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ABSTRACT ARTICLE HISTORY
With increase in urbanization and Earth Sciences research into Received 15 July 2020
urban areas, the need to quickly and accurately segment urban Accepted 17 February 2021
rooftop maps has never been greater. Current machine learning

techniques struggle to produce high accuracy maps in dense urban

zones where there is high image noise and foot print overlap. In this

paper, we evaluate a training methodology for pixel-wise segmen-

tation for high-resolution satellite imagery using progressive grow-

ing of generative adversarial networks as a solution. We apply our

model to segmenting building rooftops and compare these results

to conventional methods for rooftop segmentation. We evaluate

our approach using the SpaceNet version 2 and xView datasets. Our

experiments show that for SpaceNet, progressive Generative

Adversarial Network (GAN) training achieved a test accuracy of

93% compared to 89% for traditional GAN training and 87% for

U-Net architecture, while for xView, we achieved 71% accuracy

using progressive GAN training compared to 69% through tradi-

tional GAN training and 65% using U-Net.

1. Introduction

Due to the massive, and increasing, amount of satellite data available, a significant effort
has been devoted to developing machine learning methods for satellite image proces-
sing. Among the higher level products sought, rooftop detection has received particular
attention due to the diverse insights available from rooftop products. Rooftop detection is
used to track urban growth, estimate population, assess damage from natural disasters
and classify land use, among other applications.

Training rooftop segmentation models presents challenges, like the similar appearance
of rooftops to other objects such as cars. Rooftops also have dissimilar appearances from
city to city. Building shape, building material, and surrounding land cover vary widely
from scene to scene and present challenges for transfer of models between cities. As such,
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no generalizable model yet exists that can accurately detect roofs in the full population of
satellite images.

Remote sensing provides one of the fastest, lowest cost methods to gather information
about damaged areas in post-disaster damage assessment. Automated generation of
high-resolution rooftop products creates a running inventory of assets, which can be
leveraged to track damages.

However, generation of high-resolution images presents challenges for traditionally
trained deep neural networks. The existence of false positives or multiple foot prints
blending together can give in accurate assessments. This is particularly a problem in
condensed and noisy urban areas, where traditional neural network methods struggle. In
this paper, we aim to solve the short comings of neural networks applied to rooftop
segmentation by adapting the progressive training of a generative adversarial network
(GAN) Karras et al. (2017) to segmentation. We introduce progressive training to the
decoder of and encoder-decoder generator, while allowing the full encoder to learn the
best latent encoding for the map. We evaluate the efficacy of rooftop segmentation using
multi-spectral satellite images and show how using progressive training can limit the
number of false positives and product blending while still producing accurate segmenta-
tions. This is, to the best of our knowledge, the first results of progressive training for
semantic segmentation. A preliminary version of this paper was published in DMESS 2018,
a satellite workshop of ICDM 2018. The GAN Goodfellow et al. (2014) consists of
a generator and a discriminator, which are linked through an adversarial training algo-
rithm. The generator learns to generate mappings from the input to the target and the
discriminator learns to evaluate them. Feedback from the discriminator enables the
generator to produce highly realistic outputs. We employ U-Net architecture,
a convolutional neural network consisting of an encoder-decoder, as the generator. We
apply progressive growing of the generator and the discriminator. Progressive growing is
a transfer learning process wherein increasingly deep networks are trained to learn
increasingly complex features. Accuracy of rooftop classification is assessed and results
are compared with those of a traditionally trained generative model and with those of
non-generative U-Net. Our progressively trained GAN approach beats both traditional
GAN and non-generative U-Net in accuracy, by four percent and eight percent respec-
tively on the Spacenet spa (2018) dataset, and by 2% and 6% respectively on the xView
Lam et al. (2018) dataset.

