
Multi-objective Search to Design Multi-phase
Model Fitting Algorithms

Joshua Steakelum1, Jacob Aubertine1, Kenan Chen1, Vidhyashree Nagaraju2, and Lance Fiondella1
1Electrical and Computer Engineering, University of Massachusetts Dartmouth, MA, USA

2Tandy School of Computer Science, University of Tulsa, OK, USA
Email: {jsteakelum, jaubertine, kchen2, and lfiondella}@umassd.edu, vidhyashree-nagaraju@utulsa.edu

Abstract—Recent research applies soft computing techniques
to fit software reliability growth models. However, runtime
performance and the distribution of the distance from an optimal
solution over multiple runs must be explicitly considered to justify
the practical utility of these approaches, promote comparison,
and support reproducible research. This paper presents a meta-
optimization framework to design stable and efficient multi-
phase algorithms for fitting software reliability growth models.
The approach combines initial parameter estimation techniques
from statistical algorithms, the global search properties of soft
computing, and the rapid convergence of numerical methods.
Designs that exhibit the best balance between runtime perfor-
mance and accuracy are identified. The approach is illustrated
on a nonhomogeneous Poisson process software reliability growth
model, including a cross-validation step on data sets not used
to identify designs. The results indicate the nonhomogeneous
Poisson process model considered is too simple to benefit from
soft computing because it incurs additional runtime with no
increase in accuracy attained.

Index Terms—Software reliability, software reliability growth
model, soft computing, numerical methods, multi-phase algo-
rithms

I. INTRODUCTION

Recent research has seen an explosion in the number of
studies applying soft computing techniques and especially
swarm algorithms [1], [2] to fit software reliability growth
models (SRGM). While optimization techniques [3] are es-
sential to fit models and enable predictions, these past studies
often fail to consider two competing attributes, namely (i)
the speed of convergence to the maximum likelihood estimate
(MLE) and (ii) the stability of convergence to this maximum.
These two attributes are especially important when implement-
ing tools for non-experts [4], [5] because the model fitting
step must be both fast and consistent, so that users who often
lack detailed knowledge of the underlying mathematics can
be confident that the parameter estimates are accurate and
that model assessments and predictions reported by the tool
can be trusted. Moreover, soft computing techniques often
exhibit robust global search, which has helped to overcome the
instability of early numerical techniques such as the Newton-
Raphson method. However, numerical methods exhibit mathe-
matically proven rates of convergence and can therefore serve
as a powerful complement to soft computing techniques, sug-
gesting that multi-phase algorithms incorporating soft comput-
ing techniques followed by traditional optimization procedures
may achieve the desired tradeoff between speed and stability

of convergence. A framework is needed to identify stable and
efficient multi-phase algorithms that leverage the strengths
of these alternative approaches to (i) promote the objective
comparison of alternative algorithms for fitting models and (ii)
focus the research community on the practical goal of stable
and efficient algorithmic designs for implementation in a tool
that will support the widespread application of SRGM in the
user community.

Surveys [6], [7] document dozens of applications of soft
computing techniques to fit SRGM and closely related prob-
lems, while Mohanty et al. [8] reviewed papers published
between 1990 and 2008 that applied AI and soft computing
techniques to SRGM, effort estimation, and other software.
Examples of machine learning techniques include neural net-
works [9], [10] and support vector machines [11], [12], while
metaphor-based meta-heuristics and evolutionary algorithms
include genetic algorithms [13], [14], [15], genetic program-
ming [16], [17], harmony search [18], [19], and gravitational
search [20]. Applications of swarm intelligence algorithms,
which share information among members of the popula-
tion, include particle swarm optimization [21], [22], artificial
bee colony [23], ant colony optimization [24], [25], cuckoo
search [26], grey wolf optimization [27], firefly [28], [29], ant
lion optimization [30], and whale optimization [31].

Hybrid approaches have also been proposed, including
genetic algorithms to optimize the parameters of particle
swarm [32], [33] and grey wolf optimization [34] as well as
methods that combine artificial bee colony and particle swarm
optimization [35]. Despite their global search properties, nei-
ther individual or pairwise combinations of these population-
based search techniques converge rapidly and precisely to
the maximum in a manner similar to traditional numerical
methods such as the Newton-Raphson method when provided
accurate initial estimates or statistical algorithms, including
the expectation maximization (EM) algorithm [36], [37] and
expectation conditional maximization (ECM) algorithm [38],
[39]. Thus, multi-phase algorithms composed of a swarm
algorithm for global search followed by local search with
a numerical or statistical algorithm is a naturally appealing
concept to capitalize on the strengths of these two classes
of algorithms to achieve a balance between convergence and
speed.

