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A Framework for Deep Learning Emulation
of Numerical Models With a Case Study

in Satellite Remote Sensing
Kate Duffy , Thomas J. Vandal, Weile Wang, Ramakrishna R. Nemani , and Auroop R. Ganguly

Abstract— Numerical models based on physics represent the
state of the art in Earth system modeling and comprise our
best tools for generating insights and predictions. Despite rapid
growth in computational power, the perceived need for higher
model resolutions overwhelms the latest generation comput-
ers, reducing the ability of modelers to generate simulations
for understanding parameter sensitivities and characterizing
variability and uncertainty. Thus, surrogate models are often
developed to capture the essential attributes of the full-blown
numerical models. Recent successes of machine learning methods,
especially deep learning (DL), across many disciplines offer the
possibility that complex nonlinear connectionist representations
may be able to capture the underlying complex structures and
nonlinear processes in Earth systems. A difficult test for DL-based
emulation, which refers to function approximation of numerical
models, is to understand whether they can be comparable to
traditional forms of surrogate models in terms of computational
efficiency while simultaneously reproducing model results in a
credible manner. A DL emulation that passes this test may be
expected to perform even better than simple models with respect
to capturing complex processes and spatiotemporal dependencies.
Here, we examine, with a case study in satellite-based remote
sensing, the hypothesis that DL approaches can credibly repre-
sent the simulations from a surrogate model with comparable
computational efficiency. Our results are encouraging in that the
DL emulation reproduces the results with acceptable accuracy
and often even faster performance. We discuss the broader
implications of our results in light of the pace of improvements in
high-performance implementations of DL and the growing desire
for higher resolution simulations in the Earth sciences.

Index Terms— Bayesian deep learning (DL), emulation,
surrogate modeling, uncertainty quantification.
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I. INTRODUCTION

SATELLITE remote sensing and climate modeling, which
are our best tools for monitoring the climate and projecting

the future climate, rely on powerful computers to process mas-
sive data streams and execute complex simulations. Over the
last several decades, strides in high-performance computing
have enabled the development of climate models that solve
equations at increasingly fine spatial resolutions. Past itera-
tions of the Coupled Model Intercomparison Project (CMIP)
have seen the average horizontal resolution decrease from
250 km (CMIP3), to 150 km (CMIP5) and 25–50 km
in the high-resolution experiments of the latest generation
(CMIP6) [1]. Despite these strides, even the latest generation
of climate models does not provide the type of robust regional
climate information required by decision-makers, and the
extant literature suggests that high-resolution simulations of
fine-scale processes are critical to reproducing extremes and
change [2]. Scientific and societal demands for higher resolu-
tion simulations easily consume available resources, leaving
less capacity to invest in model improvement runs, such
as parameters’ optimization and characterization of model
sensitivity and variability. Lack of resources for science runs
such as these may contribute to the relatively modest increases
in historical skill and model consensus over time [3]–[5],
despite major investments in climate modeling and computing.
In climate science, the only source of data growing faster

than archived model simulations is remote sensing observa-
tions of the environment [6]. Remotely sensed atmospheric
and surface states document historical and current climates, are
used to constrain the components of Earth system models [7],
and are assimilated into climate reanalysis models [8]. Recent
decades have seen an ever-growing fleet of Earth-orbiting
satellites and continuous-resolution improvements. Depending
on the spatial and temporal resolutions of gridded satellite
datasets, as well as the number of attribute fields generated
in postprocessing, a low Earth orbit satellite can generate
tens to hundreds of gigabytes each year, while geostation-
ary sensors, such as GOES-16, generate nearly one terabyte
per day [9], [10].
The cost of running complex models has motivated many

studies of surrogate modeling in the Earth sciences. Surrogate
models capture the essential attributes of the full high-fidelity
models, including their statistical variability, by projecting
high-dimensional systems into low-order functions. These
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proxy models save orders of magnitude in computing time
so that scientists can quickly study complex systems where
repeated simulations would be prohibitively slow. For exam-
ple, statistical modeling has been used to emulate the output
of climate models under any arbitrary forcing scenarios, given
a set of full models runs [11], [12]. Simplified approxima-
tions have also been evaluated as potential replacements for
time-consuming portions of model physics [13]. In remote
sensing, a range of emulation techniques has been proposed
for radiative transfer models (RTMs), which represents the
scattering and absorption of solar radiation [14]. Even simpler
reductions, such as lookup tables, are used operationally to
reduce computation time [15], while more complex emulators,
such as those based on deep learning (DL), have begun to show
encouraging results [16].
DL has transformed the state of the art in computer

