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Abstract: This study examines the impacts of assimilating ocean-surface winds derived from the
NASA Cyclone Global Navigation Satellite System (CYGNSS) on improving the short-range nu-
merical simulations and forecasts of landfalling hurricanes using the NCEP operational Hurricane
Weather Research and Forecasting (HWRF) model. A series of data assimilation experiments are
performed using HWRF and a Gridpoint Statistical Interpolation (GSI)-based hybrid 3-dimensional
ensemble-variational (3DEnVar) data assimilation system. The influence of CYGNSS data on hurri-
cane forecasts is compared with that of Advanced Scatterometer (ASCAT) wind products that have
already been assimilated into the HWRF forecast system in a series of assimilation experiments. The
effects of different versions of CYGNSS data (V2.1 vs. V3.0) on hurricane forecasts are evaluated.
The results indicate that CYGNSS ocean-surface wind can lead to improved numerical simulations
and forecasts of hurricane track and intensity, asymmetric wind structure, and precipitation. The
impacts of CYGNSS on hurricane forecasts are comparable and complementary to the operational
use of ASCAT satellite data products. The dependence of the relative impacts of different versions of
CYGNSS data on optimal thinning distances is evident.
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1. Introduction

Landfalling hurricanes cause significant damage and casualties in coastal and inland
areas. Their intensity, track, and associated precipitation are the main focuses in weather
forecasting. However, hurricanes usually originate and evolve over the ocean before
they approach the coastline and make landfall, and sparse observations over the ocean
commonly make hurricane forecasts very challenging. In recent decades, with the rapid
development of observation systems, more data sources (e.g., in situ observations, satellites,
and ground-based and airborne radars) have become available for monitoring and analyz-
ing hurricanes (e.g., [1–3]). Among these data sources, satellite-measured ocean-surface
winds—such as those from the previous NASA Quick Scatterometer (QuickSCAT) and the
recent Advanced Scatterometer (ASCAT) from the European Organization for the Exploita-
tion of Meteorological Satellites (EUMETSAT)—have advantages in observing hurricane
evolution over the ocean, as they provide hurricane circulation data near the surface and
also carry the signature of air–sea interaction. Studies have indicated that satellite-derived
ocean-surface winds can have positive impacts on the track, intensity, and structure fore-
casts of hurricanes, including landfalling hurricanes, when they are assimilated into global
and regional Numerical Weather prediction (NWP) models (e.g., [4–7]). Because of the
significant influence of satellite-derived ocean-surface winds on weather forecasts, they
have been included in the routine data that are assimilated in operational NWP practice.
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New technologies continue to be developed to obtain more accurate ocean-surface wind
products for better observations and predictions of hurricanes.

Specifically, ASCAT is a fan-beam aperture C-band radar scatterometer, providing
two independent 550-km-wide swaths of backscatter retrievals. The ASCAT satellite-
retrieved ocean-surface wind products from the EUMETSAT are provided through the
Royal Netherlands Meteorological Institute (KNMI) with a horizontal resolution of 25 km
(e.g., [8]). The data have been assimilated into the European Centre for Medium-Range
Weather Forecasts (ECMWF) Integrated Forecasting System (IFS) since 2007, and have
proven to be beneficial in tropical regions. To further improve the impacts of ASCAT data
in the ECMWF system, research has been conducted on quality control, thinning schemes,
observations/background error estimation, and assimilation algorithms (e.g., [9–12]). In
particular, Lin et al. [12] assimilated ASCAT wind data with a resolution of 25 km in a
global model with a thinning distance of 100 km, to reduce errors in spatially correlated
error representativeness. When assimilated into the NCEP operational Gridpoint Statistical
Interpolation (GSI) data assimilation system with the same thinning distance, ASCAT wind
products also significantly improved wind and temperature forecasts [13]. Because of their
benefit to the operational forecasts, ocean-surface wind data from the ASCAT have become
a conventional data source for the NCEP Automated Data Processing (ADP) database, and
have been assimilated in NCEP operations since 2007.

Scientists have continued exploring better measurements of wind speed over oceans
with a research satellite mission. An outstanding example is the recent NASA Cyclone
Global Navigation Satellite System (CYGNSS) mission. In contrast to scatterometry, which
has a radar instrument aboard a satellite which sends a signal to the ground and measures
the signal strength reflected back to it, CYGNSS consists of eight micro-satellites in a
common circular low earth-orbit to receive both direct and reflected signals from Global
Positioning System (GPS) satellites. The direct signals pinpoint CYGNSS observatory
positions, while the reflected signals respond to ocean-surface roughness, from which
wind speed is retrieved. With new technologies, CYGNSS has the ability to observe winds
over hurricane inner-core regions and can detect high winds, thus allowing scientists to
better investigate and predict hurricanes [14]. Various research based on CYGNSS data
has been conducted [15–17]. Early studies showed that assimilating CYGNSS Level II
satellite-retrieved ocean-surface winds into the regional NWP model, such as the NCEP
Hurricane Weather Research and Forecasting (HWRF) regional model, has good potential
to improve hurricane track and intensity forecasts [18–20].