To impose structure and support reproducibility, this paper
proposes a framework to design multi-phase model fitting

algorithms. Algorithms to perform multi-objective optimiza-
tion [40] such as a posteriori methods, which seek to produce
all Pareto optimal solutions or a representative subset, are
suitable for this purpose. Examples include Normal Con-
straint [41] and Successive Pareto Optimization [42] as well
as evolutionary methods such as the Non-dominated Sorting
Genetic Algorithm (NSGA)-II [43] and the Strength Pareto
Evolutionary Algorithm [44]. NSGA-II is employed in this
study because of its widespread success in diverse problem
domains, although the other approaches may also be suitable
for the design of stable, efficient, and accurate multi-phase
algorithms.

Our approach explores the space of alternative algorithmic
designs for those that exhibit a combination of consistent
convergence and runtime. These designs combine initial pa-
rameter estimation techniques, swarm algorithms, and numer-
ical methods. The intuition is that designs including a swarm
algorithm must contribute to global search without compro-
mising runtime excessively in order to justify the number
of iterations, population, and cost of evaluating the objective
function and moves within the search space before switching
to a gradient-based method. The framework is applied to
a nonhomogeneous Poisson process (NHPP) [45] software
reliability growth model. A cross-validation step assesses the
accuracy and runtime of dominant designs on alternative data
sets. The results indicate that the NHPP model did not benefit
significantly from a multi-phase algorithm because of the
relatively low dimension, smoothness of the objective function,
and efficient and accurate initial estimates enabled by the EM
algorithm.

The remainder of this paper is organized as follows: Sec-
tion II describes a concrete implementation of an approach to
design multi-phase algorithms. Section III reviews likelihood
functions, which serve as the primary optimization objective
and Section IV illustrates the approach, including cross-
validation to verify speed and stability. Section V concludes
and identifies possible directions for future research.

II. STABLE, EFFICIENT, AND ACCURATE MULTI-PHASE
ALGORITHM DESIGN

A systematic approach to design and assess alternative
three-phase algorithms would enumerate all possible combina-
tions of algorithms and measure their speed and stability for a
range of tI and tII . Consider two three-phase algorithms A1

and A2. These algorithms may be composed of different Phase
I, II, and III algorithms as well as potentially distinct rules for
determining tI and tII . These design choices produce unique
combinations of stability (percentage of runs that converge
to the optimal or a near optimal solution), performance (run
time), and accuracy along the Pareto front, where accuracy is
defined as (1 + ε), 1.0 is the optimal value, which is known
for test cases, and ε is the error.

A preferred algorithm will be fast, accurate, and stable.
However, later tI may improve stability and accuracy because
Phase I algorithms are suitable for global search that increases
the likelihood of convergence to the optimal or a near optimal

solution, but lower performance because of the computational
cost incurred. Conversely, earlier tI may lower stability and
accuracy but improve performance. Similarly, later tII may
improve stability an accuracy because Phase II algorithms are
suitable for making consistent progress toward a maximum,
but also lower performance because of computational costs.
Moreover, earlier tII may lower stability and accuracy, but
increase performance. Thus, there are many possible algorith-
mic designs and efficiency is inherently a competing constraint
with stability and accuracy.

If algorithms A1 and A2 exhibit the same performance but
A1 possesses greater stability, it would be preferred. Similarly,
given the choice between two algorithms of equal stability, the
faster one would be preferred. Furthermore, a designer may
wish to impose an upper bound on the time required to com-
plete and a lower bound on stability to ensure suitability for
use in a computer-aided tool. These bounds create constrained
multi-objective optimization problems. Algorithms that reside
within this region for a range of tI or tII constitute the space
of feasible solutions.

A. Non-dominated Sorting Genetic Algorithm-II

NSGA-II [43] is an extension of the genetic algorithm [46]
to efficiently identify the Pareto frontier of a multi-objective
optimization problem. Inputs include a user specified num-
ber of generations (iterations), population of chromosomes
(candidate solutions), and a probability of crossover, which
is used when hybridizing parent chromosomes to produce
candidate offspring. In each generation, chromosomes are
decoded and evaluated with respect to a fitness function. In
this case, each chromosome represents an alternative multi-
phase algorithm design and is run on the optimization problem.
One candidate is said to dominate another if and only if all of
its optimization objectives are preferred. Each iteration of the
NSGA-II algorithm employs non-dominated sorting to order
existing candidates according to the number of alternative
candidates dominating them.

