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A B S T R A C T   

A thermal simulation methodology is developed for interconnects enabled by a data-driven learning algorithm 
accounting for variations of material properties, heat sources and boundary conditions (BCs). The methodology is 
based on the concepts of model order reduction and domain decomposition to construct a multi-block approach. 
A generic block model is built to represent a group of interconnect blocks that are used to wire standard cells in 
the integrated circuits (ICs). The blocks in this group possess identical geometry with various metal/via routings. 
The data-driven model reduction method is thus applied to learn material property variations induced by 
different metal/via routings in the blocks, in addition to the variations of heat sources and BCs. The approach is 
investigated in two very different settings. It is first applied to thermal simulation of a single interconnect block 
with similar BCs to those in the training of the generic block. It is then implemented in multi-block thermal 
simulation of a FinFET IC, where the interconnect structure is partitioned into several blocks each modeled by 
the generic block model. Accuracy of the generic block model is examined in terms of the metal/via routings, BCs 
and thermal discontinuities at the block interfaces.   

1. Introduction 

Temperature escalation in integrated circuits (ICs) due to Joule 
heating has emerged as one of the most critical issues in integrated 
circuit (IC) design for decades [1–11]. This results from the rapid in-
crease in the device and interconnect densities in semiconductor chips. 
High thermal gradients and hot spots induced by Joule heating signifi-
cantly degrade performance and reliability of ICs in various IC tech-
nologies [1–9]. In addition to self-heating effects in devices [12–16], 
high temperature in interconnects also imposes serious problems. For 
example, metal resistance and signal delays increase as temperature 
rises, which limits the operating speed of ICs [8], [9], [17]. Moreover, 
the failure rate of interconnects due to electromigration is accelerated by 
high temperature [17–19]. It is thus essential to predict accurate ther-
mal distributions over the interconnects in IC design. 

Simulations for predicting temperature distributions in ICs from the 
gate to the system level have usually been based on efficient lumped 
thermal element or compact thermal models [20–28]. These approaches 
rely on RC thermal elements and/or averaging concepts to minimize the 
computing time. They are however limited to regional average tem-
perature and not able to offer accurate temperature gradients or hot 

spots in semiconductor chips. To provide more detailed and accurate 
thermal profiles, direct numerical simulation (DNS) is needed but its 
intensive computational demand is prohibitive for thermal simulation of 
large-scale semiconductor chips. 

In order to offer both efficiency and accuracy of the thermal pre-
diction in ICs, alternatives based on the projection-based reduced-order 
models have been applied in recent years [29–36]. Many of these ap-
proaches utilize proper orthogonal decomposition (POD) [29–36]. The 
POD methods have been investigated in many different fields including 
fluid dynamics [37–40], micro-electro-mechanical systems (MEMS) [41, 
42], heat transfer [29–36], etc. The POD generates orthogonal basis 
functions from solution data of the DNSs in a domain subjected to the 
parametric variations that for heat transfer problems usually include 
spatial/temporal power sources and boundary conditions (BCs). The 
decomposition optimizes the basis functions (or POD modes) specifically 
tailored to the geometry and parametric variations of the problem using 
a data-driven learning process. With the heat conduction equation 
projected to the POD modes, the approach is able to significantly reduce 
the numerical degree of freedom (DoF) needed to accurately predict the 
thermal profile in the domain. 

The major drawback of the POD method is the time-consuming 
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process for data collection from DNSs, generation of POD modes and 
calculations of POD model parameters for a large domain with a fine 
resolution. One may also question the usefulness of the POD method for 
engineering applications since this “training” or “learning” process for 
the POD modes requires full-scale DNSs with enough variations of heat 
sources and BCs. It becomes prohibited in a very large domain with a 
fine spatial resolution, especially in a dynamic problem. 

To resolve this issue, a multi-block POD methodology was proposed 
in our previous work [31], [33], which implements the concept of 
reduced basis elements [43,44] in POD, similar to the concept based on 
space vector clustering [45]. The multi-block methodology implements 
domain decomposition in the POD method, which partitions a large 
domain into smaller building blocks. Each of these blocks is projected 
onto a functional space described by its POD modes. This approach of-
fers several advantages. First, computational resources needed in DNSs 
to collect thermal data to generate POD modes and parameters increase 
exponentially with the size of the domain. With smaller blocks, the POD 
modes and parameters can be generated more efficiently. To construct a 
large domain, the projected building blocks can be glued together with 
the interface continuity enforced by the interior penalty discontinuous 
Galerkin (DG) method [46,47]. Second, domain decomposition pos-
sesses a nature advantage of parallel computing and has been proven 
effective in parallel/distributed computing settings [48–51]. Finally, IC 
design at all levels always utilizes identical repeating functional circuit 
blocks, such as standard cells, caches, memory units, CPU/GPU cores, 
GPU streaming multiprocessors, etc. The POD modes and parameters of 
these generic building blocks can be generated and stored in a library for 
each design level, which can then offer cost-effective thermal simulation 
and thermal management of large IC structures. 

Most POD applications to thermal simulations have been based on 
single-block approaches [29,30], [34–37], the multi-block POD 
approach with generic blocks have recently been successfully applied to 
device and IC structures [31], [33]. It was shown [31] that the 
multi-block POD model is able to predict accurate 3D dynamic thermal 
distributions and small-size hot spots in a FinFET IC structure subjected 
to random power pulses induced by digital input voltages. It was 
demonstrated that the multi-block POD simulation offers a reduction in 
DoF by 5–6 orders of magnitude with high accuracy compared to DNS. 

