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Abstract

Engineering redox-active compounds to support stable multi-electron transfer is an emerging
strategy for enhancing the energy density and reducing the cost of redox flow batteries (RFBs).
However, when sequential electron transfers occur at disparate redox potentials, increases in
electrolyte capacity are accompanied by decreases in voltaic efficiency, restricting the viable
design space. To understand these performance tradeoffs for two-electron compounds specifically,
we apply theoretical models to investigate the influence of the electron transfer mechanism and
redox-active species properties on galvanostatic processes. First, we model chronopotentiometry
at a planar electrode to understand how the electrochemical response and associated concentration
distributions depend on thermodynamic and mass transport factors. Second, using a zero-
dimensional galvanostatic charge / discharge model, we assess the effects of these key descriptors
on performance (i.e., electrode polarization and voltaic efficiency) for a single half-cell. Finally,
we extend the galvanostatic model to include two-electron compounds in both half-cells,
demonstrating compounding voltage losses for a full cell. These results show that multi-electron
compounds with disparate redox potentials are less attractive than those with concerted electron
transfer—as such, we suggest new directions for molecular and systems engineering to improve
the prospects of these materials for RFBs.
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Introduction

The development of low-cost redox couples and associated electrolytes is a promising cost-
reduction pathway for redox flow batteries (RFBs).!?> To this end, organic molecules and metal-
coordination complexes are emerging as alternative charge storage species to compete with more
traditional inorganic salts. These candidate materials are especially compelling for meeting
production demands, as many can be derived from abundant, widely accessible sources and
synthesized at-scale using existing process knowledge and infrastructure.® Further, their chemical
structures can be functionalized to refine key properties, such as the redox potential,
electrochemical reversibility, solubility, and stability.*® Of particular note is the possibility for
these materials to support multiple electron transfers, which, in principle, may facilitate marked
increases in capacity and concomitant decreases in energy-specific electrolyte cost.” However,
multi-valent redox couples are often chemically irreversible due to the increasing instability and/or
decreasing solubility of the charged species.® Recent research efforts have led to the advancement
of several multi-electron transfer molecular platforms, which have been tuned to mitigate major
decomposition pathways and promote solubility across different oxidation states in relevant
electrolytes, furthering their viability in practical embodiments.®”'? Despite this progress, the
overall impact of the multi-electron approach on cell performance has not been widely explored
beyond proof-of-concept demonstrations.’

While many molecular engineering challenges (e.g., stability, solubility, etc.) are universal to
the design of redox electrolytes, the unique electron transfer mechanisms (sequential vs. concerted)
of multi-electron compounds present a characteristic feature that may constrain their design. For
example, many redox-active organic molecules that undergo multi-electron transfer in aqueous

electrolytes (e.g., phenazines,'® phenothiazines,'* and quinones'>™'7) typically exhibit multiple



redox reactions occurring at similar potentials due to hydrogen bonding interactions present in
these environments.'® Conversely, similar molecules used in nonaqueous electrolytes (e.g.,
bipyrimidines,'  bispyridinylidenes,?® phenazines,”! phenothiazines,”!° quinones,”® and
viologens®***), some used in aqueous electrolytes (e.g., viologens®>2%), and metal-coordination

complexes containing non-innocent ligands'!**-3!

often feature sequential electron transfer events
with disparate and easily discernable redox potentials, ranging from 200 — 800 mV. Compared to
the concerted mechanism, which presents minimal voltage losses (vide infra), the sequential
mechanism imposes significant losses, increasing with the potential difference between redox
events. Indeed, prior experimental work has shown that, during galvanostatic cell cycling, there is
an asymmetry between voltage-time plateaus during charge and discharge: during the charging
step, more time is spent at the higher cell voltage, while during the discharging step, more time is
spent at the lower cell voltage.””'? This augments the difference between the average charge and
discharge voltages, lowering both the voltaic and energy efficiencies of the cell. To assess the
efficacy of multi-electron compounds, it is necessary to understand the magnitude of these losses,
which, in turn, requires a deeper understanding of the extent to which the molecular properties and
cell operating conditions contribute to RFB performance.

Low-dimensional reaction-transport models hold utility for uncovering the sources of
performance loss and quantifying their contributions in electrochemical cells. Specifically, zero-
dimensional models, which are the central focus of this work, consider only time-dependent
behavior, foregoing spatial variation and geometric constraints in the electrochemical and fluid
dynamic properties to provide theoretically concise and computationally light modeling

32

frameworks.”> Importantly, these simple analytical treatments—based on fundamental

electrochemical engineering principles—enable the determination of tradeoffs in device



performance for redox electrolytes prior to embarking on intensive cell cycling and modeling
studies to understand complex behavior in geometrically-accurate domains. Such models have
previously been used to assess crossover effects and various operating conditions in vanadium
RFBs*¢ and are beginning to be used to evaluate other candidate RFB platforms.’

