
MARTA: Multi-configuration Assembly pRofiler

and Toolkit for performance Analysis

Marcos Horro

Universidade da Coruña

CITIC

Spain

marcos.horro@udc.es

Louis-Noël Pouchet

Colorado State University

Department of Computer Science

USA

pouchet@colostate.edu

Gabriel Rodrı́guez

Universidade da Coruña

CITIC

Spain

gabriel.rodriguez@udc.es

Juan Touriño

Universidade da Coruña

CITIC

Spain

juan@udc.es

Abstract—Benchmarking to characterize specific software or
hardware features is an error-prone, arduous and repetitive task.
Designing a specialized experimental setup frequently requires
writing new scripts or ad-hoc programs in order to properly
exhibit interesting performance effects, using code changes and
hardware events measurements. These artifacts may have limited
reusability for subsequent experiments, since they are dependent
on specific problems and, in some cases, platforms.

To improve productivity and reproducibility of such exper-
iments, which are often investigative in nature, we introduce
MARTA: a fully customizable toolkit that aims to increase
productivity by generating benchmark templates, compiling
them, and profiling the regions of interest (RoI) specified using
hardware events, and performing static code analysis. MARTA
can also be applied on existing code regions of interest, it only
requires to write a simple configuration file.

In an orthogonal dimension, the system is able to run various
statistical analyses on the measurements collected. MARTA uses
data mining and machine learning or AI-based techniques for
classification and regression, automatically extracting the features
of the experimental setup which have the most impact on
performance or whichever other metric of interest, given a
large set of experiments and dimensions to consider. These
post-processing tasks are valuable for deriving knowledge from
experiments and are not included in most profiling tools.

We also provide a set of cases of study to illustrate the ability of
MARTA to conveniently create a reliable and reproducible setup
for high-performance computing experiments, investigating three
vastly different performance effects on modern processors.

Index Terms—profiling, benchmarking, micro-benchmarking,
performance analysis, compiler characterization

I. INTRODUCTION

Performance analysis is required in any discipline of com-

puter engineering, for both hardware and software effects.

From real-time systems, where it is needed to assess the la-

tencies of instructions, to high-performance computing, where

codes need to be highly optimized and tuned to the execution

infrastructure to extract the maximum possible computing

throughput, profiling is crucial for characterizing systems,

either in a holistic manner or at a fine-grain level [1, 2].

In order to assess the validity of an experiment, measure-

ments are performed in a platform under a set of conditions.

For this reason, measuring events in a system requires the

setup of a controlled environment in order to ensure repro-

ducibility and repeatability for a set of experiments, e.g.,

setting the scaling governors of processors, setting maximum

frequencies of clocks, the memory page size used, core affini-

ties, etc. Additionally, passing arguments, macros and other

variables to programs is also an error prone task, leading

to false positives or other undesired and undefined behaviors

within the experimental setup. Checking and setting all these

conditions and parameters is usually done manually by users

(or semi-automatically using ad hoc scripts).

Orthogonally, when profiling a specific region of code (pos-

sibly included in a full application), there could be different

dimensions or parameters of interest for the user to consider

and configure, e.g., size of rows and columns for a matrix-

vector multiplication kernel, data precision (32-bits vs. 64-

bits), number of repetitions and step of a loop, access stride,

array padding, etc. Analyzing which of these dimensions has

the most significant impact in terms of performance can be

automated in a similar way, avoiding manual and repetitive

post-processing tasks.

In this paper we present a toolkit for automating the

experimental setup configuration, compilation, execution and

collection of data (static and dynamic) for a code region. In

addition, using data mining and machine learning or AI-based

techniques for classification such as decision trees and random

forests, it generates categories for analyzing the influence of

parameters and input arguments in the execution of a code.

We make the following contributions:

• The design and implementation of MARTA1, a frame-

work that fully automates experimental setup, compila-

tion, execution and performance data collection, typically

for a computational kernel. The system supports the

analysis of post-mortem execution data, the static analysis

of binaries through LLVM-MCA, and the automated

inspection of compilation logs and optimization reports.

• We automate the specialization of template codes and

header files including C/C++ macros to quickly create

micro-benchmark versions, controlling features such as

allocation strides or array padding, or enabling or dis-

abling compiler optimizations such as dead code elim-

ination or loop jamming that interfere with the correct

instrumentation of the region of interest.

1MARTA is open source BSD-licensed software, available at https://github.
com/UDC-GAC/MARTA.

79



• We present case studies that display MARTA in action,

showing how to quickly generate a space of program

variants, run them, and use MARTA to investigate the

structure of the data collected: decision trees are learned

to visualize sub-spaces of interest in the data, by building

compact predictors (decision tree, k-means, etc.) for the

data analyzed.

The paper is organized as follows: Section II describes the

architecture of the presented framework. Section III overviews

key aspects of the methodology for reproducibility. Section IV

presents a set of case studies that exemplify potential uses

of the tool. Section V discusses the strengths, capabilities

and limitations of the proposed approach. Section VI presents

related work on profiling and monitoring tools, and Section VII

concludes the paper.

II. MARTA: SYSTEM’S ARCHITECTURE

The proposed framework is composed of two main modules:

the Profiler and the Analyzer. The Profiler is in charge of the

compilation, execution and collection of data. The Analyzer

inspects the data provided by the Profiler, applying data

mining and machine learning or AI-based techniques. Both

modules are primarily written in Python 3, C, and Makefile

language. The framework works on any operating system,

but the compilation and execution facilities are designed

specifically for POSIX-compliant systems. MARTA can run

on any architecture, the only limitation being the naming of

hardware events, specified through configuration files. The

high-level architecture of the system is depicted in Figure 1.

The two components of the system, Profiler and Analyzer, are

independent between them, and can operate autonomously, as

they only interface through CSV files containing profiling data.