In [31], the interconnects were not included in the multi-block POD 
simulation because it is difficult to find interconnect building blocks that 
are repeatedly used in different locations of ICs. Metal routings in ICs 
consist of a wide range of variations, which are selected based on the 
placement of the functional blocks. However, within a specific group of 
interconnects with similar features, it is still possible to select a generic 
block to develop a multi-block POD approach for interconnect thermal 
simulation if the material property variation (MPV) is considered in the 
POD-mode training. In the proposed multi-block MPV-POD methodol-
ogy, the POD modes in each selected block are then trained to experi-
ence variation of thermal properties between the metal and dielectric at 
the locations where the metal lines and vias appear. To construct a 
multi-block MPV-POD thermal model, several small interconnect blocks 
with various metal/via routings modeled by the same generic-block POD 
model can then be glued together. To the best of our knowledge, this is 
the first study considering MPV in POD. It should be noted that, unlike 
the standard cells or many other functional circuit blocks, it is difficult to 
select building blocks that can be used in different groups of in-
terconnects in ICs. Different types of generic blocks will be needed for 
different interconnect configurations. In this work, the developed 
MPV-POD methodology is applied to the interconnects that are used to 
wire standard cells. With the demonstration of a simple interconnect 
configuration to examine the concept and effectiveness of the MPV-POD 
approach, this study perhaps paves the way toward developing a more 
sophisticate multi-block MPV-POD methodology for thermal simulation 
of on-chip and off-chip interconnects. 

After an overview of the conventional POD method in Section 2 for 
thermal problems, the MPV-POD methodology is presented in Section 3. 

The MPV-POD approach for interconnect thermal simulation is illus-
trated in Section 4 step-by-step including the settings of the simulation 
domains for data collection and the generation of POD eigenvalues and 
modes. In Section 5, the MPV-POD method is demonstrated in a single- 
block interconnect structure and a small multi-block IC structure, 
compared against the DNSs. Discussions of the findings are given in 
Section 6, and conclusions are finally presented in Section 7. 

2. Overview of POD thermal simulation methodology 

2.1. POD for a single-block domain 

POD generates a set of modes from spatial/temporal thermal data 
accounting for the parametric variation. This is done by seeking a POD 
mode φ( x→) that maximizes its mean square inner product with an 
ensemble of thermal data T( x→, t) in the domain Ω, 
〈(
∫

Ω

T( x→, t)φ dΩ

)2〉/∫

Ω

φ2dΩ, (1)  

where 〈⋅〉 indicates an average over ensemble data sets observed in time 
in our study. This can also be done in static problems where the obser-
vations are carried out in response to a range of heat source strengths 
and BCs. This maximization process ensures that the component pro-
jected onto the POD mode contains the maximum least squares (LS) 
information of the thermal behavior described by the thermal data [52, 
53]. In the space orthogonal to this mode, the process can be performed 
again to generate the second mode. Repetition of the process in this 
fashion results in an orthogonal set of POD modes. 

Applying the variational calculus to Eq. (1), this problem can be 
reformulated to the Fredholm equation of the second kind, 
∫

x→′
R( x→, x→

′
)φ( x→

′
) d x→

′
= λφ( x→), (2)  

where R( x→, x→′
) is an two-point correlation tensor given by 

R( x→, x→
′
) = 〈T( x→, t) ⊗ T( x→

′
, t)〉, (3)  

with ⊗ as the tensor product, and λ is the POD eigenvalue of R and 
represents the mean squared temperature captured by the correspond-
ing POD mode. This decomposition process leads to an eigenvalue 
problem represented by Eq. (2) for R. Once the POD modes are found, 
temperature T( x→, t) can be represented by a linear combination of the 
POD modes, 

T( x→, t) =
∑

M

i=1

ai(t)φi( x→), (4)  

where M is the selected number of modes or DoF for the temperature 
solution and ai is the time dependent coefficient for each mode. The 
dimension of the eigenvalue problem given in Eq. (2) for a large-scale 
multi-dimensional structure may be enormously large and numerically 
prohibitive. To generate the POD modes and eigenvalues more effi-
ciently, the method of snapshots [29], [31], [54] is applied to convert 
the eigenvalue problem from a space domain to a sampling domain 
whose dimension is determined by the smaller number of sam-
ples/snapshots. A brief overview of the method of snapshots [54] is 
presented in Appendix. 

To predict the temperature in Eq. (4), a set of equations for aj is 
generated by projecting the heat conduction equation onto an eigen-
space using the Galerkin projection method, 
∫

Ω

(

φ
∂ρCT

∂t
+∇φ⋅k∇T

)

dΩ =

∫

Ω

φPddΩ−

∫

Γ

φ(− k∇T⋅ n→)dΓ, (5)  

where k is the thermal conductivity, Pd the power density, ρ the density, 
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C the specific heat, Γ the boundary surface, n→ the outward normal 
vector of the surface, and (-k∇T) the heat flux on the surface. With a 
selected number of modes M, the spatial integrals in Eq. (5) can be pre- 
evaluated to construct a set of M ordinary differential equation for ai, 
∑

M

j=1

ci,j

daj

dt
+
∑

M

j=1

gi,j aj = Ppod,i , i = 1 to M, (6)  

where ci,j and gi,j are elements of the thermal capacitance and conduc-
tance matrices in the POD space and given by 

ci,j =

∫

Ω

ρCφiφjdΩ and gi,j =

∫

Ω

k∇φi ∇φj dΩ (7)  

and Ppod,i represents the projected power density in Ω and heat flux 
across Γ along the ith POD mode, 

Ppod,i =

∫

Ω

φiPd( x→, t) dΩ−

∫

Γ

φi(− k∇T⋅ n→) dΓ. (8) 

Power density Pd in metal is induced by Joule heating, 
Pd = J

→
⋅ E
→

= J2
/

σ. (9)  

where J→ is the current density, E→ the electric field, and σ the copper 
conductivity. To obtain realistic current density in data collections and 
demonstrations, layouts of the FinFET ICs (such as the FinFET circuit 
shown in Fig. 1) are constructed in a VLSI design tool [55] that is then 
used to generate the Spice circuits for the ICs including the interconnect 
routings with metal resistance. Simulations of FinFET ICs are performed 
in Spice with the FinFET subcircuit model adopted from [56]. Based on 
the current in each metal wire obtained from Spice simulation, together 
with the metal wire cross section and conductivity, J and Pd are calcu-
lated. With the determined ai, the temperature can be predicted from Eq. 
(1). The off-diagonal terms of ci,j are usually small and ignored in pre-
vious studies [29–31]. In this study, they are all included. 