In this work, we develop three electrochemical models (Figure 1) to understand the effect of
two-electron compounds on cell cycling and assess their performance tradeoffs in RFBs. To gain
initial insight into the underlying physics driving multi-electron transfer, we begin by analyzing
the chronopotentiometric response of a one-dimensional planar electrode (Figure 1a), highlighting
the influence of thermodynamic and mass transport factors on electrode polarization.
Subsequently, using a single half-cell (Figure 1b) to simulate galvanostatic charge / discharge
cycling, we show that voltaic efficiency is significantly affected by both the average redox
potential and the potential difference between the redox events. To a lesser extent, different mass
transfer rates between species, along with comproportionation reaction rates, further alter the
cycling behavior. Finally, using a full cell galvanostatic cycling model (Figure 1c¢), we consider
the impact of utilizing two-electron compounds in both half-cells, which results in compounding
inefficiencies due to additional voltage losses and charge imbalance. By connecting molecular
properties to cell performance, we are able to propose design criteria for more efficient high-
capacity redox electrolytes—specifically, lowering the potential difference between redox events
through molecular engineering and integrating multi-electron compounds into long-duration
applications will greatly improve their viability. More broadly, this approach provides a
framework for evaluating the impact of material properties on cell performance, which can be

extended to investigate additional sources of inefficiency (e.g., activation and ohmic



overpotentials) and other characteristic failure modes (e.g., molecular decomposition, crossover,

etc.) for candidate systems.

Theoretical Framework
The theoretical framework presented here describes concerted and sequential two-electron transfer
processes by quantifying the voltage-time relationship typical of galvanostatic processes.
Specifically, the sequential two-electron transfer for species 4 is described by Equations (1) and
2.
A=A +e (1)
A" =A4" +e )
In addition to heterogeneous electron transfer on the electrode surface, homogeneous
comproportionation and disproportionation (Equation (3)) in the bulk must be considered when
the redox potential of Equation (2) is more positive than that of Equation (1):
A+ A4 =24 3)
In contrast to Equations (1)-(3), species 4 may undergo a concerted two-electron transfer in which
the oxidation of 4 proceeds directly to 4°* according to Equation (4).
A=A +2e (4)
The following sections discuss the role of thermodynamics, kinetics, and mass transport effects on
the reactions in Equations (1)—(4), and subsequently describe model nondimensionalization and

execution.



Thermodynamics and reaction kinetics

To simplify the reaction kinetics and the overall theoretical analysis, all electrode reactions are
assumed to be electrochemically reversible such that reactive species at the electrode surface are
in equilibrium and their concentrations are governed by the Nernst Equation (Equations (5) and
(6) for the first and second oxidation, respectively). We note this assumption is in agreement with

prior experimental literature for many of the organic molecules and metal-coordination complexes

under consideration for use in RFBs.>>’
C’.
E=E" +Em[ . ] 5)
F o C
CS2+
E=E§A)+E1n£ - ] (6)
Folc

In Equations (5) and (6), £ (V) is the potential at the electrode surface, E£/* (V) is the formal
redox potential of the first oxidation (Equation (1)), £{* (V) is the formal redox potential of the

second oxidation (Equation (2)), R (8.314 J mol ™! K!) is the universal gas constant, 7 (K) is the

absolute temperature (here, T = 298 K), F (96485 C mol ') is the Faraday constant, and C; (mol

m~) is the concentration of species j at the electrode surface. It is also convenient to introduce

E'") as the arithmetic mean of E( and E{* . Note that throughout this work, all potentials are

ag
defined relative to an arbitrary reference electrode.

The rate of bulk comproportionation, 7, (mol m= s™), and bulk disproportionation, 4 (mol m™
3 s71) are given by Equations (7) and (8), respectively:

r,=k,C7C. (7N

r=k,(C2) (8)



Where C (mol m~?) is the concentration of species j in the bulk solution and k, and ks (m* mol™!

s!) are the comproportionation and disproportionation rate constants, respectively. These rate

constants are related by the difference in formal redox potentials, AE” = E{Y — EV | according

to Equation (9):
F
kp = kd CXP(E AE(A)j (9)

For a concerted two-electron transfer (Equation (4)), equilibrium concentrations at the electrode

surface are again described by the Nernst equation as shown in Equation (10).

C57+
E=E§fg)+%ln[ cA J (10)
A

Because the concerted step does not proceed through an intermediate, comproportionation and

disproportionation are assumed to be negligible.

