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Introduction
The Caribbean experienced a catastrophic extinction of non-
volant taxa during the Holocene, losing more mammalian species 
than any other region on the planet (Turvey, 2009). Of approxi-
mately 43 rodent species that have been described, only 10–13 are 
extant. Both climate (Dávalos and Russell, 2012) and anthropo-
genic factors, such as hunting and habitat destruction (Cooke 
et al., 2017a, 2017b; Hansford et al., 2012; Morgan and Woods, 
1986) have been proposed as contributing to these extinctions. 
Last appearance dates across the Caribbean suggest that extinc-
tions occurred in two waves, concordant with (1) initial human 
settlement ca. 6000 years ago (Fitzpatrick, 2006, 2015), and (2) 
more recent colonization by Europeans and subsequent forced 
relocation of enslaved African populations ca. 500 years ago 
(Cooke et  al., 2017a). However, the data are scant. Across the 
Caribbean, about 150 radiometric dates exist for extinct mammal 
species, one-third of which are direct dates (i.e. a bone fragment 
from the actual species in question). The remainder are indirect 
dates that were obtained from other material (e.g. shell, charcoal, 
bone from another taxon) and used to infer ages of extinct species 
based on contextual evidence (Cooke et al., 2017a). For rodents, 
there are fewer than 20 direct dates (Cooke et al., 2017a). Disen-
tangling competing hypotheses explaining extinction events will 
require a better understanding of population declines and robust 
last appearance dates for these now-extinct taxa.

Today, Hispaniola has one endemic rodent, Plagiodontia 
aedium, but it once harbored some 10–12 species (Table 1) that 
spanned a variety of body-sizes and ecological niches (Cooke and 
Crowley, 2018). Three direct 14C dates have been published for 
Hispaniolan rodents (McFarlane et al., 2000; Shev et al., 2021). 
Two are from Cueva Nay, a paleontologically-rich cave site in the 
central Dominican Republic (Figure 1): One Brotomys voratus 
(340 ± 60 14C years before present; 400 ± 105 calendar years 
before present; Cal BP; McFarlane et al., 2000), and one Isolo-
bodon portoricensis (660 ± 50 14C BP; 612.5 ± 62.5 Cal BP; 
McFarlane et al., 2000). An additional direct date for I. portoric-
ensis exists from an archaeological site, El Flaco, in the north 
central region of the Dominican Republic (570 ± 30 14C BP; 
585 ± 60 Cal BP; Shev et al., 2021). The vertebrate assemblage 
from El Flaco also included abundant specimens of Brotomys, 
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which suggests they may have been consumed by people (Shev 
et  al., 2021). Additional data from archaeological sites on the 
island (e.g. Puerto Real) provide indirect evidence of the survival 
of I. portoricenis into the colonial period (Reitz, 1986). While 
these data demonstrate that both Brotomys voratus and I. portori-
cenis survived initial human arrival and were likely still present at 
European contact, little is known about the extirpation of other 
now-extinct taxa. Here, we provide eight 14C direct dates for 
rodents from Trouing Jérémie #5, a paleontologically-rich sink-
hole in southwestern Haiti (Figure 1). This includes new dates for 
the two previously dated endemic species, B. voratus and I. por-
toricensis, three endemics that have not been dated directly previ-
ously, Plagiodontia velozi (here, considered synonymous with P. 
ipnaeum; Hansford et al., 2012), Hexolobodon phenax, and Rhi-
zoplagiodontia lemkei, and invasive Rattus.

Regional and species overview
The Holocene climate of the Tiburon Peninsula has been recon-
structed using stable oxygen isotope data from two lake cores 
from Lake Miragoâne (Higuera-Gundy et  al., 1999), which is 
approximately 65 km from Trouing Jérémie #5. Climate fluctu-
ated throughout the Holocene, but probably not extensively (sum-
marized in Figure 2). Between ca. 12,000 and 8500 years ago, 
climate transitioned from relatively dry to wet, and remained 
mesic, and possibly warmer until ca. 3300 years ago (Figure 2). 
Conditions became drier again during the Late-Holocene (similar 
to the early Holocene), although relatively moist climate returned 
briefly between ca. 1700 and 1000 years ago (Higuera-Gundy 
et al., 1999).

