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This paper presents the Covariate Software Failure and Reliability Assessment Tool (C-SFRAT) to
automatically apply methods from software reliability engineering to accurately characterize the
defect discovery process in terms of the test activities performed. The tool enables calculations
and visualizations, including plots of the defect discovery data, covariate models fit to this data,
and inferences made possible by these models as well as assessment of model goodness-of-fit. A
generalized optimization procedure, referred to as the test activity allocation problem, has been
implemented to guide the distribution of limited resources among specific test activities in order to
maximize defect discovery for corrective action and improved reliability. The application and source
code are freely available from the GitHub repository dedicated to this project. The open source

nature of this tool will enable collaboration among researchers and practitioners from industry and
government within a single shared platform.
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1. Motivation and significance

For decades, the software and reliability engineering [1] com-

munity has utilized traditional software reliability growth models

2352-7110/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


https://doi.org/10.1016/j.softx.2021.100909
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2021.100909&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-21-00110
https://github.com/LanceFiondella/C-SFRAT/blob/master/requirements.txt
https://lfiondella.sites.umassd.edu/research/software-reliability/
mailto:lfiondella@umassd.edu
https://github.com/LanceFiondella/C-SFRAT
https://lfiondella.sites.umassd.edu/research/software-reliability/
mailto:lfiondella@umassd.edu
mailto:jaubertine@umassd.edu
mailto:kchen3@umassd.edu
mailto:vidhyashree-nagaraju@utulsa.edu
mailto:lfiondella@umassd.edu
https://doi.org/10.1016/j.softx.2021.100909
http://creativecommons.org/licenses/by/4.0/

Jacob Aubertine, Kenan Chen, Vidhyashree Nagaraju et al.

(SRGM) [2] to characterize the defect discovery process during
testing as a non-homogeneous Poisson process (NHPP). While
tools implementing NHPP models [3] can quantify and predict
trends in metrics such as failure intensity and mean time to
failure as a function of testing time or effort [4], the parametric
nature of these models cannot be linked to the underlying testing
activities in a concrete manner. More recently, metrics-based
software reliability growth models [5,6] have been proposed to
characterize defects discovered as a function of multiple soft-
ware testing activities such as calendar time, number of test
cases executed, and test execution time. Tools incorporating these
models [7] have also been developed. However, they are re-
stricted to the models and predictions proposed by the authors
and implemented in an Excel spreadsheet or the R programming
language. A general purpose software tool is needed to encourage
the widespread use of metrics-based software reliability growth
models as well as the consistent collection of high quality metrics
data required to apply these models.

An early metrics-based tool was the Enhanced Measurement
for Early Risk Assessment of Latent Defects (EMERALD) [8] sys-
tem, which analyzed source code to identify fault prone mod-
ules. ROBUST [9] included static modeling to characterize metrics
data, with time-based NHPP SRGM and coverage-based mod-
els for reliability estimation. The Software Reliability Estima-
tion and Prediction Tool (SREPT) [10] characterized failure data
along with product metrics to quantify reliability during dif-
ferent phases of the software life cycle. The Computer-Aided
Software Reliability and Estimation (CASRE) [11] tool introduced
combination models that reduced the predictive biases of the
component models. More recently, The Software Failure and Re-
liability Assessment Tool (SFRAT) [3] implemented traditional
software reliability growth models and provided an open source
framework through which additional models could be added.
The Proportional Intensity-based Software Reliability Assessment
Tool (PISRAT) [12] characterized failure data along with test-
ing metrics based on 11 proportional intensity based software
reliability models. The Metrics-based Software Reliability Assess-
ment Tool (M-SRAT) [7] builds upon PISRAT by adding additional
modeling approaches, characterizing testing effort as covariates
based on three hazard rate functions. However, these tools are
not explicitly open source or were not designed to support ex-
tensibility beyond models originally included by the authors.
To help realize the full potential of covariate models, Nagaraju
et al. [13] developed optimization procedures, referred to as
test activity allocation problems, to guide the distribution of
limited resources among specific test activities in order to max-
imize defect discovery, facilitate their correction, and improve
reliability.