2. Related work

Significant accomplishments have been made in computer vision, resulting in increas-
ingly effective state-of-the-art methods for image processing Karki et al. (2017); Basu et al.
(2016). Early efforts in automatic rooftop segmentation used methods like edge detection,
corner detection, and segmentation into homogeneous regions via k-means clustering or
support Vector Machines (SVM) to identify candidate rooftops in Joshi et al. (2014).
Discriminative features used to evaluate candidate rooftops include building shadows,
geometry, and spectral characteristics Ren et al. (2009); Jin and Davis (2005). Several
approaches have used LiDAR alone or in addition to multi-spectral images Wang et al.
(2011); Bittner and Korner (2018) Newer-generation machine learning techniques Basu
et al. (2017) have also been applied in satellite image classification Basu et al. (2015b); Liu
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et al. (2020) and in rooftop segmentation specifically Basu et al. (2015a); Chen et al. (2018).
Convolutional neural networks (CNNs) have greatly improved the state-of-the-art in
semantic segmentation tasks wherein each pixel in an image is associated with a class
label Long, Shelhamer, and Darrell (2015). High-resolution rooftop detection presents
a dense prediction problem in which proper pixel-wise labelling is paramount to
a produce a product with well-defined rooftops. In Khalel and El-Saban (2018), stacked
U-Nets were used that enhanced the results of the previous U-Net. This study found that
stacking of just two CNNs outperforms the state-of-the-art method. Introduced in 2015,
U-Nets utilize skip connections and an encoder-decoder structure to learn a latent trans-
lation from input to output Ronneberger, Fischer, and Brox (2015). CNN performance is
sometimes hampered by blurry results, which satisfy the loss function by reducing the
Euclidean distance between predictions and the target Pathak et al. (2016). Generative
adversarial networks (GAN) address this pitfall by simultaneously training a discriminator
network to differentiate between real and generated images Goodfellow et al. (2014). The
original classic GAN algorithm Goodfellow et al. (2014) is further improved upon by
progressively grown GANs Karras et al. (2017). In working with high-resolution images,
GANs run into issues with real and generated images being too easy to discriminate.
Progressively grown GANs address this challenge by utilizing transfer learning in deep
neural networks Karras et al. (2017).

A preliminary version of this paper appeared in Collier et al. (2018). The present version
extends that in Collier et al. (2018) by first introducing a modified algorithm for progres-
sive training that includes smooth fading. This method doubles the number of training
cycles by introducing a residual connection over the new layer to the output layer. This
step aims to increase the accuracy by preserving the features learned in the previous layer
when the new layer is added. Additionally, we further evaluate the methodology on the
xView dataset. xView introduces noisy masks with large areas of background noise
labelled with positive pixels which helps further evaluate the progressively trained
model’s ability to minimize false positives and blending.

3. Data preparation

Our experiments are run on the SpaceNet version 2 dataset spa (2018), and the xView
dataset Lam et al. (2018). These datasets contain high resolution commercial satellite
images along with the masks of building and road footprints, as depicted in Figure 1.
The following experiments are run strictly on rooftop segmentation for both SpaceNet and
xView. Both datasets, that we have used, are limited to the greater Las Vegas area. We leave
other datasets and class segmentations for future work and evaluation. The xView dataset
does not contain segmentation masks, but ROI's (region of interests) contained in a geojson
file. To circumvent this, we translate the ROI's for each image into an image mask. The
positive segments of the mask have a 1 to 1 translation to the area of the image contained
with an ROI. The resulting masks are different from those in the SpaceNet data set because
they do not snap to the building foot prints. In xView, all the ROIs are rectangles aligned
with the image axis. The results can leave artefacts and background in the segmentation
that are not actually part of a building footprint. Each mask is paired with the original image
and then split into train and test data to complete the dataset. Figure 2 gives the flow of our
data preparation for converting a ground truth geojson to a binary mask.
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Figure 2. Schematic flow diagram of the data preparation and proposed model that contains U-Net
architecture as the generator.

There is a class imbalance in the xView dataset. Building footprints makeup only
a portion of the objects contained in xView. If not handled, then the majority of the
train and test datasets would contain masks with no positive examples, leading to poor
performance. To get around this, we created our own masks using the ROI's for classes
that we identified as being buildings with rooftops. The shortfall of this dataset is that the
building footprints are not exact outlines of the buildings, but just segment out their area.
This provides a different challenge compared to the SpaceNet dataset.

4, Proposed method

Our training algorithm incorporates two primary components: adversarial training and
progressive growing. Our method is unique to previous works in progressive growing due
to the architecture of the generator and the discriminator Karras et al. (2017). In previous
works the generator and discriminator mirror one another; in our model, the generator



REMOTE SENSING LETTERS (&) 443

instead has an encoder-decoder structure. Our proposed model’s architecture and pro-
gressive growth are presented in Figure 2.