Chronopotentiometry at a planar electrode
To analyze the time-dependent potential response for sequential two-electron transfer at a planar
electrode (Figure 1a), a one-dimensional model can be derived from the mass conservation

equation in the absence of convection and migration (Equation (11)):

i _pvee, - D82C-" (11)

o I ox’

Subject to the following initial and boundary conditions:
C;(t=0,x)=C7 (12)
oC.(t,x=0
-D # =N, (13)
ox '

C,(t,x=00)=C7 (14)



Where 7 (s) is the time, x (m) is the axial position perpendicular to the planar electrode surface, p

(m? s") is the diffusivity, which is assumed to be the same for all species, C; (mol m™>) is the local
concentration of species j, and N, (mol m2 s7!) is the molar flux of species j to the electrode

surface. The solution to Equations (11)-(14) for the time-dependent concentration of species j is
given by Equation (15).*8
‘
C;(x,0)=C} - ! J_Nj (77) exp( — ]dn (15)

(JZ'D)I/Z (t_n)l/z 4D(t—77)

0

Note that # is an integration variable. To derive the electrode potential as a function of time,

Equation (16) relates the applied current, / (A), to the partial currents, /, and 7, (A), for the

reactions given in Equations (1) and (2), respectively:
I=1+1, (16)

The partial currents are equivalent to the surface fluxes according to Equations (17)-(19):

I
NA :_F_jS (17)
4L (18)
4T FS FS
I
No=on (19)

Here, S (m?) is the electrode surface area. Equation (15) can be combined with Equations (16)—
(19) for each species to determine the electrode potential as a function of time using Equations

(5) and (6). These coupled, nonlinear equations can then be solved implicitly, as discussed below.



Galvanostatic cell cycling

To describe the effects of sequential two-electron transfers on galvanostatic charge / discharge, a
zero-dimensional model is derived (Figure 1b). Similar to the planar electrode case, the model
applies a constant charging current (Equation (16)), which is the sum of the partial currents.
Electrode kinetics are again described by Equations (5) and (6), and the relationship between the
bulk and surface concentrations of each species can be described by convective mass transfer

(Equations (20) and (21)) and the flux balance (Equation (22)):

I, =FSk, ,(C; -C;) (20)
I, ==FSk, ..(Ch—=C) (1)
L-1,=—FSk .(C7-C:) (22)

Here, &, . (m s!) is the mass transfer coefficient of species j. Equations (20)—(22) can be

combined with the equilibrium expressions in Equations (5) and (6) to arrive at an expression for

the surface concentration of 4™ (C*, ):

COO2+
: (23)

k.. 4 €Xp (lfT( EW - E)j+km,A+ ko exp(;;( E_ E§A>))

k. Ci+k C.+k

m,AZJr

N
C. =

The surface concentration is then substituted into Equation (16) to solve for the electrode potential
as a function of the time-dependent bulk concentrations (Equation (24)). Again, the coupled

nonlinear algebraic equations (Equations (23) and (24)) can be solved implicitly (vide infra).
© s F (4) o s F (4)
[=FSk, | C;-C:, exp E(El —E) ||=FSk, o |Ch —C: exp E(E—Ez )| 24)

Finally, to track changes in the bulk concentration, the system is assumed to be well-mixed such

that the total current is uniformly distributed throughout the entire volume. Note that the model



treats the electrode half-cell, reservoir, and connecting tubing as a single continuous domain. For
this treatment, the mass balances on the reactor volume for each species are a system of ordinary

differential equations as shown by Equations (25)—(28),

dc? 1 e o \2

y === VE,CICT +Vk, (C%) (25)
ac’. 1 1 2

Gl Lmcicr o () @0

aci.. I e o2
VT;‘ - ;2 —Vk,C5Co +Vk, (C) (27)

which are subject to the initial conditions:

Cr(t=0)=C? (28)

V (m?) is the total electrolyte volume and C? (mol m~?) is the initial bulk concentration. These

coupled ordinary differential equations can be numerically solved to yield changes in bulk
concentrations as a function of time, which can be further used to implicitly solve for the electrode
potential (Equations (23) and (24)).

For concerted electron transfer in the absence of comproportionation, the mass balances can
be solved analytically, yielding time-dependent bulk concentrations and the subsequent electrode
potential according to Equations (29)—(31):

It

Cr=Cf——— 29

T =Cimep (29)
It

cC. =C +—— 30

A A 2FV ( )
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RT CA2+ 2FSk
2+
(A4) m,A
E=Ef)+ -In 7 (31)

0

' 2FSk,

Dimensionless variables and analysis

To reduce the total number of independent model parameters, dimensionless variables are

introduced. Equation (32) defines the dimensionless concentration, 9}’.", which describes the
concentration in state z ( z € {s, 0,0} ) normalized by the total bulk concentration, C;* (mol m™),

which remains constant:

C: C:
0 == (32)
TCi+CL+CL O

Equation (33) defines the dimensionless charging current, ¥, which is derived by normalizing the
total charging current by the mass transfer limiting current for the oxidation of 4:

1

S S— 33
Fk,, ,SCE ©3)

Similarly, Equation (34) defines a dimensionless time, z, which normalizes the cycle time by the
theoretical charging time for one electron:

1
T =
FVC?

(34)

The mass transfer coefficients are normalized by that of species 4 according to Equation (35) to

yield dimensionless mass transfer coefficients, y;:

kmj
V= (35)

m,A
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Finally, Equation (36) scales the rate of comproportionation by the charging current to give a

dimensionless rate constant, x:

k=t (36)

Note that for the discharging step, the current reverses sign, resulting in negative values for WV,

7 ,and k. To ensure the solutions comprise a consistent time domain (7 € [O, 2] ), the sign of 7 is

reversed. The complete dimensionless equations are provided in the Supplementary Information
(SI).

