MARTA: Multi-configuration Assembly pRofiler
and Toolkit for performance Analysis

Louis-Noél Pouchet
Colorado State University

Marcos Horro
Universidade da Coruiia
CITIC
Spain USA

marcos.horro@udc.es pouchet@colostate.edu

Abstract—Benchmarking to characterize specific software or
hardware features is an error-prone, arduous and repetitive task.
Designing a specialized experimental setup frequently requires
writing new scripts or ad-hoc programs in order to properly
exhibit interesting performance effects, using code changes and
hardware events measurements. These artifacts may have limited
reusability for subsequent experiments, since they are dependent
on specific problems and, in some cases, platforms.

To improve productivity and reproducibility of such exper-
iments, which are often investigative in nature, we introduce
MARTA: a fully customizable toolkit that aims to increase
productivity by generating benchmark templates, compiling
them, and profiling the regions of interest (Rol) specified using
hardware events, and performing static code analysis. MARTA
can also be applied on existing code regions of interest, it only
requires to write a simple configuration file.

In an orthogonal dimension, the system is able to run various
statistical analyses on the measurements collected. MARTA uses
data mining and machine learning or Al-based techniques for
classification and regression, automatically extracting the features
of the experimental setup which have the most impact on
performance or whichever other metric of interest, given a
large set of experiments and dimensions to consider. These
post-processing tasks are valuable for deriving knowledge from
experiments and are not included in most profiling tools.

We also provide a set of cases of study to illustrate the ability of
MARTA to conveniently create a reliable and reproducible setup
for high-performance computing experiments, investigating three
vastly different performance effects on modern processors.

Index Terms—profiling, benchmarking, micro-benchmarking,
performance analysis, compiler characterization

I. INTRODUCTION

Performance analysis is required in any discipline of com-
puter engineering, for both hardware and software effects.
From real-time systems, where it is needed to assess the la-
tencies of instructions, to high-performance computing, where
codes need to be highly optimized and tuned to the execution
infrastructure to extract the maximum possible computing
throughput, profiling is crucial for characterizing systems,
either in a holistic manner or at a fine-grain level [1, 2].

In order to assess the validity of an experiment, measure-
ments are performed in a platform under a set of conditions.
For this reason, measuring events in a system requires the
setup of a controlled environment in order to ensure repro-
ducibility and repeatability for a set of experiments, e.g.,
setting the scaling governors of processors, setting maximum
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frequencies of clocks, the memory page size used, core affini-
ties, etc. Additionally, passing arguments, macros and other
variables to programs is also an error prone task, leading
to false positives or other undesired and undefined behaviors
within the experimental setup. Checking and setting all these
conditions and parameters is usually done manually by users
(or semi-automatically using ad hoc scripts).

Orthogonally, when profiling a specific region of code (pos-
sibly included in a full application), there could be different
dimensions or parameters of interest for the user to consider
and configure, e.g., size of rows and columns for a matrix-
vector multiplication kernel, data precision (32-bits vs. 64-
bits), number of repetitions and step of a loop, access stride,
array padding, etc. Analyzing which of these dimensions has
the most significant impact in terms of performance can be
automated in a similar way, avoiding manual and repetitive
post-processing tasks.

In this paper we present a toolkit for automating the
experimental setup configuration, compilation, execution and
collection of data (static and dynamic) for a code region. In
addition, using data mining and machine learning or Al-based
techniques for classification such as decision trees and random
forests, it generates categories for analyzing the influence of
parameters and input arguments in the execution of a code.
We make the following contributions:

o The design and implementation of MARTA!, a frame-
work that fully automates experimental setup, compila-
tion, execution and performance data collection, typically
for a computational kernel. The system supports the
analysis of post-mortem execution data, the static analysis
of binaries through LLVM-MCA, and the automated
inspection of compilation logs and optimization reports.

« We automate the specialization of template codes and
header files including C/C++ macros to quickly create
micro-benchmark versions, controlling features such as
allocation strides or array padding, or enabling or dis-
abling compiler optimizations such as dead code elim-
ination or loop jamming that interfere with the correct
instrumentation of the region of interest.

'MARTA is open source BSD-licensed software, available at https://github.
com/UDC-GAC/MARTA.



« We present case studies that display MARTA in action,
showing how to quickly generate a space of program
variants, run them, and use MARTA to investigate the
structure of the data collected: decision trees are learned
to visualize sub-spaces of interest in the data, by building
compact predictors (decision tree, k-means, etc.) for the
data analyzed.

The paper is organized as follows: Section II describes the
architecture of the presented framework. Section III overviews
key aspects of the methodology for reproducibility. Section IV
presents a set of case studies that exemplify potential uses
of the tool. Section V discusses the strengths, capabilities
and limitations of the proposed approach. Section VI presents
related work on profiling and monitoring tools, and Section VII
concludes the paper.