vision [17], natural language processing [18], and even com-
plex games, such as chess and go [19]. In the Earth sciences,
DL has begun to show promise for traditionally challenging
problems, such as El Niño/Southern Oscillation (ENSO) fore-
casting [20] and downscaling of geophysical data [21], [22].
It has been suggested that the ability to extract features from
spatial and temporal contexts is at the root of DL’s promising
results [23], but, in the absence of solid theoretical expla-
nations for DL’s success, performance improvements have
been greeted as “unreasonable effectiveness” [24]. In scien-
tific domains, where process understanding and consistency
with the laws of physics are key, “black box” machine
learning models have not been universally embraced. How-
ever, given that Earth systems are governed by complex,
multiscale, and nonlinear dynamics and contain spatial and
temporal structures, several previous studies have begun to
examine whether complex models may better capture the
complexity of Earth science data than simpler, process-based
models [25], [26].
Here, we present a case study comparing DL-based emula-

tion to a traditional form of the surrogate model in remote
sensing. A DL model is trained to approximate a lookup
table capturing the RTM basis of the Multi-Angle Implemen-
tation of Atmospheric Correction (MAIAC) [15] algorithm
using a dataset composed of lookup table inputs and outputs
(see Fig. 1). We examine the hypothesis that DL approaches
can credibly represent the simulations from a surrogate
model and can achieve comparable or greater computational
efficiency.

II. STUDY AREA AND DATASETS

Datasets used in this study are from the Advanced Himawari
Imager (AHI) sensor carried by the Japanese geostationary
satellite Himawari-8. In the GeoNEX processing pipeline,
Himawari Standard Data (HSD) scans are georeferenced and
converted to gridded data. The resulting gridded datasets
follow a geographic coordinate system with a 120◦ × 120◦
extent (E85◦–E205◦, N60◦–S60◦). The domain is divided
into 6◦ × 6◦ tiles defined by fixed latitude and longitude.
Himawari-8’s full disk, which encompasses the entire view as
seen from the satellite, covers the continent of Australia and

TABLE I

HIMWARI-8 AHI SOLAR REFLECTIVE BANDS
FOR LAND SURFACE OBSERVATION

eastern Asia. Full disk scans are repeated every 15 minutes
throughout the day.
The AHI has 16 observing bands encompassing visible,

near-infrared (NIR), short wave infrared (SWIR), and thermal
infrared with spatial resolution ranging from 0.5 to 2 km.
Bands 1–6 are solar reflective bands, spectrally similar
to NASA’s Moderate Resolution Imaging Spectroradiometer
(MODIS). All bands are resampled to common 0.01◦ resolu-
tion, which corresponds to 1 km at the equator (see Table I).

A. Himawari-8 AHI TOA Reflectance

The top-of-atmosphere (TOA) reflectance is prepared by the
GeoNEX processing pipeline from HSD scans, according to
the processing procedure outlined in the Himawari 8/9 HSD
User’s Guide, Version 1.2 [27]. HSD consists of raw
digital counts that are transformed to the bidirectional
reflectance factor (bands 1–6) and the brightness temperature
(bands 7–16). TOA reflectance data and additional documen-
tation are available from www.nasa.gov/geonex.