To avoid outliers, each design is run an odd number of
times, non-dominated sorting performed, and the median value
chosen as the chromosome’s fitness. A crowding distance
function is applied to sort chromosomes according to their
fitness in a manner that encourages search along the Pareto
frontier. Selection samples two pairs of chromosomes and the
dominant chromosome in each pair undergo crossover and
mutation to produce a pair of offspring. The most dominant
parents and offspring combine to form the next generation and
the process repeats.

Figure 1 shows the components of an example candidate so-
lution for the multi-phase algorithm design problem. The first
three sets of bits respectively correspond to (i) the method of
generating initial parameter estimates, (ii) a swarm algorithm
to perform efficient global search, and (iii) a numerical method
to achieve convergence. Examples of techniques employed to
produce initial estimates include interval-constrained random
number generation and an adaptation of the expectation max-
imization algorithm [37]. Swarm algorithms presented in [1],

[2] were implemented, including particle swarm optimiza-
tion [47], the bat [48], artificial fish swarm [49], cuckoo
search [50], firefly [51], flower pollination [52], artificial bee
colony [53], and wolf search [54] algorithms. A potential
design may also omit the swarm algorithm stage. Swarm bit
sequences are used to map uniformly within the range of avail-
able swarm algorithms. Our implementation does not allow
crossover or mutation within the swarm-stage bits because
parameter values that perform well for one algorithm tend not
to perform well for another swarm algorithm. This restriction
was determined to be reasonable, as phylogenetically diverse
animals in nature cannot interbreed. Thus, the population
consists of subpopulations that compete for dominance similar
to the manner in which different species evolved on earth.

1 1 0 0︸ ︷︷ ︸
initial est.

1 1 1 0︸ ︷︷ ︸
swarm alg.

0 1 0 0︸ ︷︷ ︸
numeric method

1 0 1 1︸ ︷︷ ︸
pop size

1 0 1 1︸ ︷︷ ︸
gen. count

. . . 0 1 1 0︸ ︷︷ ︸
param 1

0 1 0 1︸ ︷︷ ︸
param 2

0 0 1 1︸ ︷︷ ︸
...

0 1 0 1︸ ︷︷ ︸
param n

Fig. 1: Encoding of multi-phase algorithm

Numerical methods available in the SciPy library [55],
including the Nelder-Mead algorithm [56], Powell’s
method [57], conjugate gradient [58], the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm [59], Limited-memory
BFGS [60], truncated Newton’s method [61], and the
sequential least squares procedure [62] were employed.
Numerical bit sequences also map uniformly within the range
of available numerical algorithms. However, a numerical
method is always included to ensure convergence to an
optimum. Thus, the bit sequence 00 . . . 0 encodes a numerical
method not the omission of this phase. In all cases, numerical
method convergence is defined as |f(xi+1)−f(xi)| < ε when
improvement in successive values of the objective function
fall below a small positive convergence criteria ε > 0.

The fourth and fifth sets of bits are integers defining
the population size and number of iterations for the swarm
algorithm, if one is included in the design. The remaining
sets of bits are floating point values for each parameter of
the swarm algorithm. Since the alternative swarm algorithms
possess different numbers of parameters, only the first k < n
sets of bits are decoded according to the swarm algorithm.
This leads to a small amount of memory in unused bits
of chromosomes when a swarm algorithm possesses fewer
parameters.

To represent the parameters of swarm algorithms as floating
point values within a finite interval (θ−, θ+), the bit sequence
is decoded according to

θ = θ− + (θ+ − θ−)× b10
bmax
10

(1)

where b10 is the Base-10 value of the bit sequence and bmax
10 is

the maximum possible value of that bit sequence. For example,
a parameter constrained to the interval (0.4, 0.5) using a four-
bit sequence possessing the value 01102 may be interpreted
as θ = 0.44, since 0.4 + (0.5 − 0.4) × 6

15 . A linear increase
in the number of bits exponentially increases the precision of

the decimal values in the interval, but also increases the time
to decode.

III. LIKELIHOOD FUNCTION

The multi-phase algorithm design framework is illustrated
in the context of nonhomogeneous Poisson process software
reliability growth models [45]. Therefore, this section provides
a self-contained review. The NHPP counts the number of
unique software defects discovered as a function of testing
time and a SRGM fit to defect data enables predictions such
as the number of defects remaining, the number of defects that
would be detected with additional testing, and the probability
of failure free operation for a specified period of time in a
specified environment (reliability [63]).