II. MARTA: SYSTEM’S ARCHITECTURE

The proposed framework is composed of two main modules:
the Profiler and the Analyzer. The Profiler is in charge of the
compilation, execution and collection of data. The Analyzer
inspects the data provided by the Profiler, applying data
mining and machine learning or Al-based techniques. Both
modules are primarily written in Python 3, C, and Makefile
language. The framework works on any operating system,
but the compilation and execution facilities are designed
specifically for POSIX-compliant systems. MARTA can run
on any architecture, the only limitation being the naming of
hardware events, specified through configuration files. The
high-level architecture of the system is depicted in Figure 1.
The two components of the system, Profiler and Analyzer, are
independent between them, and can operate autonomously, as
they only interface through CSV files containing profiling data.
In the rest of the section we describe both modules in detail.

A. Profiler

The Profiler module is designed for parsing the configura-
tion files, compiling all the binary versions specified in them,
and running the generated binaries, collecting execution data.
The strength of this module lies in its ability to generate as
many different executable versions as necessary, as defined
by the Cartesian product of the sets of different options in
the configuration, e.g., compile-time options (e.g., whether to
enable or disable particular optimizations), program inputs,
or program features (e.g., —D flags enabling different code
paths). The generation of different program versions, which
is often a bottleneck in micro-architectural exploration, can
be done in parallel. In order to achieve maximum reliability,
the Profiler integrates with several different tested-and-true
software packages such as the PolyBench/C library [3], using
their low-level configuration and measuring capabilities. The
upper part of Figure 1 details the design of this module. The
Profiler receives two inputs:

« Configuration file: a structured YAML file containing
all parameters related to compilation (e.g. —-D flags,
compilers and their flags, etc.), execution (e.g. threads to
launch and their affinity, number of repetitions, maximum
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Figure 1: High-level architecture of the toolkit, composed
of the Profiler and the Analyzer modules, which operate
independently.

deviation in measurements, etc.), and data collection
(e.g. output format, dimensions to include, static code
analysis parameters, etc.). For convenience, some of these
parameters can be overwritten by using CLI arguments.

o Source code/application: typically a C/C++ program
whose execution prints in standard output values collected
from hardware counters, as well as the execution time and
values reported by the Time Stamp Counter (TSC). The
system helps produce this output format by including a
set of functions and macros at runtime.

In order to instrument binaries, MARTA follows the steps
detailed in Algorithm 1. The execute function used in that
approach is disclosed in Algorithm 2. The output generated
by all the executions in the experimental set is encoded into
a CSV file, which is passed as input to the Analyzer module.

B. Analyzer

The Analyzer integrated in the tool is meant for processing
raw data, typically the output of the Profiler, and mining
knowledge from these data, primarily through the use of scikit-
learn [4]. It can also generate relational plots given a set of
dimensions of interest. The inputs to this module are:

« Configuration file: a structured YAML file specifying

data wrangling parameters (including filtering, normal-
ization and categorization) as well as classification and



Algorithm 1: MARTA generates different binary ver-
sions for collecting the execution time, the TSC value
and the PAPI events. Each version is executed nexec
times. Values that deviate farther than a user-specified
threshold from the mean are discarded as outliers.

Input: Executable binary, boolean discard_outliers,

float threshold

Result: Dictionary of values

values = {};

for type in [TSC, time, PAPI_counters] do
data = [];
execute_preamble_commands();
for i < 0 to nexec do

‘ data.append(execute(type, binary));
end
execute_finalize_commands();
if discard_outliers then

condition = (abs(data - data.mean()) <=
threshold * data.std());
data = data.select(condition);

avg_value = sum(data) / nexec;
values[type] = avg_value;

end
return values;

Algorithm 2: High-level approach of the execute
function: warm up if specified, and then instruments a
number of times the specified region of code.

Input: BenchmarkType type, Executable binary
Result: float
if hot_cache then
for i < 0 to warmup do
‘ run_code(type, binary);
end
v0 = measure(type);
for i < 0 to steps do
‘ run_code(type, binary);
end
vl = measure(type);
return (v1-v0) / steps;

plotting parameters. For classification customization, all
parameters follow the same naming or API as in scikit-
learn.

« Input data: CSV file labeled according to the dimensions
of interest described in the configuration file. The Profiler
output is fully compatible with this description, but any
CSV file can be used as input to this module.

The preprocessing stage is needed for the classification
algorithms to only consider the dimensions of interest, and
to know the categories into which data will be classified.
Preprocessing is performed as follows:

« Filtering: based on the dimensions of interest in the
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problem, e.g., select columns containing a specific set
of values, a range, a concrete value and discard the rest,
etc.

« Normalization: values of interest can be normalized
using min-max or z-score techniques.

« Categorization: dimensions of interest are typically con-
tinuous values, e.g., the performance in GFLOPS, or the
average of the TSC values reported. The system is able
to discretize these values into a collection of bins or
categories. This can be configured statically, by describ-
ing the number of categories to create in the interval
using a constant step, or dynamically, using kernel density
estimation (KDE) for guessing the optimal number of
categories to generate, as well as their boundaries. For
the hyperparameter tuning in KDE grid search is used,
Silverman’s rule of thumb for normal distributions [5]
and the Improved Sheather-Jones algorithm [6] for mul-
timodal distributions.