2.2. POD formulation for multi-block structure 

When several blocks adjoin together, thermal continuity at the 
interface needs to be appropriately enforced in the last term of Eq. (5) or 
the second term of Eq. (8). The interior penalty DG method [46,47] is 
applied to the interface and Eq. (5) becomes 

∫

Ω

(

φ
∂ρCT

∂t
+∇φ⋅k∇T

)

dΩ − k

∫

Γ

([[T] ] {∇φ} + {∇T} [[φ] ]) ⋅ n→ dΓ

+ k

∫

Γ

μ [[T] ] [[φ] ] dΓ

=

∫

Ω

φPddΩ,

(10)  

where μ is a penalty constant defined as Nμ /dx (dx is the local element 
size and Nμ as the non-unit penalty number), and {⋅} and ⟦⋅⟧ are the 
average and difference across the interface, respectively (see [31]). A 
large positive value of μ is usually needed to stabilize the numerical 
result. Numerical accuracy and stability influenced by Nμ will be 
examined in Section 5.2. 

For a domain consisting of N projected blocks, Eq. (10) reduces to an 
N-block POD model given as 
⎡

⎢

⎢

⎣

C1 0 ⋯ 0

0 C2 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 … CN

⎤

⎥

⎥

⎦

d

dt

⎡

⎢

⎢

⎢

⎣

a→1

a→2

⋮

a→N

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

G1 +
∑

N

q=2

G1,B1,q
G1,2 ⋯ G1,N

G2,1 G2 +
∑

N

q=1,q∕=2

G2,B2,q
⋯ G2,N

⋮ ⋮ ⋱ ⋮

GN,1 GN,2 … GN +
∑

N−1

q=1

GN,BN,q

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

⎡

⎢

⎢

⎢

⎢

⎣

a→1

a→2

⋮

a→N

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

P
→

1

P
→

2

⋮

P
→

N

⎤

⎥

⎥

⎥

⎥

⎦

(11)  

where the subscript Bp,q denotes the boundary surface in the pth block 
between the pth and qth blocks, Cp and Gp are the ci,j and gi,j matrices of 
the pth block given in Eq. (7),Gp,Bp,q . is given as 

Gp,Bp,q
=

⎡

⎢

⎢

⎣

gp,Bp,q ,1,1 gp,Bp,q ,1,2 ⋯ gp,Bp,q ,1,Mp

gp,Bp,q ,2,1 gp,Bp,q ,2,2 ⋯ gp,Bp,q ,2,Mp

⋮ ⋮ ⋱ ⋮

gp,Bp,q ,Mp ,1 gp,Bp,q ,Mp ,2 ⋯ gp,Bp,q ,Mp ,Mp

⎤

⎥

⎥

⎦

, (12)  

and Gp,g is given as 

Gp,q =

⎡

⎢

⎢

⎣

gp,q; 1,1 gp,q; 1,2 ⋯ gp,q;1,Mq

gp,q; 2,1 gp,q; 2,2 ⋯ gp,q; 2,Mq

⋮ ⋮ ⋱ ⋮

gp,q; Mp ,1 gp,q; Mp ,2 ⋯ gp,q; Mp ,Mq

⎤

⎥

⎥

⎦

(13) 

If the pth and qth do not adjoin each other,Gp,Bp,q = 0, and Gp,g = 0. 
The thermal coupling conductance matrices in Eqs. (12) and (13) are 
given in the following equations respectively, 

gp,Bp,q ,i,j = −k

∫

Γpq

(

1

2
φp,j∇φp,i +

1

2
φp,i∇φp,j − μ φp,iφp,j

)

dΓ (14)  

gp,q: i,j = −k

∫

Γpq

(

−
1

2
φq,j∇φp,i +

1

2
φp,i∇φq,j + μ φp,iφq,j

)

dΓ. (15)  

With a large number of blocks in a structure, the block G matrix in Eq. 
(11) becomes sparse. The nonzero blocks in a row are neighbored by 
other elements. Fig. 1. Circuit and layout for a FinFET IC with horizontal M1 in blue, vertical 

M2 in yellow, poly in red and vias in black. The NAND-gate structures (labeled 
as A, B and C) are identical and given in Fig. 2. 
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3. POD with material property variation 

In this study, we extend the POD thermal simulation methodology to 
account for the MPV between metal and dielectric (oxide). More spe-
cifically, for a selected interconnect block that may include one or more 
layers of metal and interlayer dielectric (ILD), the POD modes are 
trained to include the effects of the variation when a metal line or a via 
appears in the dielectric. Thermal solution data collected from DNSs to 
generate/train the POD modes must include the MPV in the selected 
block to offer influences of the MPV on the solution of Eq. (6). It is 
however difficult for POD modes to effectively capture the effects of the 
MPV if the metal lines and/or vias appear at arbitrary locations. For such 
a case, a large number of POD modes will be needed to predict accurate 
thermal solution; namely the DoF will not be significantly reduced. It is 
therefore more effective to train a finite set of POD modes for a specific 
group of interconnects that have similar metal/via routing features to 
reveal some generic blocks. Each generic block is designated for blocks 
with the same geometric shape and identical dimensions, consisting of 
one or more metal and ILD layers. Each generic block can be trained to 
generate POD modes that are able to account for effects of MPV induced 
by various metal/via routings. 

There may be several different generic interconnect blocks (e.g., with 
different block dimensions or with wider metal lines or larger pitches) 
needed to cover different groups of interconnects. Using this approach, 
once each selected generic block is trained and projected onto its POD 
space, their modes and model parameters can be stored in a technology 
library. To build a large interconnect structure, several projected generic 
blocks can be glued together to construct a multi-block MPV-POD 
thermal model, as presented in Section 2.2. There may also be a handful 
of nonstandard interconnect blocks that do not belong to any of the 
generic blocks. The POD modes for these individual blocks can also be 
generated either with or without MPV and implemented in the multi- 
block structure. 