This paper presents an open source Covariate Software Failure
and Reliability Assessment Tool (C-SFRAT) that implements the
models and effort allocation strategy developed in [13]. The open
source nature of the tool and its flexible architecture will promote
collaboration among members of the software reliability research
community and users from industry and government organiza-
tions. The architecture enables incorporation of existing covariate
models into a single tool, enabling more systematic comparison
of models. Present functionality includes: (i) eight models based
on discrete hazard rate functions, (ii) five measures of goodness-
of-fit, (iii) a model selection strategy based on these measures of
goodness-of-fit, according to the user’s preference, (iv) inferences
such as defect prediction and failure intensity prediction, and
(v) optimal test activity allocation, which recommends how to
distribute limited resources across two or more alternative test
activities or metrics in order to maximize the number of defects
discovered, so that they can be resolved prior to release.

The remainder of the paper is organized as follows: Section 2
provides an overview of the tool’s user interface. The four primary
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Fig. 1. C-SFRAT input data format.

screens within a typical workflow are described in Section 2.2
through 2.5. Section 3 describes the tool’s potential for impact.
Section 4 concludes the paper and identifies future work.

2. Software description

This section provides a detailed description of the data re-
quirements, graphical user interface, and workflow of the C-
SFRAT. Section 2.1 describes covariate data, explains how spread-
sheets containing covariate data should be formatted for use in
the C-SFRAT, and provides an overview of the tool's workflow.
Section 2.2 explains how to import covariate data into the tool
and perform model fitting with desired combinations of hazard
functions and covariates. Section 2.3 describes plots of the fitted
models and predictions of future failures and failure intensity
based on a specified set of testing activities. Section 2.4 explains
how to assess alternative models based on the goodness-of-fit
measures computed from the fitted models as well as a weighted
model selection strategy. Section 2.5 illustrates the application of
two types of test activity allocation: (i) maximization of the num-
ber of defects to be discovered despite a budget constraint and
(ii) minimization of the budget required to discover a specified
number of additional defects.

Readers wishing to gain hands-on experience with the tool
may wish to first install the C-SFRAT before proceeding. The
C-SFRAT has been implemented in the Python programming lan-
guage and runs on Windows, macOS, and Linux. The source code
is accessible through the GitHub repository at https://github.com/
LanceFiondella/C-SFRAT as well as installation instructions. Ex-
ample data sets for the purpose of evaluating the tool’s function-
ality can be found at https://Ifiondella.sites.umassd.edu/research/
software-reliability, eliminating the need to collect and format
testing data. The data set used for the following example is DS1.

2.1. Covariate data

Covariate data [6] records the number of defects detected as
well as the effort expended on one or more activities, in discrete
non-overlapping time intervals. The activities, also referred to as
covariates, encompass a variety of reliability or security testing
techniques and tools, including code reviews, walkthroughs, ex-
ecution time, and fuzz testing as well as metrics correlated with
software quality such as code coverage.

Fig. 1 shows the header and first few rows of a covariate data
set possessing three covariates.

The tool accepts data formatted in Excel spreadsheet (.xIsx) or
a comma-separated values (.csv) format. Each sheet within a
spreadsheet can specify a unique data set, whereas CSV files
are restricted to a single data set. The first two columns of
Fig. 1, A and B, are labeled T (time interval) and FC (failure
count), respectively denoting the discrete time interval and the
number of defects detected during that time interval. Column
T is optional. If it is omitted, the tool automatically generates
integer indexed failure intervals. The remaining column headers
E (execution time measured in hours), F (failure identification
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Fig. 2. Graphical User Interface of C-SFRAT.

work measured in person hours), and C (computer time failure
identification measured in hours) in columns (C through E) are
user-defined column names for covariate data. These covariate
names specified in the first row are displayed within the user
interface. However, if names are not explicitly specified in the
header, the program will automatically labels of the form Covn,
where n is the number of columns after the failure counts. The
values in each row denote the time dedicated to each activity in
the ith interval. For example, in interval two, 0.0619 units of com-
puter time failure identification, 20 units of failure identification
work, and no execution time were applied, which resulted in the
discovery of one defect.