The system randomly splits input data into training and
testing subsets, following the Pareto principle or 80/20 rule
of thumb, for training classifiers. Currently, the Analyzer
implements a decision tree and a random forest classifier.
The first one is meant to classify target categories depending
on the dimensions of interest specified, and the second one
to measure their importance. Adding other classifiers such
as SVM, k-means, or K-neighbors is trivial thanks to scikit-
learn’s homogeneous API. The final output produced by the
system is composed of the following optional elements:

« Classification knowledge: the system outputs the gener-
ated classification model as a decision tree. It also shows
the accuracy and the confusion matrix for the model. It
is possible to employ dtreeviz [7] for improving the
visualization of the decision tree.

« Feature importance analysis: by applying a random
forest classifier, the system is able to extract the impurity-
based feature importance. This is computed as the total
reduction of the criterion brought by that feature. The
system performs feature importance analysis using Mean
Decrease Impurity (MDI), which counts the times a
feature is used to split a node, weighted by the number
of samples it splits.

« Plots: it is possible to configure the plotting of different
types of graphs: scatter plots, KDE plots, etc.

o Processed results: a CSV file, similar to the input,
containing the results of these processing steps.

III. MEASUREMENT METHODOLOGY

We briefly overview key features of our measurement
methodology. As we particularly target small running times
for regions of interest (that is, micro-benchmarking), we pay
special attention to ensure reproducibility by implementing the
following principles: (a) the machine shall be configured in a
state that can be reproduced (e.g., fixed frequency, thread pin-
ning to cores, aligned memory allocation); (b) each experiment
shall be repeated multiple times until a satisfactory confidence
on each measurement is reached; and (c¢) the measurement



approach shall be as insensitive to the execution context as
possible. We highlight our solutions, inspired by good practice
in the field and in particular from the PolyBench/C [3] testing
harness system.

We remind the reader that conducting experiments correctly
so that one can trust the outcome is a particularly difficult
and error-prone process in computer science, due to the
immense variability induced by the execution context and
the multiple ways to implement a program that performs a
given computation. The reader is highly encouraged to revisit
the guide by Blackburn et al. [8] on how to properly assess
experimental evaluations, as MARTA can only go as far as
automating tasks, but the user remains responsible for correctly
setting up the experiments. This includes which knob(s) of the
experimental setup are fixed or left free such as disabling turbo
boost.

A. Machine Configuration

We offer various knobs to control the system that will
execute the programs. This includes: (a) disabling turbo boost
(via MSR); (b) fixing CPU frequency (for Linux systems
only); (c) pinning threads to particular cores (using OpenMP
environment variables or the t askset command, and also us-
ing the system calls provided by the toolkit directives); and (d)
using an uninterrupted process scheduler (for Linux systems,
the FIFO scheduler). Note that most of these knobs require
administrator privileges on the host machine. Turning on all
these features would ensure that in between two experiments
the effects from the operating system’s decisions are mitigated:
the frequency is fixed for a concrete core (or set of cores)
with the proper thread affinity set, allowing to relate cycles
to wall clock time easily and systematically for the whole
experiment duration. As an illustrative example, running a
DGEMM computation may see a variability of over 20% in
terms of cycles between two runs of the exact same software
on our testing setup, while this variability reduces to less than
1% with the setup fixed by MARTA.

B. Repeating Runs

A possible approach to increase the confidence in the
measured values is to repeat the same experiment multiple
times to characterize the variation between runs, and determine
whether this variation is acceptable. This is a central aspect
of reproducibility. MARTA lets the user determine what is the
acceptable variability threshold, which depends on the stability
of the host machine and how it was configured. It also depends
on the data distribution: the variability between runs should be,
at least, an order of magnitude lesser than that of the effects
that are to be measured.

In MARTA, the default experimental setup is to re-run the
same experiment X times, remove the largest and smallest
measures from the set (keeping X-2 samples), compute the
arithmetic mean of the X-2 samples, and compute the deviation
between each sample and the arithmetic mean. If one sample
exceeds a threshold T then the whole experiment (the multiple
runs of the same program) is discarded, and needs to be
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repeated. In our tests, we found that X=5 and T=2% are
reasonable values for experimental validation (detailed in
Section IV).

C. Measuring on the CPU

It is key to ensure that we measure events while un-
derstanding their sensitivity to the experimental setup. For
example, some hardware counters measure elapsed time (e.g.
CPU_CLK_UNHALTED.REF_P) while some others are in-
sensitive to frequency and measure elapsed active cycles
(e.g. CPU_CLK_UNHALTED.THREAD_P). Accurately mea-
suring performance typically involves accurately measuring
time. MARTA offers both frequency-sensitive and frequency-
independent measurements of time. The number of hardware
counters available may be in the hundreds. We preselected in
MARTA relevant counters for measuring time, but the user
may include other counters to collect data such as data traffic,
branch utilization, etc..

Typically processors do not allow to measure more than
a handful of counters in the same run in an exact manner.
Sampling of the counter value may be implemented instead,
and some pairs of counters simply cannot be measured at the
same time. To avoid any issue with PAPI counter multiplexing,
MARTA performs one experiment per counter to be monitored
(exact value, no sampling), running the program with only that
counter and the timestamp counter being monitored. For each
counter, multiple runs are launched and variability is assessed
as described above.