A simple FinFET IC shown in Fig. 1 is used to elucidate the concept of 
the MPV-POD approach. The IC consists of 3 identical FinFET NAND2 
gates with the NAND2 structure given in Fig. 2. For ICs using standard 
cells shown in Fig. 1, the interconnects reveal similar features that can 
be utilized to identify a generic block. As illustrated in Fig. 1, the in-
terconnects are partitioned into 6 blocks, each with the same shape and 
identical dimensions. In this case, each block includes Metal-1 (M1), 
Metal-2 (M2), ILDs and the substrate, and one generic block shown in  
Fig. 3 can be used to represent a group of interconnect blocks with all 
possible metal/via routings specified in Fig. 3 based on the technology 
design rules. The generic block includes 6 possible vias and 14 possible 
metal segments with square metal pieces connecting the neighboring 
segments and vias. Each of the 6 interconnect blocks with a specific 
metal/via routing in Fig. 1 belongs to this generic block or its mirror 
symmetric block. These 6 blocks or their mirror symmetric blocks are 
redrawn in Fig. 4 with more clearly defined metal segments. For 
example, Block 2a consists of M1 Segments 5–8 and M2 Segments 10 and 
13 connected to M1 Segments 3 and 4 by a via. Also, Block 4a, the mirror 
symmetric block of Block 4a′ in Fig. 1, includes M2 Segment 12 con-
nected to M1 Segment 5 by a via and M2 Segments 11 and 14 connected 

to M1 Segments 1–3 by a via. 
The method of snapshots [29], [31], [54] can be applied in Eq. (2) to 

extract the POD modes from the collected data. In all previous POD 
studies [29–44], material properties in the structure remain unchanged 
during the data collection. Therefore, each projected POD block repre-
sents a specific structure. If a material change in any location of the 
structure, a different POD model will be needed. In the MPV-POD 
approach for interconnects, a group of blocks including different met-
al/via routings with appropriate values of ρC and k are performed in 
DNSs to embed effects of MPV into the POD modes. However, even if the 
generated MPV-POD modes include the MPV information, the POD pa-
rameters given in Eqs. (7) and (8) still need to be evaluated numerically 
before each POD simulation because the material in the structure for 
each simulation may be different. This imposes a time-consuming pro-
cess for thermal prediction of a large structure. This is however not a 
serious problem for interconnects. Using the example of the generic 
block in Fig. 3, one can pre-evaluate POD parameters from integrals in 
Eqs. (7) and (8) for this block without the regions where metal lines/vias 
may run. The parameters for this blank generic block with only the 
dielectric and the silicon substrate, can be stored in the library. Once the 
routings are determined in each block of this generic group, it will take 
little time to add integrals in Eqs. (7) and (8) of the unfilled regions by 
filling either metal or oxide in the vacant regions before POD thermal 
simulation. 

4. Illustration of MPV-POD mode generation 

The generic interconnect block given in Fig. 3 is selected in this work 
to illustrate thermal data collection, mode generation and demonstra-
tions for the MPV-POD methodology. The dimensions and material 
properties of the FinFET IC structure used in this study are adopted from 
an earlier investigation in [31]. 

To arrive at robust POD modes, the collected data from the selected 
interconnect blocks need to experience realistic variations of heating 
sources, BCs and material properties. To account for metal/oxide vari-
ations effectively along the routing paths, a simple guideline is used; 
namely each metal/via segment must appear a few times with different 
connections to other metal/via segments. For this test case, the 6 
interconnect blocks given in Fig. 4 (adopted from the circuit in Fig. 1) 
are included to collect thermal data in DNSs. In addition, 6 more selected 
blocks with different metal/via routings shown in Fig. 5 are incorpo-
rated in the data collection. This ensures that each metal/via segment in 
these 12 blocks appears at least twice with connections to different 
metal/via segments. One can always include many more different con-
nections for each segment to enhance the quality of the collected data 
and thus the robustness of the POD modes. This however will produce 
more data and may become computationally intensive in data collec-
tion, eigenvalue and mode generation, and calculations of POD model 
parameters from Eqs. (7) and (8). 

DNSs of each block in Figs. 4 and 5 need to perform to collect Fig. 2. FinFET NAND2 structure with 4 fins in each FinFET.  

Fig. 3. A generic interconnect block with all possible metal lines and vias 
whose sizes are labeled in nm. M1 and M2 thicknessess are all equal to 60 nm. 
Dielectric thickness between two metal layers is 100 nm. Each of the metal 
segment is labeled by a number. 
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dynamic thermal data with spatial details, subjected to joule heating in 
the metal and BCs induced by the neighboring blocks. To account for 
heat fluxes across boundaries of each block appropriately, each of the 12 
selected block is embedded in a larger simulation domain with an 
extended length of 200 nm beyond the selected block on each side, such 
as the diagram shown in Fig. 6 for Block 2a. Any metal line reaching a 
boundary of the selected block is extended to the boundary of the 
simulation domain. The extension allows us to apply a more realistic 
range of BCs on the selected block boundaries. For example, BCs on the 

oxide boundary of the selected block (inside the simulation domain in 
Fig. 6) near metal lines are affected heat flow along these lines outside 
the selected block. The metal line extension shown in Fig. 6 offers 
realistic heat flow across the interface between blocks shown in Fig. 1. 
These BC variations offer information for the generated POD modes to 
learn enough variations to be able to accurately predict the heat flow in 
the metal wires even with different BCs. It should be pointed out that this 
simplified domain setting, although covering the major heat flux paths 
across the boundaries of the selected interconnect block (Block 2a), does 

Fig. 4. Six interconnect blocks in Fig. 1. Blocks 1a-3a are on the top of the layout in Fig. 1 while Blocks 4a-6a are the mirror symmetric blocks of those on the bottom 
of Fig. 1. An open square at the via location indicates no via existence. 