In the rest of the section we describe both modules in detail.

A. Profiler

The Profiler module is designed for parsing the configura-

tion files, compiling all the binary versions specified in them,

and running the generated binaries, collecting execution data.

The strength of this module lies in its ability to generate as

many different executable versions as necessary, as defined

by the Cartesian product of the sets of different options in

the configuration, e.g., compile-time options (e.g., whether to

enable or disable particular optimizations), program inputs,

or program features (e.g., -D flags enabling different code

paths). The generation of different program versions, which

is often a bottleneck in micro-architectural exploration, can

be done in parallel. In order to achieve maximum reliability,

the Profiler integrates with several different tested-and-true

software packages such as the PolyBench/C library [3], using

their low-level configuration and measuring capabilities. The

upper part of Figure 1 details the design of this module. The

Profiler receives two inputs:

• Configuration file: a structured YAML file containing

all parameters related to compilation (e.g. -D flags,

compilers and their flags, etc.), execution (e.g. threads to

launch and their affinity, number of repetitions, maximum

Figure 1: High-level architecture of the toolkit, composed

of the Profiler and the Analyzer modules, which operate

independently.

deviation in measurements, etc.), and data collection

(e.g. output format, dimensions to include, static code

analysis parameters, etc.). For convenience, some of these

parameters can be overwritten by using CLI arguments.

• Source code/application: typically a C/C++ program

whose execution prints in standard output values collected

from hardware counters, as well as the execution time and

values reported by the Time Stamp Counter (TSC). The

system helps produce this output format by including a

set of functions and macros at runtime.

In order to instrument binaries, MARTA follows the steps

detailed in Algorithm 1. The execute function used in that

approach is disclosed in Algorithm 2. The output generated

by all the executions in the experimental set is encoded into

a CSV file, which is passed as input to the Analyzer module.

B. Analyzer

The Analyzer integrated in the tool is meant for processing

raw data, typically the output of the Profiler, and mining

knowledge from these data, primarily through the use of scikit-

learn [4]. It can also generate relational plots given a set of

dimensions of interest. The inputs to this module are:

• Configuration file: a structured YAML file specifying

data wrangling parameters (including filtering, normal-

ization and categorization) as well as classification and

80



Algorithm 1: MARTA generates different binary ver-

sions for collecting the execution time, the TSC value

and the PAPI events. Each version is executed nexec

times. Values that deviate farther than a user-specified

threshold from the mean are discarded as outliers.

Input: Executable binary, boolean discard outliers,

float threshold

Result: Dictionary of values

values = {};

for type in [TSC, time, PAPI counters] do

data = [];

execute preamble commands();

for i ← 0 to nexec do

data.append(execute(type, binary));

end

execute finalize commands();

if discard outliers then
condition = (abs(data - data.mean()) <=
threshold * data.std());

data = data.select(condition);

avg value = sum(data) / nexec;

values[type] = avg value;

end

return values;

Algorithm 2: High-level approach of the execute

function: warm up if specified, and then instruments a

number of times the specified region of code.

Input: BenchmarkType type, Executable binary

Result: float

if hot cache then

for i ← 0 to warmup do

run code(type, binary);

end

v0 = measure(type);

for i ← 0 to steps do

run code(type, binary);

end

v1 = measure(type);

return (v1-v0) / steps;

plotting parameters. For classification customization, all

parameters follow the same naming or API as in scikit-

learn.

• Input data: CSV file labeled according to the dimensions

of interest described in the configuration file. The Profiler

output is fully compatible with this description, but any

CSV file can be used as input to this module.

The preprocessing stage is needed for the classification

algorithms to only consider the dimensions of interest, and

to know the categories into which data will be classified.

Preprocessing is performed as follows:

• Filtering: based on the dimensions of interest in the

problem, e.g., select columns containing a specific set

of values, a range, a concrete value and discard the rest,

etc.

• Normalization: values of interest can be normalized

using min-max or z-score techniques.

• Categorization: dimensions of interest are typically con-

tinuous values, e.g., the performance in GFLOPS, or the

average of the TSC values reported. The system is able

to discretize these values into a collection of bins or

categories. This can be configured statically, by describ-

ing the number of categories to create in the interval

using a constant step, or dynamically, using kernel density

estimation (KDE) for guessing the optimal number of

categories to generate, as well as their boundaries. For

the hyperparameter tuning in KDE grid search is used,

Silverman’s rule of thumb for normal distributions [5]

and the Improved Sheather-Jones algorithm [6] for mul-

timodal distributions.

The system randomly splits input data into training and

testing subsets, following the Pareto principle or 80/20 rule

of thumb, for training classifiers. Currently, the Analyzer

implements a decision tree and a random forest classifier.

The first one is meant to classify target categories depending

on the dimensions of interest specified, and the second one

to measure their importance. Adding other classifiers such

as SVM, k-means, or K-neighbors is trivial thanks to scikit-

learn’s homogeneous API. The final output produced by the

system is composed of the following optional elements:

• Classification knowledge: the system outputs the gener-

ated classification model as a decision tree. It also shows

the accuracy and the confusion matrix for the model. It

is possible to employ dtreeviz [7] for improving the

visualization of the decision tree.

• Feature importance analysis: by applying a random

forest classifier, the system is able to extract the impurity-

based feature importance. This is computed as the total

reduction of the criterion brought by that feature. The

system performs feature importance analysis using Mean

Decrease Impurity (MDI), which counts the times a

feature is used to split a node, weighted by the number

of samples it splits.

• Plots: it is possible to configure the plotting of different

types of graphs: scatter plots, KDE plots, etc.

• Processed results: a CSV file, similar to the input,

containing the results of these processing steps.