B. Himawari-8 AHI Surface Reflectance

Originally developed for the land-monitoring flagship
MODIS, the MAIAC algorithm has been adapted to retrieve
surface reflectance (SR) and atmospheric composition for the
geostationary satellite Himawari-8. Running an atmospheric
RTM for every measurement from a sensor is generally too
slow and is not done in practice. Instead, MAIAC relies on
the generation of lookup tables (LUTs) from which values
are retrieved by linear interpolation [15]. As retrieval error
is associated with step size, LUTs are precomputed at a
grid density chosen with consideration to both accuracy and
memory requirements. Given the numerous possible variations
in atmospheric conditions, keeping the LUT within reasonable
size guides many choices made in its construction [15].
In practice, the LUT approach gives nearly identical results
as the inline RTM, given the necessary ancillary informa-
tion, such as Sun–satellite geometries and atmospheric optical
properties.
Geostationary SR is produced using the adapted MAIAC

algorithm for all daylight observations [28]. MAIAC uses a
time series of up to 16 days and a mixture of pixel and
image-level processing for atmospheric correction with inter-
nal cloud detection, aerosol retrieval, and quality assurance
flagging [15], [29], [30]. Multiangle determination of SR refers
to viewing angle, which is fixed, and illumination angle, which
varies continuously throughout the day. AHI MAIAC SR is
released as a preliminary product and is available upon request
at www.nasa.gov/geonex.
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Fig. 1. Surrogate models save orders of magnitude in computing time so that scientists can quickly capture the essential attributes of complex simulations.
In the context of remote sensing, we examine the hypothesis that a DL emulator performs credibly and achieves similar computational performance compared
to a more traditional form of model order reduction.

C. MODIS MCD12Q1 Land Cover Type

Land cover types are identified using MODIS global
land cover classification, which is produced annually from
combined Terra and Aqua observations [31]. MCD12Q1
incorporates five distinct classification schemes. We use
the International Geosphere Biosphere Programme (IGBP)
global vegetation classification scheme. This scheme delin-
eates 17 distinct classes, including 11 natural, three developed/
mixed, and three nonvegetated. MCD12Q1 is resampled
from 500-m resolution to the 0.01◦ grid of the prepared
AHI datasets.

III. METHODS

A. Emulator Model

Mapping from TOA to SR relies on computationally expen-
sive radiative transfer equations that simulate nonlinear physics
and incorporate ancillary information about atmospheric con-
ditions. MAIAC is a state-of-the-art method for accomplishing
atmospheric correction and is run exclusively on an LUT,

which achieves low (∼0.2%) error with respect to inline calcu-
lations. Due to the unavailability of full model simulations in
our domain of interest, in our approach to emulation, several
deep networks are learned to approximate the input to output
transformation contained in the MAIAC LUT.
1) Bayesian Deep Learning: Typical deep neural networks

are learned as deterministic functions that fail to capture
uncertainty in model parameters and data. The need to
quantify these uncertainties has motivated the development
of approaches combining Bayesian probability theory and
neural networks. Bayesian neural networks learn probability
distributions over the network parameters, where training
data are used to transform the prior probability distributions
into posterior distributions. Approximations of the Bayesian
inference have been postulated to extract information about
both epistemic uncertainty (due to randomness) and aleatory
uncertainty (due to incomplete systemic knowledge) from
DL models [32].
For a network with parameters W, inputs X, and outputs Y,

the Bayesian theory estimates posterior distribution over the
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weights as p(W|X, Y) = p(Y|X, W)p(W)/p(Y|X). How-
ever, performing inference on the full posterior distribution is
intractable for complex networks, where analytical solutions
to the marginal probability p(Y|X) are unavailable [33].
This has led to the development of efficient approximations

of the Bayesian inference for DL [34]. One approach to the
Bayesian DL defines an approximation of the true posterior
distribution by Monte Carlo sampling. Dropout, the process
of randomly removing nodes from deep neural networks,
is applied as a regularization technique in many DL models
to discourage overfitting [35]. When applied during training
and testing, the stochastic dropout generates thinned networks,
sampling of which is mathematically equivalent to sampling
the approximate posterior distribution.
All models defined in this work are Bayesian models

implemented with concrete dropout, a variant that dynamically
adapts dropout probability to obtain well-calibrated uncer-
tainty estimates [36]. For a model f W(X) with L layers,
weights W, and dropout probabilities p, the set of varia-
tional parameters is θ = {wl, pl}Ll=1. Thus, the variational
(factorized) approximation, qθ , of the true posterior distri-
bution p(W) is formalized as qθ (W) = ∏L

l=1 qθ (wl). The
optimization objective L (θ) for this variational interpretation
of the model can be written as follows for data samples
{xi , yi}Ni=1 [36]:

L (θ) = − 1

N

N∑
i=1

log p
(
yi

∣∣ f W(xi)
) + KL(qθ (W)||p(W))

= LX (θ) + KL(qθ (W)||p(W)). (1)

The first term represents expresses the log-likelihood of the
model, while the Kullback–Leibler (KL) divergence term
acts as a regularizer by discouraging separation between the
approximate posterior and the true posterior distribution. The
loss function, LX (θ), is written as follows for labels {yi}Ni=1
and output values {ŷi}Ni=1:

LX (θ) = − 1

N

N∑
i=1

1

2
σ̂i

−2||yi − ŷi ||2 + 1

2
logσ̂i

2. (2)

The noise in the input data is represented using the uncertainty
regularization term σ̂i [32]. Through minimization of the loss
function, the level of noise inherent in the data is learned
implicitly. Furthermore, the model’s epistemic uncertainty is
characterized by the predictive variance [32]. During infer-
ence, stochastic forward passes generate T independent and
identically distributed samples from T thinned networks. From
these samples, we can empirically approximate the model’s
predictive distribution at each pixel. With T samples of [ŷ, σ̂ ]
from the Bayesian network f W(X), the unbiased estimates of
the first two moments of the predictive distribution are

E [y] = 1

T

T∑
t=1

ŷt (3)

Var [y] = 1

T

T∑
t=1

ŷ2t −
(
1

T

T∑
t=1

ŷt

)2

+
T∑
t=1

σ̂ 2
t . (4)

This estimate of uncertainty is obtained through supervision of
the task rather than requiring “uncertainty labels.” It theoreti-
cally comprises both aleatoric uncertainty, from measurement
noise, and epistemic uncertainty, reducible through the collec-
tion of more data [37].
2) Discrete-Continuous Distribution: Prediction tasks gen-

erally fall into one of two categories: regression tasks predict
a continuous quantity, while classification tasks are concerned
with assigning a class label. MAIAC’s atmospheric correction
and cloud classification algorithms generate SR, a continuous
variable ranging between 0 and 1, as well as binary cloud
classification. We learn a discrete-continuousmodel to perform
both regression and classification tasks in one probabilistic
model [38]. To this end, the model is conditioned to predict
the probability p̂ of a pixel being a clear sky. For the
Bayesian network f W(X) described in Section III-A1, the
mean, variance, and probability are sampled as follows:[

ŷ, σ̂ 2, φ̂
] = f W(X) (5)

p̂ = Sigmoid(φ̂). (6)

This conditioning results in a two-part loss function with
the first term capturing cross-entropy of predicted and cloud
label and cloud prediction, and the second term capturing
conditional regression loss at clear sky pixels. Here, y is the
binary indicator of whether the classification is correct and
D is the number of pixels with pixel index i . The loss function
in (2) is modified as follows to incorporate classification loss:

LX (θ) =

binary classification loss︷ ︸︸ ︷
− 1

D

∑
i

[
yi log( p̂i)) + (1 − yi) log(1 − p̂i)

]

+ 1

D

∑
i,yi>0

1

2
σ̂i

−2||yi − ŷi ||2 + 1

2
logσ̂i

2

︸ ︷︷ ︸
conditional regression loss

. (7)

3) Implementation and Training: We implement three full
Bayesian architectures conditioned to learn a discrete-
continuous distribution as in [39] (see Fig. 2). The ML mod-
els are trained without the ancillary datasets (e.g., current
atmosphere conditions) used as inputs to MAIAC.
The discrete-continuous fully connected (DCFC) neural

network has three layers with 512 filters per layer. The
discrete-continuous convolutional neural network (DCCNN)
is of similar width and depth to DCFC and has a convolu-
tional filter size of three. Finally, the discrete-continuous very
deep super-resolution network (DCVDSR), inspired by image
super-resolution networks, is a convolutional neural network
similar to DCCNN but incorporates a skip connection between
the first and last hidden layers. The presence of the skip
connection reformulates the task of the network as learning a
residual function or the difference between the output mapping
and input [39]. This reformulation improves the performance
by preconditioning the function as an identity mapping. Rather
than adopting the common bottleneck type architecture, we opt
to exclude pooling layers in all three designs. This choice
is consistent with the task’s dependence on relatively local
information and helps to maintain temporal consistency in
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Fig. 2. Proposed model architectures for DL emulation. We implemented three full Bayesian architectures conditioned to learn a discrete-continuous
distribution for SR and cloud mask prediction: (a) DCFC neural network, (b) DCCNN, and (c) DCVDSR.

