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A thermal simulation methodology is developed for interconnects enabled by a data-driven learning algorithm
accounting for variations of material properties, heat sources and boundary conditions (BCs). The methodology is
based on the concepts of model order reduction and domain decomposition to construct a multi-block approach.
A generic block model is built to represent a group of interconnect blocks that are used to wire standard cells in
the integrated circuits (ICs). The blocks in this group possess identical geometry with various metal/via routings.
The data-driven model reduction method is thus applied to learn material property variations induced by
different metal/via routings in the blocks, in addition to the variations of heat sources and BCs. The approach is
investigated in two very different settings. It is first applied to thermal simulation of a single interconnect block
with similar BCs to those in the training of the generic block. It is then implemented in multi-block thermal
simulation of a FinFET IC, where the interconnect structure is partitioned into several blocks each modeled by
the generic block model. Accuracy of the generic block model is examined in terms of the metal/via routings, BCs

and thermal discontinuities at the block interfaces.

1. Introduction

Temperature escalation in integrated circuits (ICs) due to Joule
heating has emerged as one of the most critical issues in integrated
circuit (IC) design for decades [1-11]. This results from the rapid in-
crease in the device and interconnect densities in semiconductor chips.
High thermal gradients and hot spots induced by Joule heating signifi-
cantly degrade performance and reliability of ICs in various IC tech-
nologies [1-9]. In addition to self-heating effects in devices [12-16],
high temperature in interconnects also imposes serious problems. For
example, metal resistance and signal delays increase as temperature
rises, which limits the operating speed of ICs [8], [9], [17]. Moreover,
the failure rate of interconnects due to electromigration is accelerated by
high temperature [17-19]. It is thus essential to predict accurate ther-
mal distributions over the interconnects in IC design.

Simulations for predicting temperature distributions in ICs from the
gate to the system level have usually been based on efficient lumped
thermal element or compact thermal models [20-28]. These approaches
rely on RC thermal elements and/or averaging concepts to minimize the
computing time. They are however limited to regional average tem-
perature and not able to offer accurate temperature gradients or hot
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spots in semiconductor chips. To provide more detailed and accurate
thermal profiles, direct numerical simulation (DNS) is needed but its
intensive computational demand is prohibitive for thermal simulation of
large-scale semiconductor chips.

In order to offer both efficiency and accuracy of the thermal pre-
diction in ICs, alternatives based on the projection-based reduced-order
models have been applied in recent years [29-36]. Many of these ap-
proaches utilize proper orthogonal decomposition (POD) [29-36]. The
POD methods have been investigated in many different fields including
fluid dynamics [37-40], micro-electro-mechanical systems (MEMS) [41,
42], heat transfer [29-36], etc. The POD generates orthogonal basis
functions from solution data of the DNSs in a domain subjected to the
parametric variations that for heat transfer problems usually include
spatial/temporal power sources and boundary conditions (BCs). The
decomposition optimizes the basis functions (or POD modes) specifically
tailored to the geometry and parametric variations of the problem using
a data-driven learning process. With the heat conduction equation
projected to the POD modes, the approach is able to significantly reduce
the numerical degree of freedom (DoF) needed to accurately predict the
thermal profile in the domain.

The major drawback of the POD method is the time-consuming
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process for data collection from DNSs, generation of POD modes and
calculations of POD model parameters for a large domain with a fine
resolution. One may also question the usefulness of the POD method for
engineering applications since this “training” or “learning” process for
the POD modes requires full-scale DNSs with enough variations of heat
sources and BCs. It becomes prohibited in a very large domain with a
fine spatial resolution, especially in a dynamic problem.

To resolve this issue, a multi-block POD methodology was proposed
in our previous work [31], [33], which implements the concept of
reduced basis elements [43,44] in POD, similar to the concept based on
space vector clustering [45]. The multi-block methodology implements
domain decomposition in the POD method, which partitions a large
domain into smaller building blocks. Each of these blocks is projected
onto a functional space described by its POD modes. This approach of-
fers several advantages. First, computational resources needed in DNSs
to collect thermal data to generate POD modes and parameters increase
exponentially with the size of the domain. With smaller blocks, the POD
modes and parameters can be generated more efficiently. To construct a
large domain, the projected building blocks can be glued together with
the interface continuity enforced by the interior penalty discontinuous
Galerkin (DG) method [46,47]. Second, domain decomposition pos-
sesses a nature advantage of parallel computing and has been proven
effective in parallel/distributed computing settings [48-51]. Finally, IC
design at all levels always utilizes identical repeating functional circuit
blocks, such as standard cells, caches, memory units, CPU/GPU cores,
GPU streaming multiprocessors, etc. The POD modes and parameters of
these generic building blocks can be generated and stored in a library for
each design level, which can then offer cost-effective thermal simulation
and thermal management of large IC structures.

Most POD applications to thermal simulations have been based on
single-block approaches [29,30], [34-37], the multi-block POD
approach with generic blocks have recently been successfully applied to
device and IC structures [31], [33]. It was shown [31] that the
multi-block POD model is able to predict accurate 3D dynamic thermal
distributions and small-size hot spots in a FinFET IC structure subjected
to random power pulses induced by digital input voltages. It was
demonstrated that the multi-block POD simulation offers a reduction in
DoF by 5-6 orders of magnitude with high accuracy compared to DNS.

