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ABSTRACT
With increase in urbanization and Earth Sciences research into 
urban areas, the need to quickly and accurately segment urban 
rooftop maps has never been greater. Current machine learning 
techniques struggle to produce high accuracy maps in dense urban 
zones where there is high image noise and foot print overlap. In this 
paper, we evaluate a training methodology for pixel-wise segmen
tation for high-resolution satellite imagery using progressive grow
ing of generative adversarial networks as a solution. We apply our 
model to segmenting building rooftops and compare these results 
to conventional methods for rooftop segmentation. We evaluate 
our approach using the SpaceNet version 2 and xView datasets. Our 
experiments show that for SpaceNet, progressive Generative 
Adversarial Network (GAN) training achieved a test accuracy of 
93% compared to 89% for traditional GAN training and 87% for 
U-Net architecture, while for xView, we achieved 71% accuracy 
using progressive GAN training compared to 69% through tradi
tional GAN training and 65% using U-Net.
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1. Introduction

Due to the massive, and increasing, amount of satellite data available, a significant effort 
has been devoted to developing machine learning methods for satellite image proces
sing. Among the higher level products sought, rooftop detection has received particular 
attention due to the diverse insights available from rooftop products. Rooftop detection is 
used to track urban growth, estimate population, assess damage from natural disasters 
and classify land use, among other applications.

Training rooftop segmentation models presents challenges, like the similar appearance 
of rooftops to other objects such as cars. Rooftops also have dissimilar appearances from 
city to city. Building shape, building material, and surrounding land cover vary widely 
from scene to scene and present challenges for transfer of models between cities. As such, 
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no generalizable model yet exists that can accurately detect roofs in the full population of 
satellite images.

Remote sensing provides one of the fastest, lowest cost methods to gather information 
about damaged areas in post-disaster damage assessment. Automated generation of 
high-resolution rooftop products creates a running inventory of assets, which can be 
leveraged to track damages.

However, generation of high-resolution images presents challenges for traditionally 
trained deep neural networks. The existence of false positives or multiple foot prints 
blending together can give in accurate assessments. This is particularly a problem in 
condensed and noisy urban areas, where traditional neural network methods struggle. In 
this paper, we aim to solve the short comings of neural networks applied to rooftop 
segmentation by adapting the progressive training of a generative adversarial network 
(GAN) Karras et al. (2017) to segmentation. We introduce progressive training to the 
decoder of and encoder-decoder generator, while allowing the full encoder to learn the 
best latent encoding for the map. We evaluate the efficacy of rooftop segmentation using 
multi-spectral satellite images and show how using progressive training can limit the 
number of false positives and product blending while still producing accurate segmenta
tions. This is, to the best of our knowledge, the first results of progressive training for 
semantic segmentation. A preliminary version of this paper was published in DMESS 2018, 
a satellite workshop of ICDM 2018. The GAN Goodfellow et al. (2014) consists of 
a generator and a discriminator, which are linked through an adversarial training algo
rithm. The generator learns to generate mappings from the input to the target and the 
discriminator learns to evaluate them. Feedback from the discriminator enables the 
generator to produce highly realistic outputs. We employ U-Net architecture, 
a convolutional neural network consisting of an encoder-decoder, as the generator. We 
apply progressive growing of the generator and the discriminator. Progressive growing is 
a transfer learning process wherein increasingly deep networks are trained to learn 
increasingly complex features. Accuracy of rooftop classification is assessed and results 
are compared with those of a traditionally trained generative model and with those of 
non-generative U-Net. Our progressively trained GAN approach beats both traditional 
GAN and non-generative U-Net in accuracy, by four percent and eight percent respec
tively on the Spacenet spa (2018) dataset, and by 2% and 6% respectively on the xView 
Lam et al. (2018) dataset.

