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Researchers have proposed several software reliability growth models, many of which
possess complex parametric forms. In practice, software reliability growth models should
exhibit a balance between predictive accuracy and other statistical measures of goodness
of fit, yet past studies have not always performed such balanced assessment. This paper
proposes a framework for software reliability growth models possessing a bathtub-shaped
fault detection rate and derives stable and efficient expectation conditional maximization
algorithms to enable the fitting of these models. The stages of the bathtub are inter-
preted in the context of the software testing process. The illustrations compare multiple
bathtub-shaped and reduced model forms, including classical models with respect to
predictive and information theoretic measures. The results indicate that software reli-
ability growth models possessing a bathtub-shaped fault detection rate outperformed
classical models on both types of measures. The proposed framework and models may
therefore be a practical compromise between model complexity and predictive accuracy.

Keywords: Software reliability; software reliability growth model; bathtub distribution;
fault detection rate; expectation conditional maximization algorithm.

Acronyms

SRGM  Software reliability growth model
NHPP  Nonhomogeneous Poisson process

MVFEF Mean value function

LL

Log-likelihood function

RLL Reduced log-likelihood function
MLE Maximum-likelihood estimation
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EM Expectation-maximization

ECM  Expectation conditional maximization
AIC Akaike Information Criterion

RL Relative likelihood

PMSE Predictive mean square error

Notations

m(t) Mean value function
A(t)  Instantaneous failure rate
b(t)  Arbitrary bathtub-shaped fault detection function
F(t) Cumulative distribution function
Vector of model parameters
Number of model parameters
Number of intervals
Vector of failure times
Number of failures in ith interval

©

p

n

T

tl

K Vector of failure counts

k Number of failures in ith interval
@(J)

ith model parameter in jth iteration

1. Introduction

Software reliability growth models (SRGM)‘IMZI offer a quantitative approach to mea-
sure the decrease in software failures, especially during the early stages of integra-
tion testing when executable code is available. Many SRGM have been proposed
and several of the earliest models® were relatively simple, while recent models
have become progressively more complex. Some individuals, especially practitioners
advocate for simple models, but this has not deterred the proliferation of complex
models. One legitimate criticism of complex models is that they disregard sta-
tistical goodness of fit measures, including predictive accuracy. More concerning,
some researchers claim to employ predictive measures of goodness of fit that are,
in reality, not predictive. The practice of publishing SRGM without explicitly con-
sidering a variety of relevant measures of goodness of fit is not just poor statistics,
it is unethical because of the potential for harm to life and property if failures are
underestimated when applied to real systems.

Several software reliability researchers have developed a variety of mathematical
frameworks to establish relationships between multiple models. Notable examples
include the work of Langberg and Singpurwalla® who showed how some models can
be derived by assigning specific prior distributions in a Bayesian context. Miller®
showed that several models are special cases of exponential order statistics models.
Yamada et al® proposed a two-step model fitting procedure, which first fit a curve
to testing effort data followed by the mean value function of a nonhomogeneous
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Poisson process (NHPP) SRGM to the fault discovery process. Gokhale et alZ
demonstrated that several NHPP models with bounded mean value function are
special cases of the enhanced NHPP possessing time-varying test-coverage. Dohi
et al® introduced an infinite server queueing model to describe software debug-
ging behavior in a framework that accommodates NHPP models possessing a finite
or infinite number of faults. Kuo et al® proposed a framework to incorporate
both testing effort and fault detection rate into SRGM capable of characterizing a
wide range of possible fault detection trends. Huang et al™@ presented an NHPP
model and derived several existing models through a parametric family of power
transformations.

Another common theme is for models to characterize defect detection and cor-
rection. For example, Huang and Li™ showed how several existing SRGM can
be derived by incorporating the ideas of fault dependency and debugging time lag
and demonstrated the predictive accuracy of the proposed framework. Xie et al™?
described the failure correction process by delayed failure detection processes with
a random or deterministic delay. Wang et al13 developed a joint likelihood function
for failure detection and correction processes, utilizing various correction time dis-
tributions, while Wu et al™ also obtained optimal release times using a modified
software cost model from their fault detection and correction model. Kapur et al1%
presented two Generalized Imperfect Non-homogeneous Poisson Process (GINHPP)
models to account for imperfect debugging and error generation, and demonstrated
that some existing NHPP SRGM are special cases. Okamura and Dohil® presented a
bivariate modeling framework for SRGM exhibiting time dependent fault detection
and correction processes. Zhu and Pham incorporated software fault dependency
in NHPP SRGM considering imperfect fault removal with two types of software
faults, including type I (independent) and type II (dependent) faults with cor-
responding debugging processes. Zhu and Pham¥ also developed a multi-release
SRGM considering the software faults remaining from the previous release and
faults introduced from newly added features.

