters
calibrated from the NW-Spain slate, as summarized in Table 3. We assume
that the surrounding rock is normally consolidated with an initial isotropic
in-situ stress of pc0. An injection pressure of σi is then prescribed on the
wall of the borehole, which starts from 10 MPa and linearly increases with
the loading steps to reach the target value of 100 MPa. The right side of
Figure 11 shows the finite element mesh with 1064 four-node quadrilaterial
elements. We conduct three sets of numerical simulations, one with the pro-
posed double-yield-surface theory and the other two with each yield criterion
fw or fm, and investigate the distributions of stress and plastic deformation
in the surrounding rock as well as the deformed shape of the borehole.
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The distributions of the mean normal stress p and deviatoric stress q are
shown in Figure 12 for the three aforementioned scenarios. The injection pres-
sure is taken as σi = 100 MPa. For a clearer display, the contours were zoomed
within the 6 m×6 m region in the vicinity of the borehole. Figure 12(a) shows
that when the surrounding rock is modeled with fm, no significant difference
in the stress field develops along the bed-parallel direction or along the bed-
normal direction. In contrast, when the surrounding rock is modeled with fw,
lower values are noted for both p and q at four corners around the borehole
along the bed-parallel direction, as shown in Figure 12(b). This can attribute
to the activation of the yield function fw in these places where the stress state
are bounded. Lastly, for simulations where the surrounding rocks are modeled
with the double-yield-surface (DYS) plasticity model, the stress distribution
in the domain is affected by both yield surfaces. The overall patterns of p and
q follow those for simulation with only fm active. At the four corners around
the borehole, a lower value in the contour of q can be observed as the case
with only fw being active. Interestingly, we see that the stress components
now have higher values along the bed-normal direction than along the bed-
parallel direction around the borehole, compared with Figure 12(a). This is
due to the plastic sliding mechanism along the bedding planes that releases
the stress along the bed-parallel direction in the vicinity the borehole.
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(a) Simulation with only fm. Left: p; Right: q.

(b) Simulation with only fw. Left: p; Right: q.

(c) Simulation with the DYS model. Left: p; Right: q.

Fig. 12. Stress distribution for simulations with (a) only fm, (b) only fw, (c)
the proposed double-yield-surface plasticity model. Left: Hydrostatic component of
stress, p; Right: Deviatoric component of stress, q. Color bars are stresses in MPa.
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Figure 13 shows the contours of plastic strain in the simulation domain
for the three aforementioned loading scenarios. We see that when only fw
is active, the plastic strain component ϵpw develops and propagates from the
four corners around the borehole into the surrounding rock, while for the
case with the proposed double-yield-surface plasticity model, ϵpw concentrates
more prominently around the borehole. This is due to the fact that the stress
state around the borehole is also capped by fm, which limits the region where
plastic sliding governed by fw can occur. Comparing Figure 13(a) and Figure
13(c), we conclude that the activation of fw also perturbs the distribution of
ϵpm.

(a) ∥ϵpm∥ with only fm (b) ∥ϵpw∥ with only fw

(c) ∥ϵpm∥ with DYS model (d) ∥ϵpw∥ with DYS model

Fig. 13. Distribution of norm of plastic strain in the domain(×1000). Left: Norm
of plastic strain in the solid matrix ∥ϵpm∥; Right: Norm of plastic strain along the
weak bedding planes ∥ϵpw∥.
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Lastly, Figure 14 compares the deformed shapes of the borehole for the
three loading scenarios. The borehole wall in the simulation with only fw ac-
tive has the least deformation. In this case, the only places that undergo plas-
tic deformation are the four corners around the borehole, while most region
surrounding the borehole still deforms elastically, as shown in Figure 13(b).
Deformation along the bed-normal direction of the borehole is larger than
along the bed-parallel direction due to the anisotropic elastic property of the
rock where the stiffness along the bed-normal direction is lower. The borehole
experiences significantly larger deformation when fm is active. In this case,
the rock surrounding the borehole undergoes volumetric plastic compaction as
the material hardens to bear the injection pressure. The response predicted by
the proposed double-yield-surface plasticity model is similar to that predicted
when only fm is active, but the deformation is larger at the four corners where
plastic sliding mechanism occurs.