As a natural extension of these previous studies, it is important to further evaluate
whether the ocean-surface winds derived from CYGNSS (as a research satellite) could
be a valid data source for potential operational NWP applications. In particular, as most
previous studies emphasize the impact of the assimilation of CYGNSS data on analyses
and forecasts of hurricanes over the ocean, we intend to further examine the impact of the
assimilation of CYGNSS ocean-surface winds on the prediction of landfalling hurricanes
with a regional operational model.

Specifically, using a recent version of the NCEP HWRF model (Version H220), our
research focuses on (1) comparing forecast impacts between ASCAT and CYGNSS wind
data when both data types are assimilated into HWRF in multiple hurricane cases, and
(2) examining the relative impacts and dependent factors of assimilating the most recent
CYGNSS data at different versions (e.g., versions 2.1 and 3.0) on the HWRF analyses and
forecasts of landfalling hurricanes. A series of assimilation experiments are conducted
with the GSI (Gridpoint Statistical Interpolation)-based three-dimensional hybrid ensemble-
variational data assimilation (hybrid 3DEnVar, [21]) method to assess satellite-derived
ocean-surface wind assimilation in HWRF. Four major landfalling hurricanes, Florence and
Michael in 2018, and Laura and Delta in 2020, are used in this study. The model, data, and
experimental design are described in Section 2. The results and discussion are presented in
Sections 3 and 4. A summary and some remarks are offered in Section 4.
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2. HWRF Model, Data, Experimental Design, and Data Thinning
2.1. HWRF Model and Data Assimilation System

The recent HWRF operational system version (H220), which was updated in the fall of
2020 at the NCEP Environmental Modeling Center, was utilized to conduct data assimila-
tion and numerical simulations. The HWRF system was composed of the WRF (Weather
Research and Forecasting) non-hydrostatic mesoscale model on an E grid dynamic core, the
Message Passing Interface Princeton Ocean Model for Tropical Cyclones (MPIPOM-TC),
and the NCEP data assimilation platform based on the Gridpoint Statistical Interpolation
(GSI) system, with implementation of operational hybrid 3DEnVar capability. The physi-
cal parameterizations employed in the hurricane simulations were the Ferrier (new Eta)
microphysics scheme, the Rapid Radiative Transfer Model for GCMs (RRTMG) longwave
and shortwave radiation schemes, the Unified Noah land-surface model, the hybrid Eddy
Diffusivity Mass-Flux (EDMF) Global Forecast System (GFS) scheme, and the scale-aware
GFS Simplified Arakawa–Schubert (SASAS) convection scheme. The HWRF model and
data assimilation system were executed in a cycling mode with a 6 h interval, producing
forecasts of hurricane track, intensity, structure, and precipitation to meet operational
forecast and warning process objectives. All details about the HWRF model and data
assimilation system can be found in Biswas et al. [22]).

NCEP GSI-based hybrid 3-dimensional ensemble-variational (3DEnVar) data assimila-
tion was employed as part of HWRF model initialization. The background error covariance
of hybrid 3DEnVar was composed of a flow-dependent background error covariance
achieved by 80 ensemble members from the Global Forecast System (GFS), and a static
background error covariance obtained through the National Meteorological Center (NMC)
method. The cost function is as follows:

J
(
x′1, α

)
= β1

(
x′1
)T B−1

1
(
x′1
)
+ β2(α)

T A−1(α) +
(

y0′ − Hx′
)T

R−1
(

y0′ − Hx′
)
+ Jc, (1)

where B1 is the static background error covariance matrix; β1 and β2 are, respectively, the
weight applied to the static background error covariance and the ensemble covariance;
α contains the extended control variables for ensemble members; A defines the spatial cor-
relation of α; y is the innovation vector; H is the observation operator; R is the observational
and representativeness error covariance matrix (with diagonal values for the observational
errors); and Jc is a constraint term. In HWRF operational system, β1 and β2 are set to 0.2
and 0.8, which offers more weight to the flow-dependent background error covariance.

2.2. Satellite-Derived Ocean-Surface Winds: CYGNSS vs. ASCAT

ASCAT MetOp-A/B operational level 2 vector wind products are available at a 25 km
spatial resolution. The data products represent 10 m neutral stability winds and have been
part of the conventional data for the NCEP Automated Data Processing (ADP) database.
According to early evaluation (e.g., [20]), the Fully Developed Seas (FDS) wind speed
products of CYGNSS are suitable for assimilating into a numerical weather prediction
model for hurricane prediction. As with ASCAT, the near-surface wind speeds derived
from the CYGNSS satellite were also referenced at a height of 10 m. The effective footprint
size for CYGNSS is approximately 25 km × 25 km (e.g., [14]). Following the HWRF
6-hourly analysis-forecast cycles, both ASCAT and CYGNSS wind data were processed
with an assimilation window ranging from −3.0 h to 3.0 h based on the HWRF analysis
cycling window.