Other notable works include Inoue and Yamada® who developed a generalized
discrete software reliability growth model following a binomial process capable of
considering the effect of the program size. Song et al2? proposed a new model con-
sidering the Weibull function that relates to the fault detection rate to uncertainty
in the operating environment.

This paper presents a family of software reliability models possessing a bathtub-
shaped fault detection rate. Several bathtub hazard rates from the hardware reli-
ability literaturé?! are interpreted as software fault detection rates. Specifically,
the interpretation of the three stages of the bathtub are adapted to the detec-
tion of software faults during testing as follows: (i) a burn-in phase characterized
by the discovery and correction of superficial faults such as typos and elementary
syntax errors; (ii) a requirements verification stage, which exposes more compli-
cated logical errors that require more detailed rework to resolve and (iii) a code
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comprehension stage characterized by a learning curve2223 where a significant
amount of code has been tested, enabling the test team to focus on improving code
coverage in order to expose and correct remaining defects. To assess whether the
additional complexity introduced by a bathtub-shaped fault detection rate is justi-
fied, information theoretic and predictive measures of goodness of fit are computed.
This analysis also considers reduced forms of the bathtub model, including classical
SRGM.

This paper extends earlier work by Fiondella and Gokhald?¥ who presented a
single software reliability growth model possessing a bathtub-shaped fault detection
rate. Our primary contributions include the following:

e A family of software reliability growth models possessing bathtub-shaped fault
detection rate, including a visual taxonomy of the mathematical relationships
between the models is provided.

e Stable and efficient expectation conditional maximization (ECM) algorithms,
which are essential to enable consistent application of these models.

Our results indicate that, for the data sets considered, a software reliability
growth model possessing a bathtub-shaped fault detection rate performed best with
respect to both information theoretic and predictive measures of goodness of fit.
The proposed family of models coupled with efficient ECM algorithms and goodness
of fit assessment may therefore be beneficial to the software reliability assessment
process.

The remainder of the paper is organized as follows. Section 2l proposes a frame-
work for bathtub-shaped software reliability growth models. Section [B] describes
methods to estimate model parameters, while Sec. dl summarizes methods to assess
model goodness of fit. Section [f] compares alternative bathtub and reduced models.
Section [0 provides conclusions and future research.

2. Framework for SRGM with Bathtub-Shaped Fault
Detection Rate

The nonhomogeneous Poisson process is a stochastic process? that counts the
number of events that occur by time ¢t. The expected value is characterized by the
mean value function (MVF) and denoted m(t). The MVF can take many functional
forms. In software reliability, the NHPP counts the number of unique faults detected
through testing time ¢. The MVF of several SRGM can be written in the following
general form:

m(t) = wF(t), (1)

where w is the number of unique faults that would be detected as t — oo and F'(¢)
is the cumulative distribution function of a continuous probability distribution,
characterizing the software fault detection process.
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A family of bathtub-shaped fault detection models possessing the following form
is proposed:

F(t) = (1-e"0), (2)

where b(t) is an arbitrary fault detection rate possessing a bathtub shape.

2.1. SRGM with bathtub-shaped fault detection rate

This section summarizes several bathtub hazard functions from the literature. Since
many bathtub distributions simplify to increasing or decreasing trends, we also
identify feasible simplifications and their relationships to other well known software
reliability growth models, including the Goel-Okumotd® and Weibull28 SRGM. The
section concludes with a visual summary of the relationships between the bathtub
models and their simplifications. This taxonomy is also used in the illustrations,
where it enables explicit comparison of the goodness of fit of bathtub and simpler
SRGM in order to objectively assess if the additional complexity is justified.