III. MEASUREMENT METHODOLOGY

We briefly overview key features of our measurement

methodology. As we particularly target small running times

for regions of interest (that is, micro-benchmarking), we pay

special attention to ensure reproducibility by implementing the

following principles: (a) the machine shall be configured in a

state that can be reproduced (e.g., fixed frequency, thread pin-

ning to cores, aligned memory allocation); (b) each experiment

shall be repeated multiple times until a satisfactory confidence

on each measurement is reached; and (c) the measurement

81



approach shall be as insensitive to the execution context as

possible. We highlight our solutions, inspired by good practice

in the field and in particular from the PolyBench/C [3] testing

harness system.

We remind the reader that conducting experiments correctly

so that one can trust the outcome is a particularly difficult

and error-prone process in computer science, due to the

immense variability induced by the execution context and

the multiple ways to implement a program that performs a

given computation. The reader is highly encouraged to revisit

the guide by Blackburn et al. [8] on how to properly assess

experimental evaluations, as MARTA can only go as far as

automating tasks, but the user remains responsible for correctly

setting up the experiments. This includes which knob(s) of the

experimental setup are fixed or left free such as disabling turbo

boost.

A. Machine Configuration

We offer various knobs to control the system that will

execute the programs. This includes: (a) disabling turbo boost

(via MSR); (b) fixing CPU frequency (for Linux systems

only); (c) pinning threads to particular cores (using OpenMP

environment variables or the taskset command, and also us-

ing the system calls provided by the toolkit directives); and (d)

using an uninterrupted process scheduler (for Linux systems,

the FIFO scheduler). Note that most of these knobs require

administrator privileges on the host machine. Turning on all

these features would ensure that in between two experiments

the effects from the operating system’s decisions are mitigated:

the frequency is fixed for a concrete core (or set of cores)

with the proper thread affinity set, allowing to relate cycles

to wall clock time easily and systematically for the whole

experiment duration. As an illustrative example, running a

DGEMM computation may see a variability of over 20% in

terms of cycles between two runs of the exact same software

on our testing setup, while this variability reduces to less than

1% with the setup fixed by MARTA.

B. Repeating Runs

A possible approach to increase the confidence in the

measured values is to repeat the same experiment multiple

times to characterize the variation between runs, and determine

whether this variation is acceptable. This is a central aspect

of reproducibility. MARTA lets the user determine what is the

acceptable variability threshold, which depends on the stability

of the host machine and how it was configured. It also depends

on the data distribution: the variability between runs should be,

at least, an order of magnitude lesser than that of the effects

that are to be measured.

In MARTA, the default experimental setup is to re-run the

same experiment X times, remove the largest and smallest

measures from the set (keeping X-2 samples), compute the

arithmetic mean of the X-2 samples, and compute the deviation

between each sample and the arithmetic mean. If one sample

exceeds a threshold T then the whole experiment (the multiple

runs of the same program) is discarded, and needs to be

repeated. In our tests, we found that X=5 and T=2% are

reasonable values for experimental validation (detailed in

Section IV).

C. Measuring on the CPU

It is key to ensure that we measure events while un-

derstanding their sensitivity to the experimental setup. For

example, some hardware counters measure elapsed time (e.g.

CPU_CLK_UNHALTED.REF_P) while some others are in-

sensitive to frequency and measure elapsed active cycles

(e.g. CPU_CLK_UNHALTED.THREAD_P). Accurately mea-

suring performance typically involves accurately measuring

time. MARTA offers both frequency-sensitive and frequency-

independent measurements of time. The number of hardware

counters available may be in the hundreds. We preselected in

MARTA relevant counters for measuring time, but the user

may include other counters to collect data such as data traffic,

branch utilization, etc..

Typically processors do not allow to measure more than

a handful of counters in the same run in an exact manner.

Sampling of the counter value may be implemented instead,

and some pairs of counters simply cannot be measured at the

same time. To avoid any issue with PAPI counter multiplexing,

MARTA performs one experiment per counter to be monitored

(exact value, no sampling), running the program with only that

counter and the timestamp counter being monitored. For each

counter, multiple runs are launched and variability is assessed

as described above.

IV. EVALUATION: CASE STUDIES

In order to illustrate the performance and capabilities of the

tool, this section describes three case studies which consider

three different research questions. Each of them contains the

description of the space to explore, the motivation for using

MARTA, and the use of the tool in order to answer the research

question. Note that all the plots in this section have been

automatically generated by the framework, directly using the

output of the Profiler, together with a configuration file, as the

input to the Analyzer.

A. Micro-benchmarking gather instructions

RQ1.- How does the performance of SIMD gather

instructions vary with respect to the number of cache

lines and elements retrieved, both for 128-bit and

256-bit registers, assuming cold cache, and for Intel

Cascade Lake and AMD Zen3?

Definition of the exploration space: Gather is a complex

x86 macro-instruction introduced in AVX2 for loading random

data points given a starting address and a set of indices. This

instruction has been reported to deliver variable latencies [9],

depending on the source and destination operands. Hofmann

et al. [10] demonstrate the performance variability of the

gather instruction for the Intel Knights Corner and Intel

Haswell architectures, depending on the number of elements

fetched by the gather instruction from a cache line.

82



1 #include "marta_wrapper.h"

2 #include <immintrin.h>

3 void gather_kernel(float *restrict x) {

4 __m256i index =

5 _mm256_set_epi32(IDX7, IDX6, IDX5,

6 IDX4, IDX3, IDX2,

7 IDX1, IDX0);

8 __m256 tmp = _mm256_i32gather_ps(x, index, 4);

9 DO_NOT_TOUCH(tmp);

10 DO_NOT_TOUCH(index);

11 }

12 MARTA_BENCHMARK_BEGIN;

13 POLYBENCH_1D_ARRAY_DECL(x, float, N);

14 init_1darray(POLYBENCH_ARRAY(x));

15 MARTA_FLUSH_CACHE;

16 PROFILE_FUNCTION(gather_kernel(POLYBENCH_ARRAY(x) +

OFFSET));

17 MARTA_AVOID_DCE(x);

18 MARTA_BENCHMARK_END;

Figure 2: Input code for micro-benchmarking the gather FP

instruction. The configuration file for this benchmark will

declare all possible values for the IDXx variables.