Fig. 5. Six additional blocks used in DNSs for thermal data collection to generate POD modes for the generic interconnect block given in Fig. 3.  

W. Jia and M.-C. Cheng                                                                                                                                                                                                                       



Journal of Computational Science 61 (2022) 101665

6

not account for some BCs in the multi-block demonstration presented in 
Section 5.2. This is indeed partially responsible for the error observed in 
the multi-block demonstration. One can always include more simula-
tions to accommodate more metal routings around the selected block to 
cover more variations of the BCs for the selected block that will enhance 
the quality of the collected data. This will again increase the computing 
resources needed for the POD mode training and model parameter 
calculations. 

Power density induced by Joule heating in Eq. (9) along metal lines 
results from current density. To apply more realistic dynamic current 
density, circuit simulation of the FinFET IC in Fig. 1 is performed in 
Spice. As shown in the circuit of Fig. 1, a 4 GHz voltage clock is applied 
to one of the inputs of each gate while a random digital voltage sequence 
is applied to the second input of each gate (vi1 or vi2). Dynamic current 
along each metal line is extracted from the Spice simulation and the 
power density is then implemented in the DNS of the simulation domain 
in Fig. 6. Even though the interconnect routings may be different be-
tween Figs. 1 and 6, the variations of the current and power density 
cover a range of metal BCs and joule heating for the generate POD modes 
to learn. The heat flux applied to each metal boundary of the simulation 
domain is consistent with the power density applied to its metal line. 
Ambient temperature is applied to the bottom of the substrate and the 
top boundary is adiabatic. On other boundary surfaces (oxide bound-
aries sown in Fig. 6), dynamic heat fluxes across the boundaries between 
the interconnect blocks extracted from the DNSs of the FinFET circuit in 
Fig. 1, together with some random variations, are applied. This offers 
more realistic variations of the boundary fluxes affected by neighboring 
interconnect blocks. 

DNS of each selected block was performed over 10 clock periods with 
50 time steps in each period. Thermal data are collected at each time 
step. It should be noted that simulation settings for data collection (in 
turn for POD mode training) are not unique. Thermal data collected 
from DNSs of the selected blocks should as much as possible encompass 
a range of parametric variations which the generic blocks will experi-
ence in realistic operation, including variations of heat sources, BCs and 
metal/oxide along the interconnect routing paths. 

Thermal data of the 12 interconnect blocks collected from the DNSs 
are combined together to generate eigenvalues and POD modes from Eq. 
(2) using the method of snapshots [31], [54]. The generic block in Fig. 3 
is thus projected onto a POD space represented by these POD modes. The 
eigenvalue λi represents the mean squared temperature variations 
captured by the i-th mode φi and thus reveals the importance of the 
mode. The eigenvalue for the collected data shown in Fig. 7 decreases by 
more than 600 times from the first POD mode to the 6th mode and more 
than 4 orders of magnitude at 10th mode. The eigenvalue curve becomes 
nearly flat beyond the 102nd mode due to the machine precision. 

5. Demonstration of the MPV-POD methodology 

5.1. Single-block demonstration 

With the POD modes generated from the thermal data collected from 
the DSNs of the 12 selected blocks given in Figs. 4 and 5, the MPV-POD 
approach is first demonstrated below in a single-block domain shown in  
Fig. 8. To test how the modes via the training accommodate different 
metal patterns, two distinct metal/via paths are included in the test 
block. The left metal/via path in the test block of Fig. 8 is different from 
any of the 12 selected blocks, and the right path is the same as the right 
metal/via path in Block 9a. Different random pulses of current density 
and different BCs are applied to the test block except the top adiabatic 
boundary and the ambient bottom boundary. To have meaningful 
comparison with DNS, current density, BCs and metal/via routings are 
identical in the simulations between these two approaches. 

Dynamic temperatures at Points a and b specified in Fig. 8 are 
illustrated in Fig. 9 with the MPV-POD approach compared against the 
DNS. Because Point b is in a metal/via path identical to the right metal/ 
via path in Block 9a, only 3 modes in the POD model are needed to reach 
an excellent agreement with DNS, as shown in Fig. 9(c) and 9(d). On the 
other hand, errors with 3 modes shown in Fig. 9(a) and 9(b) are rela-
tively large at Point a. With 6 modes in POD, both approaches are in a 
very good agreement, where the POD model reaches a maximum devi-
ation of 2.47% from DNS near a peak temperature at 0.675 ns. 

Spatial temperature profiles at 0.675 s in the test block are also 
shown in Fig. 10. Similar to Fig. 9, temperatures derived from the 3- 
mode MPV-POD model along Line B in M2 Segments 11 and 14 
(Fig. 10(b)) and along Line A in M1 Segment 4 (beyond 4 µm in Fig. 10 
(a)) are in excellent agreement with that from the DNS. This is because 
the metal/via path from M1 Segment 4 to M2 Segments 11 and 14 (see 
Fig. 8) is identical to one of paths in Block 9a used in data collection. 

Fig. 6. Block 2a placed in a larger dielectric domain for DNSs for thermal data 
collection. The extended length of the domain in each direction is 200 nm. 

Fig. 7. Eigenvalue of collected thermal data from the 12 selected blocks.  

Fig. 8. Interconnect test block for the single-block demonstration. Points a and 
b are in the center of M1 lines at distances of 0.24 µm and 0.45 µm from the left 
boundary, respectively. Lines A and C run through the ceters of M1 lines and 
Line B through the M2-line center for temperature plots given in Fig. 10. 
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Along Lines A and C on the other metal/via path, the error derived from 
the MPV-POD model with 3 modes are however slightly large. With 6 
modes in POD, a maximum error near 3% along Lines A and C is 
observed compared to the DNS. 

The LS errors of the MPV-POD approach for different number of 
modes over the whole simulation domain and time are given in Table 1. 
For this single-block case, the error decreases as the number of modes 
increases and remains near 1.81% beyond 8 modes. With 6 or more 
modes, an LS error smaller than 2% can be achieved. The demonstration 
reveals that even for an interconnect routing not included in POD mode 
training, the MPV-POD model with a small number modes is still able to 
offer a very accurate prediction. 