In this analysis, the coupled ODEs (Equations (25)—(28)) were solved using the odelSs
function in MATLAB® R2018a, while nonlinear algebraic equations were solved implicitly using
the fsolve function in the same program. The software code used to simulate charge / discharge
cycling is included in Sections S.4 and S.5 of the SI. Simulations were performed on a Dell
Latitude 7290 laptop computer with an Intel® Core™ 17-8650U processor (quad-core, 1.90 GHz)
and random-access memory of 16 GB. Solving each charge / discharge cycle took approximately
20 — 30 seconds. To allow for capacity stabilization during cycling, a total of five complete charge
/ discharge cycles were simulated (Figures S1 and S2) and results for the fifth cycle are reported,

unless stated otherwise.

Results and Discussion
Chronopotentiometry at a planar electrode

To gain insight into the underlying physics of electron transfer in two-electron compounds, we
first model this process for a one-dimensional planar electrode (Figure 1a). Chronopotentiometry

is a constant-current technique that measures potential at the electrode surface arising from surface

12



redox reactions coupled with boundary layer diffusion, as opposed to galvanostatic cycling, where
transport primarily takes place via the convection of bulk species whose concentrations change
over time. Although the modes of transport are different, chronopotentiometry displays analogous
behavior to galvanostatic cycling and can therefore serve as a basis for interpreting the underlying
physics present in both systems. For brevity, we examine only the oxidation of 4 to 4°" via
sequential electron transfers, assuming that all species have equal diffusion coefficients and
comproportionation reaction rates are negligible. When a constant current is applied to a planar
electrode, the reactant species concentration at the surface decreases until inevitably approaching

zero, which results in a sharp increase in potential. The time required for this process is commonly

referred to as Sand’s time,*® 1), (s), as shown in Equation (37):
2
e (nFSC?) 7D, a7
sand 412

n is the number of electrons transferred per redox reaction (here, n = 1). Figure 2a shows the time-

dependent potential response for a constant current applied to a planar electrode for a two-electron
donating species, 4, with an exemplary value of AE” =0.6 V. The first plateau, corresponding

to the oxidation of 4 to 4" (Equation (1)), is equivalent to a traditional Sand’s time measurement
for a one-electron transfer. Then, as 4™ continues to be oxidized to 4°* (Equation (2)), a much
longer second plateau can be observed until eventually reaching another sharp increase in
potential. Note that the time required to reach this second asymptote is equivalent to that for a
concerted two-electron transfer (Equation (37)); however, similar to galvanostatic cycling, the
time spent at each plateau is unequal.”!?

Although initially dissimilar plateau durations may seem unintuitive, a closer look at the

temporal evolution of the concentration and current distributions reveals this to be a sensible

13



outcome (Figures 2b and 2¢). Consistent with conventional Sand’s time, the concentration of

species 4 reaches zero at r =¢') . However, as current continues to flow, 4 does not stop diffusing

from the bulk; rather, the oxidation of 4 continues contributing significantly to the current,
resulting in an elongation of its concentration profile. Correspondingly, the concentration of A™ at

the surface (Figure 2c¢) increases sharply as r—¢'" but decreases more gradually because the

sand

partial current (/,) of the second oxidation remains low as A" freely diffuses away from the

electrode. Thus, despite the higher potential plateau corresponding to the second oxidation, the

first oxidation continues to supply a significant fraction of current (/,), extending the duration of

the second plateau as compared to the first. Although analytically simpler, this illustration of
chronopotentiometric reaction-diffusion at a planar electrode is analogous to the physics present
during galvanostatic charge / discharge and underpins the combined effects of thermodynamics,

kinetics, and mass transfer on two-electron transfer compounds.

Two-electron galvanostatic half-cell cycling

With a foundational understanding of the combined factors influencing electrode polarization,
we extended our analysis to galvanostatic charging / discharging of two-electron compounds to
interrogate their cycling performance. Here, we consider only a single half-cell (Figure 1b),
assuming the other half-cell remains at a fixed reference potential of 0 V, and apply a constant,
dimensionless charging rate for both charge and discharge (W ), which is defined as the applied
current relative to the mass transfer limiting current. The resulting potential is a measure of the
kinetic and mass transport losses in the half-cell, but note that this model neglects ohmic losses.
While these are generally a dominant source of voltage loss in RFBs,*° they are mostly independent

of redox-active material properties, which are the focus of this work. To aid comparison, we
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initially assume all species have equal mass transfer coefficients (. =y . =1) and that

g
comproportionation reaction rates are negligible (x =0); these complicating factors will be
introduced subsequently and sequentially to explore their individual effects.