In [31], the interconnects were not included in the multi-block POD
simulation because it is difficult to find interconnect building blocks that
are repeatedly used in different locations of ICs. Metal routings in ICs
consist of a wide range of variations, which are selected based on the
placement of the functional blocks. However, within a specific group of
interconnects with similar features, it is still possible to select a generic
block to develop a multi-block POD approach for interconnect thermal
simulation if the material property variation (MPV) is considered in the
POD-mode training. In the proposed multi-block MPV-POD methodol-
ogy, the POD modes in each selected block are then trained to experi-
ence variation of thermal properties between the metal and dielectric at
the locations where the metal lines and vias appear. To construct a
multi-block MPV-POD thermal model, several small interconnect blocks
with various metal/via routings modeled by the same generic-block POD
model can then be glued together. To the best of our knowledge, this is
the first study considering MPV in POD. It should be noted that, unlike
the standard cells or many other functional circuit blocks, it is difficult to
select building blocks that can be used in different groups of in-
terconnects in ICs. Different types of generic blocks will be needed for
different interconnect configurations. In this work, the developed
MPV-POD methodology is applied to the interconnects that are used to
wire standard cells. With the demonstration of a simple interconnect
configuration to examine the concept and effectiveness of the MPV-POD
approach, this study perhaps paves the way toward developing a more
sophisticate multi-block MPV-POD methodology for thermal simulation
of on-chip and off-chip interconnects.

After an overview of the conventional POD method in Section 2 for
thermal problems, the MPV-POD methodology is presented in Section 3.
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The MPV-POD approach for interconnect thermal simulation is illus-
trated in Section 4 step-by-step including the settings of the simulation
domains for data collection and the generation of POD eigenvalues and
modes. In Section 5, the MPV-POD method is demonstrated in a single-
block interconnect structure and a small multi-block IC structure,
compared against the DNSs. Discussions of the findings are given in
Section 6, and conclusions are finally presented in Section 7.

2. Overview of POD thermal simulation methodology
2.1. POD for a single-block domain

POD generates a set of modes from spatial/temporal thermal data
accounting for the parametric variation. This is done by seeking a POD
mode ¢(xX) that maximizes its mean square inner product with an
ensemble of thermal data T(X, t) in the domain Q,

(w5

where (-) indicates an average over ensemble data sets observed in time
in our study. This can also be done in static problems where the obser-
vations are carried out in response to a range of heat source strengths
and BCs. This maximization process ensures that the component pro-
jected onto the POD mode contains the maximum least squares (LS)
information of the thermal behavior described by the thermal data [52,
53]. In the space orthogonal to this mode, the process can be performed
again to generate the second mode. Repetition of the process in this
fashion results in an orthogonal set of POD modes.

Applying the variational calculus to Eq. (1), this problem can be
reformulated to the Fredholm equation of the second kind,

[ RG T 0 a7 = t0(2), @

where R(X, ?/) is an two-point correlation tensor given by
R(¥, %)= (I(X,) 2 T(X',1)), 3

with ® as the tensor product, and 4 is the POD eigenvalue of R and
represents the mean squared temperature captured by the correspond-
ing POD mode. This decomposition process leads to an eigenvalue
problem represented by Eq. (2) for R. Once the POD modes are found,
temperature T(X,t) can be represented by a linear combination of the
POD modes,

T(X,0) =Y ai()p,(F), &)

where M is the selected number of modes or DoF for the temperature
solution and q; is the time dependent coefficient for each mode. The
dimension of the eigenvalue problem given in Eq. (2) for a large-scale
multi-dimensional structure may be enormously large and numerically
prohibitive. To generate the POD modes and eigenvalues more effi-
ciently, the method of snapshots [29], [31], [54] is applied to convert
the eigenvalue problem from a space domain to a sampling domain
whose dimension is determined by the smaller number of sam-
ples/snapshots. A brief overview of the method of snapshots [54] is
presented in Appendix.

To predict the temperature in Eq. (4), a set of equations for g; is
generated by projecting the heat conduction equation onto an eigen-
space using the Galerkin projection method,

T
/ (waf’Terw.va)dQ: / PPud2— / o(—kVT-7)dr, (5)
J Q [ r

where k is the thermal conductivity, P4 the power density, p the density,
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C the specific heat, I' the boundary surface, 7 the outward normal
vector of the surface, and (-kVT) the heat flux on the surface. With a
selected number of modes M, the spatial integrals in Eq. (5) can be pre-
evaluated to construct a set of M ordinary differential equation for a;,

M da; M
i ij @ = Ppoai, i=110 M, 6
;:lcddtJrjg:nga, podi 5 0 (6)

where c;; and g;; are elements of the thermal capacitance and conduc-
tance matrices in the POD space and given by

Cij = /Pcﬁl’i(/’;dg and g;; = /quo,- Vo, dQ @
Q2 ke

and Ppoq; represents the projected power density in Q and heat flux
across I' along the ith POD mode,

Prodi = / @:Py(X 1) dQ — / @:(—kVT- ) drI. ®
Q r
Power density P4 in metal is induced by Joule heating,

P,=T-E =7/ ©)

where J is the current density, E the electric field, and o the copper
conductivity. To obtain realistic current density in data collections and
demonstrations, layouts of the FinFET ICs (such as the FinFET circuit
shown in Fig. 1) are constructed in a VLSI design tool [55] that is then
used to generate the Spice circuits for the ICs including the interconnect
routings with metal resistance. Simulations of FinFET ICs are performed
in Spice with the FinFET subcircuit model adopted from [56]. Based on
the current in each metal wire obtained from Spice simulation, together
with the metal wire cross section and conductivity, J and Py are calcu-
lated. With the determined q;, the temperature can be predicted from Eq.
(1). The off-diagonal terms of c;; are usually small and ignored in pre-
vious studies [29-31]. In this study, they are all included.