2. Related work

Significant accomplishments have been made in computer vision, resulting in increas
ingly effective state-of-the-art methods for image processing Karki et al. (2017); Basu et al. 
(2016). Early efforts in automatic rooftop segmentation used methods like edge detection, 
corner detection, and segmentation into homogeneous regions via k-means clustering or 
support Vector Machines (SVM) to identify candidate rooftops in Joshi et al. (2014). 
Discriminative features used to evaluate candidate rooftops include building shadows, 
geometry, and spectral characteristics Ren et al. (2009); Jin and Davis (2005). Several 
approaches have used LiDAR alone or in addition to multi-spectral images Wang et al. 
(2011); Bittner and Korner (2018) Newer-generation machine learning techniques Basu 
et al. (2017) have also been applied in satellite image classification Basu et al. (2015b); Liu 
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et al. (2020) and in rooftop segmentation specifically Basu et al. (2015a); Chen et al. (2018). 
Convolutional neural networks (CNNs) have greatly improved the state-of-the-art in 
semantic segmentation tasks wherein each pixel in an image is associated with a class 
label Long, Shelhamer, and Darrell (2015). High-resolution rooftop detection presents 
a dense prediction problem in which proper pixel-wise labelling is paramount to 
a produce a product with well-defined rooftops. In Khalel and El-Saban (2018), stacked 
U-Nets were used that enhanced the results of the previous U-Net. This study found that 
stacking of just two CNNs outperforms the state-of-the-art method. Introduced in 2015, 
U-Nets utilize skip connections and an encoder-decoder structure to learn a latent trans
lation from input to output Ronneberger, Fischer, and Brox (2015). CNN performance is 
sometimes hampered by blurry results, which satisfy the loss function by reducing the 
Euclidean distance between predictions and the target Pathak et al. (2016). Generative 
adversarial networks (GAN) address this pitfall by simultaneously training a discriminator 
network to differentiate between real and generated images Goodfellow et al. (2014). The 
original classic GAN algorithm Goodfellow et al. (2014) is further improved upon by 
progressively grown GANs Karras et al. (2017). In working with high-resolution images, 
GANs run into issues with real and generated images being too easy to discriminate. 
Progressively grown GANs address this challenge by utilizing transfer learning in deep 
neural networks Karras et al. (2017).

A preliminary version of this paper appeared in Collier et al. (2018). The present version 
extends that in Collier et al. (2018) by first introducing a modified algorithm for progres
sive training that includes smooth fading. This method doubles the number of training 
cycles by introducing a residual connection over the new layer to the output layer. This 
step aims to increase the accuracy by preserving the features learned in the previous layer 
when the new layer is added. Additionally, we further evaluate the methodology on the 
xView dataset. xView introduces noisy masks with large areas of background noise 
labelled with positive pixels which helps further evaluate the progressively trained 
model’s ability to minimize false positives and blending.

3. Data preparation

Our experiments are run on the SpaceNet version 2 dataset spa (2018), and the xView 
dataset Lam et al. (2018). These datasets contain high resolution commercial satellite 
images along with the masks of building and road footprints, as depicted in Figure 1. 
The following experiments are run strictly on rooftop segmentation for both SpaceNet and 
xView. Both datasets, that we have used, are limited to the greater Las Vegas area. We leave 
other datasets and class segmentations for future work and evaluation. The xView dataset 
does not contain segmentation masks, but ROI’s (region of interests) contained in a geojson 
file. To circumvent this, we translate the ROI’s for each image into an image mask. The 
positive segments of the mask have a 1 to 1 translation to the area of the image contained 
with an ROI. The resulting masks are different from those in the SpaceNet data set because 
they do not snap to the building foot prints. In xView, all the ROIs are rectangles aligned 
with the image axis. The results can leave artefacts and background in the segmentation 
that are not actually part of a building footprint. Each mask is paired with the original image 
and then split into train and test data to complete the dataset. Figure 2 gives the flow of our 
data preparation for converting a ground truth geojson to a binary mask.
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There is a class imbalance in the xView dataset. Building footprints makeup only 
a portion of the objects contained in xView. If not handled, then the majority of the 
train and test datasets would contain masks with no positive examples, leading to poor 
performance. To get around this, we created our own masks using the ROI’s for classes 
that we identified as being buildings with rooftops. The shortfall of this dataset is that the 
building footprints are not exact outlines of the buildings, but just segment out their area. 
This provides a different challenge compared to the SpaceNet dataset.

4. Proposed method

Our training algorithm incorporates two primary components: adversarial training and 
progressive growing. Our method is unique to previous works in progressive growing due 
to the architecture of the generator and the discriminator Karras et al. (2017). In previous 
works the generator and discriminator mirror one another; in our model, the generator 

Figure 1. Example labelled images from the Las Vegas SpaceNet dataset.

Figure 2. Schematic flow diagram of the data preparation and proposed model that contains U-Net 
architecture as the generator.
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instead has an encoder-decoder structure. Our proposed model’s architecture and pro
gressive growth are presented in Figure 2.