local features in the presence of global changes in the images.
All models use ReLU activations.
Over 60 TB of data from a two-year period is divided

into training (January 1, 2016, to December 31, 2016) and
testing (January 1, 2017, to December 31, 2017) sets. The
training set was used to experiment with model designs, while
the test set was used exclusively to evaluate the model and
prepare figures. Models are implemented in TensorFlow 2.0
and trained on 50 × 50 pixel patches for approximately 8 hours
using the stochastic gradient descent and the Adam optimiza-
tion with β1 = 0.9, β2 = 0.999, ε = 1e − 7, a batch
size of 16, and a learning rate of 1e − 4 [40]. All three
models use concrete dropout, as described in Section III-A1,
for weight regularization and uncertainty quantification. For
concrete dropout, hyperparameters tau and prior length scale
are set to 1e − 5 and 1e − 14. Code is available at
github.com/KateDuffy/maiac-emulator.

B. Assessment of Emulated SR and Cloud Products

Validation of SR products against in situ measurements
would result in uncertainties due to the presence of mixed
pixels at the remote sensor’s spatial resolution [41], [42].
Therefore, comparison with an existing, comprehensively val-
idated product can be used to assess the performance of a new
reflectance product [43]. Here, it is worthwhile to note that the

analysis and interpretation of the emulated data are performed
in comparison to the lookup table prepared for MAIAC.
These lookup tables are an approximation of a fundamentally
approximate model and contain associated uncertainties [15].
The task of the emulator can be posed as learning a smooth
interpolation of the MAIAC lookup table. As both the MAIAC
SR and emulator SR are predicted from AHI TOA reflectance,
all pixels are guaranteed coincident, coangled, and colocated,
and can be directly compared. In addition, we evaluate the
ability of the emulator to discriminate between clear sky and
nonclear sky pixels. To evaluate the stability of emulator
performance under varied conditions, results are presented for
performance for the nine common most MODIS land cover
classifications and four seasons.

IV. RESULTS AND DISCUSSION

A. Model Evaluation

We adapt three DL architectures for comparison with
MAIAC’s SR and cloud retrieval lookup tables (see Fig. 3).
We compare the three models to identify the best-performing
architecture based on the error in SR prediction, accuracy
in cloud identification, and uncertainty quantification. Most
in-depth analyses are focused on DCVDSR, which is the
best-performing model in uncertainty calibration.
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Fig. 3. Correction of atmospheric effects and cloud masking performed on true color images from the Japanese geostationary satellite Himawari-8. (a) TOA
reflectance before processing (Input). (b) Retrieval of SR and cloud mask (in white) produced by the surrogate MAIAC model (Target: MAIAC lookup
table). (c) Prediction of SR and cloud mask by the Bayesian DL emulator (Prediction: DL emulator). (d) Visualization of predictive undertainty from the
emulator model (Uncertainty). Rows from top: southwestern Australia, eastern China, and the Bohai Sea.

TABLE II

EVALUATION OF SR FROM THE THREE CANDIDATE EMULATOR MODELS

1) Surface Reflectance: A comparison between basic statis-
tics of SR datasets obtained from MAIAC and the emulators
is presented in Table II. Here, the mean value of SR is the
average intensity of clear sky pixels in each band. Coefficient
of variation (CV) is a measure of relative dispersion of the
data calculated as the ratio between the standard deviation
and mean of a distribution. For SR, CV relates to the
radiometric stability characteristic of the sensor, with lower
CV indicating greater stability. A comparison of MAIAC
and emulator CV suggests that the predictions of the fully
connected model (DCFC) most closely match the dispersion
of MAIAC SR. The emulator models generally capture the
relative magnitudes of variation in each wavelength while

underestimating the variation of the SR distribution. Under-
estimation of the observed variation is most pronounced for
the blue band across models.
Histograms of differences between MAIAC and emulator