2.2. POD formulation for multi-block structure
When several blocks adjoin together, thermal continuity at the
interface needs to be appropriately enforced in the last term of Eq. (5) or

the second term of Eq. (8). The interior penalty DG method [46,47] is
applied to the interface and Eq. (5) becomes

Block 1a Block 2a Block 3a

11

Block 4a’ Block 5a’ Block 6a’

Fig. 1. Circuit and layout for a FIinFET IC with horizontal M1 in blue, vertical
M2 in yellow, poly in red and vias in black. The NAND-gate structures (labeled
as A, B and C) are identical and given in Fig. 2.
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[ (%5 Touvr) da -k [ (1) (Vo) + (97 ol]) -7 ar
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Q
(10)

where y is a penalty constant defined as N, /dx (dx is the local element
size and N, as the non-unit penalty number), and {-} and [] are the
average and difference across the interface, respectively (see [31]). A
large positive value of y is usually needed to stabilize the numerical
result. Numerical accuracy and stability influenced by N, will be
examined in Section 5.2.

For a domain consisting of N projected blocks, Eq. (10) reduces to an
N-block POD model given as

¢ 0 - 0 @,
0 C - 0|d @,
P dt
0 0 Cy ay
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where the subscript By, 4 denotes the boundary surface in the pth block
between the pth and gth blocks, G, and G, are the c;; and g;; matrices of
the pth block given in Eq. (7),Gp g,,- is given as

8pBpg 1l 8pBpgil2 8p.Bpg,1 M,
GF~B[).q _ gp,Bp:_,,,z,l gp.Bp:_q,ZZ gp.Bp_?‘Z.M,, 7 (12)
gﬁva.qur-l gP~Br'.qur'-2 gﬂBp.q«anMn
and Gy, is given as
8pyg; 1,1 8p.g; 12 gp,q;l.Mq
Gp‘q — gp,q:: 2,1 gp.q:: 22 gp,q:ZZ,M., (13)
8p.a: Myl 8pg: Mp.2 8p.a: MpM,

If the pth and gth do not adjoin each other,G,5,, =0, and G, ; = 0.
The thermal coupling conductance matrices in Eqgs. (12) and (13) are
given in the following equations respectively,

1 1
8p.Bpgii — _k/ (ifﬂ”v(op_i + E[pp,iV(pp_j —H (Pp,i(ﬂp_j) ar (14)

rq

1 1
8rqij = —k /F ( =594 Vit 50y NP T 1 r/)p‘,-tﬂq‘,-) ar. (15)
rq

With a large number of blocks in a structure, the block G matrix in Eq.
(11) becomes sparse. The nonzero blocks in a row are neighbored by
other elements.
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3. POD with material property variation

In this study, we extend the POD thermal simulation methodology to
account for the MPV between metal and dielectric (oxide). More spe-
cifically, for a selected interconnect block that may include one or more
layers of metal and interlayer dielectric (ILD), the POD modes are
trained to include the effects of the variation when a metal line or a via
appears in the dielectric. Thermal solution data collected from DNSs to
generate/train the POD modes must include the MPV in the selected
block to offer influences of the MPV on the solution of Eq. (6). It is
however difficult for POD modes to effectively capture the effects of the
MPV if the metal lines and/or vias appear at arbitrary locations. For such
a case, a large number of POD modes will be needed to predict accurate
thermal solution; namely the DoF will not be significantly reduced. It is
therefore more effective to train a finite set of POD modes for a specific
group of interconnects that have similar metal/via routing features to
reveal some generic blocks. Each generic block is designated for blocks
with the same geometric shape and identical dimensions, consisting of
one or more metal and ILD layers. Each generic block can be trained to
generate POD modes that are able to account for effects of MPV induced
by various metal/via routings.

There may be several different generic interconnect blocks (e.g., with
different block dimensions or with wider metal lines or larger pitches)
needed to cover different groups of interconnects. Using this approach,
once each selected generic block is trained and projected onto its POD
space, their modes and model parameters can be stored in a technology
library. To build a large interconnect structure, several projected generic
blocks can be glued together to construct a multi-block MPV-POD
thermal model, as presented in Section 2.2. There may also be a handful
of nonstandard interconnect blocks that do not belong to any of the
generic blocks. The POD modes for these individual blocks can also be
generated either with or without MPV and implemented in the multi-
block structure.

A simple FinFET IC shown in Fig. 1 is used to elucidate the concept of
the MPV-POD approach. The IC consists of 3 identical FinFET NAND2
gates with the NAND2 structure given in Fig. 2. For ICs using standard
cells shown in Fig. 1, the interconnects reveal similar features that can
be utilized to identify a generic block. As illustrated in Fig. 1, the in-
terconnects are partitioned into 6 blocks, each with the same shape and
identical dimensions. In this case, each block includes Metal-1 (M1),
Metal-2 (M2), ILDs and the substrate, and one generic block shown in
Fig. 3 can be used to represent a group of interconnect blocks with all
possible metal/via routings specified in Fig. 3 based on the technology
design rules. The generic block includes 6 possible vias and 14 possible
metal segments with square metal pieces connecting the neighboring
segments and vias. Each of the 6 interconnect blocks with a specific
metal/via routing in Fig. 1 belongs to this generic block or its mirror
symmetric block. These 6 blocks or their mirror symmetric blocks are
redrawn in Fig. 4 with more clearly defined metal segments. For
example, Block 2a consists of M1 Segments 5-8 and M2 Segments 10 and
13 connected to M1 Segments 3 and 4 by a via. Also, Block 4a, the mirror
symmetric block of Block 4a’ in Fig. 1, includes M2 Segment 12 con-
nected to M1 Segment 5 by a via and M2 Segments 11 and 14 connected

VDD

pFinFET
GND

nFinFET

Fig. 2. FInFET NAND2 structure with 4 fins in each FinFET.
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Fig. 3. A generic interconnect block with all possible metal lines and vias
whose sizes are labeled in nm. M1 and M2 thicknessess are all equal to 60 nm.
Dielectric thickness between two metal layers is 100 nm. Each of the metal
segment is labeled by a number.

to M1 Segments 1-3 by a via.