IV. EVALUATION: CASE STUDIES

In order to illustrate the performance and capabilities of the
tool, this section describes three case studies which consider
three different research questions. Each of them contains the
description of the space to explore, the motivation for using
MARTA, and the use of the tool in order to answer the research
question. Note that all the plots in this section have been
automatically generated by the framework, directly using the
output of the Profiler, together with a configuration file, as the
input to the Analyzer.

A. Micro-benchmarking gather instructions

RQ1.- How does the performance of SIMD gather
instructions vary with respect to the number of cache
lines and elements retrieved, both for 128-bit and
256-bit registers, assuming cold cache, and for Intel
Cascade Lake and AMD Zen3?

Definition of the exploration space: Gather is a complex
x86 macro-instruction introduced in AVX2 for loading random
data points given a starting address and a set of indices. This
instruction has been reported to deliver variable latencies [9],
depending on the source and destination operands. Hofmann
et al. [10] demonstrate the performance variability of the
gather instruction for the Intel Knights Corner and Intel
Haswell architectures, depending on the number of elements
fetched by the gather instruction from a cache line.



#include "marta_wrapper.h"

#include <immintrin.h>

void gather_kernel (float *restrict x
_ m256i index =

{

R RTINS U,

_mm256_set_epi32 (IDX7, IDX6, IDX5,
IDX4, IDX3, IDX2,
IDX1, IDXO0);
__m256 tmp = _mm256_i32gather_ps(x, index, 4);

9 DO_NOT_TOUCH (tmp) ;

10 DO_NOT_TOUCH (index) ;

1mn o}

12 MARTA_BENCHMARK_BEGIN;

13 POLYBENCH_1D_ARRAY_DECL (x, float, N);

14 init_ldarray (POLYBENCH_ARRAY (x));

Is MARTA_FLUSH_CACHE;

l6 PROFILE_FUNCTION (gather_ kernel (POLYBENCH_ARRAY (x) +
OFFSET) ) ;

17 MARTA_AVOID_DCE (x) ;

18 MARTA_BENCHMARK_END;

Figure 2: Input code for micro-benchmarking the gather FP
instruction. The configuration file for this benchmark will
declare all possible values for the IDXx variables.

Differently, the present experiment explores the impact of
the number of cache lines touched by a gather instruction but
considering a cold cache, i.e., when data fills come from main
memory. We actively avoid any cache prefetching impact, and
analyze the real cost of gathering random data elements from
main memory.

MARTA in action: The source code employed to explore
this search space using MARTA is detailed in Figure 2.
The DO_NOT_TOUCH (var) directives avoid any compiler
optimization on variable var, e.g., dead code elimination. The
assembly code generated for this input is shown in Figure 3.
As it can be seen, the instrumentation overhead is minimal.
Similarly, any assembly code can be plugged directly into the
input source passed to MARTA for compilation and execution.

As an example of our configuration, the possible values for
the IDX# variables for gathering 8 elements are:

e IDXO0: [0]

e IDX1:[1, 8, 16]

e IDX2: (2,9, 32]

e IDX3: [3, 10, 48]

e IDX4: [4, 11, 64]

e IDX5: [5, 12, 80]

e IDX6: [6, 13, 96]

e IDX7:[7, 14, 112]

The Cartesian product of these lists of variables generates
a space of more than 2K elements, including all combinations
of these gather instructions touching any number of cache
lines from 1 to 8. The same reasoning is extended for the
remaining gather experiments, varying from 2 to 8 data points
or elements. In total, we generate more than 3K combinations
for each platform. The total execution time for all these
experiments is roughly three hours on each machine, including
the compilation process.

Evaluation: Our analysis focuses on two factors: 1) the
impact of the number of distinct cache lines on the gather
instruction, and 2) the difference in performance between two
of the latest Intel and AMD architectures: a Xeon Silver
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vmovaps

1

2 ymml, YMMWORD PTR [rsp]

3 vmovdga ymm2, YMMWORD PTR .LCl[rip]
4 call polybench_start_timer@PLT

5 test eax, eax

6 begin_loop:

7 vmovaps ymm3, ymml

8 vgatherdps ymm0, DWORD PTR [rax+ymm2%4], ymm3
9 add rax, 262144

10 cmp rbx, rax

11 jne begin_loop

12 call polybench_stop_timer@PLT

13

Figure 3: Example of 256-bit-register assembly code generated
for this experiment: rax holds and offset to avoid data reuse,
ymm?2 is used to compute the indices, and ymm3 holds the
mask (e.g. when gathering less than 8 elements using 256
bits).
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Figure 4: Distribution plot for gather with respect to its
performance in terms of TSC cycles (log scale). Vertical
dashed lines mark the peak centroids of each category found.

4126 and a Ryzen9 5950X, featuring Cascade Lake and Zen3
architectures, respectively. The target performance metric is
the number of TSC cycles, in order to be frequency agnostic.

MARTA generates categories based on the density distribu-
tion of the values obtained. Figure 4 illustrates the resulting
distribution plot, showing the different centroids and the
categories induced by MARTA according to the kernel density
estimation (KDE) approach. The legend in this figure describes
the categories generated for the TSC values. Even though some
of them are not visible in the figure due to their order of
magnitude, the system helps to locate them by displaying the
peak centroids in the distribution.