In contrast, human activity varied considerably. People first 
arrived ca. 6000 years ago – termed the Lithic culture (Fitzpat-
rick, 2006, 2015; Figure 2). Little is known about the effect these 
people had on their surroundings; archaeological sites contain 
stone tools but few animal remains, and population density seems 
to have been low. Beginning ca. 5000 years ago, people belonging 
to the Archaic culture engaged in cultivation of introduced plants 
(Newsom and Wing, 2004). Charcoal peaks from lake cores may 
reflect slash and burn agriculture (Rivera-Collazo et  al., 2015), 
though the natural occurrence of fire cannot be ruled out (Higuera-
Gundy et  al., 1999). Zooarchaeological remains indicate that 
Archaic people transported I. portoricensis from Hispaniola to 

other islands (Newsom and Wing, 2004), but there is no direct 
evidence for the exploitation of large-bodied mammals, including 
>1 kg rodents (e.g. P. velozi). The Ceramic culture began ca. 2500 
Cal BP (Fitzpatrick, 2006), and human population expanded con-
siderably. People cultivated over 80 types of plants (Aguilu et al., 
1991), and dogs (Canis familiaris) and guinea pigs (Cavia porcel-
lus) were introduced from mainland South America (Rick et al., 
2013; Rivera-Collazo et al., 2015). Europeans, and enslaved peo-
ple of African descent began arriving at the end of the 15th and 
beginning of the 16th Centuries CE (Heuman, 2018). Under colo-
nial rule, deforestation accelerated with the establishment of 
large-scale monocultures of sugarcane, indigo, tobacco, and cof-
fee (McClintock, 2003). Mice (Mus musculus), rats (Rattus rattus 
and R. norvegicus), domestic cats (Felis catus), a variety of ungu-
lates were introduced soon after European arrival, and in the late 
19th Century, mongoose (Herpestes auropunctatus) were also 
introduced (Long, 2003; Pimentel, 1955; Woods and Ottenwalder, 
1992). These taxa could have impacted endemic rodents via pre-
dation, direct competition, and negative impacts on native plants 
(Grouard et al., 2013; Street, 1962).

Hispaniola’s endemic rodents include the extant species, P. 
aedium, and at least nine extinct species: P. velozi, Rhizoplagiodon-
tia lemkei, Hyperplagiodontia araeum, Isolobodon montanus, I. 
portoricensis, Hexolobodon phenax, Brotomys voratus, B. contrac-
tus, and Quemisia gravis (Table 1) (Hansford et al., 2012; Woods 
and Kilpatrick, 2005). The phylogenetic relationships of Caribbean 
rodents is currently under revision. Recent genetic work indicates 
that they are likely a monophyletic group within Echimyidae that 
diverged from mainland forms sometime in the early to mid-Mio-
cene (Fabre et al., 2014, 2017; Marivaux et al., 2020; Woods et al., 
2021), though to date only some extinct forms have been analyzed.

Isolobodon portoricensis was widespread and has been recov-
ered from paleontological and archaeological sites throughout the 
Greater Antilles (Newsom and Wing, 2004). Hexolobodon phenax 
is present at paleontological sites across Hispaniola but rare 
(Rímoli, 1976). Plagiodontia and Hyperplagiodontia, appear to 
be most common in cave deposits in western Hispaniola (SBC 
personal observation), though P. velozi and H. araeum have also 
been recovered from northern and eastern Hispaniola. Rhizopla-
giodontia lemkei is common at paleontological sites in SW Haiti 
but unknown elsewhere (Woods, 1989a). Biogeographic barriers 
(e.g. intermittent seaways and mountains) may have limited its 

Table 1.  Phylogenetic relationships and morphological information for endemic Hispaniolan rodents.