4.1. Network architecture

Many out of the box segmentation models use the U-Net architecture because of its ability 
to learn a latent translation between the input and target sets. Additionally, mirrored layers 
in U-Net contain skip connections that allow structural information to be preserved when 
decoding from the learned latent encoding. This architecture has become a common 
generator structure in many domains of GANs. It is for these reasons along with its 
popularity that we have chosen to use the U-Net architecture in our framework as well.

4.2. GAN training

In the most basic form of a GAN, the generator learns a mapping of z ! y, where z is some 
random latent vector that is translated onto the feature space defined by the task y. If a GAN 
is being used to translate one image to another, then the task of the generator is to learn 
a mapping x ! y from input set x to target y. This is done by mapping x to a latent encoding 
z, x ! z, which can be decoded to y, z ! y. In our case we seek to learn a mapping between 
a high-resolution satellite image and the rooftop segment of that image. GANs learn these 
mappings between inputs and targets via a min/max game, minΓ maxΔ(L(Γ , Δ)), played 
between the generator Γ , with inputs x and z expressed as Γðx; zÞ, and the discriminator 
RLES A 1899393, with inputs x and Γðx; zÞ denoted by Δðx; Γðx; zÞÞ, with loss L(Γ , Δ). We 
express the standard GAN’s objective function as Goodfellow et al. (2014): 

minΓ maxΔL Γ; Δð Þ ¼ Ey½log10Δ yð Þ� þ Ex;z½log10 1 � Δ x; Γ x; zð Þð Þð Þ� (1) 

In the case of segmentation, we desire the outputs of our generator to be as near as 
practicable to the ground truth mask. To do this we add the L1 distance to the objective: 

L1 Γð Þ ¼ Ex;y;z y � Γðx; zÞj j½ � (2) 

This imposes a second objective for generator’s output: to mirror the ground truth by 
forcing the generator to minimize the absolute distance between its output and the 
ground truth mask. Absolute error (L1 distance) is used rather than mean squared error (L2 

distance) to discourage blurring.

4.3. Progressive growing

In a progressive growing algorithm, layers are added to the generator and discriminator as 
training moves forward. As layers are added to the networks, generated images increase in 
spatial resolution. While all layers remain trainable throughout the training period, pro
gressive growing allows Generator Γ and Discriminator Δ to learn increasingly fine scaled 
features on increasingly high-resolution images. Learning step by step presents a series of 
simpler tasks to the model. Progressive training is consequently more stable and more 
efficient than traditional training. Layers in progressive growing are not added to the 
network for training one after another. Instead, layers are added using a technique called 
smooth fading. In smooth fading, new higher resolution layers are added in two steps. First 
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the new layer is added to the network, but treated as a residual block with a skip 
connection. For the encoder in the generator, the upsampled encoding is passed through 
an RGB output layer and merged with the RGB output of the new high-resolution layer to 
produce a faded output that is fed to the discriminator. In the discriminator, the faded 
output from the generator feeds into both the new higher resolution layer and directly to 
the following lower resolution layer with a downsampling and skip connection. Progressive 
learning takes advantage of a deep neural networks’ ability to learn features from generic 
to specific, or low to high resolution. At each progressive step, the weights learned for all 
the layers in the last step are transferred to identical layers in the next step. This transfer 
leaves only one untrained layer at each step. By progressively adding layers, the network 
learns the features at each resolution independently, easing the learning task of each 
progressive network. We employ this technique to produce masks that mirror the input 
high resolution in sharpness. Traditionally, progressive GANs are employed for generative 
tasks. We, however, seek to apply it to translation, specifically segmentation. By using an 
encoder-decoder structure in the generator, we rely on the encoder to map the high- 
resolution input to a latent vector which is translated by the decoder. Like in traditional 
progressively growing GANs, the decoder is progressively trained. Because we desire the 
decoder to decode from a latent vector containing all the information contained in the 
high spatial resolution of our input, the encoder is not progressively grown. The encoder 
instead maintains its full structure throughout the progressive training. The discriminator 
grows in sequence with the decoder. This trains each successive layer to discriminate 
specific resolutions.

5. Experimental evaluation

In this section, we compare the results of our progressive GAN model to that from 
a standard U-Net model and a traditionally-trained GAN model Goodfellow et al. (2014) 
that is not progressively trained. We choose to use the U-Net model with residual 
connections as it is a traditional model that has been well researched and adapted to 
segmentation many times Long, Shelhamer, and Darrell (2015); Khalel and El-Saban 
(2018). The U-Net is also built identically to the generator used in the progressive GAN, 
allowing us to further isolate the effects of progressive training. Similarly, we use 
a standard GAN built identically to our progressive GAN to discern the difference between 
standard training and progressive training. We compare the results both visually and 
numerically by taking the per-pixel error of the masks.