Fig. 2 shows the view of the tool’s graphical user interface on
startup. The C-SFRAT workflow is organized across four tabs. The
layout of each tab includes a menu of controls on the left and an
area for plots and tables of results on the right. A summary of the
primary function of each tab is as follows:

e Tab 1: Data Import and Model Selection: Allows the user
to import failure data from a file in Excel or CSV format, as
shown in Fig. 1. This tab also allows the user to select the
data set to work with as well as the hazard functions and
covariates for model fitting and assessment.

e Tab 2: Model Results and Predictions: Displays the model
fit and failure intensity plots of the hazard function and
covariate combinations selected in Tab 1. The user can also
predict the future failures and failure intensity based on a
specified testing activity profile.

e Tab 3: Model Comparison: Compares the fitted models
based on information theoretic and predictive goodness-of-
fit measures. The user may also assign weights to individual
measures to support model selection.

e Tab 4: Effort Allocation: Recommends test activity allo-
cation [13] in order to maximize defect discovery within
a specified budget or minimize the total testing resources
required to discover a specified number of defects.

The following subsections describe each tab in greater detail.
2.2. Tab 1: Data import and model selection

To import a data set, the user must select the Open option
under the File menu and select an Excel or CSV file.

Fig. 3 shows Tab 1 after data has been successfully imported.

The control menu on the left side of Fig. 3 shows the name
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Fig. 3. Tab 1: Plot of cumulative failures.

of the data sheet, hazard functions available, and possible combi-
nations of covariates. If the data source is an Excel spreadsheet,
the user can select a specific data set from the drop-down list
under Select Sheet. The slider under Subset Failure Data allows
the user to select the number of intervals of data to be used for
model fitting. Excluding a subset of the intervals is appropriate
for testing the predictive accuracy of models, whereas fitting
models with all intervals is suitable for applying the test activity
allocation optimization problems because this utilizes all of the
data observed so far.

The Plot and Table options above the right side of Fig. 3
displays the selected data set visually or numerically. The default
plot shows the cumulative defects detected in successive inter-
vals. Plot settings can be modified from the View drop down menu
on the menu bar. Options include showing the data using points,
lines, or both points and lines as well as switching between
the cumulative failures and failure intensity plots. The toolbar
below the plot enables an image to be saved in several standard
file formats for inclusion in reports and publications. Adjusting
the slider automatically updates the plot and table to only the
selected subset.

To apply models, the user must select at least one hazard func-
tion from the list under Select Hazard Functions and at least one
combination of covariates under Select Covariates. For the sake of
illustration, the running example that follows uses three hazard
functions, including the second order discrete Weibull (DW2),
Geometric (GM), and second order negative binomial (NB2). All
possible combinations for covariate data sets are listed under
the Select Covariates option, including None, which corresponds
to the special case of the discrete nonhomogeneous Poisson pro-
cess model with likelihood function defined in Ref. [13]. In the
cases where there are several covariates, Select All enables selec-
tion of all 2" possible combinations of covariates. The purpose
of applying models with different hazard functions and subsets
of covariates is to identify the combinations that achieve the
most accurate prediction and goodness-of-fit. Therefore, it is sug-
gested that all combinations be applied and those exhibiting
lower goodness-of-fit be eliminated from further consideration.
It should also be noted that the relative performance of models
can change as more data is collected.

After selecting at least one hazard function and subset of
covariates, the combinations are applied to the present data set
by clicking the Run Estimation button located under the Select
Covariates box. During these calculations, a separate window lists
the model currently being fitted and progress bar indicating the
fraction of models fitted so far.
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Fig. 4. Tab 2: Plot of cumulative failures with fitted models superimposed.

2.3. Tab 2: Model results and predictions

Tab 2 is used to display plots of fitted models and predict the
number of future failures or failure intensity using these models.

Fig. 4 shows Tab 2 with two models superimposed on the
cumulative plot of the DS1 data set. All combinations of models
and covariates that were selected in Tab 1 are listed in the
box labeled Select Model Results. For the sake of illustration, the
discrete Weibull with no covariates DW2 (None) and geometric
model with all three covariates GM (E, F, C) were selected and
are therefore displayed on the plot.

Below the list of fitted models are controls to specify Pre-
diction parameters using the selected combinations. When the
cumulative failures plot is displayed, as in Fig. 4, the user must
specify the Number of Intervals to Predict and Effort per Interval.
For example, Fig. 4 shows that model prediction for the number
of additional defects that would be detected if 1.0, 2.0, and 3.0
units of effort to covariates E, F, and C respectively were applied
in each of the four intervals beyond the vertical line at interval 17.
The effort per interval may be interpreted as the testing schedule,
but can also be used to predict field defect or vulnerability dis-
covery in the case where covariates correspond to the intensity of
various types of attack leveled against a system in its operational
environment.