Figure 1 shows the ASCAT and CYGNSS data locations for Hurricanes Florence and
Michael at 0000, 0600, and 1200 UTC on 13 September 2018, and at 0600, 1200, and 1800 UTC
on 9 October 2018, respectively, when both hurricanes were near landfall. Both types of data
were available over the ocean and near the coastline during most of the 6-hourly data assim-
ilation windows, although they were unevenly distributed both spatially and temporally.
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are the HWRF ghost domain for d02. 
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when assimilating them into the GSI system. The resolution of both the CYGNSS and 
ASCAT ocean-surface wind data products was 25 km. However, unlike the two independ-
ent 550 km wide swaths by ASCAT, the oversampled observations achieved by the eight 
micro-satellites of CYGNSS within a 6 h assimilation time window were more complex (Fig-
ure 1). Therefore, it was necessary to test various thinning distances for CYGNSS ocean-
surface wind data during the numerical experiments. 
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Figure 1. Available ASCAT and CYGNSS v2.1 data distribution for Florence and Michael at different
assimilation times: (a1–a3) are, respectively, at 0000, 0600, and 1200 UTC on 13 September 2018;
(b1–b3) are, respectively, at 0600, 1200, and 1800 UTC on 09 October 2018. Blue dots represent
locations for ASCAT data and orange dots represent locations for CYGNSS data. The black dashed
frames are the HWRF ghost domain for d02.

2.3. Data Thinning

When observations are assimilated into NWP models, observation errors are assumed
to be uncorrelated, and each observation is an independent piece of information. Satellite
observations may be oversampled and closer together than the product resolution. Assimi-
lating such high-density information into NWP models will make the crucial assumption
of uncorrelated observation errors invalid and lead to a degraded analysis [23–25]. Thus,
thinning, or reducing the density of satellite observations, is usually applied in assimilation
procedures. We introduced a thinning algorithm to the CYGNSS data when assimilating
them into the GSI system. The resolution of both the CYGNSS and ASCAT ocean-surface
wind data products was 25 km. However, unlike the two independent 550 km wide swaths
by ASCAT, the oversampled observations achieved by the eight micro-satellites of CYGNSS
within a 6 h assimilation time window were more complex (Figure 1). Therefore, it was
necessary to test various thinning distances for CYGNSS ocean-surface wind data during
the numerical experiments.

2.4. CYGNSS V2.1 vs. CYGNSS V3.0

With different ways to process and calibrate the CYGNSS Level I data, various versions
of CYGNNS-retrieved ocean-surface data become available. For instance, following the
CYGNSS V2.1 data, CYGNSS V3.0 data were available when we conducted this study,
with a different calibration algorithm for CYGNSS Level I data (e.g., [26]). As revealed
in Figure 2, the two versions (V2.1 and V3.0) of the CYGNSS FDS wind products show
different error statistics: the V3.0 products include more high-wind data (>20 m·s−1) but a
smaller data volume compared to the V2.1 products. While the capability of representing
high wind speeds is significantly improved in the V3.0 data products, large uncertainties are
presented with these data as the wind speed errors are high. Because of these differences,
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the forecast impacts with assimilating different versions of the CYGNSS data, and the
thinning distances for these two versions, the data also needed to be tested in the numerical
experiments (see Table 1).
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Figure 2. Available CYGNSS data of (a) version 2.1 and (b) version 3.0 on 13 September 2018 at
different assimilation times, represented by different colored dots (red, blue, green, and grey colors
for 00 UTC, 06 UTC, 12 UTC, and 18 UTC, respectively), and (c) comparison of uncertainty (the
wind speed error) between these two versions of CYGNSS wind data (black and red colors denote
version 2.1 and version 3.0 data, respectively).

Table 1. Configurations for all data assimilation experiments. ADP represents ADP conventional
data used in NCEP operational analysis. In the experiment names, “F” stands for Florence, “M” for
Michael, “L” for Laura, and “D” for Delta.

Experiments

Data Assimilated CYGNSS
Thinning Distance

(km)
ADP

(Exclude ASCAT) ASCAT CYGNSS-v2.1 CYGNSS-v3.0

Exp. FCOAS; Exp. MCOAS,
Exp. LCOAS; Exp. DCOAS X X -

Exp. FCOCY-2-50; Exp. MCOCY-2-50,
Exp. DCOCY-2-50, Exp. LCOCY-2-50 X X 50

Exp. FCOASCY-2-50;
Exp. MCOASCY-2-50,
Exp. LCOASCY-2-50

X X X 50

Exp. LCOCY-2-30; Exp. FCOCY-2-30,
Exp. LCOCY-2-30, Exp. DCOCY-2-30 X X 30

Exp. LCOCY-3-30; Exp. FCOCY-3-30,
Exp. DCOCY-3-30 X X 30

Exp. LCOCY-3-50; Exp. FCOCY-3-50,
Exp. DCOCY-3-50 X X 50

Exp. LCOASCY-3-30; DCOASCY-3-30 X X X 30

Exp. LCOASCY-3-50; DCOASCY-3-50 X X X 50

Considering the discrepancies in their error characteristics, different observational
errors were set for CYGNSS V2.1 and V3.0 data in the data assimilation system. Specifically,
the observation error was set to 2 m·s−1 for CYGNSS V2.1 data based on the statistics of
the large data sample. For CYGNSS V3.0 data, the observation error was set to 3 m·s−1

based on the statistics and sensitivity tests. Early experiments (not shown) found that the
assimilation results were not sensitive to the varying observational errors of V3.0 data
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because most of the data assimilated into the GSI system were still low winds in V3.0.
Owing to the large errors, some high winds in V3.0 data were rejected by the quality
control process inside the GSI system due to either significant errors of the data or large
observations minus the background values.