2.1.1. Quadratic model

To model U-shaped or bathtub hazard functions, Bair2Z and Gore et al¥ consid-
ered low order polynomial functions. The quadratic hazard function

b(t) = a + Bt + t? (3)

is bathtub-shaped when —2(ay)'/? < 8 < 0 and «,~ > 0. Substituting Eq. () into
Eq. @) produces the mean value function of the SRGM with bathtub-shaped fault
detection rate characterized by the Quadratic Model

m(t) = w(l — e~ P11, (4)

Parameters 3, a, and +y, respectively, contribute to the three stages of the bath-
tub. Specifically, if the coefficient of the linear term ([ is decreasing, this trend
can characterize a decreasing fault detection rate in the earlier stages of testing
as simple problems are detected and removed with relative ease. The constant «
represents the baseline fault detection rate associated with the second phase of the
bathtub. Finally, the coefficient of the quadratic term - contributes to the third
phase, since this final term will eventually dominate the constant and linear terms.
In the context of software fault detection, v can characterize code comprehension
as testers increase code coverageé?d and narrow in on remaining sections of untested
software resolving logic issues and correcting them to ensure the application con-
forms to requirements. A low value of v may indicate that the software is difficult
to comprehend or takes longer to achieve a high level of code coverage. In this final
stage of testing, faults can no longer elude testers. Setting o and « to zero reduces
the fault detection rate to

b(t) = pt (5)
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indicating that the Goel-Okumoto model is a special case of the SRGM with
bathtub-shaped fault detection rate characterized by the Quadratic Model.

2.1.2. Competing risk models

Hjorth presented a distribution capable of exhibiting increasing, decreasing, con-
stant, and bathtub-shaped rates
@

b(t) =
®) 1+t
The mean value function of the SRGM with bathtub-shaped fault detection rate
characterized by Hjorth’s competing risk model is

m(t) = w(l — B_ﬁ_%t) (7)

+ 29t (6)

and also contains the Goel-Okumoto model when o = 0 and b = 2.

2.1.3. Modified Weibull (Lai) model
Lai et al®U proposed a modified Weibull distribution possessing hazard rate
b(t) = ala + At)to e, (8)

The mean value function of the SRGM with bathtub-shaped fault detection rate
characterized by Lai’s modified Weibull model is

m(t) = w(l — e~ @Ity N

Substituting A = 0 and a — % reduces to the Weibull model, while substituting
A =0, a =2, and § = 2a produces the Goel-Okumoto model.

2.1.4. FExponential power and Weibull extension models

Exponential Power Model. Smith and BainP2 studied the exponential power
model possessing hazard rate

b(t) = Ba(Bt)* el (10)

The mean value function of the SRGM with bathtub-shaped fault detection rate
characterized by the Exponential Power Model is

m(t) = w(l — e BN (11)
Setting o = 1 in Eq. () reduces the fault detection rate to
b(t) = Belt. (12)

Weibull Extension (Chen) Model. Chen3 proposed a distribution with hazard
rate

b(t) = At~ tet”, (13)
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The mean value function of the SRGM with bathtub-shaped fault detection rate
characterized by the Weibull Extension Model of Chen is
m(t) = w(l — e ot" ey, (14)
Setting A = 1 in Eq. (I4) reduces the fault detection rate to
bt) = et a1, (15)

Weibull Extension (Xie) Model. Xie et al®® extended Chen’s Weibull Extension
Model by incorporating a scale parameter [ into Eq. (I3]) such that

b(t) = \a (%)Q_l et/P)*, (16)

The mean value function of the SRGM with bathtub-shaped fault detection rate
characterized by the Weibull Extension Model of Xie is

m(t) :w(l 7€_Aa(%)a—le(t/ﬁ)a). (17)
Setting o = 1 in Eq. (), reduces the fault detection rate to
b(t) = Xet/?), (18)

Double Ezponential Power Model. Paranjpe and Rajarshi®d considered the
double exponential power model possessing failure rate

b(t) = ﬁato‘flemaeemafl. (19)

The mean value function of the SRGM with bathtub-shaped fault detection rate
characterized by the Double Exponential Power Model is
a1 pte Bt¥ g
m(t) = w(l — e Pt e e ). (20)
Setting o = 1 in Eq. ([9) simplifies to

Bpt_1

b(t) = peltte (21)

Weibull Extension (Lee) Model. Led3 proposed a three parameter model with
hazard rate

b(t) = Myt? e (22)

which is bathtub-shaped when A > 0, v < 1, and ¢ > 0. The mean value function of
the SRGM with bathtub-shaped fault detection rate characterized by the Weibull
Extension Model of Lee is

m(t) = w(l — e M7, (23)

Substituting ¢ =0, A — % reduces to the Weibull model, while substituting ¢ = 0,
v =1, and § = X reduces to the Goel-Okumoto model.
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Weibull
Extension (Xie)
(16)

Weibull Extension
(Lee) (22)

Exponential Weib‘_’"
Power Extension
Goel (10) (Chen)
Okumoto (13)

Quadratic (3) &
Competing Risk (6)

Double
Exponential
Power
(19)

Modified
Weibull (8)

Fig. 1. Framework for a family of Bathtub models.