Family Species Estimated body mass (kg) Body mass sourcee

Echimyidae (Capromyidae)a Isolobodon montanus 1.52–3.12 1, 2
Isolobodon portoricensis 1.04–1.40 1, 2
Isolobodon sp. 0.38–0.53 3
Hexolobodon phenax 3.16–3.31 1, 2
Hexolobodon pooleib  
Plagiodontia aedium 1.56–3.85 4
Plagiodontia velozic 5.31–5.93 4
Hyperplagiodontia araeum 2.35–5.36 4
Rhizoplagiodontia lemkei 1.32–2.01 4

Echimyidae Brotomys voratus 0.40 2
Brotomys contractusd  

Debated Quemisia gravis 4.17–15.00 2, 5

aPaleontological literature (e.g. Woods, 1989a, Woods, 1989b) uses Capromyidae as the family for Isolobodon, Hexolobodon, Plagiodontia, Hyperplagiodon-
tia, and Rhizoplagiodontia, but recent genetic evidence indicates that Plagiodontia, and by extension the other taxa, are nested within Echimyidae. There is 
no debate about the placement of Brotomys within the family Echimyidae.
bMay be synonymous with H. phenax.
cWe consider P. velozi to be synonymous with P. ipnaeum (Hansford et al., 2012). A large member of the genus Plagiodontia lived on Hispaniola, but there 
is debate about which name has priority.
dKnown only from a single edentulous palate comparable in size to B. voratus and possibly conspecific, though unpublished evidence may provide sup-
port for the validity of this taxon (Lazaro Vinola, 2021, personal communication; MacPhee, 2009).
eBody Mass Sources: 1 = Cooke et al. (2017a); 2 = Turvey and Fritz (2011); 3 = Unpublished, 4 = Hansford et al. (2012); 5 = Woods and Ottenwalder (1992).
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dispersal outside of this region (Iturralde-Vinent and MacPhee, 
1999; Mann et al., 1991; Maurrasse et al., 1982). Alternatively, 
sampling bias, regional habitat differences, or temporal variabil-
ity among sites may account for its apparently limited distribu-
tion. Brotomys is found at sites on the Tiburon Peninsula 
(McFarlane et  al., 2000; Rímoli, 1976; White and MacPhee, 
2001) as well as in the central and eastern Dominican Republic 
(Miller, 1916, 1929a; SBC personal observation of unpublished 
collections from Altagracia Province). Differentiating the two 
Brotomys species is challenging and based only on a few cranial 
characters (Miller, 1929b; Rímoli, 1976); consequently, nothing 
is known of species range differences, should they exist.

Methods
Site description
Trouing Jérémie #5 is a sinkhole in the Massif de la Hotte, Pic 
Macaya National Park, near the western end of the Tiburon penin-
sula (Figure 1). It is 16.5 m deep, 2.5 m wide at its opening, and 12 m 
wide at its base (MacPhee et al., 2000). The site is located at 1275 m 
asl in a transitional zone between lower-elevation wet forest (850–
1250 m asl) and a mosaic of higher-elevation pine and cloud forest 
(Upham et al., 2013). The region currently receives 1500–2500 mm 
of annual precipitation with no pronounced moist or dry season 
(www.oreworld.org/rainfall.htm; www.weather-atlas.com). Trouing 
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Figure 1.  Maps of (a) the Caribbean, showing the location of Hispaniola and (b) Hispaniola, indicating the location of sites mentioned in the 
text. Trouing Jeremie #5, Cueva Nay, and El Flaco are the three localities from which endemic rodents have been dated (this paper; McFarlane 
et al., 2000; Shev et al., 2021). Introduced Rattus were dated at Monte Culo de Maco (MacPhee et al., 1999). The location of Puerto Real 
(Reitz, 1986), an archaeological site with abundant rodent remains is also noted.
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Jérémie #5 is one of the paleontologically-richest sites on the Tibu-
ron Peninsula. It was excavated and mapped in June and July 1984 
by Dan Cordier and colleagues, who removed numerous bags of 
sediment for later sorting. Seven endemic rodents, as well as inva-
sive murid rats (Rattus sp.) and mice (Mus musculus) have been 
recovered from the top 5 cm of sediment, and some of these taxa are 
extremely abundant (See MacPhee et al., 2000 for a description of 
faunal abundance in Trouing Jérémie #5). It serves as the type local-
ity for the rodent Rhizoplagiodontia lemkei (Woods, 1989a), the pri-
mate Insulacebus toussaintiana (Cooke et al., 2011), and the sloth 
Neocnus toupiti (MacPhee et al., 2000). Several published radiocar-
bon dates exist for Trouing Jérémie #5: Extinct sloths (Neocnus 
comes) range in age from 6875 ± 47 to 8326 ± 57 14C BP 
(7702.5 ± 92.5 and 9335 ± 140 Cal BP; Steadman et  al., 2005), 
while a specimen of the extant bat, Macrotus waterhousii, dates to 
2030 ± 30 14C BP (1617.5 ± 437.5 Cal BP; Soto-Centeno and Stead-
man, 2015).