Based on this model, the system builds a decision tree as
shown in Figure 5, with an accuracy rate of =~ 91%. The model
uses the number of cache lines touched by the instruction
(N_CL), the vector width (vec_width, 0 for 128 bits and
1 for 256 bits), and the host platform (arch, 0 for AMD and
1 for Intel). The structure very clearly gives the intuition that
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Figure 5: Decision tree for predicting the performance of
gather instruction based on the categories generated by the
system. N_CL is the number of cache lines touched by the
program, arch is 0 for AMD Zen3 and 1 for Intel Cascade
Lake. vec_width is O for 128-bit vectors, and 1 for 256-bit
vectors. Nodes in lighter colors represent a higher impurity
degree, which is not desirable.

the degradation in performance is related to the increase in the
total number of cache lines touched by the gather instruction.
However, this simple model can also discover some other
hidden architectural effects, e.g., following the decision tree,
our model is able to detect that the AMD Zen3 performs better
when the number of cache lines touched is 4 when using 128-
bit width vectors. This behavior is not present in the Intel
machine.

This decision tree also serves to investigate why the pre-
dictor missclassifies certain points. In this specific case, af-
ter manual exploration, we found out that most errors are
attributable to fuzzy categorical boundaries and natural mea-
surement noise.

In this case we focus on decision trees, as they allow
to visualize a partitioning of the space in a manner that is
intuitively interpretable by the user. Other techniques such
as linear regression might provide lower RMSE, but they are
also typically much less intuitive and make knowledge transfer
harder than, e.g., a small decision tree as built by MARTA. On
the other hand, the feature importance analysis (MDI) reports
a high difference between the number of cache lines touched,
the architecture, and vector width: (.78 against 0.18 and 0.04,
respectively.

Answering our research question, the performance of gather
operations is clearly dependent on the number of cache lines
used. The degradation is remarkable when increasing the
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number of cache lines touched by the instruction. On Intel
Cascade Lake there is no influence on performance of the
vector width or the use of masks. There is, however, a
noticeable and interesting difference when using the 128-bit
width version on AMD Zen3.

B. Empirical throughput of FMA instructions

RQ2.- How many independent FMA instructions can be
executed in just one cycle, assuming hot cache, regardless of
data type, vector size and ISA?

Definition of the exploration space: FMA instructions
perform fused multiply-add operations and were introduced
as extensions of the 128- and 256-bit SIMD instructions in
x86. There were some divergences between Intel’s and AMD’s
implementation at the beginning, but modern architectures,
starting from Haswell on Intel and Zen2 on AMD, implement
the FMA3 ISA. All instructions available in this ISA have
the form of d = a x b + ¢, where d must be the same
register as either a, b or c. As such, there are different variants
of these same operations, for instance, vfmaddl32ps and
vfmadd213ps, which vary the operands chosen for the
multiplication and the destination operand. These instructions
have dedicated resources in the pipeline, typically FMA units.
However, these units share ports in the pipeline with other
architectural units such as the division, integer (e.g. ALU,
jump, load effective address, etc.), or shift units. In this case
we want to get the actual throughput of any FMA instruction
for a given platform, regardless of data type, vector width, or
interferences with any other instruction.

MARTA in action: This experiment requires micro-
benchmarking, and MARTA includes a specific configuration
for this purpose. It also requires hot cache conditions in
order to get the maximum throughput of consecutive and
independent FMA instructions. We consider two or more FMA
instructions to be independent iff there is no data dependence
among them. MARTA is able to automatically generate the C
code required for benchmarking a list of assembly instructions.
It can also generate all the possible permutations of the
subsets of this instruction list. This is useful if our experiment
requires to consider all possible orderings of the instructions
to measure.

For this purpose, we specify the list of assembly instructions
to benchmark in a configuration file, as described in Figure 6,
or using the CLI, e.g., marta_profiler perf —--asm
"vfmadd213ps $xmm2, $xmml, %xmm0". MARTA is
also in charge of unrolling these instructions, for repro-
ducibility reasons, and executing warm-up iterations. All these
parameters are also configurable during runtime.

Extending the example in Figure 6, MARTA makes it
straightforward to write more benchmarks but changing the
registers (i.e. vector width) and the data type (ps suffix in
the code). MARTA automates the generation of these combi-
nations according to the number of consecutive independent
instructions we want to issue, from only the first instruction
up to all of them.



1 asm_body

2 [

3 "vimadd213ps $xmmll, $xmmlO, $xmmO",
4 "vifmadd213ps %$xmmll, %$xmmlO, $xmml",
5 "vfmadd213ps %$xmmll, %$xmml0, %$xmm2",
6 "vifmadd213ps %$xmmll, %$xmml0, %$xmm3",
7 "vfmadd213ps %$xmmll, %$xmml0, %$xmm4",
8 "vifmadd213ps %$xmmll, %$xmml0, %xmm5",
9 "vfmadd213ps $xmmll, $xmml0, $xmm6",
10 "vfmadd213ps $xmmll, $xmml0, $xmm7",
11 "vfmadd213ps $xmmll, $xmml0, $xmm8",
12 "vfmadd213ps $xmmll, $xmml0, $xmm9",

Figure 6: List of instructions to benchmark for getting the
FMA throughput in AT&T format, using 128-bit vectors for
single precision.