2.2. Bathtub-shaped models framework

Figure [ depicts the relationships among the SRGM possessing a bathtub-shaped
fault detection rate as well as simplifications that correspond to an existing model.

For example the left half of Fig. [ illustrates how Lee’s Weibull Extension Model
reduces to the Weibull SRGM and further simplifies to the Goel-Okumoto model.
Similarly, the quadratic and competing risk models also contain the Goel-Okumoto
model as a special case. Furthermore, Lai’s modified Weibull contains the Weibull
and Goel-Okumoto models.

The right half of Fig.[[lindicates Xie’s Weibull Extension contains the Exponen-
tial power model and Chen’s Weibull Extension, and that the Double Exponeq}tial
Power model can only be reduced by deleting the double exponential term e -1
because setting 3 = 0 or aw = 0 produces the degenerate expression b(t) = 0.

3. Parameter Estimation Methods

This section describes various methods to estimate the parameters of a SRGM
with the method of maximum-likelihood estimation, including Newton’s methodZ
as well as initial parameter estimation with the EM algorithm®® and ECM=2
algorithms.

3.1. Maxzimum-likelihood estimation

Maximum-likelihood estimation maximizes the likelihood function or joint distribu-
tion of the failure data. Typically, the log-likelihood function is maximized. This is
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possible because the logarithm is a monotonic function, which ensures that the max-
imum of the log-likelihood function maximizes the likelihood function. Identities of
logarithms simplify the product series terms and the resulting set of equations.

Failure count or grouped data consists of a vector of times T = (¢1,ta,...,1,) at
which the intervals ended and failure counts K = (kq, ko, ..., k,) for these intervals.
Failure time models are also possible. However, failure count models are presented
here because several historical failure count data sets are well characterized by
bathtub models.

The log-likelihood function of a failure count dataset is

LL(w,O|T,K) = Zk 1ogw—|—Zk‘ log (e~ "ti- V) (ti))

,w( b(t Z]nk (24)

where © is the vector of model parameters contalned in F(t).
The maximum likelihood estimates (MLE) that determine the numerical values
of the parameters that best fit the data is found by numerically solving the following
system of simultaneous equations:
0

—LL(O)=0 25

ASLL(O) (25)
since models of the form given in Eq. () possess a closed form
Z?:l ki

F(tn)

which can be substituted into Eq. ([24)) to reduce the set of simultaneous equations

(26)

d):

by one.
For example, the log-likelihood of the SRGM with bathtub-shaped fault detec-
tion rate characterized by the Quadratic Model is LL(w, o, 8,7 | T, K)

= Z kilogw + Z k; log(e_(o‘+ﬁti*1+’\t?*1) — e_(o""ﬁt”’\t?))

—w(l — e (@HPIA)) N og (k)1 (27)

with

L Z?:l kl (28)

R PSR DTN
so that the reduced log—likelihood is RLL(«, 8,7 | T, K)

- Zz Lk —(a+Bti—1 M2 ) —(a4-Bti+At?)
:Zkﬂog( (a+ﬁtn+7t2 +Zklog R i)
i=1

- Z ki — Z log(k:)!. (29)
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Traditionally, the Newton-Raphson method®” has been employed to identify the
MLE. However, this numerical method may not converge when the initial estimates
chosen as input are not close to the maximum. Without the stability of the Expec-
tation Conditional Maximization algorithm described in this paper it would not
be possible to consistently apply these SRGM with bathtub-shaped fault detection
rate.

3.2. Initial parameter estimation

The EM algorithm®? provides a systematic calculus-based method to identify ini-
tial parameter estimates for some or all parameters of a model. For a mean value
function of the form specified in Eq. (), the observed number of faults is an ini-
tial estimate of the number of faults such that w(® = """  k;. Initial estimates of
the remaining parameters (0) can be determined by maximizing the log-likelihood
function of the probability density function

n

0
0 =\"__1| t:0)] =0 30
>~ g el ::0) (30)
and solving to obtain closed-form expressions.