5.2. Multi-block demonstration in an integrated circuit 

To verify the multi-block MPV-POD methodology under a more 
realistic operation, the multi-block approach is implemented in a FinFET 
IC structure shown in Fig. 11. The layout in Fig. 11 represents the same 
circuit in Fig. 1 with NAND2 Gates B and C swapped in the layout. The 
POD modes for the generic interconnect block in Fig. 3 and its mirror 
symmetric block are applied to all the six interconnect blocks in Fig. 11 
including Blocks 1b-3b and 4b′− 6b′. In addition to the 6 interconnect 
blocks represented by the generic MPV-POD block, the POD thermal 
simulation of the entire IC structure also includes 3 additional NAND2 
blocks described by one set of POD modes (without MPV effects) 
developed in [31]. The POD simulation is thus performed in a 9-block 
domain that is projected onto a POD space described by only 2 sets of 
POD modes, one set for the generic interconnect block and the other for 
the NAND2 block. The same number of modes are used for each of the 9 
projected blocks in the demonstration. In the demonstration, a 4 GHz 
voltage clock is applied to the 3-NAND2 circuit. Different random digital 
voltages are applied to vi1and vi2 in Spice simulation to estimate the 
power densities at device junctions and along each metal lines. These 
power densities are then implemented in both the POD simulation and 
DNS. In the simulation domain, the bottom of the substrate is fixed at 
ambient and all other boundaries are adiabatic except for the metal 
boundaries where surface power densities are applied based on the 

power evaluated from the Spice simulation. 
Blocks 2b, 3b and 5b′ in Fig. 11 are different from any trained block 

(or their symmetric blocks) given in Figs. 4 and 5 while Blocks 1b, 4b 
and 6b are identical to Blocks 1a, 4a and 5a in Fig. 4, respectively. It 
should be noted that, even with Blocks 1b, 4b and 6b identical to 3 of the 
blocks in the data collection, the simulation settings for the 6 inter-
connect blocks in Fig. 11 are very different from those in the training. 
Simulation domains for the selected 12 blocks in the training process are 
similar to the structure given in Fig. 6 with the BCs that only emulate the 
effects induced by neighboring interconnect blocks. Also, there was no 
adiabatic boundary in these trained blocks. On the other hand, in the 
demonstration there is at least one adiabatic boundary on the dielectric 
surface of each block, as shown in Fig. 11. Moreover, one of the 
boundaries of each block in the demonstration is neighbored by a 
NAND2 block instead of an interconnect block. The VDD/GND M1 line 
in the NAND2 circuit shown in Fig. 11 runs in parallel closely with one of 
the boundary surfaces of each interconnect blocks. These M1 lines 
impose entirely different BCs for the interconnect blocks from the 
trained blocks where no metal line runs in parallel near any boundary. 

Our study of this multi-block domain has found that the multi-block 
POD approach becomes numerically unstable if the penalty number Nμ is 
below Nμ,min or above Nμ,max, where Nμ,min ≈ 7 and Nμ,max ≈ 40. In the 
demonstration, the value of Nμ used in [31] (Nμ = 20) is applied first. 
Other values of Nμ between 7 and 40 are then used to analyze its in-
fluence on the interface thermal discontinuity and the accuracy. The 
POD thermal modeling approach without considering the MPV for the 
FinFET IC has been investigated in detail in a previous study [31]. In this 
study, we only present thermal solution derived from the MPV-POD 
models in the interconnect blocks compared against the DNS. 

Dynamic temperatures at Points a, b, c and d in M1 labeled in Fig. 11 
under the vias are illustrated in Fig. 12. Even though Points a, c and d are 
located in the blocks identical to some selected trained blocks, due to 
inadequate boundary settings in the training, accuracy of dynamic 
temperatures in Fig. 12 (Nμ = 20) for the multi-block MPV-POD model 
with 6 modes at these locations is not as good as those at Points a and b 
in Fig. 9 for the single-block case. It needs 10 or 11 modes for the multi- 
block model to reach good accuracy. With 11 modes, maximum errors 

Fig. 9. Dynamic temperatures in M1 (a) at Point a specified in Fig. 8 with a more detailed illustration in (b) from 0.52 ns to 1.025 ns, and (c) at Point b specified in 
Fig. 8 with a more detailed illustration in (d). 
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near 2.5%− 4.4% around the peak temperatures at Points a-d are 
observed in Fig. 12. The LS error shown in Table 2 with Nμ = 20 is near 
3% with 11 modes and slightly reduces to 2.67% with 12 modes, that is 
still reasonably small considering that at least 2 BCs for each block are 
very different from the training settings, one with the adiabatic condi-
tion and the other induced by the VDD/GND M1 lines. Also, Point b is 
located in a block with very different metal/via routings from the 
trained ones. With very different BCs and metal/via routings in the 
training, the MPV-POD modes are somehow able to predict temperature 
profiles with good accuracy in the multi-block structure. 

With only 3 modes, it is interesting to observe very accurate solution 
at Point d but poor accuracy at other locations. Also, much better ac-
curacy is observed for the 6-mode MPV-POD model at Points c and 
d than at Points a and b. It should be noted that the POD process in Eq. 
(1) only optimizes the LS error instead of local errors. The LS error 

shown in Table 2 with Nμ = 20 for the multi-block MPV-POD simulation 
reduces gradually, as more modes are used, and it reaches 2.67% with 
12 POD modes. Even with more modes included in the multi-block case, 
its LS error only slightly reduces and is always greater than that of the 
single-block case. This is because accuracy of the multi-block case is 
limited by the data quality as a result of serious discrepancies of the BCs 
between the demonstration and the training. The other reason why more 
modes are needed for the multi-block MPV-POD approach to reach good 
accuracy is because of the boundary thermal discontinuities at block 
interfaces. Owing to the truncation of the solution given in Eq. (4), it is 
impossible to satisfy both the continuities of temperature and heat flux 
on any boundary. The interior penalty DG method [46], [47] is thus to 
enforce the flux continuity but allows a small temperature discontinuity 
(weak Dirichlet BCs) at the interface in an average sense between any 2 
neighboring blocks. 