By switching plots from the View menu, Fig. 5 shows the num-
ber of defects detected in each interval as well as the failure in-
tensity of the fitted models selected. Fig. 5 clearly illustrates how
covariate models more accurately track the number of defects
detected in each interval because the testing activities driving
defect discovery are explicitly considered.

In addition to tracking the observed data, Fig. 5 can predict the
number of additional intervals to achieve a Failure Intensity Target.
For each combination selected, the prediction shows all points
until the interval that attains a value below the desired failure
intensity, as shown in Fig. 5. For example, to achieve of failure
intensity of 0.3, the discrete Weibull model with no covariates
predicts four additional intervals would be required, whereas
the geometric model with E, F, and C covariates predicts one
additional interval would be required. The number of intervals
required is also reported in a table.

2.4. Tab 3: Model comparison

In statistics, no model characterizes all data sets best and no
measure of goodness-of-fit is ideal for model selection. Therefore,
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Fig. 5. Tab 2: Plot of failures detected in each interval and failure intensity of
fitted models superimposed.

Tab 3 allows the user to compare alternative models with respect
to common statistical goodness-of-fit measures [14], including
those based on the log-likelihood value such as the Akaike infor-
mation criterion (AIC) and Bayesian Information Criteria (BIC) as
well as sum of squares (SSE) and predictive sum of squares error
(PSSE).

In addition to providing multiple goodness of fit measures,
the C-SFRAT provides a simple approach based on the critic
method [13] to select models based on a weighted combination
of one or more measures. Given n models and m measures, let f;
be the jth measure for the ith model. Each measure is assigned a
normalized score in the interval (0, 1) according to

fi—f*
Xij=1— —= (1
i =k
where ]3* and fj’ respectively denote the best and worst values
of a measure j across all models. Thus, x;; indicates how close
the jth measure of model i is to the ideal, where x;; = 1.0 if
model i performs best on measure j. Two alternative methods
to select a model are to compute the mean or median of each
model’s normalized scores and recommend the model possessing
the highest mean or median normalized value.

Since it is rare that a model performs best on all measures and
no single measure is a complete indicator of a model’s suitability,
a simple discrete weighted average technique enables the user to
specify their preference without overcomplicating the weighting
process. Each measure can be assigned a weight in the range 0-
10, where zero indicates no weight and ten the highest weight.
The left pane of Fig. 6 indicates that the default weighting is
one (uniform) for each measure, which corresponds to equal
weighting. By default, PSSE values are computed by performing
model fitting on 90% of the data. The percentage of data can be
changed in the spinbox labeled Specify subset data for PSSE. The
user must then press the button labeled Run to perform model
fitting on the new subset.

Setting a weight to zero eliminates a measure and setting all
but one weight to zero is the special case considering only a
single measure. The right pane reports each hazard function and
combination of covariates successfully applied, the log-likelihood
attained, and goodness-of-fit values. The right two columns of
Fig. 6 model scores based on these weightings according to the
mean and medium measure respectively. The user can sort the
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Fig. 6. Tab 3: Model selection.
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columns in descending order by clicking the header. This en-
ables model selection for statistical inference on Tab 2 and effort
allocation on Tab 4.

2.5. Tab 4: Effort allocation

Tab 4 computes the optimal allocation of testing activities
based on the models applied in Tab 2. Two effort allocation prob-
lems [13] allow a user to (i) maximize defect discovery within a
budget constraint or (ii) minimize the budget required to discover
a specified number of defects. The two problems are referred to
as Allocation 1 and Allocation 2 in the tool.

Prior to computing recommended test activity allocations, the
user specifies a budget for Allocation 1 or the number of defects
to be exposed for Allocation 2. Here, budget can be interpreted
as time, but also as cost in cases where alternative test ac-
tivities incur different costs per unit time. For example, one
activity may require outside consultants with highly specialized
expertise, whereas others rely on members of the project team.