The method of snapshots [29], [31], [54] can be applied in Eq. (2) to
extract the POD modes from the collected data. In all previous POD
studies [29-44], material properties in the structure remain unchanged
during the data collection. Therefore, each projected POD block repre-
sents a specific structure. If a material change in any location of the
structure, a different POD model will be needed. In the MPV-POD
approach for interconnects, a group of blocks including different met-
al/via routings with appropriate values of pC and k are performed in
DNSs to embed effects of MPV into the POD modes. However, even if the
generated MPV-POD modes include the MPV information, the POD pa-
rameters given in Eqs. (7) and (8) still need to be evaluated numerically
before each POD simulation because the material in the structure for
each simulation may be different. This imposes a time-consuming pro-
cess for thermal prediction of a large structure. This is however not a
serious problem for interconnects. Using the example of the generic
block in Fig. 3, one can pre-evaluate POD parameters from integrals in
Egs. (7) and (8) for this block without the regions where metal lines/vias
may run. The parameters for this blank generic block with only the
dielectric and the silicon substrate, can be stored in the library. Once the
routings are determined in each block of this generic group, it will take
little time to add integrals in Eqgs. (7) and (8) of the unfilled regions by
filling either metal or oxide in the vacant regions before POD thermal
simulation.

4. Ilustration of MPV-POD mode generation

The generic interconnect block given in Fig. 3 is selected in this work
to illustrate thermal data collection, mode generation and demonstra-
tions for the MPV-POD methodology. The dimensions and material
properties of the FinFET IC structure used in this study are adopted from
an earlier investigation in [31].

To arrive at robust POD modes, the collected data from the selected
interconnect blocks need to experience realistic variations of heating
sources, BCs and material properties. To account for metal/oxide vari-
ations effectively along the routing paths, a simple guideline is used;
namely each metal/via segment must appear a few times with different
connections to other metal/via segments. For this test case, the 6
interconnect blocks given in Fig. 4 (adopted from the circuit in Fig. 1)
are included to collect thermal data in DNSs. In addition, 6 more selected
blocks with different metal/via routings shown in Fig. 5 are incorpo-
rated in the data collection. This ensures that each metal/via segment in
these 12 blocks appears at least twice with connections to different
metal/via segments. One can always include many more different con-
nections for each segment to enhance the quality of the collected data
and thus the robustness of the POD modes. This however will produce
more data and may become computationally intensive in data collec-
tion, eigenvalue and mode generation, and calculations of POD model
parameters from Eqs. (7) and (8).

DNSs of each block in Figs. 4 and 5 need to perform to collect
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B Metal-1 [] Metal-2 [ ] oxide R Via
Block 1a Block 2a Block 3a
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13 13 12 13 14
Block 4a Block 5a Block 6a
ENEEAEENL =
11 9
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Fig. 4. Six interconnect blocks in Fig. 1. Blocks 1a-3a are on the top of the layout in Fig. 1 while Blocks 4a-6a are the mirror symmetric blocks of those on the bottom

of Fig. 1. An open square at the via location indicates no via existence.

[ Metal-1 [ Metal-2 [] oxide M Via

Block 7a Block 8a Block 9a
| [ | [ [ O O |
10 11 9 10 11
O O u u [ O
13 12 12 13 14

Block 10a Block 11a Block 12a
u | | [ O O u [
9 10 11 9 10 11
O O [ | u O O
12 13 14 13 14 12 13 14

Fig. 5. Six additional blocks used in DNSs for thermal data collection to generate POD modes for the generic interconnect block given in Fig. 3.

dynamic thermal data with spatial details, subjected to joule heating in
the metal and BCs induced by the neighboring blocks. To account for
heat fluxes across boundaries of each block appropriately, each of the 12
selected block is embedded in a larger simulation domain with an
extended length of 200 nm beyond the selected block on each side, such
as the diagram shown in Fig. 6 for Block 2a. Any metal line reaching a
boundary of the selected block is extended to the boundary of the
simulation domain. The extension allows us to apply a more realistic
range of BCs on the selected block boundaries. For example, BCs on the

oxide boundary of the selected block (inside the simulation domain in
Fig. 6) near metal lines are affected heat flow along these lines outside
the selected block. The metal line extension shown in Fig. 6 offers
realistic heat flow across the interface between blocks shown in Fig. 1.
These BC variations offer information for the generated POD modes to
learn enough variations to be able to accurately predict the heat flow in
the metal wires even with different BCs. It should be pointed out that this
simplified domain setting, although covering the major heat flux paths
across the boundaries of the selected interconnect block (Block 2a), does
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Fig. 6. Block 2a placed in a larger dielectric domain for DNSs for thermal data
collection. The extended length of the domain in each direction is 200 nm.

not account for some BCs in the multi-block demonstration presented in
Section 5.2. This is indeed partially responsible for the error observed in
the multi-block demonstration. One can always include more simula-
tions to accommodate more metal routings around the selected block to
cover more variations of the BCs for the selected block that will enhance
the quality of the collected data. This will again increase the computing
resources needed for the POD mode training and model parameter
calculations.