Figure 3a shows a typical charge / discharge profile for a two-electron transfer process at an
intermediate dimensionless current (‘¥ =0.25), comparing the response of a concerted electron
transfer to that of the more commonly observed sequential electron transfer both with and without
a potential difference (AE“) =0.6 V and AE“ =0V, respectively). Because r is non-
dimensionalized by the charging capacity for a one-electron transfer, the theoretical capacity for
the two-electron system is, by definition, z =2 . The accessed capacity (i.e., the maximum value
of 7)) is directly related to the applied current—in the case of equal mass transfer coefficients, the
accessed capacity equals 2(1—Y). This means that, in the case of ¥ =0.25, the electrolyte
undergoes a state of charge (SOC) swing between 12.5% and 87.5% and accesses 75% of the
theoretical capacity, as discussed in Section S.2 of the SI. Comparing the electrochemical
responses, we initially observe a non-negligible difference between the concerted and sequential (
AE™ =0 V) electron transfer mechanisms. Specifically, there is a slightly larger difference
between average charging and discharging potentials calculated for the sequential mechanism
(31.3 mV) compared to the concerted mechanism (19.2 mV), which can be understood by
considering that the sequential reaction proceeds through an intermediate, imposing additional
mass transfer losses (and thus overpotential).

When a potential difference is applied between the redox events, we observe the formation of
two separate plateaus during cycling—during charging, the lower plateau corresponds to the
oxidation of 4 to A™ (Equations (1)) and the higher plateau corresponds to the oxidation of 4™ to

A’" (Equation (2)). For very small currents (‘¥ ~ 0.001), the plateaus are nearly symmetric (i.e.,

15



each plateau accounts for almost the same dimensionless time), and the theoretical capacity is
accessed. However, increasing currents result in reduced accessible capacity and significant
plateau asymmetry (Figure 3b), as demonstrated in earlier bulk electrolysis and cell cycling
experiments.”'? Like the planar electrode case (Figure 2), species 4 is not consumed entirely once
the second plateau is reached and continues contributing to the current, resulting in a slower
consumption of 4™ than if no 4 remained. At dimensionless currents above W =0.5, the charging
profile displays a disappearance in the first plateau—at this point, the oxidation of 4 on charge and
the reduction of 4°* on discharge are mass transfer limiting (zero surface concentration) at all
points during cycling, meaning the electrode polarization is driven entirely by the second reaction
step. Also, because the mass transfer coefficients are assumed to be equal, the resulting charge and

discharge curves are symmetric; however, this changes under varying values of . and y ., (vide

infra), as mass transfer overpotentials contribute unequally to charge and discharge.

While there are several means by which the effects of asymmetry may be quantified, its most
significant influence is on voltaic efficiency, which can be expressed as the ratio of the average
discharge voltage to the average charge voltage. For reference, under typical cycling conditions,
the coulombic efficiency is near unity, thus the voltaic efficiency is a reasonable approximation of
the energy efficiency, defined as the product of the coulombic and voltaic efficiencies. In general,
the voltaic efficiency decreases with increasing current as the effects of ohmic, kinetic, and mass
transport losses become more pronounced, although as mentioned above, we neglect ohmic losses
in this study. Additionally, we consider losses from only one half-cell with reversible kinetics, and
therefore, these values should be considered as upper bounds for the voltaic efficiency under the
specified conditions. Considering these constraints, the results obtained from this model cannot be

quantitatively compared to the performance of experimental flow cells; however, we aim not to
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describe specific systems but rather investigate the phenomenology of multi-electron transfer,
which is independent of more complex design features.

Figure 4 shows the combined effect of dimensionless charging current, potential difference,
and average redox potential on the half-cell voltaic efficiency. Ranges chosen for the average redox
potential and potential differences reflect values for experimentally reported redox species in
aqueous and nonaqueous electrolytes. The curves are characterized by two distinct regions—at
low currents, the voltaic efficiency drops rapidly with increasing current due to an imbalance
between the two plateaus; at higher currents, where the first plateau disappears completely, the

voltaic efficiency slope parallels that of the case where AE” =0 V with an offset in magnitude.

Importantly, the presence of a potential difference between redox events drastically reduces voltaic
efficiency under all conditions, though especially at increasing currents and lower average redox
potentials, which are particularly relevant for aqueous chemistries.*! In general, voltage losses can
be compensated with higher average redox potentials, but the half-cell voltaic efficiency for
sequential processes may still suffer a 10 — 20% decrease at moderate currents and high cell
voltages compared to the concerted process, which represents the maximum voltaic efficiency.
These losses in voltaic efficiency are substantial, especially considering they only account for one
electrochemically reversible half-cell—additional kinetic (e.g., quasireversible and irreversible
behavior,*? low electrochemically active surface area*’) and ohmic losses (e.g., electrolyte and
membrane resistance*’) will further reduce overall efficiency.