Fig. 14. Comparison of deformed shapes of the borehole. Displacement scaled by a
factor of 200 for display.

6 Closure

We introduced a double-yield-surface plasticity model for transversely isotropic
rocks that explicitly quantifies the bulk plasticity in the rock matrix and plas-
tic sliding along the weak planes. A recently developed anisotropic modified
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Cam-Clay model was used to describe the plastic response of the rock matrix,
while the Mohr-Coulomb friction law was used to represent plastic sliding
along the weak planes. An implicit return mapping algorithm that systemat-
ically identifies the active yield constraint(s) was developed for the numerical
implementation of the constitutive model.

We validated the proposed model with triaxial compression test data for
three transversely isotropic rocks, including the NW-Spain slate, the Long-
maxi shale, and a synthetic transversely isotropic rock. We showed that
the proposed model can reproduce the complex undulatory variation of rock
strength with bedding orientation for all three rocks. By using two distinc-
tive mechanisms of plastic responses in the rock, the threshold of the bedding
plane orientation can be identified for the two failure modes.

We used the new model to analyze the problem of cylindrical cavity expan-
sion in a transversely isotropic rock assuming three scenarios, one in which the
elastoplastic property of the rock is described by the double-yield-surface plas-
ticity theory and the other two in which either only bulk plasticity or plastic
sliding is considered. The numerical results suggest that combining bulk plas-
ticity and plastic sliding can result in rock responses that differ significantly
from those obtained by considering the two plastic mechanisms separately.
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Appendix A. Relevant partial derivatives

This Appendix derives the partial derivatives of fw and fm. For partial deriva-
tives associated with fm, we have

∂fm
∂σ

=
A∗ : σ

M2
+ (2a∗ : σ − pc)a

∗ , (71)

∂2fm
∂σ2

=
A∗

M2
+ 2a∗ ⊗ a∗ , (72)

∂fm
∂pc

= a∗ : σ , (73)

∂pc
∂ϵpv

= − pc
λp

. (74)
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For partial derivatives associated with fw and gw, we limit the discussion to
2D plane strain problem and define l as the tangential direction of the weak
plane. The traction vector t on the weak plane is

t = σ · n . (75)

We can evaluate the shear stress τ and normal stress σn on the weak plane as

σn = n · t = σ : m , (76a)

τ = l · t = σ : α , (76b)

where

α =
1

2
(l⊗ n+ n⊗ l) . (77)

Thus,
∂fw
∂σ

= sgn(τ)α+ tanϕwm , (78)

∂2fw
∂σ2

= O , (79)

∂gw
∂σ

= sgn(τ)α+ tanψwm , (80)

∂2gw
∂σ2

= O , (81)

where sgn(τ) is the sign of τ .

Appendix B. Jacobian matrix

The submatrices J ij in the Jacobian matrix J for the fully plastic process
are given as follows:

J 11 = 0 , (82)

J 12 = −∂fm
∂σ

: Ce + a∗ : σn+1
pc
λp

1 , (83)

J 13 = 0 , (84)

J 14 = −∂fm
∂σ

: Ce , (85)

J 21 =
∂fm
∂σ

, (86)

J 22 = −I−∆λm

[(
A∗

M2
+ 2a∗ ⊗ a∗

)
: Ce − pc,n+1

λp
a∗ ⊗ 1

]
, (87)

J 23 = 0 , (88)



34 Yang Zhao1 · Ronaldo I. Borja2,∗

J 24 = −∆λm
(

A∗

M2
+ 2a∗ ⊗ a∗

)
: Ce , (89)

J 31 = 0 , (90)

J 32 = −∂fw
∂σ

: Ce , (91)

J 33 = 0 , (92)

J 34 = −∂fw
∂σ

: Ce , (93)

J 41 = 0 , (94)

J 42 = O , (95)

J 43 =
∂gw
∂σ

, (96)

J 44 = −I . (97)

The expressions above are given in tensorial expression for brevity, but they
should be converted to matrix form for numerical implementation. Rank-2 and
rank-4 tensors transform to 1×6 vectors and 6×6 matrices in 3D, respectively.
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