Specimen selection and analysis
We selected mandibles from the collections at the Florida Museum 
of Natural History (FLMNH) that appeared to be well-preserved 
(robust with little flaking or discoloration; Crowley, 2012). Bone 
collagen was isolated following Sparks and Crowley (2018). At 
the University of Cincinnati, we removed ca. 150 mg of bone 
from each mandible, demineralized samples in 0.5 N HCl, 
removed humic acids with 0.001 N NaOH, gelatinized collage-
nous residue in ~0.001 N HCl, filtered samples through 1.5 μm 
glass-fiber filters, and lyophilized them. We confirmed specimen 

preservation via collagen yield and atomic C:N (Ambrose, 1990; 
Van Klinken, 1999). Samples were then sent to the W.M. Keck 
Carbon Cycle Accelerator Mass Spectrometer Facility at the Uni-
versity of California, Irvine for radiocarbon dating. Conventional 
14C dates were calibrated to calendar years before present (Cal 
BP) using the IntCal20 curve (Reimer et al., 2020) in Calib 8.2 
(Stuiver et al., 2021).

Results and discussion
Dates for endemic and introduced rodents at Trouing Jérémie #5 
span the Holocene (Table 2; Figure 2), which is consistent with 
previously-published radiocarbon dates for the site (Soto-Cen-
teno and Steadman, 2015; Steadman et  al., 2005). The earliest 
date, 10,995 ± 190 Cal BP, is for Plagiodontia velozi; this date 
confirms that this large-bodied (5–6 kg) species was present until 
at least the beginning of the Holocene and consequently survived 
the climatic change and sea level rise of the terminal Pleistocene 
(Curtis et  al., 2001; Dávalos and Russell, 2012; Lisiecki and 
Raymo, 2005). Dates for the medium-bodied species, Rhizopla-
giodontia lemkei (1.3–2.0 kg) and Hexolobodon phenax (3.2–
3.3 kg), all fall within a relatively short temporal window 
between ca. 6700 and 7050 Cal BP (Table 2), coinciding with, or 
immediately preceding the arrival of the first people on Hispan-
iola (Fitzpatrick, 2006, 2015).

Dates for Brotomys voratus and Isolobodon portoricensis are 
more recent (3135 ± 75 and 1655 ± 50 Cal BP, respectively). 
These are older than the dates previously reported by McFarlane 
et al. (2000) for these two species but help confirm that both of 
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Figure 2.  Plot showing calibrated 14C dates for endemic Hispaniolan rodents (mean ± 1σ), along with human settlement patterns (Fitzpatrick, 
2006, 2015), and major climatic wet and dry periods based on stable oxygen isotope values from two lake cores (red crosses and small black 
circles) taken at Lake Miragoâne, Haiti (Hodell et al., 1991; data available from NOAA and can be accessed here: https://www.ncei.noaa.gov/
access/paleo-search/study/23092). Dates from this study are solid black; published dates from McFarlane et al. (2000) and Shev et al. (2021) are 
white outlined in black. Error bars for some dates are smaller than the symbol size and are therefore not easily visible. Relative rodent body 
sizes are represented by outlines (see Table 1).
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these geographically widespread taxa persisted well-beyond the 
initial settlement of Hispaniola by humans. These dates span the 
time periods of the Archaic culture, beginning ca. 5000 Cal BP, 
and the Ceramic culture, beginning ca. 2500 Cal BP (Fitzpatrick, 
2006).