Additional mass transfer losses can be evaluated by relaxing the assumption that all species
have equal mass transfer coefficients; to simplify our analysis, we will consider cases where the

mass transfer rates of 4™ and 4°" are equal ( 7 . =7 ) but differ from 4. The values used here

(7, =0.8,1.2) were estimated based on previously reported Sherwood number correlations for

17



RFBs* for typical changes in diffusivity for soluble two-electron redox species in differing
oxidation states.”!! Although the variations in mass transfer are relatively small, the effects can be
readily observed from the respective charge / discharge profiles (Figure 5a); specifically, the
charging and discharging curves become asymmetric, as differing mass transfer rates affect the
relative fluxes and, consequently, the surface concentrations of each species. Similar to the
asymmetry between plateaus described already (see Figure 4), this additional asymmetry impacts
the half-cell voltaic efficiency (Figure Sb). First, we observe the appearance of an additional
change in slope at intermediate dimensionless currents corresponding to the disappearance of a

single charge / discharge plateau. For example, when y . = 0.8, the first plateau on the discharging

curve will disappear while the first plateau on the charging curve persists. Second, as expected,
slower mass transfer rates (e.g., reduced flow rates, higher electrolyte viscosity, larger redox-active
molecules) correspond to lower voltaic efficiencies at all current values.

Given the inclusion of variable mass transfer coefficients, the differences between individual
species thus necessitates the treatment of comproportionation reactions. When considering
sequential electrode reactions of identical kinetic and mass transport conditions,
comproportionation does not play a distinguishable role in determining the electrode potential as
the species identity does not influence boundary layer fluxes.***¢ Comproportionation yields a
shift in the time-dependent bulk concentrations toward the formation of 4™ (Figure 6a), and with
varying mass transport coefficients, this causes charge / discharge curves to become increasingly
asymmetric, thus accentuating voltaic efficiency losses that arise from differences in mass transfer
(Figure 6b). However, for comproportionation to proceed, both 4 and 4°* must be present in
solution concurrently—therefore, this effect only occurs where mass transfer limitations lead to

simultaneous oxidation of 4 and 4™ (charging) or reduction of 4°* and A (discharging). These
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simultaneous reactions only constitute a fraction of the total charging time, which increases with
increasing current, meaning that its influence on voltaic efficiency only becomes discernable at
dimensionless currents above W = 0.5. Operation under such low accessible capacity regimes is
likely to be impractical and inefficient, and as such, we tentatively conclude that
comproportionation for two-electron transfer is negligible under typical galvanostatic conditions.
Note that in this treatment, comproportionation and disproportionation reactions are assumed to
occur only in the bulk as opposed to the mass transfer boundary layer. This assumption ignores
the expected non-linear boundary layer concentrations, although even if the concentrations were
to change in the boundary layer, the system is still beholden to the fact that comproportionation
reactions only occur alongside the simultaneous oxidation / reduction of both species, so any
significant effects will still be restricted to higher currents. As a result, we expect this will have
only minor effects on the overall voltaic efficiency and, consequently, the conclusions drawn here

are expected to remain valid.

Full cell analysis with two-electron compounds at both electrodes
To this point, we have only considered two-electron compounds in a half-cell, holding the
counter half-cell at a constant reference potential (0 V). However, the presence of two-electron
reactions in both half-cells presents additional voltage losses. Here, we introduce a second redox-
active species, B, which undergoes analogous two-electron transfer according to Equations (38)
and (39) (Figure 1c¢):
B=B"+e (38)

B =B"+e (39)
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Species B is subject to the same governing equations as species 4, which are detailed in the SI.
For simplicity, we once again neglect ohmic losses and assume that mass transfer rates for all

species are equal, the latter of which implies comproportionation / disproportionation reactions

can also be ignored. In addition, we impose AE“” = AE” =0.6 V and Eif; =0V for all analyses

presented here. Note that half-cell reactions proceed in opposite directions—a positive, oxidizing
current applied to species 4 corresponds to a negative, reducing current applied to species B, and
vice versa.