The temperature distributions at 0.215 ns along Lines A and B 
through the center of M1 lines (see Fig. 11) are illustrated in Fig. 13. 
Overall the MPV-POD model with more modes offers more accurate 
thermal solution; however the 3-mode model actually leads to a better 
accuracy than the 11 mode model in Block 6b′ along Line B, as shown in 
Fig. 13(b) and at Point d in Fig. 12. Along the metal lines in Line A, 
temperature discontinuities derived from the POD models with a small 
number of modes appear clearly across interfaces between neighboring 
blocks. With 3 modes, a discontinuity higher than 5% of the interface 
temperature is observed at each interface, as detailed in Fig. 14(a) and 
14(b). Using 8 or 9 modes, the discontinuity is effectively suppressed to 
2.2% or 1.5%, respectively, and it is successfully suppressed with 10 or 
more modes. Except for the one mode model, in general as the discon-
tinuity is suppressed with more modes in the MPV-POD model, Table 2 
shows that the LS error is reduced. Effects of the discontinuity is mini-
mum along Line B because both interfaces are located in oxide. 

To understand how Nμ influences the interface thermal discontinu-
ities, different penalty numbers are applied in the POD simulations of 
the 9-block structure. Temperature profiles near the same interfaces in 
Fig. 14 are illustrated in Fig. 15 derived from the 8-mode and 11-mode 
POD models with Nμ slightly above Nμ,min, slightly below Nμ,max and Nμ 

= 20. Fig. 15 shows that the temperature discontinuity is suppressed and 
the accuracy of the POD prediction is improved as Nμ decreases from 
37.2 to 7.3 for both 8-mode and 11-mode MPV-POD models. When Nμ 

= 37.2, even with 11 modes in the MPV-POD model, discontinuities are 
still observed at bot interfaces in Fig. 15(a) and (b). As Nμ decreases to 20 
or 7.3, the discontinuities are successfully removed. In addition, use of 
smaller values of Nμ leads to a better agreement with the DNS. As Nμ 

decreases from 37.2, 20–7.3, the improvement in the LS error for 

Fig. 10. Temperature profiles at 0.675 ns along (a) Line A in Fig. 8 through M1, 
(b) Line B in M2 and (c) Line C through M1. 

Table 1 
LS error of single-block MPV-POD models.  

No. of modes 1 3 6 8 10 11 12 
LS error (%)  6.82  3.14  1.97  1.82  1.81  1.8  1.81  

Fig. 11. Layout for the NAND circuit given in Fig. 1. This layput is however 
different from that in Fig. 1. 
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different number of modes is clearly observed in Table 2. A reduction of 
1.5%− 2.7% in the LS error can be achieved as Nμ changes from 37.2 to 
7.3 with 6 or more modes. However, with 10 or more modes, use of Nμ 

equal to or below 20 is not able to further reduce the LS error and the LS 
errors for both Nμ = 7.3 and 20 reach 2.67% with 12 modes even though 
the local errors near the interfaces shown in Fig. 15(a) and 15(b) reduce 

Fig. 12. Dynamic temperatures in M1 at (a) Point a, (b) Point b, (c) Point c and (d) Point d shown in Fig. 11 with Nμ = 20 in the multi-block POD models.  

Table 2 
LS error (%) of multi-block POD models.  

No. of modes 1 3 6 8 10 11 12 
Nμ = 7.3  9.87  7.51  4.68  4.25  3.21  3.01  2.67 
Nμ = 20  10.40  7.87  4.95  4.28  3.23  3.02  2.67 
Nμ = 37.2  11.55  8.47  6.93  6.76  5.9  5.43  5.19  

Fig. 13. Temperature profiles at 0.215 ns in Fig. 12 along (a) Line A and (b) 
Line B shown in Fig. 11 through the center of M1 line. In the multi-block POD 
models, Nμ = 20. 

Fig. 14. Close-up views of the discontinuities on (a) the left and (b) the right of 
the temperature profiles in Fig. 13(a). In the multi-block POD models, Nμ = 20. 
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with a smaller Nμ. It is believed that the LS error in this case is limited by 
the quality of the collected thermal data in the training of the generic 
block due to inadequate BCs, as discussed above. 

6. Discussions 

It is found in this investigation on the single-block and multi-block 
interconnect structures that quality of the collected data, as a result of 
simulation settings in the training, is the key to determine the accuracy 
and robustness of the MPV-POD models. Appropriate settings of the 
simulation domain in the training of the POD modes are needed to cover 
enough variations of metal/via routings, power sources and BCs which 
the interconnect blocks will encounter in realistic operation. 

In the single-block case, an MPV-POD model with only 3 modes of-
fers excellent accuracy for dynamic temperature at Point b (between 
Segments 4 and 11 in Fig. 8) shown in Fig. 9(c) and (d) and for spatial 
temperature distributions shown in Fig. 10(a) and (b) along Segment 4 
and Segments 11 and 14, respectively. This is because this metal/via 
routing is identical to a metal/via path in a selected trained block with 
perhaps slightly different BCs and power sources. Even with a metal/via 
routing in the test domain different from any selected trained block, the 
MPV-POD model with 6 modes was still able to offer a very good 
agreement with the DNS. 