Power density induced by Joule heating in Eq. (9) along metal lines
results from current density. To apply more realistic dynamic current
density, circuit simulation of the FinFET IC in Fig. 1 is performed in
Spice. As shown in the circuit of Fig. 1, a 4 GHz voltage clock is applied
to one of the inputs of each gate while a random digital voltage sequence
is applied to the second input of each gate (v;; or v;2). Dynamic current
along each metal line is extracted from the Spice simulation and the
power density is then implemented in the DNS of the simulation domain
in Fig. 6. Even though the interconnect routings may be different be-
tween Figs. 1 and 6, the variations of the current and power density
cover arange of metal BCs and joule heating for the generate POD modes
to learn. The heat flux applied to each metal boundary of the simulation
domain is consistent with the power density applied to its metal line.
Ambient temperature is applied to the bottom of the substrate and the
top boundary is adiabatic. On other boundary surfaces (oxide bound-
aries sown in Fig. 6), dynamic heat fluxes across the boundaries between
the interconnect blocks extracted from the DNSs of the FinFET circuit in
Fig. 1, together with some random variations, are applied. This offers
more realistic variations of the boundary fluxes affected by neighboring
interconnect blocks.

DNS of each selected block was performed over 10 clock periods with
50 time steps in each period. Thermal data are collected at each time
step. It should be noted that simulation settings for data collection (in
turn for POD mode training) are not unique. Thermal data collected
from DNSs of the selected blocks should as much as possible encompass
a range of parametric variations which the generic blocks will experi-
ence in realistic operation, including variations of heat sources, BCs and
metal/oxide along the interconnect routing paths.

Thermal data of the 12 interconnect blocks collected from the DNSs
are combined together to generate eigenvalues and POD modes from Eq.
(2) using the method of snapshots [31], [54]. The generic block in Fig. 3
is thus projected onto a POD space represented by these POD modes. The
eigenvalue 4; represents the mean squared temperature variations
captured by the i-th mode ¢; and thus reveals the importance of the
mode. The eigenvalue for the collected data shown in Fig. 7 decreases by
more than 600 times from the first POD mode to the 6th mode and more
than 4 orders of magnitude at 10th mode. The eigenvalue curve becomes
nearly flat beyond the 102nd mode due to the machine precision.
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Fig. 7. Eigenvalue of collected thermal data from the 12 selected blocks.

5. Demonstration of the MPV-POD methodology
5.1. Single-block demonstration

With the POD modes generated from the thermal data collected from
the DSNs of the 12 selected blocks given in Figs. 4 and 5, the MPV-POD
approach is first demonstrated below in a single-block domain shown in
Fig. 8. To test how the modes via the training accommodate different
metal patterns, two distinct metal/via paths are included in the test
block. The left metal/via path in the test block of Fig. 8 is different from
any of the 12 selected blocks, and the right path is the same as the right
metal/via path in Block 9a. Different random pulses of current density
and different BCs are applied to the test block except the top adiabatic
boundary and the ambient bottom boundary. To have meaningful
comparison with DNS, current density, BCs and metal/via routings are
identical in the simulations between these two approaches.

Dynamic temperatures at Points a and b specified in Fig. 8 are
illustrated in Fig. 9 with the MPV-POD approach compared against the
DNS. Because Point b is in a metal/via path identical to the right metal/
via path in Block 9a, only 3 modes in the POD model are needed to reach
an excellent agreement with DNS, as shown in Fig. 9(c) and 9(d). On the
other hand, errors with 3 modes shown in Fig. 9(a) and 9(b) are rela-
tively large at Point a. With 6 modes in POD, both approaches are in a
very good agreement, where the POD model reaches a maximum devi-
ation of 2.47% from DNS near a peak temperature at 0.675 ns.

Spatial temperature profiles at 0.675 s in the test block are also
shown in Fig. 10. Similar to Fig. 9, temperatures derived from the 3-
mode MPV-POD model along Line B in M2 Segments 11 and 14
(Fig. 10(b)) and along Line A in M1 Segment 4 (beyond 4 ym in Fig. 10
(a)) are in excellent agreement with that from the DNS. This is because
the metal/via path from M1 Segment 4 to M2 Segments 11 and 14 (see
Fig. 8) is identical to one of paths in Block 9a used in data collection.

| [b
Metal-1
m A M Meta
= e [ Metal-2
4 . [] oxide
e M via
14
B

Fig. 8. Interconnect test block for the single-block demonstration. Points a and
b are in the center of M1 lines at distances of 0.24 um and 0.45 pm from the left
boundary, respectively. Lines A and C run through the ceters of M1 lines and
Line B through the M2-line center for temperature plots given in Fig. 10.
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Fig. 8 with a more detailed illustration in (d).

Along Lines A and C on the other metal/via path, the error derived from
the MPV-POD model with 3 modes are however slightly large. With 6
modes in POD, a maximum error near 3% along Lines A and C is
observed compared to the DNS.

The LS errors of the MPV-POD approach for different number of
modes over the whole simulation domain and time are given in Table 1.
For this single-block case, the error decreases as the number of modes
increases and remains near 1.81% beyond 8 modes. With 6 or more
modes, an LS error smaller than 2% can be achieved. The demonstration
reveals that even for an interconnect routing not included in POD mode
training, the MPV-POD model with a small number modes is still able to
offer a very accurate prediction.