Differently, the present experiment explores the impact of

the number of cache lines touched by a gather instruction but

considering a cold cache, i.e., when data fills come from main

memory. We actively avoid any cache prefetching impact, and

analyze the real cost of gathering random data elements from

main memory.

MARTA in action: The source code employed to explore

this search space using MARTA is detailed in Figure 2.

The DO_NOT_TOUCH(var) directives avoid any compiler

optimization on variable var, e.g., dead code elimination. The

assembly code generated for this input is shown in Figure 3.

As it can be seen, the instrumentation overhead is minimal.

Similarly, any assembly code can be plugged directly into the

input source passed to MARTA for compilation and execution.

As an example of our configuration, the possible values for

the IDX# variables for gathering 8 elements are:

• IDX0: [0]

• IDX1: [1, 8, 16]

• IDX2: [2, 9, 32]

• IDX3: [3, 10, 48]

• IDX4: [4, 11, 64]

• IDX5: [5, 12, 80]

• IDX6: [6, 13, 96]

• IDX7: [7, 14, 112]

The Cartesian product of these lists of variables generates

a space of more than 2K elements, including all combinations

of these gather instructions touching any number of cache

lines from 1 to 8. The same reasoning is extended for the

remaining gather experiments, varying from 2 to 8 data points

or elements. In total, we generate more than 3K combinations

for each platform. The total execution time for all these

experiments is roughly three hours on each machine, including

the compilation process.

Evaluation: Our analysis focuses on two factors: 1) the

impact of the number of distinct cache lines on the gather

instruction, and 2) the difference in performance between two

of the latest Intel and AMD architectures: a Xeon Silver

1 ...

2 vmovaps ymm1, YMMWORD PTR [rsp]

3 vmovdqa ymm2, YMMWORD PTR .LC1[rip]

4 call polybench_start_timer@PLT

5 test eax, eax

6 begin_loop:

7 vmovaps ymm3, ymm1

8 vgatherdps ymm0, DWORD PTR [rax+ymm2*4], ymm3

9 add rax, 262144

10 cmp rbx, rax

11 jne begin_loop

12 call polybench_stop_timer@PLT

13 ...

Figure 3: Example of 256-bit-register assembly code generated

for this experiment: rax holds and offset to avoid data reuse,

ymm2 is used to compute the indices, and ymm3 holds the

mask (e.g. when gathering less than 8 elements using 256

bits).

Figure 4: Distribution plot for gather with respect to its

performance in terms of TSC cycles (log scale). Vertical

dashed lines mark the peak centroids of each category found.

4126 and a Ryzen9 5950X, featuring Cascade Lake and Zen3

architectures, respectively. The target performance metric is

the number of TSC cycles, in order to be frequency agnostic.

MARTA generates categories based on the density distribu-

tion of the values obtained. Figure 4 illustrates the resulting

distribution plot, showing the different centroids and the

categories induced by MARTA according to the kernel density

estimation (KDE) approach. The legend in this figure describes

the categories generated for the TSC values. Even though some

of them are not visible in the figure due to their order of

magnitude, the system helps to locate them by displaying the

peak centroids in the distribution.

Based on this model, the system builds a decision tree as

shown in Figure 5, with an accuracy rate of ≈ 91%. The model

uses the number of cache lines touched by the instruction

(N_CL), the vector width (vec_width, 0 for 128 bits and

1 for 256 bits), and the host platform (arch, 0 for AMD and

1 for Intel). The structure very clearly gives the intuition that

83



Figure 5: Decision tree for predicting the performance of

gather instruction based on the categories generated by the

system. N_CL is the number of cache lines touched by the

program, arch is 0 for AMD Zen3 and 1 for Intel Cascade

Lake. vec_width is 0 for 128-bit vectors, and 1 for 256-bit

vectors. Nodes in lighter colors represent a higher impurity

degree, which is not desirable.

the degradation in performance is related to the increase in the

total number of cache lines touched by the gather instruction.

However, this simple model can also discover some other

hidden architectural effects, e.g., following the decision tree,

our model is able to detect that the AMD Zen3 performs better

when the number of cache lines touched is 4 when using 128-

bit width vectors. This behavior is not present in the Intel

machine.

This decision tree also serves to investigate why the pre-

dictor missclassifies certain points. In this specific case, af-

ter manual exploration, we found out that most errors are

attributable to fuzzy categorical boundaries and natural mea-

surement noise.

In this case we focus on decision trees, as they allow

to visualize a partitioning of the space in a manner that is

intuitively interpretable by the user. Other techniques such

as linear regression might provide lower RMSE, but they are

also typically much less intuitive and make knowledge transfer

harder than, e.g., a small decision tree as built by MARTA. On

the other hand, the feature importance analysis (MDI) reports

a high difference between the number of cache lines touched,

the architecture, and vector width: 0.78 against 0.18 and 0.04,

respectively.

Answering our research question, the performance of gather

operations is clearly dependent on the number of cache lines

used. The degradation is remarkable when increasing the

number of cache lines touched by the instruction. On Intel

Cascade Lake there is no influence on performance of the

vector width or the use of masks. There is, however, a

noticeable and interesting difference when using the 128-bit

width version on AMD Zen3.

B. Empirical throughput of FMA instructions

RQ2.- How many independent FMA instructions can be

executed in just one cycle, assuming hot cache, regardless of

data type, vector size and ISA?