Evaluation: In this experiment we ran a set of benchmarks
varying the following features: 1) number of independent
FMA instructions executed contiguously (from 1 to 10), 2)
vector width (128 bits, 256 bits, and 512 bits, if available),
and 3) data type (single and double precision). A total of
60 benchmarks are generated. We ran these experiments on
three different machines: Intel Xeon Silver 4216 (Cascade
Lake), Intel Xeon Gold 5220R (Cascade Lake), and AMD
Ryzen9 5950X (Zen3). The results are shown in Figure 7 in
the form of a line plot, colored by the configuration (data
type and vector width), and with the line style according to
the architecture used. The figure clearly shows the saturation
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float_256 &
L5 | — float 512 /s
757 — double_128 4
0 —— double_256 /x’
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2 - /
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Number of FMA instructions issued

Figure 7: Line plot generated by MARTA according to the
number of independent FMA instructions issued and the
reciprocal throughput obtained, computed as the number of
instructions executed divided by the number of cycles. Some
data overlap, but we have preferred to not edit the figure in the
interest of preserving the original MARTA output. The figure
shows how configurations using 512-bit vectors (float_512
and double_512) are the only ones deviating from the norm.

points for these architectures. Conducting such experiment can
validate, or even replace, the manufacturer documentation on
the throughput of specific instructions.

We observe under which scenario both AMD and Intel
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machines allow 2 FMAs to be executed in a single cycle,
independently of their vector width. It requires to have at least
8 independent FMAs in the loop body to achieve a throughput
of 2 FMAs per cycle, as otherwise the throughput is reduced.
This experiment highlights how one would fail to achieve a
throughput of 2 FMAs per cycle with only two independent
FMAs in flight. We suspect this is related to the 4-cycle latency
of FMA instructions. For Intel machines using AVX-512, only
one FMA can be issued per cycle. This indicates most likely
the availability of a single AVX-512 FPU.

MARTA can generate a decision tree-based predictor for all
architectures, as shown in Figure 8. This predictor, while naive,
is able to extract the importance of the features, accurately
categorizing all data points.

100.0% vec_width <= 384.0

impur. 0.46
THROUGHPUT-0.249-1.250 ka|ce 48.4%

35.2%
impur. 0.0
THROUGHPUT-1.453-2.000

impur. 0.4
THROUGHPUT-1.453-2.000

Figure 8: Simple predictor synthesized by MARTA according
to the number of FMAs issued and the vector width of the
instructions used.

To conclude our case study, we observed that both AMD
Zen3 and Intel Cascade Lake have a maximum throughput of
2 FMAs per cycle using vectors of 128 and 256 bits, i.e., they
can issue 2 FMAs in a single cycle, provided there are enough
independent instructions in flight. AMD Zen3 does not feature
AVX-512, while our Intel Cascade Lake processors feature a
single AVX-512 FPU. From an architectural point of view, this
is typically done by fusing both 256-bit units when issuing
instructions using 512-bit vectors.

C. Influence of access pattern on memory bandwidth

RQ3.- Consider a vector operation of the form c(f(i)) =
a(g(i)) x b(h(2)). How does the memory bandwidth vary with
the access patterns, influenced by the access functions f, g,
and h?

Definition of the exploration space: The performance of
memory-bound benchmarks is limited by the main memory
bandwidth. This bandwidth is affected by several factors, not
all of them intuitive. Modern architectures are designed to ef-
ficiently access data in a streamlined fashion by implementing
mechanisms such as software and hardware prefetching. In
this section, we focus on the analysis a triad operation on a
double-precision floating-point data type, studying the effect
of changing the element access order.

Intuitively, a purely streamlined access, i.e., f(i) = g(i) =
h(#) = 14, will deliver the best possible bandwidth. But how
is this peak bandwidth affected by strided accesses, or even
random accesses, in one or more streams, such as could
occur for example in Sparse Matrix-Vector Multiplication
computations?

MARTA in action: We manually write a tuned version
of the STREAM benchmark [11] implementing the proposed



_mm256_store_pd(&c[data_c], regCl);
_mm256_store_pd (&c[data_c+4], regC2);

1 _ m256d regAl = _mm256_load_pd(&a[data_a]l);

2 _ m256d regA2 = _mm256_load_pd(&al[data_a + 4]);
3 _ m256d regBl = _mm256_load_pd(&b[data_bl);

4 __m256d regB2 = _mm256_load_pd(&b[data_b + 4]);
5 __m256d regCl = _mm256_mul_pd(regAl, regBl);

6 _ m256d regC2 = _mm256_mul_pd(regA2, regB2);

7

8

Figure 9: AVX triad kernel used for measuring memory
bandwidth.