5.2. Multi-block demonstration in an integrated circuit

To verify the multi-block MPV-POD methodology under a more
realistic operation, the multi-block approach is implemented in a FinFET
IC structure shown in Fig. 11. The layout in Fig. 11 represents the same
circuit in Fig. 1 with NAND2 Gates B and C swapped in the layout. The
POD modes for the generic interconnect block in Fig. 3 and its mirror
symmetric block are applied to all the six interconnect blocks in Fig. 11
including Blocks 1b-3b and 4b’— 6b'. In addition to the 6 interconnect
blocks represented by the generic MPV-POD block, the POD thermal
simulation of the entire IC structure also includes 3 additional NAND2
blocks described by one set of POD modes (without MPV effects)
developed in [31]. The POD simulation is thus performed in a 9-block
domain that is projected onto a POD space described by only 2 sets of
POD modes, one set for the generic interconnect block and the other for
the NAND2 block. The same number of modes are used for each of the 9
projected blocks in the demonstration. In the demonstration, a 4 GHz
voltage clock is applied to the 3-NAND2 circuit. Different random digital
voltages are applied to viand vi;  in Spice simulation to estimate the
power densities at device junctions and along each metal lines. These
power densities are then implemented in both the POD simulation and
DNS. In the simulation domain, the bottom of the substrate is fixed at
ambient and all other boundaries are adiabatic except for the metal
boundaries where surface power densities are applied based on the

power evaluated from the Spice simulation.

Blocks 2b, 3b and 5b’ in Fig. 11 are different from any trained block
(or their symmetric blocks) given in Figs. 4 and 5 while Blocks 1b, 4b
and 6b are identical to Blocks 1a, 4a and 5a in Fig. 4, respectively. It
should be noted that, even with Blocks 1b, 4b and 6b identical to 3 of the
blocks in the data collection, the simulation settings for the 6 inter-
connect blocks in Fig. 11 are very different from those in the training.
Simulation domains for the selected 12 blocks in the training process are
similar to the structure given in Fig. 6 with the BCs that only emulate the
effects induced by neighboring interconnect blocks. Also, there was no
adiabatic boundary in these trained blocks. On the other hand, in the
demonstration there is at least one adiabatic boundary on the dielectric
surface of each block, as shown in Fig. 11. Moreover, one of the
boundaries of each block in the demonstration is neighbored by a
NAND2 block instead of an interconnect block. The VDD/GND M1 line
in the NAND2 circuit shown in Fig. 11 runs in parallel closely with one of
the boundary surfaces of each interconnect blocks. These M1 lines
impose entirely different BCs for the interconnect blocks from the
trained blocks where no metal line runs in parallel near any boundary.

Our study of this multi-block domain has found that the multi-block
POD approach becomes numerically unstable if the penalty number N, is
below N, min or above N, nax, Where Ny min = 7 and N, max ~ 40. In the
demonstration, the value of N, used in [31] (N, = 20) is applied first.
Other values of N, between 7 and 40 are then used to analyze its in-
fluence on the interface thermal discontinuity and the accuracy. The
POD thermal modeling approach without considering the MPV for the
FinFET IC has been investigated in detail in a previous study [31]. In this
study, we only present thermal solution derived from the MPV-POD
models in the interconnect blocks compared against the DNS.

Dynamic temperatures at Points a, b, c and d in M1 labeled in Fig. 11
under the vias are illustrated in Fig. 12. Even though Points a, c and d are
located in the blocks identical to some selected trained blocks, due to
inadequate boundary settings in the training, accuracy of dynamic
temperatures in Fig. 12 (N, = 20) for the multi-block MPV-POD model
with 6 modes at these locations is not as good as those at Points a and b
in Fig. 9 for the single-block case. It needs 10 or 11 modes for the multi-
block model to reach good accuracy. With 11 modes, maximum errors
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Table 1

LS error of single-block MPV-POD models.
No. of modes 1 3 6 8 10 11 12
LS error (%) 6.82 3.14 1.97 1.82 1.81 1.8 1.81

near 2.5%— 4.4% around the peak temperatures at Points a-d are
observed in Fig. 12. The LS error shown in Table 2 with N, = 20 is near
3% with 11 modes and slightly reduces to 2.67% with 12 modes, that is
still reasonably small considering that at least 2 BCs for each block are
very different from the training settings, one with the adiabatic condi-
tion and the other induced by the VDD/GND M1 lines. Also, Point b is
located in a block with very different metal/via routings from the
trained ones. With very different BCs and metal/via routings in the
training, the MPV-POD modes are somehow able to predict temperature
profiles with good accuracy in the multi-block structure.

With only 3 modes, it is interesting to observe very accurate solution
at Point d but poor accuracy at other locations. Also, much better ac-
curacy is observed for the 6-mode MPV-POD model at Points ¢ and
d than at Points a and b. It should be noted that the POD process in Eq.
(1) only optimizes the LS error instead of local errors. The LS error
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Block 1b

Block 2b Block 3b

Block 4b'\
c

Block 5b' / Block 6b'

Fig. 11. Layout for the NAND circuit given in Fig. 1. This layput is however
different from that in Fig. 1.

shown in Table 2 with N, = 20 for the multi-block MPV-POD simulation
reduces gradually, as more modes are used, and it reaches 2.67% with
12 POD modes. Even with more modes included in the multi-block case,
its LS error only slightly reduces and is always greater than that of the
single-block case. This is because accuracy of the multi-block case is
limited by the data quality as a result of serious discrepancies of the BCs
between the demonstration and the training. The other reason why more
modes are needed for the multi-block MPV-POD approach to reach good
accuracy is because of the boundary thermal discontinuities at block
interfaces. Owing to the truncation of the solution given in Eq. (4), it is
impossible to satisfy both the continuities of temperature and heat flux
on any boundary. The interior penalty DG method [46], [47] is thus to
enforce the flux continuity but allows a small temperature discontinuity
(weak Dirichlet BCs) at the interface in an average sense between any 2
neighboring blocks.