4.1. Network architecture

Many out of the box segmentation models use the U-Net architecture because of its ability
to learn a latent translation between the input and target sets. Additionally, mirrored layers
in U-Net contain skip connections that allow structural information to be preserved when
decoding from the learned latent encoding. This architecture has become a common
generator structure in many domains of GANs. It is for these reasons along with its
popularity that we have chosen to use the U-Net architecture in our framework as well.

4.2. GAN training

In the most basic form of a GAN, the generator learns a mapping of z — y, where z is some
random latent vector that is translated onto the feature space defined by the task y. If a GAN
is being used to translate one image to another, then the task of the generator is to learn
amapping x — y from input set x to target y. This is done by mapping x to a latent encoding
z,x — z,which can be decoded toy, z — y. In our case we seek to learn a mapping between
a high-resolution satellite image and the rooftop segment of that image. GANs learn these
mappings between inputs and targets via a min/max game, minrmaxa(L(", 4)), played
between the generator I', with inputs x and z expressed as I'(x, z), and the discriminator
RLES_A_1899393, with inputs x and '(x, z) denoted by A(x,(x,z)), with loss L(", 4). We
express the standard GAN's objective function as Goodfellow et al. (2014):

minrmaxaL(I",A) = Ey[log,oA(y)] + Exz[l0g:0(1 — A(x,[(x,2)))] M

In the case of segmentation, we desire the outputs of our generator to be as near as
practicable to the ground truth mask. To do this we add the L; distance to the objective:

Li(F) = Exyz[ly = F(x,2)]] (2)

This imposes a second objective for generator’'s output: to mirror the ground truth by
forcing the generator to minimize the absolute distance between its output and the
ground truth mask. Absolute error (L; distance) is used rather than mean squared error (L,
distance) to discourage blurring.

4.3. Progressive growing

In a progressive growing algorithm, layers are added to the generator and discriminator as
training moves forward. As layers are added to the networks, generated images increase in
spatial resolution. While all layers remain trainable throughout the training period, pro-
gressive growing allows Generator I and Discriminator A to learn increasingly fine scaled
features on increasingly high-resolution images. Learning step by step presents a series of
simpler tasks to the model. Progressive training is consequently more stable and more
efficient than traditional training. Layers in progressive growing are not added to the
network for training one after another. Instead, layers are added using a technique called
smooth fading. In smooth fading, new higher resolution layers are added in two steps. First
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the new layer is added to the network, but treated as a residual block with a skip
connection. For the encoder in the generator, the upsampled encoding is passed through
an RGB output layer and merged with the RGB output of the new high-resolution layer to
produce a faded output that is fed to the discriminator. In the discriminator, the faded
output from the generator feeds into both the new higher resolution layer and directly to
the following lower resolution layer with a downsampling and skip connection. Progressive
learning takes advantage of a deep neural networks’ ability to learn features from generic
to specific, or low to high resolution. At each progressive step, the weights learned for all
the layers in the last step are transferred to identical layers in the next step. This transfer
leaves only one untrained layer at each step. By progressively adding layers, the network
learns the features at each resolution independently, easing the learning task of each
progressive network. We employ this technique to produce masks that mirror the input
high resolution in sharpness. Traditionally, progressive GANs are employed for generative
tasks. We, however, seek to apply it to translation, specifically segmentation. By using an
encoder-decoder structure in the generator, we rely on the encoder to map the high-
resolution input to a latent vector which is translated by the decoder. Like in traditional
progressively growing GANs, the decoder is progressively trained. Because we desire the
decoder to decode from a latent vector containing all the information contained in the
high spatial resolution of our input, the encoder is not progressively grown. The encoder
instead maintains its full structure throughout the progressive training. The discriminator
grows in sequence with the decoder. This trains each successive layer to discriminate
specific resolutions.

5. Experimental evaluation

In this section, we compare the results of our progressive GAN model to that from
a standard U-Net model and a traditionally-trained GAN model Goodfellow et al. (2014)
that is not progressively trained. We choose to use the U-Net model with residual
connections as it is a traditional model that has been well researched and adapted to
segmentation many times Long, Shelhamer, and Darrell (2015); Khalel and El-Saban
(2018). The U-Net is also built identically to the generator used in the progressive GAN,
allowing us to further isolate the effects of progressive training. Similarly, we use
a standard GAN built identically to our progressive GAN to discern the difference between
standard training and progressive training. We compare the results both visually and
numerically by taking the per-pixel error of the masks.