Finally, dates for two Rattus specimens are 502.5 ± 12.5 and 
360 ± 70 Cal BP, contemporaneous with the colonization of His-
paniola by European and African populations. Columbus first 
landed on the northern coast of Hispaniola on December 6, 1492 
CE, and permission was granted to import enslaved people of 
African descent in 1501 CE. Initial colonial outposts were on 
the central northern and southern coasts, including where Santo 
Domingo is still present today (Heuman, 2018). These are far 
from the highlands of the Tiburon Peninsula. Murid rats at Trou-
ing Jérémie #5 likely got there on their own through dispersal 
and population expansion. Our date of ca. 500 Cal BP for one 
individual suggests that rats experienced very rapid colonization 
and population expansion on Hispaniola. Indeed, MacPhee et al. 
(2000) found that Rattus is one of the most common taxa in the 
top 5 cm of sediment at Trouing Jérémie #5; it accounts for ca. 
13.9% of the rodent fauna and is second only to the extant Pla-
giodontia aedium (20.1%). Rattus has also been found comin-
gled with extinct endemic species at other caves across 
Hispaniola. Few of these Rattus specimens have been directly 
dated, but three individuals from Monte Culo de Maco in the 
Dominican Republic (Figure 1) ranged from 220 ± 40 to 
440 ± 60 14C BP (157.5 ± 157.5 to 432.5 ± 117.5 Cal BP; 
MacPhee et al., 1999). These dates are very similar to those that 
we obtained, and together support a rapid expansion of Rattus 
once introduced on Hispaniola.

The degree to which endemic rodents survived into the Euro-
pean period is an open question. Certainly some persisted, as 
Oviedo Y Valdés (1535) noted several endemic rodents were 
hunted and consumed. However, which species were present, and 
their population sizes, are unknown. Moreover, temporal overlap 
of most extinct species with any human groups, or even their per-
sistence past the Pleistocene was previously unconfirmed. Indirect 
evidence for the persistence of extinct rodents into the Holocene 
previously existed from dates for other taxa that were found in 
association with rodents (MacPhee et al., 2000; Steadman et al., 
2005). However, the uncertain stratigraphy of many caves and the 
age of dates obtained for some rodent-rich sites (e.g. ca. 25,000 Cal 
BP for an unidentified sloth bone from Trou Woch Dadier; 
MacPhee et  al., 2000) have limited our understanding of when 
extinct rodent species disappeared. Here, we have provided the 
first direct evidence for three taxa that are not frequently found in 
archaeological deposits (P. velozi, R. lemkei, and H. phenax) as 
well as additional dates for I. portoricensis and B. voratus. These 
dates confirm survivorship of these species into the Holocene (and 
potentially into the period of human occupation) and help to set a 
baseline for understanding their disappearance.

Conclusions
New 14C dates for Trouing Jérémie #5 in the Tiburon Peninsula 
indicate that bones have been accumulating at this site for at least 
10,000 years. The dates build on an existing dataset for Trouing 
Jérémie #5, which includes radiometric dates for sloth species 
(Steadman et  al., 2005), an analysis of faunal abundance 
(MacPhee et al., 2000), and several species descriptions (Cooke 
et al., 2011; MacPhee et al., 2000; Woods, 1989a). While scant, 
these dates do suggest possible temporal differences in regional 
species persistence and extirpation related to body size. This site 
may have excellent potential for exploring regional patterns of 
extirpation and persistence of endemic rodents (and other verte-
brates more broadly) in response to both climate and anthropo-
genic factors.
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