SR are plotted in Fig. 4. For an ideal model, differences
between observed and modeled values should be small and
unbiased. Distributions are generally symmetric and cen-
tered around near-zero means, indicating a minimal bias
toward overestimation or underestimation by the emulator.
Similar results are obtained for the three candidate emulator
models.
The correlation coefficient and the conditional root mean

square error (RMSE) are also presented in Table II. The
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Fig. 4. Histograms of difference between MAIAC lookup table SR and emulator (DCVDSR) SR for six bands indicate minimal bias toward overestimation
or underestimation of SR by the emulator.

Fig. 5. Density scatter plots compare SR from the MAIAC lookup table and the DL emulator (DCVDSR) for the six AHI solar reflective bands. Red
indicates a higher density of points and blue a lower density. The gray line is a 1:1 line.

conditional RMSE refers to RMSE evaluated at the pixels
identified by both MAIAC and the emulator as clear sky.
Correlation coefficients indicate the strongest linear relation-
ship between MAIAC SR and DCFC emulator SR. This
result is unsurprising as the convolutional filters in DCCNN
and DCVDSR will produce smoother results than the pix-
elwise model, DCFC. These correlation coefficients reflect
similar strength of the linear relationship as those between
MAIAC SR and MODIS SR [28]. MODIS Terra and Aqua
products provided the principle comparison for validation of
AHI MAIAC SR. The evaluation of the performance across
models suggests that mappings in some bands may be easier

to learn (SWIR1 and SWIR2) and others more difficult to
learn (blue and green). Conditional RMSE is generally the
lowest for the DCVDSR model. As the square root of
the variance of residuals, RMSE indicates the absolute fit
of the model to the data and can be thought of as more
germane to predictive ability than correlation. In the context
of the accuracy requirements of higher level data products
(Albedo: 0.02–0.05; NDVI: 0.03) [44], the emulators generally
err within the reasonable range.
The pixel-by-pixel comparison is presented using density

plots in Fig. 5. The plots suggest strong coherence between
MAIAC and emulator SR. A 1:1 line is displayed for visual
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Fig. 6. Analysis of cloud prediction by the DL emulators. (a) Cloud classification accuracy with varying decisions thresholds under the discrete-continuous
distribution. Models achieve 86%–87% accuracy compared to MAIAC lookup table cloud masks. Dotted lines represent the optimal threshold for each
model. (b) Area under the ROC curve for evaluation of the model’s discrimination ability with an AUC value of 1 denoting perfect discrimination and the
gray 1:1 line representing no skill.

comparison, while the slope and intercept of the data best fit
line are displayed on the plots. Outliers are generally located
above the 1:1 line, suggesting that the emulator model does
not fully capture the upper tail of the SR distribution.
2) Cloud Identification: The evaluation of the emula-

tor cloud prediction is performed by pixelwise comparison
between the MAIAC cloud mask and the emulator cloud mask.
Binary classification accuracy is defined as the fraction of true
predictions, where TP = true positives, TN = true negatives,
FP = false positives, and FN = false negatives

Accuracy = TP + TN

TP + TN + FP + FN
. (8)

As described in Section III-A2, the model is conditioned
to predict p̂ as the probability of a pixel being a clear
sky. By selecting a decision threshold value of p, cloud
classification proceeds by casting pixels with p̂ < p as
nonclear sky and p̂ > p as clear sky. Continuously varying the
decision threshold p and calculating the resulting classification
accuracy indicate the optimal mask probability, p, for each
trained model. Fig. 6 presents a plot of classification accuracy
with varying decision thresholds.
Fig. 6 also presents the receiver operating characteris-

tic (ROC) curve, used to assess the discrimination ability
of binary classifiers. The true positive rate (TPR) is plotted
against the false positive rate (FPR) at various thresholds.
The area under the curve (AUC) provides a threshold-invariant
measure of how well the model can discriminate between
two classes, with a maximum value of one for perfect
classification.
The performance by accuracy for cloud classification is

similar across the evaluated emulator models (see Table III).