5.1. Implementation details

For our experiment, the U-Net model has an encoder-decoder architecture. The encoder is
built of eight hidden layers with 64, 128, 256, 512, 512, 512, 512 and 512 hidden units per
layer. The decoder is built of eight hidden layers that mirror the encoder. This U-Net is used
as the generator of the GAN. The GAN discriminator is built with the same architecture as the
decoder, and grows in conjunction with it. Batch normalization with momentum = 0.9 and
dropout with probability = 0.5 are employed during training to discourage overfitting.
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5.2. Results

From Figure 3, we can see that model inferences of rooftop location for SpaceNet
generally match the size and shape of ground truth. While border regions of rooftops
leave room for improvement, we show progressive growing improves the definition of
individual buildings compared with its counterparts. In the two non-progressive methods,
we can see that the building segments tend to blend together more than in progressive
growing. Additionally, we can see that the standard GAN Goodfellow et al. (2014) and
non-GAN approaches suffer from false positives where the progressive growing is able to
minimize this. The xView dataset poses a more difficult problem for the progressive model
as we can see in Figure 4. Because xView is not naturally made for segmentation, the

Input Ground truth Progressive Standard Non-GAN

Figure 3. Results of applying the three tested methods to sample images along with the input and the
ground truth mask.

16x16 32x32 64 x 64 128x 128 256 x 256

Figure 4. Progressive GAN results by resolution for xView images of different resolutions up to
256 X 256.
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footprints in the masks blend together and background features commonly get caught in
the footprint. This can cause the accuracy to fall off, with progressive GAN showing high
rates of false negatives.

The progressive model shows the ability to limit false positives compared to the other
methods. The cause of this is due to the specificity of features in the later layers. This results in
the progressively trained model preferring to not label pixels over committing false positives.
Figure 5 presents progressive GAN output demonstrating this phenomenon. As a whole, the
progressively trained GAN produces building footprints that snap to the original nicely while
also minimizing the amount of false-positive pixels compared to the standard methods. This is
more conspicuous with the xView dataset. The mixing of background and building features
confuses the progressive model, which tends heavily towards not guessing, as it has difficulty
separating foreground from background, due to the training dataset limitations.

We present our accuracy scores as the per-pixel error between the ground truth mask and
the masks produced by our models. The per-pixel provides a good view of how well the
produced masks fit to the high-resolution buildings. From Table 1 we can see that the
progressively trained GAN outperforms its counterparts in this metric. We also present both
the training and testing accuracy of our models to verify that none have over-fit to the dataset.

In Figure 6, we present graphs for the accuracy of each method during training on
SpaceNet. We can see that for the progressively trained GAN that each progressive step
builds on top of the previous. The decreased loss and quicker convergence at each step
show that there is good transfer of knowledge between the previous and successive
steps. Another interesting result is the closeness of the higher resolution layers. This
suggests that there exists an image resolution, in our case 256 x 256 pixels, for which all
following image resolutions cannot be used to learn increasingly fine features.

Ground Truth Progressive

Figure 5. Results of applying progressively trained model showing how the progressively trained
model tends to leave space blank rather than classify possible false positives.

Table 1. Summary of testing and training performance for U-Net, GAN and
Progressive GAN.

U-Net GAN Progressive GAN
SpaceNet Training accuracy 0.87 0.91 0.94
SpaceNet Testing accuracy 0.85 0.89 0.93
xView Training accuracy 0.69 0.70 0.73

xView Testing accuracy 0.65 0.69 0.71
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Figure 6. Generator loss and accuracy over training Epochs for U-Net (a), GAN (b) and Progressive GAN

(c).

6. Conclusion

This paper presents a novel approach to semantic segmentation for high-resolution
satellite imagery that draws upon recently developed machine learning techniques. We
use progressive training for semantic segmentation of rooftop products to create tighter
fitting segmentation masks with less false positives that previous approaches. Our
method was tested on both the SpaceNet and xView datasets. Each posed their own
unique set of challenges for the model, such as the background noise being labelled as
positive pixels in the xView ground truth. The experiments show that using progressive
training is indeed able to reduce the number of false positives and product blending, even
in the noisy xView data. The trade-off to this approach is that there is the potential for
more false negatives than the traditional U-Net approaches tested.
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