Definition of the exploration space: FMA instructions

perform fused multiply-add operations and were introduced

as extensions of the 128- and 256-bit SIMD instructions in

x86. There were some divergences between Intel’s and AMD’s

implementation at the beginning, but modern architectures,

starting from Haswell on Intel and Zen2 on AMD, implement

the FMA3 ISA. All instructions available in this ISA have

the form of d = a × b + c, where d must be the same

register as either a, b or c. As such, there are different variants

of these same operations, for instance, vfmadd132ps and

vfmadd213ps, which vary the operands chosen for the

multiplication and the destination operand. These instructions

have dedicated resources in the pipeline, typically FMA units.

However, these units share ports in the pipeline with other

architectural units such as the division, integer (e.g. ALU,

jump, load effective address, etc.), or shift units. In this case

we want to get the actual throughput of any FMA instruction

for a given platform, regardless of data type, vector width, or

interferences with any other instruction.

MARTA in action: This experiment requires micro-

benchmarking, and MARTA includes a specific configuration

for this purpose. It also requires hot cache conditions in

order to get the maximum throughput of consecutive and

independent FMA instructions. We consider two or more FMA

instructions to be independent iff there is no data dependence

among them. MARTA is able to automatically generate the C

code required for benchmarking a list of assembly instructions.

It can also generate all the possible permutations of the

subsets of this instruction list. This is useful if our experiment

requires to consider all possible orderings of the instructions

to measure.

For this purpose, we specify the list of assembly instructions

to benchmark in a configuration file, as described in Figure 6,

or using the CLI, e.g., marta_profiler perf --asm

"vfmadd213ps %xmm2, %xmm1, %xmm0". MARTA is

also in charge of unrolling these instructions, for repro-

ducibility reasons, and executing warm-up iterations. All these

parameters are also configurable during runtime.

Extending the example in Figure 6, MARTA makes it

straightforward to write more benchmarks but changing the

registers (i.e. vector width) and the data type (ps suffix in

the code). MARTA automates the generation of these combi-

nations according to the number of consecutive independent

instructions we want to issue, from only the first instruction

up to all of them.

84



1 asm_body:

2 [

3 "vfmadd213ps %xmm11, %xmm10, %xmm0",

4 "vfmadd213ps %xmm11, %xmm10, %xmm1",

5 "vfmadd213ps %xmm11, %xmm10, %xmm2",

6 "vfmadd213ps %xmm11, %xmm10, %xmm3",

7 "vfmadd213ps %xmm11, %xmm10, %xmm4",

8 "vfmadd213ps %xmm11, %xmm10, %xmm5",

9 "vfmadd213ps %xmm11, %xmm10, %xmm6",

10 "vfmadd213ps %xmm11, %xmm10, %xmm7",

11 "vfmadd213ps %xmm11, %xmm10, %xmm8",

12 "vfmadd213ps %xmm11, %xmm10, %xmm9",

13 ]

Figure 6: List of instructions to benchmark for getting the

FMA throughput in AT&T format, using 128-bit vectors for

single precision.

Evaluation: In this experiment we ran a set of benchmarks

varying the following features: 1) number of independent

FMA instructions executed contiguously (from 1 to 10), 2)

vector width (128 bits, 256 bits, and 512 bits, if available),

and 3) data type (single and double precision). A total of

60 benchmarks are generated. We ran these experiments on

three different machines: Intel Xeon Silver 4216 (Cascade

Lake), Intel Xeon Gold 5220R (Cascade Lake), and AMD

Ryzen9 5950X (Zen3). The results are shown in Figure 7 in

the form of a line plot, colored by the configuration (data

type and vector width), and with the line style according to

the architecture used. The figure clearly shows the saturation

Figure 7: Line plot generated by MARTA according to the

number of independent FMA instructions issued and the

reciprocal throughput obtained, computed as the number of

instructions executed divided by the number of cycles. Some

data overlap, but we have preferred to not edit the figure in the

interest of preserving the original MARTA output. The figure

shows how configurations using 512-bit vectors (float_512

and double_512) are the only ones deviating from the norm.

points for these architectures. Conducting such experiment can

validate, or even replace, the manufacturer documentation on

the throughput of specific instructions.

We observe under which scenario both AMD and Intel

machines allow 2 FMAs to be executed in a single cycle,

independently of their vector width. It requires to have at least

8 independent FMAs in the loop body to achieve a throughput

of 2 FMAs per cycle, as otherwise the throughput is reduced.

This experiment highlights how one would fail to achieve a

throughput of 2 FMAs per cycle with only two independent

FMAs in flight. We suspect this is related to the 4-cycle latency

of FMA instructions. For Intel machines using AVX-512, only

one FMA can be issued per cycle. This indicates most likely

the availability of a single AVX-512 FPU.

MARTA can generate a decision tree-based predictor for all

architectures, as shown in Figure 8. This predictor, while naive,

is able to extract the importance of the features, accurately

categorizing all data points.

Figure 8: Simple predictor synthesized by MARTA according

to the number of FMAs issued and the vector width of the

instructions used.

To conclude our case study, we observed that both AMD

Zen3 and Intel Cascade Lake have a maximum throughput of

2 FMAs per cycle using vectors of 128 and 256 bits, i.e., they

can issue 2 FMAs in a single cycle, provided there are enough

independent instructions in flight. AMD Zen3 does not feature

AVX-512, while our Intel Cascade Lake processors feature a

single AVX-512 FPU. From an architectural point of view, this

is typically done by fusing both 256-bit units when issuing

instructions using 512-bit vectors.

C. Influence of access pattern on memory bandwidth

RQ3.- Consider a vector operation of the form c(f(i)) =
a(g(i)) ∗ b(h(i)). How does the memory bandwidth vary with

the access patterns, influenced by the access functions f , g,

and h?