Given defect discovery times T = 〈t1, t2, . . . , tn〉, the
objective function is to maximize the log-likelihood function

LL(ti; Θ) = −m(tn) +

n∑
i=1

log (λ(ti)) (2)

where Θ is the vector of model parameters and λ(t) := ∂m(t)
∂t

is the instantaneous failure rate at time t.
For example, the mean value function of the Weibull

SRGM [64] is

m(t) = a
(

1− e−btc
)

(3)

where b and c are the scale and shape parameters, respectively.
Two alternative methods for generating initial parameter

estimates were incorporated into the encoding of the multi-
phase algorithm described in Figure 1. The first was uniform
random numbers b0 ∼ U(0, 0.1) and c0 ∼ U(0, 5) with
a0 = n

1−e−b0tc0 and the second was uniform random numbers
in an interval about feasible initial estimates determined by
the expectation maximization algorithm [37], such that b0 ∼
U(1

s ×
n∑n

i−1 tci
, s × n∑n

i−1 tci
) and c0 ∼ U(1

s , s), since c = 1

is the special case where the Weibull reduces to the Goel-
Okumoto [65] model and s = 2 is a user-defined parameter
to control the width of the interval.

IV. ILLUSTRATIONS

This section illustrates the application of the framework to
the nonhomogeneous Poisson process, including design and
cross-validation experiments and accompanying discussion.

Table I summarizes the parameters of NSGA-II, including
the number of generations, population size, precision of nu-
merical parameters, and crossover logic.

TABLE I: NSGA-II Parameters

Parameter Value
Generations 128
Population 128
Number of runs 31
Bits per parameter 32
Crossover probability 98%
Use head-tail crossover True

A. NHPP Software Reliability Growth Model

The NSGA-II implementation of the multi-phase algorithm
design problem was run with the Weibull NHPP SRGM as
the objective function defined by Equations (2) and (3) on
the SYS1 data set [66]. Pareto optimal designs trained on this
data set were then cross-validated with eight similar data sets
to assess the generalizability of their performance with respect
to run time and accuracy.

Figure 2 shows the percentage of the population utilizing
each swarm algorithm as a function of the generations of
NSGA-II. By the end of 128 iterations, designs incorporating
the artificial bee colony (ABC) algorithm constituted the
majority of the population. However, this does not necessarily
mean that multi-phase designs incorporating ABC are “best”
because the multi-objective nature of the problem requires
explicit consideration of the tradeoff between speed and accu-
racy, which we were able to quantify because the maximum of
Equation (2) on the SYS1 data [66] is known to be 966.0803
at parameter values â = 172.5262, b̂ = 0.000696, and
ĉ = 0.676739. This design stage required about 90 minutes to
complete.

Fig. 2: Percentage of population utilizing alternative swarm
algorithms in each generation of NSGA-II

To compare alternative designs, Figure 3 shows a Pareto
plot composed of the 128 members of the population in the
final generation. Figure 3 indicates that the designs achieving
the lowest median runtimes included a swarm stage utilizing
the artificial bee colony algorithm, but a median error of as
much as 0.8%, whereas many of the designs achieving low
median error did not incorporate a swarm stage. For example,
the fastest design (0.001990 seconds) with low median error
(ε = 0.005716), denoted Design 1, employed six iterations
of the artificial bee colony algorithm with a population of six
bees with subpopulations scout (34.7%), experienced (39.5%),
and onlooker (25.8%), which rounded to two bees in each
of the three subpopulations, and experienced bee parameters

wb = 0.607, wg = 0.738, r = 0.191. This brief swarm stage
was followed by the Truncated Newton algorithm.

Fig. 3: Pareto frontier of multi-phase algorithm designs in
final generation of NSGA-II on Weibull NHPP SRGM

Solutions at the knee of the curve in the bottom left
of Figure 3 may be preferred because they simultaneously
achieve low error and runtime. For example, Design 2 was
the fastest algorithm with error below 0.001 (ε = 0.000273),
achieving a median runtime of 0.002581 seconds with the
Broyden-Fletcher-Goldfarb-Shanno algorithm and no swarm
stage. Design 3 also employed BFGS, exhibiting median error
nearly 16 times smaller than Design 2 with ε = 0.000017,
but increased median runtime approximately 1.67 times to
0.004414 seconds. Thus, the variation between Designs 2
and 3 was explained by the number of runs (31) and initial
parameter estimation based on the EM algorithm, which was
selected over uniform random numbers in all three designs
identified in Figure 3.