2.5. Experimental Design

Four hurricane cases were used for the experiments. Florence and Michael represent
the major landfalling hurricanes in the entire 2018 hurricane season, and Laura and Delta
are the most notable landfalling hurricanes in the 2020 hurricane season. Florence formed
on 31 August 2018, southeast of Santiago Island, in the southernmost Cape Verde islands.
It moved to the North American continent with a western trajectory, landfalling along the
southeastern coast of North Carolina near the upper end of category 1 [27]. Michael was a
category 5 hurricane that made catastrophic landfall near Mexico Beach and Tyndall Air
Force Base, Florida. The maximum sustained wind was about 140 kt at landfall time [28].
Hurricane Laura made landfall near Cameron, Louisiana, as a category 4 hurricane and
continued its northward track into Arkansas before moving east toward the Atlantic.
Hurricane Delta was a category 4 hurricane over the Atlantic on 6 October 2020, and it
made landfall at 2300 UTC 9 October near Creole, Louisiana, with winds of 155 km h−1

(~43 m·s−1) and a pressure of 970 mb, as a category 2 hurricane.
The horizontal resolutions for HWRF’s three simulation domains were 13.5 km, 4.5 km,

and 1.5 km, respectively. The GSI-based hybrid 3DEnVar data assimilation system assimi-
lated ocean-surface wind data in the second ghost domain (at a 4.5 horizontal km resolu-
tion), along with other observations assimilated in the operational domain. The landfall
time for Florence was 1115 UTC on 14 September 2018; for Michael 1730 UTC on 10 October
2018; and for Laura 0700 UTC on 27 August 2020, and 2300 UTC on 9 October. In order
to examine the impact of assimilating ocean-surface winds on the forecasts of landfalling
hurricanes, all data assimilation experiments were initialized 36 h before landfall, after a
day of spin-up with the regular HWRF analysis/forecast cycle. For Florence, cycled data
assimilation experiments with ocean-surface winds were conducted at 0000, 0600, and
1200 UTC on 13 September 2018; for Michael at 0600, 1200, and 1800 UTC on 9 October
2018; for Laura at 1800 and 0000 UTC on 25 August and 0600 UTC on 26 August 2020; and
for Delta at 1200 and 1800 UTC on 8 October and 0000 UTC on 9 October 2020. As in the
HWRF operational configuration, a blending option was turned on. A vortex relocation
was employed in the vortex initialization procedure before the data assimilation.

The initial sensitivity experiments were conducted with various data thinning dis-
tances (e.g., 25 km, 30 km, 50 km, and 100 km) in the data assimilation experiments for
CYGNSS data. Compared with other experiments, results from the experiments with
thinning distances of 30 km and 50 km seemed to be optimal in most cases. Therefore, for
the experiments presented in this study, we used data thinning distances of 30 km and
50 km for CYGNSS data and further evaluated the sensitivity of assimilation results to the
choice between the two distances. With different combinations of data types and thinning
distances for CYGNSS, various experiments were designed for all four hurricanes (Table 1).

The relative impact of the CYGNSS version 2.1 and ASCAT satellite-retrieved ocean-
surface wind products on hurricane analyses and forecasts were first evaluated. The
operational data assimilation setting, which assimilates the ADP conventional data (with
ASCAT ocean-surface winds, e.g., Exp. FCOAS, MCOAS, etc., in Table 1), was conducted
and used as the baseline experiment. To compare the relative impacts of ASCAT and
CYGNSS data on hurricane analysis and prediction, other experiments assimilated the ADP
conventional data, with the ASCAST data being excluded and replaced by the CYGNSS
ocean-surface wind data (e.g., Exp. FCOCY-2-50, FCOCY-2-30, etc., in Table 1). Additional
experiments were performed to assimilate the ADP conventional data and CYGNSS ocean-
surface wind data (namely, with both ASCAT and CYGNSS data, e.g., Exp. FCOACY-2-50,
FCOCY-2-30, etc., in Table 1) into the HWRF model.
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3. Impact of CYGNSS Ocean-Surface Winds on Analyses and Forecasts of Hurricanes

Based on the experiments listed in Table 1, especially the results from Hurricane Flo-
rence and Michael (2018), in this section, we first demonstrate the impacts of CYGNSS data
on the analyses and forecasts of hurricanes and compare the results with those experiments
assimilating the ASCAT data. Then, we emphasize the other results, especially those from
Hurricane Laura and Delta (2020), to compare the data assimilation results from CYGNSS
V2.1 and V3.0 data in next section. Specifically, considering their compatible spatial cover-
age of two types of data (i.e., CYGNSS V2.1 and ASCAT), we first focus the experiments
with assimilation of V2.1 CYGNSS data and ASCAT data, to compare their relative and
combined impacts on the analyses and forecasts of these landfalling hurricanes. To obtain
a fair comparison for different cases regarding the data impact, the forecast evaluation
emphasizes short-range (48 h) prediction.

3.1. Improved Hurricane Inner-Core Structure in Analyses and Forecasts

The asymmetric structure of the inner-core region plays an important role in the
evolution, structure, and intensity change of hurricanes (e.g., [29]). With its advantage in
measuring hurricane inner-core winds, we first evaluate the impact of assimilating CYGNSS
on the representation of hurricane inner-core structure in the analyses and forecasts.