triad operation directly using AVX intrinsics, to avoid compiler
optimization interference in the measurements. The code is
shown in Figure 9. The accessed elements of each array
are determined by the access variables data_{a, b, c}. The
values of these variables are the ones that drive the study, and
determine whether the access to each stream is sequential,
strided, or random. We set up the experiment so that all three
streams and access variables are 64B-aligned (i.e., memory
block-aligned). This means that strided and random accesses
are not defined in terms of individual array elements, but of
memory blocks. Once a block is selected, its eight contiguous
double-precision elements are accessed (for a and b) or writ-
ten (for c). We do this so that the total number of data accesses
is invariable across different access patterns. Similarly, the
total number of cache hits and misses will be invariable in
the absence of prefetching, with the rare exception of the
same block being selected twice in close succession for the
random access experiments. The total number of iterations is
equal to the total number of memory blocks in each array,
STREAM_BLOCKS. The processor used for evaluation is an
Intel Xeon Silver 4216 (Cascade Lake) and, for that reason,
the size of each array is defined to be 16 Mi elements, i.e.,
128 MiB or at least four times the total LLC size of 22 MiB,
as recommended by the STREAM author. When accessing
streams with a stride S, the benchmark accesses each block
of each array exactly once as follows. During a first traversal,
only blocks in positions B | B mod S = 0 are accessed. In
a second traversal, blocks in positions B | B mod S = 1
are selected. The process continues until, in traversal S — 1,
the last untouched blocks are accessed. This avoids unwanted
cache reuse with large access strides.

We write the following benchmark versions: one with all
sequential accesses which serves as a baseline; four strided
versions, one with a stride on b only, one with a stride on ¢
only, one with a stride on b and a, and one with a stride on all
three streams; and four random versions in which rand () is
used for each randomly accessed stream, in the same fashion
as the strided access.

Evaluation: We use MARTA to automatically run 630 dif-
ferent microbenchmarks. Each of the 9 different code versions
described above is run using 1, 2, 4, 8 and 16 cores. Each
strided version is run with .S values from 1 to 8 Ki. We build
a decision tree that tries to predict the achievable bandwidth
by each access pattern given its stride and number of execution
threads. This is useful to bound the performance of different

86

classes of kernels, e.g., a Sparse Matrix-Vector Multiplication,
which is similar to a triad in which one of the streams
is accessed randomly. The decision tree shows remarkable
impurity when classifying strided accesses. In order to study
this, we first focus on analyzing the results obtained for a
single thread. These are shown in Figure 10. The bandwidth
achieved by fully sequential accesses is approximately 10
times smaller than the peak, at just 13.9 GB/s. Sequential and
random accesses are not affected by the STRIDE parameter,
and appear in this figure as bounds to the actual performance
obtainable by the strided versions. The figure clearly shows
how the bandwidth drops with the stride: it drops sharply
for S = {2,4,8,16,32,64}, to an average 9.2 GB/s for the
case of strided b only. The clear reason in this case is the
ineffectiveness of the next-line hardware prefetcher. There
is another sharp drop starting at S = 128, to an average
4.1 GB/s, which is similar to the performance of accesses
using rand (). This is ultimately an artifact caused by the
single-threaded execution, as will be shown with multithreaded
experiments.

141 c(i) = a(i) * b(i)
—— c(i) = ai) * b(S*i)
12 —— c(i) = a(S*i) * b(S*)
(S*) = a(S*i) * b(S*i)
c(S*i) = a(i) * b(i)
104 c(i) = a(i) * b(r)
=== c(i) = a(r) * b(r)

(
(
c(r) = a(r) * b(r)
c(r) = a(i) * b(i)

Bandwidth GB/s
e ]

4] == A ————————— S
2
o1 >3 25 27 29 o1 513
STRIDE

Figure 10: Bandwidth obtained for different access patterns
using a single thread. Accesses labeled as x[i] represent
sequential accesses, x [S+1] represent strided accesses, and
x [r] represent random accesses.

We analyze the bandwidth evolution as the number of
threads increases up to the 16 physical cores available in the
processor. We presume that the very low bandwidth achieved
for a single thread is caused by front-end stalls and, con-
sequently, trivially parallelizing the triad computation using
OpenMP should greatly increase the available bandwidth.
The results are shown in Figure 11. We can see a clear
increasing trend for all benchmark versions, except for those
calling rand () . In this case, using multiple threads to access
memory is harmful for performance, achieving a low peak
bandwidth of only 0.4 GB/s for the version which accesses
three random streams through calls to rand (). This low
performance is caused by the enormous overhead introduced
by the call to rand () as implemented in stdlib, as these
versions emit, on average, 5x and 6x more memory loads



and stores, respectively. This effect demonstrates the limits
of MARTA: the user remains responsible for understanding
and explaining the experimental results. In this case, MARTA
identifies a large increase in the number of issued instructions,
pointing towards experimental setup effects and, ultimately,
to computation bounds introduced by the random-number
generator.

c(i) = a(i) * b(i)
— c(i) = a(i) * b(S*i)
801 — (i) = a(S*i) * b(S*i)
c(S*i) = a(S*i) * b(S*i)
c(S*i) = a(i) * b(i)
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g
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Execution threads
Figure 11: Multithreaded bandwidth for all strides for each

thread count. Values shown are averages all strides for each
thread count.