To test the generalizability of our designs, we ran the two
unique designs identified in Figure 3 on eight additional failure
times data sets from the software reliability literature [66],
which took about five minutes to complete. The number of
runs was increased to 63 and the 32nd run from the dominated
sort used to determine the median, which greatly reduced
variation similar to the differences between Designs 2 and 3
observed in the design phase.

Figure 4 shows the results of these cross-validation exper-
iments, where each of the eight data sets is indicated by a
unique marker and the results of Design 1 (black), which
applied EM initial estimates, six iterations of the artificial
bee colony optimization, and a Truncated Newton algorithm,
while Design 2/3 (gray) applied EM initial estimates and
the Broyden-Fletcher-Goldfarb-Shanno algorithm. With few
exceptions, nearly 90% (24/27) of the combinations exhibited
median error below 0.001. Moreover, most of the combinations
with negligible error exhibited median run times between
0.005 and 0.015 seconds, similar to the range (0.005, 0.010)
observed in Figure 3. The relatively slow performance of both

designs on CSR1 is likely data set specific. The main result
of the comparison is that Design 1 possessing a swarm stage
was only faster on one data set (S2) and more accurate on
only two data sets (SYS2 and SS3), suggesting that a simple
and efficient initial parameter estimation technique applied
in conjunction with a traditional numerical method may be
preferred over a multi-phase algorithm utilizing a swarm stage
for models with a relatively small number of parameters.

Fig. 4: Cross-validation Pareto frontier

V. CONCLUSIONS AND FUTURE RESEARCH

This paper presented a framework to design stable and
efficient multi-phase algorithms for fitting software relia-
bility growth models. The Non-dominated Sorting Genetic
Algorithm-II was employed to identify designs that achieved
a desirable tradeoff between these competing objectives. The
framework implemented several swarm intelligence algorithms
and numerical methods, allowing designs with and without a
swarm stage. The framework was employed to identify multi-
phase algorithms for a nonhomogeneous Poisson process soft-
ware reliability growth model. Cross-validation was performed
on other failure time data sets. The results suggested that the
NHPP SRGM considered did not benefit significantly from a
multi-phase algorithm.

To promote future research, the source code of the frame-
work, algorithms implemented, and experiments have been
published as an open source repository, available from GitHub.
The framework will be applied to higher dimensional problems
such as models possessing a larger number of parameters.

ACKNOWLEDGMENT

This material is based upon work supported by the Na-
tional Science Foundation under Grant Number (1749635).
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] A. Hassanien and E. Emary, Swarm Intelligence: Principles, Advances,
and Applications. CRC Press, 2016.

[2] X.-S. Yang, Nature-inspired Metaheuristic Algorithms. Elsevier, 2014.
[3] F. Archetti and F. Schoen, “A survey on the global optimization problem:

general theory and computational approaches,” Annals of Operations
Research, vol. 1, no. 2, pp. 87–110, 1984.

[4] M. Lyu and A. Nikora, “CASRE - a computer-aided software reliability
estimation tool,” in Proc. of Computer-Aided Software Engineering
Workshop, Montreal, Canada, jul 1992, pp. 264–275.

[5] K. Shibata, K. Rinsaka, and T. Dohi, “M-srat: Metrics-based software
reliability assessment tool,” International Journal of Performability
Engineering, vol. 11, no. 4, pp. 369–379, 2015.

[6] K. Kaswan, S. Choudhary, and K. Sharma, “Software reliability mod-
eling using soft computing techniques: Critical review,” Journal of
Information Technology and Software Engineering, vol. 5, p. 144, 2015.

[7] A. Hudaib and M. Moshref, “Survey in software reliability growth mod-
els: Parameter estimation and models ranking,” International Journal of
Computer Systems, vol. 5, no. 5, pp. 11–25, 2018.

[8] R. Mohanty, V. Ravi, and M. R. Patra, “The application of intelligent
and soft-computing techniques to software engineering problems: A
review,” International Journal of Information and Decision Sciences,
vol. 2, no. 3, pp. 233–272, 2010.

[9] N. Karunanithi, D. Whitley, and Y. K. Malaiya, “Prediction of software
reliability using connectionist models,” IEEE Transactions on software
engineering, vol. 18, no. 7, pp. 563–574, 1992.

[10] T. Dohi, Y. Nishio, and S. Osaki, “Optimal software release scheduling
based on artificial neural networks,” Annals of Software Engineering,
vol. 8, 1999.