TABLE III

CLOUD CLASSIFICATION ACCURACY, SENSITIVITY, AND SPECIFICITY

Sensitivity refers to the TPR or proportion of clear sky pixels
that are correctly classified. Specificity refers to the true
negative rate or the proportion of nonclear pixels that are
correctly classified. A high specificity classifier will erro-
neously screen high aerosol optical depth pixels, while a
less conservative, higher sensitivity classifier carries more
chance of cloud contamination. Such cloud contamination
has a potentially strong negative effect on SR retrieval. The
three emulator models are generally conservative, achieving
greater classification accuracy for nonclear pixels than clear
sky pixels.
It should be noted that the assessment of classification accu-

racy uses MAIAC cloud masks as ground truth. Cloud masks
produced from MAIAC contain uncertainties and inaccuracies
of their own, and it is possible that the ability of CNNs to
incorporate spatial information produces an advantage in cloud
classification. Visual assessment of cloud predictions from
MAIAC and emulator often indicate greater spatial coherence
of emulator cloud masks and lesser appearance of some
undesirable model artifacts (see Fig. 3).
3) Stability of Model Over Varied Conditions: Homoge-

neous vegetation areas are identified using MODIS MCD12Q1
Land Cover Type I, and the performance of the MAIAC
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Fig. 7. Analysis of emulator SR error and cloud classification accuracy across varying surface conditions. (a) Emulator (DCVDSR) performance is relatively
stable across vegetated land types according to the IGBP global vegetation classification scheme. (b) Emulator (DCVDSR) performance in the northern
hemisphere is slightly poorer in winter than in seasons. Dotted lines represent overall mean performance for all land covers and all seasons in the northern
hemisphere, respectively.

emulator is evaluated for each land cover type separately.
Performances including conditional RMSE of SR and cloud
classification accuracy by the DCVDSR emulator are pre-
sented in Fig. 7. Results are presented for the nine most
abundant classes in the test set. Both regression error and cloud
classification accuracy are relatively stable for vegetated cate-
gories, including forests, shrubland, and savanna, while barren
land results in poorer performance. The optical properties of
highly reflective surfaces present a challenge to atmospheric
correction, and such may also result in poor performance for
MAIAC [45]. In addition to high reflectance, large solar angle,
large zenith angle, and high aerosol optical depth also form
challenging conditions for reflectance retrieval. More specific
evaluations are needed to understand the performance of the
emulator under these special conditions.
The seasonal analysis is used to evaluate the performance

under annual fluctuations in vegetation phenology (see Fig. 7).
Spring green-up, fall senescence, and transitions between wet
and dry seasons result in SR variation of several absolute per-
cent in vegetated areas [30]. SR error and cloud classification

accuracy are generally stable throughout the year but evince
slightly poorer performance and greater spread fall months
(SR prediction) and winter months (cloud classification). Sea-
sonal performance is evaluated separately for each hemisphere
for consistency of seasons. Similar results were found in the
Southern Hemisphere.

B. Uncertainty Quantification

Bayesian DL models capture predictive uncertainty in
regression tasks by producing a probabilistic output.
As described in Section III-A1, we use variational inference to
produce an ensemble of predictions for each sample and then
compute unbiased estimates of the first and second moments
of the predictive distribution at each pixel. From the second
moment, the standard deviation expresses the magnitude of
predictive uncertainty at each location.
We assess the quality of the uncertainty measurements by

evaluating the uncertainty calibration or whether the model
captures the uncertainty in observed data. We compare the
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Fig. 8. Assessment of predictive uncertainty across the three Bayesian DL
emulator models. Uncertainty calibration, which evaluates the frequency of
observed values (y-axis) within predicted probability ranges (x-axis), indicates
the underestimation of uncertainty to varying extents. The gray 1:1 line
indicates the behavior of a perfectly calibrated model.

model’s predictive distribution to the observed values by eval-
uating the frequency of residuals lying in various probability
thresholds within the predicted distribution [32] (see Fig. 8).
A perfectly calibrated model, which captures the distribution
of the observed data, would match the 1:1 line. All three
models underestimate uncertainty to some extent, meaning
that they are overconfident in their predictions. Of the three,
DCVDSR has the most well-calibrated uncertainty.
While quantification of uncertainty in DL makes a step

toward more informed use of artificial intelligence models,
interpretability remains a key challenge in Earth science and
other domains. Alternatives to dropout, such as Bayes by
Backprop, have exhibited comparable performance in recent
years [46]. Further theoretical development and experimenta-
tion with practical applications will improve the trustworthi-
ness of AI.