The temperature distributions at 0.215ns along Lines A and B
through the center of M1 lines (see Fig. 11) are illustrated in Fig. 13.
Overall the MPV-POD model with more modes offers more accurate
thermal solution; however the 3-mode model actually leads to a better
accuracy than the 11 mode model in Block 6b’ along Line B, as shown in
Fig. 13(b) and at Point d in Fig. 12. Along the metal lines in Line A,
temperature discontinuities derived from the POD models with a small
number of modes appear clearly across interfaces between neighboring
blocks. With 3 modes, a discontinuity higher than 5% of the interface
temperature is observed at each interface, as detailed in Fig. 14(a) and
14(b). Using 8 or 9 modes, the discontinuity is effectively suppressed to
2.2% or 1.5%, respectively, and it is successfully suppressed with 10 or
more modes. Except for the one mode model, in general as the discon-
tinuity is suppressed with more modes in the MPV-POD model, Table 2
shows that the LS error is reduced. Effects of the discontinuity is mini-
mum along Line B because both interfaces are located in oxide.

To understand how N, influences the interface thermal discontinu-
ities, different penalty numbers are applied in the POD simulations of
the 9-block structure. Temperature profiles near the same interfaces in
Fig. 14 are illustrated in Fig. 15 derived from the 8-mode and 11-mode
POD models with N, slightly above N, s, slightly below N, mqx and N,
= 20. Fig. 15 shows that the temperature discontinuity is suppressed and
the accuracy of the POD prediction is improved as N, decreases from
37.2 to 7.3 for both 8-mode and 11-mode MPV-POD models. When N,
= 37.2, even with 11 modes in the MPV-POD model, discontinuities are
still observed at bot interfaces in Fig. 15(a) and (b). As N, decreases to 20
or 7.3, the discontinuities are successfully removed. In addition, use of
smaller values of N, leads to a better agreement with the DNS. As N,
decreases from 37.2, 20-7.3, the improvement in the LS error for
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Table 2
LS error (%) of multi-block POD models.
No. of modes 1 3 6 8 10 11 12
N, =73 9.87 7.51 4.68 4.25 3.21 3.01 2.67
N, =20 10.40 7.87 4.95 4.28 3.23 3.02 2.67
N, =37.2 11.55 8.47 6.93 6.76 5.9 5.43 5.19
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different number of modes is clearly observed in Table 2. A reduction of
1.5%— 2.7% in the LS error can be achieved as N, changes from 37.2 to
7.3 with 6 or more modes. However, with 10 or more modes, use of N,
equal to or below 20 is not able to further reduce the LS error and the LS
errors for both N, = 7.3 and 20 reach 2.67% with 12 modes even though
the local errors near the interfaces shown in Fig. 15(a) and 15(b) reduce
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with a smaller N,. It is believed that the LS error in this case is limited by
the quality of the collected thermal data in the training of the generic
block due to inadequate BCs, as discussed above.

6. Discussions

It is found in this investigation on the single-block and multi-block
interconnect structures that quality of the collected data, as a result of
simulation settings in the training, is the key to determine the accuracy
and robustness of the MPV-POD models. Appropriate settings of the
simulation domain in the training of the POD modes are needed to cover
enough variations of metal/via routings, power sources and BCs which
the interconnect blocks will encounter in realistic operation.

In the single-block case, an MPV-POD model with only 3 modes of-
fers excellent accuracy for dynamic temperature at Point b (between
Segments 4 and 11 in Fig. 8) shown in Fig. 9(c) and (d) and for spatial
temperature distributions shown in Fig. 10(a) and (b) along Segment 4
and Segments 11 and 14, respectively. This is because this metal/via
routing is identical to a metal/via path in a selected trained block with
perhaps slightly different BCs and power sources. Even with a metal/via
routing in the test domain different from any selected trained block, the
MPV-POD model with 6 modes was still able to offer a very good
agreement with the DNS.

The simulation settings used to train the generic-block, although
offering a good quality training for the single block case, does not pro-
vide good-quality data for the interconnect blocks embedded in the IC
given in Fig. 11 due to serious inconsistent BCs between the demon-
stration and the training. Therefore, the POD modes of the generic block
are not well-trained to adapt the BCs enforced by the IC operation in the
multi-block case. As a result, the temporal/spatial temperature solution
from the MPV-POD model in the multi-block case is not as good as that in
the single-block demonstration. In addition, the multi-block approach
suffers from inevitable thermal discontinuities across the interface
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between neighboring blocks. To further minimize the LS error in the
multi-block structure, more POD modes are needed. It is also found that
the value of the penalty number N, has a profound impact on the
thermal discontinuities at block interfaces. An appropriate range for N,
(in our case 7 <N, < 40) is needed to avoid numerical instability
induced by the discontinuities, and a smaller N, within this range offers
a smaller LS error. In the multi-block test case, even with inadequate BC
training and different metal/via routings in 50% of the interconnect
blocks, the MPV-POD modes of the generic interconnect block are able
to offer a good thermal prediction, compared to with the DNS, as dis-
played in Table 2, if a smaller N, within the appropriate range is used.