Figure 3 compares horizontal winds at the 17th eta level (approximately 925 hPa) from
various experiments against the NOAA HRD P3 Radar horizontal wind field, at 500 m
(Figure 3a), at 1200 UTC on 9 October 2018 for Hurricane Michael. The NOAA/ESRL
High-Resolution Rapid Refresh (HRRR) operational analysis, at the same time, is also used
as reference (Figure 3f) for comparison. HRRR analysis is the finest-resolution operational
regional analysis available and provides reliable analysis for hurricane cases (e.g., [30,31]),
as shown in Figure 3a,f). It is apparent that HRRR analysis agrees well with the NOAA P3
radar winds. An asymmetric wind field can be seen in both the P3 radar wind and HRRR
analysis fields.
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Figure 3. (a) NOAA P3 Radar horizontal wind field at 500 m and horizontal wind analysis field
(unit: m·s−1) at the 17th eta level (approximately 925 hPa) for Michael at 1200 UTC 9 October 2018.
Panels (b–e) represent Exp. MCO, Exp. MCOAS, Exp. MCOCY-2-50, and Exp. MCOASCY-2-50,
respectively. Panel (f) denotes HRRR analysis at 925 hPa.

To better compare the influence of the assimilation of ASCAT and CYGNSS wind
data on hurricane structure, experiments (FCO for Florence and MCO for Michael) with
the assimilation of ADP conventional data, excluding ASCAT data (no ocean-surface
winds), are utilized for reference and comparison here. Without the assimilation of ocean-
surface winds (Figure 3b), a relatively more symmetric structure (Figure 3b) is found in
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the wind analysis. The assimilation of ASCAT does not lead to changes in this symmetric
structure (Figure 3c), whereas the assimilation of CYGNSS data changes the inner-core
structure toward asymmetry (Figure 3d), with the high winds (greater than 25 m·s−1)
more concentrated in the inner-core region. The asymmetric pattern is rebuilt in the
southwestern portion of the vortex (Figure 3e) after the assimilation of both ASCAT and
CYGNSS data. Although the maximum wind location is still displaced in the ASCAT
and CYGNSS assimilation experiments (Figure 3c,d), assimilating CYGNSS ocean-surface
winds along with ASCAT (Figure 3e) achieves reasonable asymmetric wind structure that
agrees with the P3 radar wind field and HRRR analysis, especially in the southwestern
portion of the vortex. A similar comparison is also made for Florence, Laura, and Delta
(figures not shown), and most results indicate that the assimilation of CYGNSS ocean-
surface winds, along with ASCAT data, leads to improved hurricane inner-core structure
in the analysis field through cycled data assimilation.

Meanwhile, the asymmetric structure of hurricane winds at landfall is also important,
as it is a significant factor for effective public warning. Figures 4 and 5, respectively, display
the horizontal and vertical wind structure for Florence and Michael in HWRF forecasts at
their landfall times. HRRR analysis is utilized as a reference for verification. In the HRRR
horizontal wind field for Florence (Figure 4a), the maximum wind is in the western part of
the core region. With the assimilation of all conventional (ADP) data without ASCAT or
CYGNSS, Exp. FCO produces maximum wind in the core region not only in the western
portion but also to the northeast. With the assimilation of ASCAT (Figure 4c), CYGNSS
(Figure 4d), and both ASCAT and CYGNSS data (Figure 4e), the overestimation of winds in
the core region is mitigated, implying more reasonable hurricane structure forecasts with
the assimilation of ocean-surface winds. Similarly, for Hurricane Michael, the horizontal
asymmetric wind structure is again missed in Exp. MCO, with an over-strong, tight, high-
wind inner core. With ocean-surface wind assimilation in Exp. MCOAS, Exp. MCOCY-2-50,
and Exp. MCOASCY-2-50, the strong wind in the inner-core region is significantly reduced
(Figure 4h–j), especially in the southern and southwestern part of the core, where the winds
are weak in the HRRR analysis.
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Figure 4. Horizontal wind (unit: m·s−1) at 925 hPa for (a,b) Florence (at 1200 UTC on 14 September
2018) and (e,f) Michael (at 1800 UTC on 10 October 2018) at landfall. Colored contours represent
wind speed, and vectors represent wind direction. Panels (a,f) the wind field of HRRR for Florence
and Michael; panels (b,g) are the wind speeds and vectors for forecasts of Exp. FCO and Exp. MCO,
respectively; panels (c–e) are the differences from Exp. FCO for the forecasts of Exp. FCOAS,
Exp. FCOCY-2-50, and Exp. FCOASCY-2-50, respectively; and panels (h–j) are the differences from
Exp. MCO for the forecasts of Exp. MCOAS, Exp. MCOCY-2-50, Exp. MCOASCY-2-50, respectively.
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Figure 5. Wind field of vertical cross-section for Florence (at 1200 UTC on 14 September 2018) and
Michael (at 1800 UTC on 10 October 2018) at landfall. Colored contours are wind speed (unit: m·s−1).
Panel (a) is the wind field of HRRR for Florence and Michael, and panels (b–e) are the forecast of Exp.
FCO, Exp. FCOAS, Exp. FCOCY-2-50, and Exp. FCOASCY-2-50, respectively. The triangle represents
the hurricane eye.