V. DISCUSSION

MARTA was conceived as a “push-button” system for
profiling and performance analysis, basing its reliability on
tested-and-true libraries and software. MARTA integrates the
PolyBench/C library [3] for instrumenting codes using the
PAPI library. It also relies on PolyBench/C directives for
declaring and initializing n-dimensional arrays, as well as
flushing the cache. The pyperf library is used for setting
the processor frequency (and the turbo boost in Intel ar-
chitectures). Data mining and machine learning algorithms
primarily from scikit-learn are employed for performance data
analysis. For the preprocessing stage, the Analyzer employs
the pandas, numpy, and KDEpy Python libraries. Using this
approach, MARTA benefits from the extensibility provided by
integrating tested open source components, yet retains control
over the profiling and performance analysis processes using a
simple configuration file.

MARTA is not limited to any particular set of compiler-
s/assemblers. The compilation/assembly steps are included as
recipes in the configuration files. There is, however, a restricted
set of automated analyses and profiling tools that are currently
supported by the tool, including LLVM-MCA, PAPI counters,
and SciKit-Learn. Some non-currently-supported technologies,
which we plan to support in the future, include OSACA,
RAPL, or ISAs different than x86. MARTA integrates external
libraries and tools using high-level interfaces and avoiding ad-
hoc code. New functionalities can be added by extending these
interfaces to integrate each specific new tool or behavior.
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MARTA currently supports and targets both single- and
multi-threaded/core profiling tasks. Post-processing tasks have
been optimized for data mining and basic ML classification,
regression and clustering. MARTA does not currently imple-
ment deep learning algorithms as typically the small number
of samples collected might not be sufficient for this type of Al
techniques. However, our systematic export of data series to
CSV allows seamless integration with any other data mining
or deep learning framework.

VI. RELATED WORK

Many different tools and approaches for profiling applica-
tions and architectures have been developed, from open-source
to commercial solutions, most of them are based on instru-
mentation using hardware counters. Accessing to the values
contained in those counters typically requires reading Model
Specific Registers (MSR) or Performance Monitor Counters
(PMC). Profilers commonly use interfaces for accessing these
hardware counters, such as perf_events. The API of
these interfaces is usually complex and low level. Therefore,
there are many different implementations depending on the
operating system and platform. For Linux, libpfm4 was
developed as an almost zero-overhead solution for accessing
these counters, and it is used in high-level interfaces such
as PAPIL. This library provides a flexible API for settings
and programming events on these hardware counters. This
alternative is intrusive, as the source code must be modified,
but it provides accurate measurements (exact values are pos-
sible, sampling hardware counters is optional) with very low
overhead, as it also employs rdpmc, if possible, for reading
performance counters.

There are different alternatives for monitoring and collecting
execution data from binaries such as perf, which is included
in the Linux kernel, OProfile [12] or LIKWID [13], which
also integrates a library for accessing hardware counters
similar to PAPI. These are low-level tools based on dynamic
instrumentation and, therefore, do not require source codes to
be recompiled. TAU [14], Extrae [15], Vampir [16], Scalasca
Trace Tools [17], HPCToolkit [1], and Intel oneAPI [2] (for-
merly Intel Parallel Studio XE) provide sophisticated profiling
environments, producing detailed and complete trace execution
analyses from binaries. This last one employs a top-down
methodology [18], which is meant for spotting the bottle-
necks in the pipeline from a hierarchical point of view. Abel
and Reineke [19] propose a micro-benchmarking methodol-
ogy based on measuring instruction latencies and reciprocal
throughput for x86 architectures. The scope of this approach
is meant for measuring instructions only, and not real regions
of code. Downs [20] presents another micro-benchmarking
methodology for the analysis of micro-architectural features
based on a set of synthesized benchmarks and a framework for
building benchmarks. This toolkit uses 1ibpfc [21] (another
library for reading PMU using rdpmc instructions), and is
limited to x86 architectures. timemory [22] is a modular C++
toolkit for performance analysis and logging. It provides a
simple interface for instrumenting programs avoiding low level



details of the instrumentation back-end and supports differ-
ent programming languages. kerncraft [23] is a loop kernel
analysis and performance modeling tool, which provides a
framework for data reuse and cache analysis.

Our approach goes beyond the ones presented above by
combining several of their abovementioned features, improv-
ing productivity and reproducibility with a simple interface
for combining different parameters, which includes execution
environment configuration. MARTA is lightweight and highly
tunable, allowing to easily create large sets of data to analyze.
This enables the analysis of very large exploration spaces
for benchmarking via automated data mining techniques. We
believe MARTA answers a need for practitioners who drive
their work based on experimental data for relevant micro-
benchmarks: MARTA automates the experimental setup to
ease reproducibility and portability on different machines/se-
tups, and importantly, facilitates the task of analyzing the data
produced by building predictors for the data from the input
feature values.

VII. CONCLUDING REMARKS

We presented MARTA, a fully implemented, open source,
and highly configurable toolkit for performance analysis of
programs. Productivity and reproducibility are improved with
automated benchmark template generation from a simple
configuration file, implementing a sound experimental setup
that exploits hardware counters in the host platform when
available. MARTA also integrates fine-grained directives for
instrumenting and monitoring small regions of code, enabling
micro-benchmarking analysis. An important aspect of MARTA
is to facilitate performance analysis and debugging: the toolkit
applies data mining and machine learning or Al-based tech-
niques on the measurements, automatically extracting the
features of the experimental setup which have the most impact
on performance. These post-processing tasks are valuable
for deriving knowledge from experiments, and are often not
included in other profiling tools.
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