For example, the initial parameter estimates of the SRGM with bathtub-shaped

fault detection rate characterized by the Quadratic Model are

a =0, (31)

p=+-nd (3
i=1 " i=1

"1 "1
7:Z§_BZE' (33)
=1 =1

The parameters 3 and - can be estimated in multiple ways. The first is to solve
Egs. 32) and B3] as a pair of simultaneous equations. One alternative approach
is to substitute the closed form solution for 8 on the left-hand side of Eq. (32)
into Eq. B3], solving for «, then substituting the estimate of v into Eq. (B2) to
determine 8. A second alternative substitutes the closed form expression of 7 into
Eq. (82) and proceeds in a similar manner.

3.3. Expectation conditional maximization algorithm

This section provides a brief overview of the expectation conditional maximization
algorithm 4 which is an extension of the expectation maximization (EM) algo-
rithm that simplifies computation by dividing a single M-step into p conditional-

maximization (CM)-steps, where p denotes the number of model parameters. The

CM-steps are the partial derivatives of the log-likelihood function % or reduced

ORLL
00, *

log-likelihood function The ECM algorithm updates one parameter at a time

2150034-10
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holding all others constant, reducing the maximum likelihood estimation process
to p distinct 1-dimensional problems. Thus, in each CM-step, the ECM algorithm
searches a single dimension of the parameter space to improve the log-likelihood.
Successive CM-steps determine @Ej ), which is the updated value of the i¢th param-
eter in the jth iteration.

Without loss of generality, the CM-step which updates the ith parameter in the
jth iteration takes

@irti — <@§j+1),@§j+1)’ o 61({451)7 @l(j)7 o Gz(oj)> (34)

as input, holds all values but @Z(-j ) constant, and maximizes the partial derivative of
the LL or RLL function with respect to ©; to produce ©77+(+1) containing ©77".
Each CM-step improves the LL or RLL function monotonically. After the CM-step
for each parameter is applied, a convergence criterion such as

|LLj — LLj71| <é€ (35)

is tested, where € > 0 is an arbitrarily small constant. If satisfied, the ECM algo-
rithm terminates.

For example, the CM-steps of the SRGM with bathtub-shaped fault detection
rate characterized by the Quadratic Model are computed from Eq. (29)

n (ea _ e—(x—a))<52xia(eia_e7'))

GV
a= Z ki e~T — e~ 0 ’ <36)
=1
n e Tti—e Tti1 + eX(efT-i-ef;)tn
_ l—e—X ex—1
8= ki(l—e) . (37)
=1
. TR, | et
_ 1—e—X ex—1)2
=Y kil —eX) —— 676( r_ (38)
i=1

where, X = a + (Btn, +yt2, 7 = Bti_1 +yt? |, and o = Bt; + yt2. Thus, when the
CM-step for o in Eq. (B0) is applied all instances of 5 and ~ in y, 7, and o are held
constant at their most recent estimates and the expression is solved for a.. Similarly,
the CM-step for 8 in Eq. (37) holds all instances of « and « constant and solves

for .

4. Model Assessment

Model assessment evaluates how well a model performs on a data set. Two com-
plementary measures are the Akaike Information Criterion (AIC)* and Predictive
Mean Square Error (PMSE) %3 The AIC is an information theoretic method to com-
pare the performance of multiple models on a single data set, while PMSE measures
the disagreement between a model’s predictions and future observations. Ideally, a
single “best” model will perform better than all other models under consideration
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on both measures. In many cases, however, no single model will be most highly
recommended by all measures. In such cases, the user must make a subjective deci-
sion based on factors such as the amount of data available, stage of testing, and
predictive horizon.

4.1. Akaike information criterion

The Akaike Information Criterion is an information theoretic measure of a statistical
model’s goodness-of-fit to a dataset. It is grounded in the concept of entropy, offering
a relative measure of the information lost when a given model is applied. The AIC
quantifies the tradeoff between a model’s characterization of the observed data
and the model’s complexity. The AIC of model i is a function of the maximized
log-likelihood and the number of model parameters (p)

AIC; = 2p— 2LL(O | T). (39)

The term 2p is a penalty function, which deters a model with an excessive number of
parameters that fits the observed data well, but compromises its predictive ability.

Given the AIC of two or more models the probability that the ith model mini-
mizes the information loss or relative likelihood (RL) is

AIC, i, —AIC;

RL; = %, (40)

where AIC,, is the minimum AIC value among all models considered.