To examine the vertical structure of the hurricane vortex, we use a cross-section of
wind fields for Florence as an example (Figure 5). The HRRR analysis shows that the strong
wind extends higher on the western side of the vortex (Figure 5a), while the forecasts in
the experiments without ocean-surface wind assimilation reproduce much stronger winds
(Figure 5b). The simulations with the assimilation of ASCAT or CYGNSS ocean-surface
winds reduce wind magnitude in the key areas of these core regions, thus enhancing the
asymmetric structure of the hurricanes. Specifically, for Florence, with the assimilation of
CYGNSS and ASCAT ocean-surface winds in Exp. FCOAS (Figure 5c), Exp. FCOCY-2-50
(Figure 5d), and Exp. FCOASCY-2-50 (Figure 5e), the vertical winds in the inner-core better
represented the stronger winds near the surface and reduced the overestimated winds
between 700–300 hPa relative to Exp. FCO. In addition, compared with the assimilation
of CYGNSS data (Exp. FCOCY-2-50, Figure 5d), the influence on the winds from the
assimilation of ASCAT data (Exp. FCOAS, Figure 5c) is relatively small on the east side of
the inner-core. Similar results were observed with Hurricane Michael.

Overall, Figures 4 and 5 reveal the influences of assimilating ocean-surface winds from
CYGNSS and ASCAT on the prediction of hurricane inner-core structure. Similar outcomes
are also found in the other two hurricane cases (Laura and Delta, figures not shown).
Cui et al. [20] found that the assimilation of CYGNSS data improves the representation of
the hurricane inner-core asymmetric structure in forecasts. Although ASCAT data does not
cover the hurricane inner-core region, assimilating the data into the hurricane environment
seems beneficial to the vortex structure in the forecasts through model integration.
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3.2. Impacts on Hurricane Track and Intensity Forecasts

Since ASCAT ocean-surface winds have already been assimilated into the HWRF sys-
tem operationally, all other forecast experiments are compared against the experiment that
assimilates ADP conventional data (including the ASCAT data; Exp. FCOAS and MCOAS).
Figure 6 compares forecast tracks from data assimilation experiments for both Florence
and Michael with the NHC best-track data. The short-range (48 h) track forecast is already
nearly perfect, with the track errors at nearly 30 km in the experiment with the assimilation
of all available conventional observations, including ASCAT data. Nevertheless, positive
(about 10% to 20% track-error reduction) and neutral impacts on the track forecast are
still found in most instances with the assimilation of CYGNSS data, compared with those
experiments that assimilate ASCAT data. In particular, assimilating CYGNSS data with a
thinning distance of 50 km (Exp. FCOCY-2-50 and Exp. MCOCY-2-50) performs better than
assimilating ASCAT data (Exp. FCOAS and Exp. MCOAS; Figure 5a,b), as track errors are
reduced by about 20% overall during the first 48 h forecast. Meanwhile, the assimilation of
both ASCAT and CYGNSS data with other conventional data (Exp. FCOASCY-2-50) only
results in about a 10% track-error reduction during the first 48 h forecast.
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only. 

Figure 6. Forecast track of all assimilation experiments against the NHC best-track data (BEST) for
Florence and Michael. (a) Florence (1200 UTC 13 to 0000 UTC on 18 September 2018); (b) Michael
(1800 UTC 9 to 0000 UTC on 12 October 2018).

Figure 7 illustrates a time series of the forecast intensity (i.e., minimum hurricane center
sea level pressure or MSLP, and maximum surface wind or MSW) for Florence and Michael.
Positive and neutral impacts on the intensity forecast are found in most experiments with
CYGNSS data assimilation compared to those experiments that assimilate the ASCAT data.
Among all the experiments, MCOCY-2-50 for Hurricane Michael, with the assimilation of
CYGNSS data using a thinning distance of 50 km, provides the best forecasts of minimum
pressure and maximum wind at landfall. To obtain a more detailed comparison, Figure 8
shows the intensity (MSLP and MSW) errors averaged over the first 48 h forecasts. The
assimilation of CYGNSS data outperforms the assimilation of ASCAT data in intensity
forecasts. The improvements are small for Florence but rather large for Michael. When both
ASCAT and CYGNSS data are assimilated into the HWRF model, the intensity forecast is
still improved against the experiment that assimilates ASCAT data, but the positive impacts
are slightly smaller compared to the assimilated CYGNSS data only.
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Figure 7. Forecast hurricane intensity for all experiments against the NHC best-track data: (a) the
minimum hurricane center sea level pressure (MSLP; unit: hPa); (c) the maximum surface wind
(MSW; unit: knot) for Florence (from 1200 UTC 13 to 0600 UTC on 17 September 2018); (b,d) are
MSLP and MWS for Michael (from 1800 UTC 09 to 0600 UTC on 12 October 2018), respectively. X axis
is forecast time (unit: h).
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Figure 8. Average intensity errors, namely forecast against best-track data for (a,b) MSLP and
(c,d) MSW over the first 48 h forecasts: (a,c) for Hurricane Florence (averaged from 1200 UTC 13
to 1200 UTC on 15 September 2018); (b,d) for Hurricane Michael (averaged from 1800 UTC 09 to
1800 UTC on 11 October 2018).
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4. CYGNSS V2.1 vs. V3.0 Data

The results in the above section show that an appropriate thinning distance of 50 km for
the CYNGSS V2.1 ocean-surface wind data leads to improved hurricane analyses and fore-
casts compared to ASCAT ocean-surface winds. With the CYGNSS mission development,
different wind retrieval algorithms have been tested to produce the retrieved ocean-surface
winds. As illustrated in Figure 2, the CYGNSS V3.0 wind product has increased high
wind speed, but large uncertainty and less coverage. To compare the relative impact of
the CYGNSS V3.0 and V2.1 data, HWRF analyses and forecast experiments (see Table 1)
were performed for all hurricane cases used in this study, with various configurations for
assimilating CYGNSS ocean-surface winds with all other data that are routinely assimilated
with HWRF in an operational environment. As mentioned in Section 2.3, different thinning
distances of 30 km and 50 km for these two versions of CYNGSS wind data are examined.