Applications of the MPV-POD methodology to the single-block and
multi-block interconnect structure reveal interesting and encouraging
findings. This work demonstrates that, in addition to the heat sources
and BCs, variations of material thermal properties between metal and
oxide in interconnects can be captured effectively by the POD modes as
long as enough variations of metal/via routings are implemented in the
data collection (or the training). It has been shown that a small number
of MPV-POD modes are able to offer a very accurate prediction of
spatial/temporal thermal solution in interconnect blocks with routings
that are different from the trained ones provided that the adequate BCs
are included in the training. Even with inadequate BCs in the training,
the MPV-POD model with 10 or more modes still offer a good descrip-
tion for the thermal solution in the multi-block interconnects. Appar-
ently, the trained generic block was able to intelligently perform
extrapolation to capture variations of metal/via routings and BCs to
reach an accurate prediction for new routings or substantially different
BCs as long as the block was trained by a wide range of routing and BC
variations.

In order to accurately predict the small-diameter hot spots at the
device junctions of the 9-block IC structure given in Fig. 11, including 6
interconnect blocks and 3 NAND-gate blocks, a high spatial resolution is
needed in DNS. In this case, the POD simulation of the IC structure with
N, = 7.3 and 10 modes in each block offers a reduction in the DoF by
more than 4 orders of magnitude, compared to the DNS using ANSYS
Mechanical APDL [57]. This amounts to a speedup over 3 orders of
magnitude in computational time.

7. Conclusions

Use of building blocks has been one of the major practices for more
effective engineering design and simulation in many different fields. In
order to implement the building-block concept to improve effectiveness
of thermal simulation of interconnects, MPV is proposed in POD to
capture thermal effects of metal/via routings embedded in a dielectric
structure. With this approach, some generic building blocks may be
selected for a group of interconnect structures with similar metal/via
routing features. Each selected generic block can be projected onto a
POD space represented by a finite set of POD modes that are trained to
capture variations of material properties, power sources and BCs. These
generic blocks can then be glued together to construct a large inter-
connect structure. In this study, the interconnects used to wire the
standard cells for a FinFET logic IC in Fig. 1 are partitioned into
standard-size blocks modeled by a single generic block shown in Fig. 3.
The selected generic block was trained to generate its POD modes and
model parameters and then applied to demonstrate the accuracy and
robustness of the MPV-POD approach in a single interconnect block and
a multi-block IC structure. For the simulation of the 9-block IC structure,
the POD simulation methodology offers a saving in computational time
over 3 orders of magnitude, compared to the DNS.

The investigation reveals the importance of the quality of thermal
data used to generate POD modes and parameters for the developed
MPV-POD methodology. However, even with inadequate BCs accounted
for in the training (that offers insufficient data quality), the MPV-POD
model of the generic block is still able to offer a good prediction of the
spatial/dynamic thermal simulation in the multi-block interconnect
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structure if more modes are used. It is also shown that the accuracy of discontinuity need to be investigated.

the multi-block MPV-POD model is partially limited by the thermal

discontinuities at block interfaces unless more modes are used. To the Declaration of Competing Interest

best of our knowledge, this study presents the first POD modeling

approach with the MPV. It has been shown that it is possible to effec- The authors declare that they have no known competing financial
tively account for thermal effects of the MPV induced by different metal/ interests or personal relationships that could have appeared to influence
via routings in the POD modes for thermal simulation of interconnects. the work reported in this paper.

However, to derive robust MPV-POD models, in addition to a wide range

of metal/via routings needed in the training of POD modes, BCs Acknowledgments

implemented in the training need to be close to those in realistic oper-
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Appendix. : Brief overview of method of snapshots

The autocorrelation tensor in (3) can be rewritten in terms of the average of the sample data sets over a number of snapshots (observations),

1 & ,
Rl %% | ==N"17(=%)T| %], Al
(x,x) N,; (x,tj) <x7tj>, (A1)

and thus (2) becomes

N
Ly 1wy /Qr(y’, £)e(F)dT = Ap(T), (A2)
rj=1

where N is the total number of observations in time. In a static problem, the observations are performed at different heat source strengths and/or
different BC’s.
Let us now define the projection of the jth sample data set onto the POD space given by the integral in (A2) as

uy = /gr(?’,t,)(p(y’)d?’, (A3)

and (A2) can then rewritten as

R

v 2 T(F.5) u=g(3). (A4)
t j=1

After multiplying both sides of (A4) by T(X,t;) and performing an integral on each side over the entire domain, the follow equation is obtained

—Zu,/ F) T(F.0)d7 =1 [ 1(%.0) (%), ®s)

which can be expressed as a matrix equation for a different eigenvalue problem,

A e Ay e Ay, u uy
Aj Al] AiNJ u; =1 u |, (A6)
Ang o Awy o Awg, uy, un,

with u; given in (A3) and

A= 170 T(F)ax A7
Nz Q

Once the eigenvectors in (A6) are determined, the POD modes at can be recovered using (A4) as a linear combination of the observations,

Ni

-1 > (A8)

The eigenvalues derived from (A6) and the modes estimated (A8) have been shown in (A1)-(A8) to be identical to the first N; eigenvalues and POD
modes, respectively, given in (2). For a large-scale domain with fine resolution, (2) represents an eigenvalue problem with an unmanageably large size,
compared to the relatively small matrix size offered by (A6).
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