4.2. Predictive mean square error

The k-step predictive mean square error of the mean value function measures a
model’s predictive ability. It is calculated by fitting a model to the data in the first
n — £ intervals and computing computed by

PMSE, = Y (K —m(t))? (41)
i=(n—0)+1

which is the sum of the squared differences between the cumulative number of faults
observed (K; = 22:1 k;) and the cumulative faults predicted by the fitted mean

value function (1 (t;)) for the last £ observations not used to fit the model.

5. Illustrations

This section illustrates the application of the ECM algorithm to the SRGM with
bathtub-shaped fault detection rate characterized by the Quadratic model. A com-
parative analysis of bathtub-shaped fault detection rate models and their simplified
forms is then performed to assess these models with respect to information theoretic
and predictive measures of goodness of fit.

2150034-12



20 Reading

July 21, 2021 12:45 WSPC/S0218-5393 122-IJRQSE 2150034

A Family of Software Reliability Models with Bathtub-Shaped Fault Detection Rate

5.1. Quadratic LL-ECM application

This first example explains how the ECM algorithm is applied in the context of the
SRGM with bathtub-shaped fault detection rate characterized by the Quadratic
Model on the PL/I data set* which consists of over 1.3 million lines of code and
exhibited 328 faults over nineteen (n = 19) weeks of testing. As noted in Sec. 3]
the EM and ECM algorithms provide closed form expressions for the initial value
of the parameters. The initial estimate of a(?) is 0, while solving Eqs. ([32) and (&3)
produces initial estimates for the remaining parameters such as 5(©) = 0.010203
and v(©) = 0.000954. The initial value of the log-likelihood function specified in
Eq. ([21) is therefore —133.49. The first iteration applies Eq. B8], holding £ and ~
constant and solving for a(!) = 0.012757, which increases the log-likelihood value to
—126.16. Successive CM-steps update v and 8 with Eqs. (88) and [B1), respectively.

Figure 2 shows the CM-steps in the § and 7 parameters superimposed on a
contour plot of the log-likelihood function. The 90° angle movements illustrate

0.025
0.020
Q
0.015
0.010
0.0005 0.0010 0.0015
Y

Fig. 2. Iterations of v and 8 CM-steps superimposed on contour plot of log-likelihood function
of SRGM with bathtub-shaped fault detection rate characterized by Quadratic Model.
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how only one parameter is updated at a time. The « parameter is also updated,
but not shown here in order to present the process more clearly in two dimensions.
Moreover, the value of a used to produce the contour plot is the eventual maximum
likelihood estimate such that the convergence of the g and + parameters shown in
Fig. Blis to the overall maximum likelihood estimate.

Figure [B] shows the monotonic improvements made by the ECM algorithm in
each of the 44 iterations until convergence when Eq. ([BH) is less than ¢ = 1071°.
Substituting the maximum likelihood estimates of «, 5 and ~ into Eq. (28] produces
the MLE of the initial number of faults w = 349.402.

Figure[shows PL/I data as well as the plot of the mean value function produced
by substituting the maximum likelihood estimates in to Eq. ().

-120
123+ .
©
3
£ 1261 1
©
3
>
9 129
-133.49 ¢ L L L L L L L ]
01 10 15 20 25 30 35 40 44
lterations

Fig. 3. Improvement of log-likelihood function in iterations of ECM algorithm for SRGM with
bathtub-shaped fault detection rate characterized by Quadratic Model.

—Counting Process
= =Quadratic Model Fit
L

1 1 L 1 L L L

0 5 10 15 20 25 30 35 40 45
Time (t)
Fig. 4. SRGM with bathtub-shaped fault detection rate characterized by Quadratic Model fit to
PL/T data.
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5.2. Model assessment

Table [[] summarizes the Akaike Information Criterion and corresponding relative
likelihood as well as the predictive sum of squares error computed with £ = 2
of n =19 weeks of data withheld from model fitting for each of the nine bathtub-
shaped distributions considered. Values in bold indicate models preferred by specific
measures. The AIC and hence the relative likelihood prefer the SRGM with bathtub-
shaped fault detection rate characterized by Lee’s Weibull extension. Lai’s Modified
Weibull and the Quadratic Model rank second and third with respect to AIC and
RL. The remaining six models are not competitive candidates to characterize this
data set, but may perform better on other data sets not considered here. However,
PSSE prefers the Double Exponential Power Model, followed by Chen’s Weibull
extension, Lai’s Modified Weibull, and Lee’s Weibull Extension. While no model
performs best on all measures, Lee’s Weibull Extension and Lai’s Modified Weibull
perform relatively well on both measures.