The simulation settings used to train the generic-block, although 
offering a good quality training for the single block case, does not pro-
vide good-quality data for the interconnect blocks embedded in the IC 
given in Fig. 11 due to serious inconsistent BCs between the demon-
stration and the training. Therefore, the POD modes of the generic block 
are not well-trained to adapt the BCs enforced by the IC operation in the 
multi-block case. As a result, the temporal/spatial temperature solution 
from the MPV-POD model in the multi-block case is not as good as that in 
the single-block demonstration. In addition, the multi-block approach 
suffers from inevitable thermal discontinuities across the interface 

between neighboring blocks. To further minimize the LS error in the 
multi-block structure, more POD modes are needed. It is also found that 
the value of the penalty number Nμ has a profound impact on the 
thermal discontinuities at block interfaces. An appropriate range for Nμ 

(in our case 7 < Nμ < 40) is needed to avoid numerical instability 
induced by the discontinuities, and a smaller Nμ within this range offers 
a smaller LS error. In the multi-block test case, even with inadequate BC 
training and different metal/via routings in 50% of the interconnect 
blocks, the MPV-POD modes of the generic interconnect block are able 
to offer a good thermal prediction, compared to with the DNS, as dis-
played in Table 2, if a smaller Nμ within the appropriate range is used. 

Applications of the MPV-POD methodology to the single-block and 
multi-block interconnect structure reveal interesting and encouraging 
findings. This work demonstrates that, in addition to the heat sources 
and BCs, variations of material thermal properties between metal and 
oxide in interconnects can be captured effectively by the POD modes as 
long as enough variations of metal/via routings are implemented in the 
data collection (or the training). It has been shown that a small number 
of MPV-POD modes are able to offer a very accurate prediction of 
spatial/temporal thermal solution in interconnect blocks with routings 
that are different from the trained ones provided that the adequate BCs 
are included in the training. Even with inadequate BCs in the training, 
the MPV-POD model with 10 or more modes still offer a good descrip-
tion for the thermal solution in the multi-block interconnects. Appar-
ently, the trained generic block was able to intelligently perform 
extrapolation to capture variations of metal/via routings and BCs to 
reach an accurate prediction for new routings or substantially different 
BCs as long as the block was trained by a wide range of routing and BC 
variations. 

In order to accurately predict the small-diameter hot spots at the 
device junctions of the 9-block IC structure given in Fig. 11, including 6 
interconnect blocks and 3 NAND-gate blocks, a high spatial resolution is 
needed in DNS. In this case, the POD simulation of the IC structure with 
Nμ = 7.3 and 10 modes in each block offers a reduction in the DoF by 
more than 4 orders of magnitude, compared to the DNS using ANSYS 
Mechanical APDL [57]. This amounts to a speedup over 3 orders of 
magnitude in computational time. 

7. Conclusions 

Use of building blocks has been one of the major practices for more 
effective engineering design and simulation in many different fields. In 
order to implement the building-block concept to improve effectiveness 
of thermal simulation of interconnects, MPV is proposed in POD to 
capture thermal effects of metal/via routings embedded in a dielectric 
structure. With this approach, some generic building blocks may be 
selected for a group of interconnect structures with similar metal/via 
routing features. Each selected generic block can be projected onto a 
POD space represented by a finite set of POD modes that are trained to 
capture variations of material properties, power sources and BCs. These 
generic blocks can then be glued together to construct a large inter-
connect structure. In this study, the interconnects used to wire the 
standard cells for a FinFET logic IC in Fig. 1 are partitioned into 
standard-size blocks modeled by a single generic block shown in Fig. 3. 
The selected generic block was trained to generate its POD modes and 
model parameters and then applied to demonstrate the accuracy and 
robustness of the MPV-POD approach in a single interconnect block and 
a multi-block IC structure. For the simulation of the 9-block IC structure, 
the POD simulation methodology offers a saving in computational time 
over 3 orders of magnitude, compared to the DNS. 

The investigation reveals the importance of the quality of thermal 
data used to generate POD modes and parameters for the developed 
MPV-POD methodology. However, even with inadequate BCs accounted 
for in the training (that offers insufficient data quality), the MPV-POD 
model of the generic block is still able to offer a good prediction of the 
spatial/dynamic thermal simulation in the multi-block interconnect 

Fig. 15. Temperature profiles in (a) and (b) at the same interfaces as those in 
Fig. 14(a) and 14(b), respectively. In the multi-block POD models, the profiles 
with 8 and 11 modes are included for Nμ = 7.3, 20 and 37.2. 
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structure if more modes are used. It is also shown that the accuracy of 
the multi-block MPV-POD model is partially limited by the thermal 
discontinuities at block interfaces unless more modes are used. To the 
best of our knowledge, this study presents the first POD modeling 
approach with the MPV. It has been shown that it is possible to effec-
tively account for thermal effects of the MPV induced by different metal/ 
via routings in the POD modes for thermal simulation of interconnects. 
However, to derive robust MPV-POD models, in addition to a wide range 
of metal/via routings needed in the training of POD modes, BCs 
implemented in the training need to be close to those in realistic oper-
ation. To further improve the multi-block MPV-POD models, perhaps 
alternative schemes for more effectively minimizing the interface 

discontinuity need to be investigated. 
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Appendix. : Brief overview of method of snapshots 

The autocorrelation tensor in (3) can be rewritten in terms of the average of the sample data sets over a number of snapshots (observations), 
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where Nt is the total number of observations in time. In a static problem, the observations are performed at different heat source strengths and/or 
different BC’s. 

Let us now define the projection of the jth sample data set onto the POD space given by the integral in (A2) as 

uj =

∫

Ω

T
(

x→
′
, tj

)

φ( x→
′
)d x→

′
, (A3)  

and (A2) can then rewritten as 
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After multiplying both sides of (A4) by T( x→, ti) and performing an integral on each side over the entire domain, the follow equation is obtained 
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which can be expressed as a matrix equation for a different eigenvalue problem, 
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with uj given in (A3) and 
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Once the eigenvectors in (A6) are determined, the POD modes at can be recovered using (A4) as a linear combination of the observations, 

φ( x→) =
1

Ntλ

∑

Nt

j=1

T
(

x→, tj

)
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The eigenvalues derived from (A6) and the modes estimated (A8) have been shown in (A1)-(A8) to be identical to the first Nt eigenvalues and POD 
modes, respectively, given in (2). For a large-scale domain with fine resolution, (2) represents an eigenvalue problem with an unmanageably large size, 
compared to the relatively small matrix size offered by (A6). 
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