Definition of the exploration space: The performance of

memory-bound benchmarks is limited by the main memory

bandwidth. This bandwidth is affected by several factors, not

all of them intuitive. Modern architectures are designed to ef-

ficiently access data in a streamlined fashion by implementing

mechanisms such as software and hardware prefetching. In

this section, we focus on the analysis a triad operation on a

double-precision floating-point data type, studying the effect

of changing the element access order.

Intuitively, a purely streamlined access, i.e., f(i) = g(i) =
h(i) = i, will deliver the best possible bandwidth. But how

is this peak bandwidth affected by strided accesses, or even

random accesses, in one or more streams, such as could

occur for example in Sparse Matrix-Vector Multiplication

computations?

MARTA in action: We manually write a tuned version

of the STREAM benchmark [11] implementing the proposed

85



1 __m256d regA1 = _mm256_load_pd(&a[data_a]);

2 __m256d regA2 = _mm256_load_pd(&a[data_a + 4]);

3 __m256d regB1 = _mm256_load_pd(&b[data_b]);

4 __m256d regB2 = _mm256_load_pd(&b[data_b + 4]);

5 __m256d regC1 = _mm256_mul_pd(regA1, regB1);

6 __m256d regC2 = _mm256_mul_pd(regA2, regB2);

7 _mm256_store_pd(&c[data_c], regC1);

8 _mm256_store_pd(&c[data_c+4], regC2);

Figure 9: AVX triad kernel used for measuring memory

bandwidth.

triad operation directly using AVX intrinsics, to avoid compiler

optimization interference in the measurements. The code is

shown in Figure 9. The accessed elements of each array

are determined by the access variables data_{a,b,c}. The

values of these variables are the ones that drive the study, and

determine whether the access to each stream is sequential,

strided, or random. We set up the experiment so that all three

streams and access variables are 64B-aligned (i.e., memory

block-aligned). This means that strided and random accesses

are not defined in terms of individual array elements, but of

memory blocks. Once a block is selected, its eight contiguous

double-precision elements are accessed (for a and b) or writ-

ten (for c). We do this so that the total number of data accesses

is invariable across different access patterns. Similarly, the

total number of cache hits and misses will be invariable in

the absence of prefetching, with the rare exception of the

same block being selected twice in close succession for the

random access experiments. The total number of iterations is

equal to the total number of memory blocks in each array,

STREAM_BLOCKS. The processor used for evaluation is an

Intel Xeon Silver 4216 (Cascade Lake) and, for that reason,

the size of each array is defined to be 16 Mi elements, i.e.,

128 MiB or at least four times the total LLC size of 22 MiB,

as recommended by the STREAM author. When accessing

streams with a stride S, the benchmark accesses each block

of each array exactly once as follows. During a first traversal,

only blocks in positions B | B mod S = 0 are accessed. In

a second traversal, blocks in positions B | B mod S = 1
are selected. The process continues until, in traversal S − 1,

the last untouched blocks are accessed. This avoids unwanted

cache reuse with large access strides.

We write the following benchmark versions: one with all

sequential accesses which serves as a baseline; four strided

versions, one with a stride on b only, one with a stride on c

only, one with a stride on b and a, and one with a stride on all

three streams; and four random versions in which rand() is

used for each randomly accessed stream, in the same fashion

as the strided access.

Evaluation: We use MARTA to automatically run 630 dif-

ferent microbenchmarks. Each of the 9 different code versions

described above is run using 1, 2, 4, 8 and 16 cores. Each

strided version is run with S values from 1 to 8 Ki. We build

a decision tree that tries to predict the achievable bandwidth

by each access pattern given its stride and number of execution

threads. This is useful to bound the performance of different

classes of kernels, e.g., a Sparse Matrix-Vector Multiplication,

which is similar to a triad in which one of the streams

is accessed randomly. The decision tree shows remarkable

impurity when classifying strided accesses. In order to study

this, we first focus on analyzing the results obtained for a

single thread. These are shown in Figure 10. The bandwidth

achieved by fully sequential accesses is approximately 10

times smaller than the peak, at just 13.9 GB/s. Sequential and

random accesses are not affected by the STRIDE parameter,

and appear in this figure as bounds to the actual performance

obtainable by the strided versions. The figure clearly shows

how the bandwidth drops with the stride: it drops sharply

for S = {2, 4, 8, 16, 32, 64}, to an average 9.2 GB/s for the

case of strided b only. The clear reason in this case is the

ineffectiveness of the next-line hardware prefetcher. There

is another sharp drop starting at S = 128, to an average

4.1 GB/s, which is similar to the performance of accesses

using rand(). This is ultimately an artifact caused by the

single-threaded execution, as will be shown with multithreaded

experiments.

Figure 10: Bandwidth obtained for different access patterns

using a single thread. Accesses labeled as x[i] represent

sequential accesses, x[S*i] represent strided accesses, and

x[r] represent random accesses.

We analyze the bandwidth evolution as the number of

threads increases up to the 16 physical cores available in the

processor. We presume that the very low bandwidth achieved

for a single thread is caused by front-end stalls and, con-

sequently, trivially parallelizing the triad computation using

OpenMP should greatly increase the available bandwidth.

The results are shown in Figure 11. We can see a clear

increasing trend for all benchmark versions, except for those

calling rand(). In this case, using multiple threads to access

memory is harmful for performance, achieving a low peak

bandwidth of only 0.4 GB/s for the version which accesses

three random streams through calls to rand(). This low

performance is caused by the enormous overhead introduced

by the call to rand() as implemented in stdlib, as these

versions emit, on average, 5x and 6x more memory loads

86



and stores, respectively. This effect demonstrates the limits

of MARTA: the user remains responsible for understanding

and explaining the experimental results. In this case, MARTA

identifies a large increase in the number of issued instructions,

pointing towards experimental setup effects and, ultimately,

to computation bounds introduced by the random-number

generator.