While one would correctly expect voltage losses to double in the case of a full cell if 4 and B
were symmetric (i.e., equal concentrations, volumes, states of charge, transport properties, cell
features), there are additional factors when this symmetry deviates that further hinder performance.
In particular, we study charge imbalance (i.e., where the half-cells exist at different states of
charge), which may result from self-discharge reactions occurring in the bulk or undesired side
reactions (e.g., solvent or supporting salt decomposition, crossover-induced self-discharge, redox
species decay). For one-electron compounds, this primarily impacts the accessible capacity
because one half-cell becomes capacity-limiting during charge while the other is capacity-limiting
during discharge.*’” For two-electron compounds, the effects of charge imbalance become more
pronounced, significantly impacting the shape of the charge / discharge curves and the subsequent
voltaic efficiency.'® To quantify charge imbalance between the two half-cells, we vary the initial

dimensionless concentration of 4 (#9), assuming the initial dimensionless concentration of B** is

Figure 7a shows representative cycling profiles for the full cell potential at varying degrees of

charge imbalance. Most notably, because each compound features a potential difference (AE"),

the difference between plateaus is doubled for the full cell. In the presence of charge imbalance,
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an intermediate plateau appears, corresponding to the disappearance of the first potential plateau
for one half-cell. For example, during the charging step, species A will be fully oxidized to 4*
before species B** can be fully reduced to B*, resulting in the intermediate plateau, which extends
with increasing degrees of charge imbalance. Figure 7b shows the resultant effect of these
behaviors on voltaic efficiency. Compared to the single half-cell examined in Figure 4, the
inclusion of both half-cells doubles the associated losses and further diminishes the voltaic
efficiency. Like the case of different mass transfer rates, charge imbalance leads to a characteristic
region corresponding to the sequential disappearance of charge / discharge plateaus at increasing
dimensionless currents. However, despite the reduction in dimensionless capacity shown in Figure
7a, charge imbalance causes only minor losses in voltaic efficiency at low to moderate currents
(0.2<¥ <0.5). Overall, the combined effects of two-electron compounds at both electrodes and

charge imbalance result in heightened voltaic efficiency losses compared to the single half-cell.

Design strategies for multi-electron RFBs

The models explored here provide initial evidence that the multi-electron approach, while
promising, has significant limitations if operating conditions and molecular design are not
carefully considered. Even under optimistic conditions (i.e., losses at one electrode, reversible
kinetics, no ohmic losses), we observe 10 — 20% losses in voltaic efficiency at moderate
dimensionless currents (W ~ 0.2 ), and these losses grow as the average redox potential decreases
and potential difference increases (ca. 30 — 40% losses). Therefore, the advantages of increased
charge storage capacity in multi-electron transfer must be weighed against the drawbacks in flow
battery performance for a given redox chemistry.

In particular, the losses observed here for two-electron materials are driven primarily by mass
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transfer, requiring current densities well below the mass transfer limit and / or considerably high
mass transfer coefficients to maintain high voltaic efficiency. Such conditions present a complex
design tradeoff, where additional stack costs due to increasing cell area and pumping costs due to
improving mass transfer rates compete with concomitant advancements in electrochemical
performance. This may restrict the viable operating space to applications where costs are less
dependent on energy efficiency, as the ability to tolerate voltage losses is closely tied to techno-
economics and system specifications. For example, long-duration and/or low current energy
storage applications may be comparatively more tolerant of low voltaic efficiencies if other related
capital costs are sufficiently low.** Alternatively, higher cell voltages, enabled by nonaqueous
electrolytes® and certain aqueous electrolytes,”® can at least partially offset the increased
overpotentials of multi-electron transfer (Figure 4).

To reduce the losses associated with sequential multi-electron transfer, molecular engineering
efforts should aim to minimize the potential difference between electron transfer events without
sacrificing cell voltage, solubility, or stability. Independently tuning the properties of individual
redox events (e.g., potential inversion’') is a significant challenge, but future molecular
engineering campaigns can build upon previously established examples and strategies, presenting
new opportunities for research in this area.!'>?*32-55 For example, Kini et al. demonstrated that
nonaqueous anthraquinone derivatives may undergo potential inversion by virtue of successive
benzo substitution. Upon functionalization from the tetracyano napthaquinone to the analogous
anthraquinone derivative, a shift is observed from sequential one-electron transfer events to a
concerted two-electron transfer due to the distorted, non-planar molecular structure of the
anthraquinone.’>* Similarly, engineering the supporting electrolyte (i.e., solvent and supporting

salt) may serve as an additional handle to modulate the properties of multi-electron redox
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couples.’> These examples highlight the need for a more holistic conceptualization of the
combined steric and electronic character of such molecules that influence their electrochemical
nature, which should serve to advance fundamental knowledge in molecular electrochemistry and
lead to improved nonaqueous RFB chemistries. Conversely, many aqueous organic compounds
that undergo proton-coupled electron transfer already exhibit multi-electron reactions with a
minimal potential difference,'>!*> but these electron transfer reactions should be carefully
scrutinized to elucidate gaps between their redox potentials,” as the low cell voltages of these

systems make them more susceptible to performance losses.