Fig. 7 shows Tab 4 with Allocation 1. The combinations of
hazard function and test activities successfully fit to the data are
shown in the top left pane. The user can select one or more
models to use as the basis for test activity recommendations. In
practice, effort allocation should be performed with the models
that best fit the data. For example, models can be chosen based
on the goodness-of-fit measures considered in Tab 3.
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Below the list of models, the user can define the parameters
for Allocation 1 and Allocation 2. The budget constraint for Allo-
cation 1 is specified in the spin box labeled Enter budget. Once
the desired parameters and models have been selected, the user
can click the Run Allocation 1 button, after which the Allocation
1 table is populated. The Allocation 2 controls are located below
the controls for Allocation 1, in the spin box labeled Enter number
of additional defects, where the user can define the number of
defects to uncover. Clicking the Run Allocation 2 button solves
the second allocation problem and displays the results in the
Allocation 2 table.

The five best fitting models according to the critic method in
Fig. 6 were chosen for comparison. The right pane of Fig. 7 shows
the results of Allocation 1 on the five models using a budget of 60.
The column Est. Defects column indicates the predicted number of
additional defects that would be detected if the specified budget
is allocated according to the percentages in the columns to the
right. For example, row three of the table, suggests the negative
binomial with covariates E, F, and C predicts 1.80 additional
defects if 48.96% of the budget is allocated to E, 11.72% of the
budget is allocated to F, and 39.32% of the budget is allocated to
C. Note that the predictions are decimal values because the mean
value function of the model provides a continuous approximation
to the discrete process of discovering defects. The results of
Allocation 2 when specifying one additional defect are shown in
Fig. 8. Here, the negative binomial with covariates E, F, and C,
predict the minimum budget to uncover two additional defects
is 193.28, with 49.15% of the budget allocated to E, 11.45% of
the budget allocated to F, and 39.40% of the budget allocated
to C. Models with a single activity allocate 100% of testing to
that activity, but are included in the tables because the right
pane also reports model predictions of the estimated defects
or budget respectively. Allocation can aid decisions, but human
judgement must be considered. Therefore, a practical approach
is to iteratively allocate, collect data, and repeat until a desired
target is achieved.

3. Impact

Past research has overemphasized nonhomogeneous Poisson
process models that do not consider the underlying test activities
driving defects or vulnerabilities discovered as well as simplified
optimization problems that only consider the amount of time or
effort to be allocated and optimal release problems that do not
fully account for the details of modern software development
practices.
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Like the SFRAT (Software Failure and Reliability Assessment
Tool), the C-SFRAT (Covariate Software Failure and Reliability As-
sessment Tool) offers to promote communication between soft-
ware reliability researchers and practitioners. Specifically, the
open source nature of the tool promotes the inclusion of addi-
tional hazard functions and measures of goodness-of-fit as well
as the opportunity to extend the tool with additional test allo-
cation problems. Thus, researchers contributing to the tool can
make their results available to their target audience. Similarly,
practitioners can communicate practical software engineering
challenges that enable new modeling research for their benefit,
including how to effectively apply models throughout the testing
process. The open source approach will also encourage model
comparison, reproducibility of research, and data sharing.

The C-SFRAT will be of interest to government organizations
concerned with the quality of software produced with taxpayer
dollars, organizations that perform independent analysis, and
private companies. The tool automates the most difficult aspects
of applying covariate models, including symbolic differentiation
of the objective function and optimization procedure to iden-
tify numerical parameters that best characterize input data. This
encapsulation allows users to focus on the model predictions
and practical allocation decisions. Thus, the C-SFRAT significantly
reduces the learning curve required to apply covariate models to
quantitatively assess software, promoting collection of accurate
software metrics and test activity tracking in order to conduct
quantitative process assessment and improvement efforts.

We do not require individuals to register prior to download
and therefore cannot accurately state the full extent of its use.
However, we welcome constructive feedback to better serve the
research and user community.

4. Conclusion and future work

This paper presents the Covariate Software Failure and Relia-
bility Assessment Tool, an open source tool to automatically apply
covariate models to software test activity data. Model fitting
can be performed with eight discrete hazard rate functions and
model fitness compared quantitatively using five goodness-of-fit
measures. The fitted models are used to predict future defects
and to determine optimal allocation of future testing resources.
The open source architecture of the C-SFRAT is intended to en-
courage collaboration among software reliability researchers and
practitioners.

The tool has been successfully tested on data sets with up
to 10 activities. In some cases, one or two activities are suffi-
cient to improve predictions significantly. Future research will (i)
formulate additional practical test activity allocation problems,
(ii) implement stable and efficient algorithms to fit models docu-
menting many activities, and (iii) develop a sequential procedure
to identify a sufficient number of activities for prediction.
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