To assess if the full bathtub models are necessary, Table 2 reports the results of
a similar analysis performed on the reduced models identified in Sec.[2] with the rel-
ative likelihood computed based on the AIC of Lee’s Weibull extension reported in
Table [l Table 2lindicates that among the reduced models, Lai’s Modified Weibull
and Lee’s Weibull Extension reductions (classical Weibull SRGM) perform best,
but that their relative likelihood compared the full bathtub of Lee’s Weibull Exten-
sion is just 0.052. Moreover, the PMSE results of the Exponential Power Model as
well as Xie’s and Chen’s Weibull Extensions predict reasonably well, despite the
fact that their relative likelihood is virtually zero.

Table 1. Goodness of fit of bathtub-shaped models.

Function name AIC RL PMSE

Quadratic 251.41 0.208 2439.23
Competing risk 430.43 0.000 2132.20
Modified Weibull (Lai) 250.12 0.418 476.23
Exponential power 480.57 0.000 30023.50
Weibull extension (Chen) 339.22 0.000 129.01
Weibull extension (Xie) 285.69 0.000 5654.02
Double exponential power 300.01 0.000 9.43
Weibull extension (Lee) 248.33 1.000 1369.00

Table 2.  Goodness of fit of reduced bathtub-shaped models.

Function name AlIC RL PMSE

Quadratic 264.63 0.000 5821.29
Competing risk 264.63 0.000 5821.29
Modified Weibull (Lai) 254.17 0.052 3013.01
Exponential power 333.23 0.000 143.76
Weibull extension (Chen) 289.46 0.000 479.65
Weibull extension (Xie) 326.39 0.000 230.10
Double exponential power 380.90 0.000 46049.00
Weibull extension (Lee) 254.17 0.052 3013.01
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Fig. 5. Predictive error (%) of SRGM with bathtub-shaped fault detection rate.

5.3. Online prediction assessment

The results observed so far suggest that the SRGM with bathtub-shaped fault
detection rate characterized by Lee’s Weibull Extension best characterizes the data,
but that its predictive accuracy was not a good as some alternatives for the last two
weeks of testing. To assess if the predictive accuracy of the SRGM with bathtub-
shaped fault detection rate characterized by Lee’s Weibull Extension is significantly
poorer, this example compares the model’s predictive accuracy with the SRGM with
bathtub-shaped fault detection rate characterized by the Double Exponential Power
Model.

Figure Bl shows the prediction error of the two models that performed best with
respect to AIC and PSSE, respectively, where between two and seventeen weeks of
data were used for model fitting and error computed between the model estimates
and faults observed two weeks into the future. Figure [l indicates that the SRGM
with bathtub-shaped fault detection rate characterized by Lee’s Weibull Extension
underpredicts more significantly during the first few weeks of testing, but performs
as well as or better than the SRGM with bathtub-shaped fault detection rate char-
acterized by the Double Exponential Power Model in week eight and beyond. This
observation suggests that, even though the PMSE was less than ideal toward the
end of testing, using Lee’s Weibull Extension to perform software reliability tracking
throughout the testing process may be reasonable.

6. Conclusions and Future Research

This paper presented a family of software reliability models possessing a bathtub-
shaped fault detection rate. Several bathtub hazard rates from the hardware reli-
ability literature were considered. The interpretation of the three stages of the
bathtub were adapted to the detection of software faults during testing, namely,
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(i) a burn-in phase characterized by the discovery and correction of superficial
faults such as typos and elementary syntax errors; (ii) a requirements verifica-
tion stage that exposes more complicated logical errors that require more detailed
rework to resolve and (iii) a code comprehension stage characterized by a learning
curve. To assess whether the additional complexity introduced by a bathtub-shaped
fault detection rate was justified, information theoretic and predictive measures of
goodness of fit were computed. This analysis also considered reduced forms of the
bathtub model, including classical SRGM. Our results indicated that SRGM pos-
sessing a bathtub-shaped fault detection rate outperformed classical and reduced
models on both types of measures. The framework and models may therefore be a
reasonable compromise between model complexity and predictive accuracy to track
software reliability during testing.

Future research will seek to identify the causes of the bathtub shape such as
test procedures and application architecture.
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