Conclusions

The emergence of charge storage materials that support the reversible transfer of multiple
electrons provides new pathways toward high energy density, low-cost charge storage. However,
depending on the electrochemical and transport properties of the redox electrolyte, these multi-
electron compounds face inherent design tradeoffs between improved storage capacity and
diminished voltaic efficiency. Here, we have explored various electrochemical models to describe
the underlying phenomenology of two-electron transfer in RFBs and to estimate upper bounds for
these performance tradeoffs, focusing on the redox electrolyte properties and foregoing more

complex geometric constraints. These results reveal that the charging rate (V), average redox

potential (E;Q ), and potential difference between redox events (AEY) primarily drive voltaic
efficiency losses, with relative mass transfer rates () and comproportionation rates (&) playing

more nuanced roles. Considering the possible limitations, synthetic chemists and material
scientists may seek new strategies to tune independent redox events, such as introducing concepts

of potential inversion for nonaqueous electrolytes or leveraging existing knowledge of proton-
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coupled electron transfer for aqueous electrolytes. This low-dimensional modeling approach can
further serve as a framework to bound performance for novel charge storage materials, including
those with more complex electron transfer mechanisms, and to predict performance prior to
embarking on complicated and time-consuming cell cycling studies.
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List of variables and constants

C; Concentration of species j in state z (mol m™)

(G Total bulk species concentration (mol m™)

D Diffusion coefficient (m? s™)

E Electrode potential (V)

E Formal redox potential for the first oxidation of species j (V)

EY Formal redox potential for the second oxidation of species j (V)

EL(,V’g) Average redox potential of species j (V)

AEY)  Difference in formal redox potentials of species j (V)

F Faraday’s constant (96485 C mol ™)

1 Galvanostatic charging current (A)

1, Partial current for the first oxidation (A)

I, Partial current for the second oxidation (A)

k, Disproportionation rate constant (m?® mol™ s7)

k. Convective mass transfer coefficient of species j (m s™')

k, Comproportionation rate constant (m* mol™' s™)

n Number of electrons transferred per redox reaction

N, Molar flux of species j (mol m™=s™)

v, Bulk disproportionation rate (mol m= s™)

r, Bulk comproportionation rate (mol m= s)

R Universal gas constant (8.314 J mol ™' K1)

S Electrode surface area (m?)

t Time (s)

tm, Sand’s time for a redox reaction with » electrons (s)

7 Temperature (K)

14 Electrolyte volume (m?)

X Axial position perpendicular to the planar electrode surface (m)
Greek symbols

7, Dimensionless mass transfer coefficient of species j

n Integration variable (s)

0; Dimensionless concentration of species j in state z

K Dimensionless comproportionation rate

T Dimensionless charging time

v Dimensionless charging current
Superscripts
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o0

Q

Surface
Bulk solution
Initial state
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Figure 1. Schematic of modeling domains for (a) chronopotentiometry at a planar electrode, (b)

galvanostatic charging / discharging for a single half-cell with a two-electron compound 4, and (c)

galvanostatic charging / discharging of a full cell with the two-electron compounds 4 and B.
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Figure 2. (a) Chronopotentiometry at a planar electrode for a generic Eif; and AE""; the response

is independent of the applied current. (b) Temporal evolution of the dimensionless concentration
profile for species A. (¢) Temporal evolution of the dimensionless surface concentration of species

A" and the normalized partial currents.

32



26} —AE®=06V
—AE®=0V
—Concerted

22} _
2 2
L L
18}
1.6}
14}
o 05 1 15 2 o 05 1 15 2
T T

Figure 3. (a) Charge / discharge profiles shown for ¥ =0.25 and different values of the potential
difference (sequential mechanism) compared to the concerted mechanism, and (b) charge profiles

for increasing values of dimensionless charging current (AE“Y =0.6 V). Results shown for

E(A)zz V’ Vo=V o :l,and x=0.
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Figure 4. Half-cell voltaic efficiency as a function of dimensionless charging current, comparing
a concerted two-electron transfer to a sequential two-electron transfer with varied AE“ for

; ; (4) _ _ —
increasing values of £, . Results shown for y , =y . =1 and x=0.
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Figure 5. (a) Charge / discharge profiles shown for W =0.25 and (b) half-cell voltaic efficiency

as a function of dimensionless current for varying mass transfer coefficients (y . =y .. ). Results
shown for E;) =2V, AE“Y =0.6 V,and x=0.
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Figure 6. (a) Dimensionless concentration profiles as a function of dimensionless time ( z ), shown
for the first charging step (¥ =0.25) and (b) half-cell voltaic efficiency as a function of
dimensionless charging current (V) for varying values of the dimensionless comproportionation

rate constant: x =0, x =100, and x =10000. Results shown for Vo=V p =08, EWN =2V,

avg
and AEY =0.6 V.
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Figure 7. (a) Charge / discharge profiles shown for W =0.25 and (b) full cell voltaic efficiency as
a function of dimensionless current for varying extents of charge imbalance. Results shown for

EQ=2V,E})=0V,AE" =AE™ =06V, y,=1,and x=0.
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