5.1. Implementation details

For our experiment, the U-Net model has an encoder-decoder architecture. The encoder is 
built of eight hidden layers with 64, 128, 256, 512, 512, 512, 512 and 512 hidden units per 
layer. The decoder is built of eight hidden layers that mirror the encoder. This U-Net is used 
as the generator of the GAN. The GAN discriminator is built with the same architecture as the 
decoder, and grows in conjunction with it. Batch normalization with momentum = 0.9 and 
dropout with probability = 0.5 are employed during training to discourage overfitting.
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5.2. Results

From Figure 3, we can see that model inferences of rooftop location for SpaceNet 
generally match the size and shape of ground truth. While border regions of rooftops 
leave room for improvement, we show progressive growing improves the definition of 
individual buildings compared with its counterparts. In the two non-progressive methods, 
we can see that the building segments tend to blend together more than in progressive 
growing. Additionally, we can see that the standard GAN Goodfellow et al. (2014) and 
non-GAN approaches suffer from false positives where the progressive growing is able to 
minimize this. The xView dataset poses a more difficult problem for the progressive model 
as we can see in Figure 4. Because xView is not naturally made for segmentation, the 

Figure 3. Results of applying the three tested methods to sample images along with the input and the 
ground truth mask.

Figure 4. Progressive GAN results by resolution for xView images of different resolutions up to 
256 × 256.
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footprints in the masks blend together and background features commonly get caught in 
the footprint. This can cause the accuracy to fall off, with progressive GAN showing high 
rates of false negatives.

The progressive model shows the ability to limit false positives compared to the other 
methods. The cause of this is due to the specificity of features in the later layers. This results in 
the progressively trained model preferring to not label pixels over committing false positives. 
Figure 5 presents progressive GAN output demonstrating this phenomenon. As a whole, the 
progressively trained GAN produces building footprints that snap to the original nicely while 
also minimizing the amount of false-positive pixels compared to the standard methods. This is 
more conspicuous with the xView dataset. The mixing of background and building features 
confuses the progressive model, which tends heavily towards not guessing, as it has difficulty 
separating foreground from background, due to the training dataset limitations.

We present our accuracy scores as the per-pixel error between the ground truth mask and 
the masks produced by our models. The per-pixel provides a good view of how well the 
produced masks fit to the high-resolution buildings. From Table 1 we can see that the 
progressively trained GAN outperforms its counterparts in this metric. We also present both 
the training and testing accuracy of our models to verify that none have over-fit to the dataset.

In Figure 6, we present graphs for the accuracy of each method during training on 
SpaceNet. We can see that for the progressively trained GAN that each progressive step 
builds on top of the previous. The decreased loss and quicker convergence at each step 
show that there is good transfer of knowledge between the previous and successive 
steps. Another interesting result is the closeness of the higher resolution layers. This 
suggests that there exists an image resolution, in our case 256 � 256 pixels, for which all 
following image resolutions cannot be used to learn increasingly fine features.

Figure 5. Results of applying progressively trained model showing how the progressively trained 
model tends to leave space blank rather than classify possible false positives.

Table 1. Summary of testing and training performance for U-Net, GAN and 
Progressive GAN.

U-Net GAN Progressive GAN

SpaceNet Training accuracy 0.87 0.91 0.94
SpaceNet Testing accuracy 0.85 0.89 0.93
xView Training accuracy 0.69 0.70 0.73
xView Testing accuracy 0.65 0.69 0.71
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6. Conclusion

This paper presents a novel approach to semantic segmentation for high-resolution 
satellite imagery that draws upon recently developed machine learning techniques. We 
use progressive training for semantic segmentation of rooftop products to create tighter 
fitting segmentation masks with less false positives that previous approaches. Our 
method was tested on both the SpaceNet and xView datasets. Each posed their own 
unique set of challenges for the model, such as the background noise being labelled as 
positive pixels in the xView ground truth. The experiments show that using progressive 
training is indeed able to reduce the number of false positives and product blending, even 
in the noisy xView data. The trade-off to this approach is that there is the potential for 
more false negatives than the traditional U-Net approaches tested.
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