Figure 11: Multithreaded bandwidth for all strides for each

thread count. Values shown are averages all strides for each

thread count.

V. DISCUSSION

MARTA was conceived as a “push-button” system for

profiling and performance analysis, basing its reliability on

tested-and-true libraries and software. MARTA integrates the

PolyBench/C library [3] for instrumenting codes using the

PAPI library. It also relies on PolyBench/C directives for

declaring and initializing n-dimensional arrays, as well as

flushing the cache. The pyperf library is used for setting

the processor frequency (and the turbo boost in Intel ar-

chitectures). Data mining and machine learning algorithms

primarily from scikit-learn are employed for performance data

analysis. For the preprocessing stage, the Analyzer employs

the pandas, numpy, and KDEpy Python libraries. Using this

approach, MARTA benefits from the extensibility provided by

integrating tested open source components, yet retains control

over the profiling and performance analysis processes using a

simple configuration file.

MARTA is not limited to any particular set of compiler-

s/assemblers. The compilation/assembly steps are included as

recipes in the configuration files. There is, however, a restricted

set of automated analyses and profiling tools that are currently

supported by the tool, including LLVM-MCA, PAPI counters,

and SciKit-Learn. Some non-currently-supported technologies,

which we plan to support in the future, include OSACA,

RAPL, or ISAs different than x86. MARTA integrates external

libraries and tools using high-level interfaces and avoiding ad-

hoc code. New functionalities can be added by extending these

interfaces to integrate each specific new tool or behavior.

MARTA currently supports and targets both single- and

multi-threaded/core profiling tasks. Post-processing tasks have

been optimized for data mining and basic ML classification,

regression and clustering. MARTA does not currently imple-

ment deep learning algorithms as typically the small number

of samples collected might not be sufficient for this type of AI

techniques. However, our systematic export of data series to

CSV allows seamless integration with any other data mining

or deep learning framework.

VI. RELATED WORK

Many different tools and approaches for profiling applica-

tions and architectures have been developed, from open-source

to commercial solutions, most of them are based on instru-

mentation using hardware counters. Accessing to the values

contained in those counters typically requires reading Model

Specific Registers (MSR) or Performance Monitor Counters

(PMC). Profilers commonly use interfaces for accessing these

hardware counters, such as perf_events. The API of

these interfaces is usually complex and low level. Therefore,

there are many different implementations depending on the

operating system and platform. For Linux, libpfm4 was

developed as an almost zero-overhead solution for accessing

these counters, and it is used in high-level interfaces such

as PAPI. This library provides a flexible API for settings

and programming events on these hardware counters. This

alternative is intrusive, as the source code must be modified,

but it provides accurate measurements (exact values are pos-

sible, sampling hardware counters is optional) with very low

overhead, as it also employs rdpmc, if possible, for reading

performance counters.

There are different alternatives for monitoring and collecting

execution data from binaries such as perf, which is included

in the Linux kernel, OProfile [12] or LIKWID [13], which

also integrates a library for accessing hardware counters

similar to PAPI. These are low-level tools based on dynamic

instrumentation and, therefore, do not require source codes to

be recompiled. TAU [14], Extrae [15], Vampir [16], Scalasca

Trace Tools [17], HPCToolkit [1], and Intel oneAPI [2] (for-

merly Intel Parallel Studio XE) provide sophisticated profiling

environments, producing detailed and complete trace execution

analyses from binaries. This last one employs a top-down

methodology [18], which is meant for spotting the bottle-

necks in the pipeline from a hierarchical point of view. Abel

and Reineke [19] propose a micro-benchmarking methodol-

ogy based on measuring instruction latencies and reciprocal

throughput for x86 architectures. The scope of this approach

is meant for measuring instructions only, and not real regions

of code. Downs [20] presents another micro-benchmarking

methodology for the analysis of micro-architectural features

based on a set of synthesized benchmarks and a framework for

building benchmarks. This toolkit uses libpfc [21] (another

library for reading PMU using rdpmc instructions), and is

limited to x86 architectures. timemory [22] is a modular C++

toolkit for performance analysis and logging. It provides a

simple interface for instrumenting programs avoiding low level

87



details of the instrumentation back-end and supports differ-

ent programming languages. kerncraft [23] is a loop kernel

analysis and performance modeling tool, which provides a

framework for data reuse and cache analysis.

Our approach goes beyond the ones presented above by

combining several of their abovementioned features, improv-

ing productivity and reproducibility with a simple interface

for combining different parameters, which includes execution

environment configuration. MARTA is lightweight and highly

tunable, allowing to easily create large sets of data to analyze.

This enables the analysis of very large exploration spaces

for benchmarking via automated data mining techniques. We

believe MARTA answers a need for practitioners who drive

their work based on experimental data for relevant micro-

benchmarks: MARTA automates the experimental setup to

ease reproducibility and portability on different machines/se-

tups, and importantly, facilitates the task of analyzing the data

produced by building predictors for the data from the input

feature values.

VII. CONCLUDING REMARKS

We presented MARTA, a fully implemented, open source,

and highly configurable toolkit for performance analysis of

programs. Productivity and reproducibility are improved with

automated benchmark template generation from a simple

configuration file, implementing a sound experimental setup

that exploits hardware counters in the host platform when

available. MARTA also integrates fine-grained directives for

instrumenting and monitoring small regions of code, enabling

micro-benchmarking analysis. An important aspect of MARTA

is to facilitate performance analysis and debugging: the toolkit

applies data mining and machine learning or AI-based tech-

niques on the measurements, automatically extracting the

features of the experimental setup which have the most impact

on performance. These post-processing tasks are valuable

for deriving knowledge from experiments, and are often not

included in other profiling tools.