For Hurricane Florence, the simulated tracks (Figure 9a) from 1200 UTC on 13 Septem-
ber 2018 for Exps. FCOCY-2-30, FCOCY-2-50, FCOCY-3-30, and FCOCY-3-50 show that
the track errors are small in the first 60 h. Exp. FCOCY-2-50 provides slightly better track
forecasts, with the smallest track error in the first 48 h forecasts among all experiments. For
the intensity forecasts (Figure 10), the assimilation of CYGNSS 2.1 or CYGNSS 3.0 data
leads to notable improvements in the minimum sea level pressure forecast (Figure 10c)
and a better forecast in the maximum surface winds (Figure 10d), compared with the
experiment that assimilates ASCAT data. The assimilation of CYGNSS V3.0 data with a
thinning distance of 30 km achieves the best intensity forecast among all the experiments,
especially for the minimum sea level pressure forecast. The results indicate that a 50 km
thinning distance seems to be optimal for the assimilation of CYGNSS V2.1 data, but a
30 km thinning distance is better for CYGNSS V3.0 data. Meanwhile, CYGNSS V3.0 data
add more benefits to the intensity forecasts compared with the CYGNSS V2.1 data, because
the V3.0 data lead to better wind and pressure forecasts in the inner-core region. As ev-
idence, Figure 11 compares the HWRF forecasts of the wind profile with the NOAA P3
aircraft dropsonde data at 248 km from the hurricane center for Florence at 1200 UTC on
13 September. Apparently, the assimilation of CYGNSS data makes the simulated wind
profiles closer to the dropsonde observations relative to the assimilation of ASCAT. Com-
pared to the experiment assimilating the V2.1 CYGNSS data, the one that assimilates the
V3.0 CYGNSS data produces inner-core wind profiles that are in better agreement with the
dropsonde data.
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Figure 9. Same as Figure 6. Forecast track of all assimilation experiments against the NHC best-track
data (BEST) for (a) Florence (1200 UTC 13 to 0000 UTC on 18 September 2018), (b) Laura (0600 UTC 26
to 0600 UTC on 28 August 2020), and (c) Delta (0000 UTC 09 to 0000 UTC on 11 October 2020).
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Figure 12 reveals the 6-h accumulated rainfall from the different experiments against 
the Stage IV rainfall analysis. With the assimilation of ASCAT ocean-surface wind data, 
Exp. FCOAS misses the heavy rainfall southwest of the vortex and generates heavier rain-
fall in the northern part of the vortex (Figure 12b), compared with the Stage IV analysis  

Figure 10. (a,b) Same as Figure 7, except for the time series of intensity for Florence from 1800 UTC
on 9 to 1800 UTC on 11 October 2018; (c,d) Same as Figure 8, except for the 48-h average intensity
errors for Florence. Figures show comparison and errors from different experiments (FCOCY-2-30,
FCOCY-2-50, FCOCY-3-30, and FCOCY-3-50) against the NHC best-track data.
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Figure 12 reveals the 6-h accumulated rainfall from the different experiments against
the Stage IV rainfall analysis. With the assimilation of ASCAT ocean-surface wind data,
Exp. FCOAS misses the heavy rainfall southwest of the vortex and generates heavier
rainfall in the northern part of the vortex (Figure 12b), compared with the Stage IV analysis
(Figure 12a). With the CYGNSS data assimilation, both Exp. FCOCY-2-50 (Figure 10d) and
Exp. FCOCY-3-30 (Figure 10e) have positive impacts on the rainfall forecasts. Exp. FCOCY-2-50
produces the best rainband precipitation among all the experiments by enhancing the
rainbands in the eastern and southeastern part of the vortex and the southwestern part
of the rainfall. Exp. FCOCY-3-30 produces more adjustment to the northern and part of
the southern rainbands. Similar results to those for Florence are obtained for Hurricane
Michael for the track, intensity, and precipitation forecasts (figures not shown) when both
the CYGNSS V2.1 and V3.0 data are assimilated.
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experiments FCOAS, FCOCY-2-30, FCOCY-2-50, FCOCY-3-30, and FCOCY-3-50, respectively.