C. Computational Performance

The spatiotemporal resolution and spatial extent of AHI
scans result in the generation of 94 GB of new data per day.
There is growing interest in using AI to exploit this data,
as well as the growing volume from other remote sensors,
climate reanalysis models, and Earth system models.
We quantify the nontrivial computing time necessary to

retrieve SR using the MAIAC lookup table and the emulator
models. To evaluate the DL emulator models, we assess infer-
ence from one forward pass (static network) and ten stochastic
forward passes (Bayesian sampling network). A single infer-
ence with the static network is sufficient to produce SR and
cloud products; Bayesian sampling produces the same with
uncertainty quantification. Processing speeds are presented in
Table IV. Emulator inference is evaluated on one GPU, while

TABLE IV

PROCESSING SPEED OF MAIAC AND EMULATOR MODELS

the MAIAC lookup tables are executed on one CPU. Among
the compared emulator models, processing speed decreases
with increasing complexity. Inference with Bayesian sampling
is generally comparable in speed to the LUT, while inference
on the static network represents between 3.75x (DCDVSR)
and 6x (DCFC) speedup over the acceleration offered by
the LUT.
GPU-based models also have advantages in scalability.

Parallel workloads distributed across GPUs can achieve
a speedup, which is nearly linear with the number of
cores, while scaling across additional CPU cores lags
in performance. These behaviors will tend to increase the
advantages of GPU-based computing in higher throughput
operations. In addition, advances in distributed computing and
performance-aware implementations of DL, while outside the
scope of this work, will further enhance efficiency. Meanwhile,
improvements in the implementation of MAIAC and the
design of lookup tables provide a moving target for both
statistical and computational performance.

V. CONCLUSION

The time and expense associated with running numerical
models often create a bottleneck in research on complex
systems. In this work, we present a case study evaluating
DL-based emulation in comparison to a more traditional
reduced-order approximation of the MAIAC model. We found
initially promising results in the statistical and computational
performance of the DL emulator. However, in counterbalance
to DL’s unfettered success in many commercial domains,
we encountered challenges unique to working with geoscience
data. Satellite observations exhibit significant heterogeneity in
space and time with the joint distributions between variables
fluctuating across locations and seasons. We mitigated this
effect by using smaller patches to allow for larger batch sizes
with more heterogeneity of samples. Whereas any form of
model reduction represents a tradeoff between model fidelity
and speed, the “black box” nature of DL models is a particular
disadvantage in the geosciences, where physical consistency
and interpretability are key. Appropriate adaptations of recent
work in explainable and interpretable DL [47], as well as
physics-guided neural networks [48], may offer greater relia-
bility and new research directions in the context of emulation.
For example, networks that trace salience back to the input
information can be used to infer scientifically meaningful
information about what the model has learned. Future direc-
tions should also include further evaluation of the model’s
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ability to generalize, especially under rare or challenging
conditions.
As computation time is the main motivating factor in

this work, it is important to consider the multiple factors
contributing to the outlook on emulations’ computational
advantages. Just as high-performance implementations of DL
and GPU hardware are active areas of research, MAIAC
and its reduced order implementations are not static but are
under ongoing development. Advances in numerical mod-
eling and CPU-based computing will alter the landscape
across many scientific disciplines and shift the benchmark
for speedups. As such, we anticipate a framework for DL
emulation to evolve continuously with new generations of
hardware and software technology. Our current results suggest
that, as advances continue in machine learning and high-
performance computing, the credibility and computational
performance of DL emulators may improve sufficiently to ease
computing limitations on model development and big data
processing across multiple scientific disciplines.
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