ACKNOWLEDGMENTS

This work was funded by the Ministry of Sci-

ence and Innovation of Spain (ref. PID2019-104184RB-

I00/AEI/10.13039/501100011033), by the Ministry of Educa-

tion of Spain under Grant FPU16/00816, by Xunta de Galicia

and FEDER funds of the EU (CITIC - Centro de Investigación

de Galicia accreditation 2019-2022, ref. ED431G 2019/01;

Consolidation Program of Competitive Reference Groups,

ref. ED431C 2021/30), and by the U.S. National Science

Foundation under Awards CCF-1750399 and CCF-2009020.

M. H. thanks Travis Downs and Peter Cordes for his insights

in micro-benchmarking topics. The authors would also like to

thank the anonymous reviewers for their valuable feedback.

REFERENCES

[1] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel,

G. Marin, J. Mellor-Crummey, and N. R. Tallent, “HPC-

Toolkit: Tools for performance analysis of optimized par-

allel programs,” Concurrency and Computation: Practice

and Experience, vol. 22, no. 6, pp. 685–701, 2010.

[2] Intel. (n.d.) Intel oneAPI. https://software.intel.com/

content/www/us/en/develop/tools/oneapi.html#gs.1ptgr0.

[3] L.-N. Pouchet and T. Yuki. (n.d) PolyBench/C 4.2.1. http:

//polybench.sourceforge.net.

[4] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,

B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,

R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-

napeau, M. Brucher, M. Perrot, and E. Duchesnay,

“Scikit-learn: Machine Learning in Python,” Journal of

Machine Learning Research, vol. 12, pp. 2825–2830,

2011.

[5] B. W. Silverman, Density estimation for statistics and

data analysis. Chapman and Hall/CRC, 1986.

[6] Z. I. Botev, J. F. Grotowski, and D. P. Kroese, “Kernel

density estimation via diffusion,” The annals of Statistics,

vol. 38, no. 5, pp. 2916–2957, 2010.

[7] T. Par, T. Lapusan, and P. Grover. (n.d.) dtreeviz : Deci-

sion Tree Visualization. https://github.com/parrt/dtreeviz.

[8] S. M. Blackburn, A. Diwan, M. Hauswirth, P. F.

Sweeney, J. N. Amaral, T. Brecht, L. Bulej, C. Click,

L. Eeckhout, S. Fischmeister et al., “The truth, the whole

truth, and nothing but the truth: A pragmatic guide

to assessing empirical evaluations,” ACM Transactions

on Programming Languages and Systems (TOPLAS),

vol. 38, no. 4, pp. 1–20, 2016.

[9] A. Abel and J. Reineke, “uops.info: Characterizing La-

tency, Throughput, and Port Usage of Instructions on

Intel Microarchitectures,” in Proceedings of the 24th

International Conference on Architectural Support for

Programming Languages and Operating Systems (ASP-

LOS), 2019, pp. 673–686.

[10] J. Hofmann, J. Treibig, G. Hager, and G. Wellein, “Com-

paring the performance of different x86 simd instruction

sets for a medical imaging application on modern multi-

and manycore chips,” in Proceedings of the Workshop

on Programming Models for SIMD/Vector Processing

(WPMVP), 2014, p. 57–64.

[11] J. D. McCalpin, “Memory bandwidth and machine bal-

ance in current high performance computers,” IEEE

Computer Society Technical Committee on Computer

Architecture (TCCA) Newsletter, pp. 19–25, 1995.

[12] J. Levon. (n.d.) OProfile. https://oprofile.sourceforge.io/

news/.

[13] J. Treibig, G. Hager, and G. Wellein, “LIKWID: A

Lightweight Performance-Oriented Tool Suite for X86

Multicore Environments,” in Proceedings of the 39th

International Conference on Parallel Processing Work-

shops, 2010, pp. 207–216.

[14] S. S. Shende and A. D. Malony, “The TAU parallel

performance system,” The International Journal of High

Performance Computing Applications, vol. 20, no. 2, pp.

287–311, 2006.

[15] BSC Performance Tools. (n.d.) Extrae. https://tools.bsc.

es/extrae.

88



[16] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz,

M. Lieber, H. Mickler, M. S. Müller, and W. E. Nagel,

“The vampir performance analysis tool-set,” in Proceed-

ings of the 2nd International Workshop on Parallel Tools

for High Performance Computing, 2008, pp. 139–155.

[17] M. Geimer, F. Wolf, B. J. Wylie, E. Ábrahám, D. Becker,

and B. Mohr, “The Scalasca performance toolset archi-

tecture,” Concurrency and Computation: Practice and

Experience, vol. 22, no. 6, pp. 702–719, 2010.

[18] A. Yasin, “A Top-Down Method for Performance Anal-

ysis and Counters Architecture,” in Proceedings of the

IEEE International Symposium on Performance Analysis

of Systems and Software (ISPASS), 2014, pp. 35–44.

[19] A. Abel and J. Reineke, “nanoBench: A Low-Overhead

Tool for Running Microbenchmarks on x86 Systems,”

in Proceedings of the IEEE International Symposium on

Performance Analysis of Systems and Software (ISPASS),

2020, pp. 34–46.

[20] T. Downs. (n.d.) uarch-bench. https://github.com/

travisdowns/uarch-bench.

[21] O. Bilaniuk. (n.d.) libpfc. https://github.com/obilaniu/

libpfc.

[22] J. R. Madsen, M. G. Awan, H. Brunie, J. Deslippe,

R. Gayatri, L. Oliker, Y. Wang, C. Yang, and S. Williams,

“Timemory: modular performance analysis for HPC,” in

Proceedings of the International Conference on High

Performance Computing, 2020, pp. 434–452.

[23] J. Hammer, J. Eitzinger, G. Hager, and G. Wellein,

“Kerncraft: A tool for analytic performance modeling of

loop kernels,” in Proceedings of the 10th International

Workshop on Parallel Tools for High Performance Com-

puting, 2016, pp. 1–22.

89