For Hurricane Laura, since thinning distances of 50 km for V2.1 CYGNSS data and
30 km for V3.0 data perform better than in the other experiments, the comparison focuses
on these results. First, it is found that assimilation of ocean-surface winds from both ASCAT
and CYGNSS leads to a comparable track forecast in the first 30 h forecasts (Figure 9b). Exp.
LCOCY-2-50 produces the best track forecast among all the experiments with CYGNSS
data assimilation, with a track-error reduction of about 10% in the first 18 h (out of a 50 km
track error with LCOAS). Improvement in the intensity forecast (Figure 13) is also evident.
Specifically, the assimilation of CYGNSS V2.1 data with a 50 km thinning distance leads
to intensity-error reduction in both MSLP and MSW compared to the experiment that
assimilates the ASCAT data. Combining both data sources in the assimilation experiment
LCOASCY-2-50 also leads to a positive influence on the intensity forecast. However, the
assimilation of CYGNSS V3.0 data with a 30 km thinning distance leads to a slightly
degraded intensity forecast in this case. Combining CYGNSS V3.0 data with a 30 km
thinning distance with ASCAT data in the data assimilation experiment mitigates these
negative impacts on the intensity forecasts of Laura.
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For Hurricane Delta (2020), as shown in Figure 9c, the track errors are small (about
50 km) in all experiments within a 48 h forecast. The assimilation of ASCAT data in Exp.
DCOAS and the CYGNSS V2.1 data with a 50 km thinning distance (Exp. DCOCY-2-50)
leads to a very similar track forecast, while the assimilation of both sets of data in Exp.
DCOASCY-2-50 leads to a 17% track-error reduction compared with both these experiments,
during the first 48 h forecast. The assimilation of CYGNSS V3.0 data with a 30 km thinning
distance (Exp. DCOCY-3-30) leads to about a 20% track-error reduction (10 km) on Delta’s
track forecasts, while Exp. DCOASCY-3-30 has a neutral impact on the track forecast.
As for the intensity forecast (Figure 14), compared with Exp. DCOAS, DCOCY-2-50 and
DCOCY-3-30 lead to slight positive impacts while the impacts from DCOCY-3-30 are more
noticeable. Exp. DCOASCY-2-50, and DCOASCY-3-30 lead to slight positive or neutral
impacts in the intensity forecast within the 48 h.
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5. Summary and Remarks

Leveraged by GPS satellites, the NASA research satellite CYGNSS, launched in 2016,
has broadened the horizons of scientists investigating hurricanes with measurements of
ocean-surface winds. In this study, the retrieved Level-II CYGNSS ocean-surface winds are
assimilated into the NCEP regional hurricane HWRF forecast system to examine their im-
pacts on predicting landfalling hurricanes. Four major hurricane cases, including Florence
and Michael in 2018, and Laura and Delta in 2020, are used to conduct various assimilation
experiments. Different versions of CYGNSS-retrieved ocean-surface winds are evaluated.
Since ASCAT (on-board MetOp-A/B) provides real-time ocean-surface wind products for
current operational forecasts, the impacts of CYGNSS data on hurricane prediction are
compared with those of the ASCAT data.

With four major hurricane cases, it is found that the assimilation of CYGNSS Level-II
ocean-surface winds has positive impacts on hurricane track, intensity, and precipitation
forecasts. The assimilation of CYGNSS data also improves hurricane inner-core structure.
Assimilating CYGNSS data provides forecasts of hurricane track comparable to those
obtained by assimilating ASCAT data. Specifically, compared with the assimilation of
ASCAT data, assimilating CYGNSS data can lead to improved track and intensity forecasts
for a short range (within 48 h) when the proper thinning distances are applied. Because of
the positive impacts of CYGNSS data in the analyses and forecasts, as well as its positive
complementary nature to ASCAT data, ocean-surface wind product from CYGNSS shows
potential to be employed as a conventional data source in the HWRF model. Meanwhile,
there are also benefits to combine CYGNSS and ASCAT data together, and assimilate them
into the HWRF system for better hurricane forecasts.

With the different ways to calibrate CYGNSS Level-I data in a research environment,
the characteristics of the retrieved Level-II ocean-surface winds vary in data coverage,
retention of high winds, and error ranges. Evaluation of the overall quality of different
versions of CYGNSS data is beyond the scope of this study. However, a series of numerical
experiments with multiple hurricane cases in this study indicates that both Versions 2.1 and
3.0 of CYGNSS-retrieved ocean-surface winds can have positive impacts on the predicted
track, intensity, and precipitation of hurricanes in most cases. The dependence of the
relative impacts of different versions of CYGNSS data on optimal thinning distance is
evident. Specifically, an appropriate thinning distance for CYGNSS V2.1 wind data is
50 km, while that for the CYGNSS V3.0 wind data is 30 km with the current HWRF analysis
and forecast cycles. The relative impacts of the different versions of CYGNSS data on
hurricane forecasts are complicated. Assimilation of the V2.1 data with 50 km thinning
shows the best improvement in hurricane track, intensity, and precipitation in most cases,
reflecting better coverage and less uncertainty in the data (see Figure 2). Meanwhile,
CYGNSS V3.0 data are beneficial to intensity in some cases, owing to the presence of higher
wind data compared to the V2.1 data.

In summary, we evaluated the impacts of assimilating CYGNSS data on the analysis
and prediction of landfalling hurricanes with four major hurricanes over Atlantic Ocean.
The results indicate the potential to include CYGNSS ocean-surface wind in operational
systems for hurricane forecast improvement, pending more comprehensive evaluation
and proof of statistical significance in future work. With current and future developments
in CYGNSS wind products (e.g., the availability of CYGNSS V3.1 data as this study is
completed) and the HWRF regional hurricane forecast system, more studies and cases can
be used to explore the best way to assimilate these data for improved hurricane analyses
and simulations with HWRF and other operational models.
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