[11] F. Xing and P. Guo, “Support vector regression for software reliability
growth modeling and prediction,” in Proc. Advances in Neural Networks,
2005, pp. 925–930.

[12] P.-F. Pai and W.-C. Hong, “Software reliability forecasting by support
vector machines with simulated annealing algorithms,” Journal of Sys-
tems and Software, vol. 79, pp. 747–755, 2006.

[13] T. Minohara and Y. Tohma, “Parameter Estimation of Hyper-Geometric
Distribution Software Reliability Growth Model by Genetic Algorithms,”
in Proc. International Symposium on Software Reliability Engineering,
Toulouse, France, oct 1995, pp. 324–329.

[14] M. Chen, H. Wu, and H. Shyur, “Analyzing software reliability growth
model with imperfect-debugging and changepoint by genetic algo-
rithms,” in Proc. International Conference on Computers and Industrial
Engineering, Montreal, Canada, nov 2001, pp. 520–526.

[15] Y. Dai, M. Xie, K. Poh, and B. Yang, ““Optimal testing resource allo-
cation with genetic algorithm for modular software systems”,” Journal
of Systems and Software, vol. 66, no. 1, pp. 47–55, 2003.

[16] E. O. Costa, S. R. Vergilio, A. T. R. Pozo, and G. A. Souza, “Modeling
software reliability growth with genetic programming,” in Proc. Inter-
national Symposium on Software Reliability Engineering, Chicago, IL,
nov 2005.

[17] E. O. Costa, G. A. de Souza, A. T. R. Pozo, and S. R. Vergilio,
“Exploring genetic programming and boosting techniques to model
software reliability,” IEEE Transactions on Reliability, vol. 56, no. 3,
pp. 422–434, 2007.

[18] I. Altaf, I. Majeed, and K. Arshid Iqbal, “Effective and optimized
software reliability prediction using harmony search algorithm,” in Proc.
International Conference on Green Engineering and Technologies, 2016,
pp. 1–6.

[19] A. Choudhary, A. S. Baghel, and O. P. Sangwan, “Efficient parameter
estimation of software reliability growth models using harmony search,”
IET Software, vol. 11, no. 6, pp. 286–291, 2017.

[20] ——, “An efficient parameter estimation of software reliability growth
models using gravitational search algorithm,” International Journal of
System Assurance Engineering and Management, vol. 8, no. 1, pp. 79–
88, mar 2017.

[21] A. Sheta, “Reliability growth modeling for software fault detection using
particle swarm optimization,” in Proc. IEEE Congress on Evolutionary
Computation, 2006, pp. 3071–3078.

[22] C. Jin and S.-W. Jin, “Parameter optimization of software reliability
growth model with s-shaped testing-effort function using improved
swarm intelligent optimization,” Applied Soft Computing, vol. 40, pp.
283–291, 2016.

https://github.com/LanceFiondella/NSF_REU_Summer2019

[23] D. T. Sharma, M. Pant, and A. Abraham, “Dichotomous search in abc
and its application in parameter estimation of software reliability growth
models,” in Proc. World Congress on Nature and Biologically Inspired
Computing, 2011, pp. 207–212.

[24] C. Zheng, X. Liu, S. Huang, and Y. Yao, “A parameter estimation
method for software reliability models,” Procedia engineering, vol. 15,
pp. 3477–3481, 2011.

[25] L. Shanmugam and L. Florence, “A comparison of parameter best
estimation method for software reliability models,” International Journal
of Software Engineering and Applications, vol. 3, pp. 91–102, 2012.

[26] D. Al-Saati and M. Abd-AlKareem, “The use of cuckoo search in
estimating the parameters of software reliability growth models,” Inter-
national Journal of Computer Science and Information Security, vol. 11,
2013.

[27] A. Sheta and A. Abdel-Raouf, “Estimating the parameters of software
reliability growth models using the grey wolf optimization algorithm,”
International Journal of Advanced Computer Science and Applications,
vol. 7, no. 4, pp. 499–505, 2016.

[28] N. Al-Saati and M. Alabajee, “On the performance of firefly algorithm
in software reliability modeling,” Proc. International Journal of Recent
Research and Review, vol. 9, no. 4, pp. 1–9, 2016.

[29] A. Choudhary, A. S. Baghel, and O. P. Sangwan, “Parameter estimation
of software reliability model using firefly optimization,” in Proc. Data
Engineering and Intelligent Computing. Springer, 2018, pp. 407–415.

[30] M. Alabajee and T. Alreffaee, “Exploring ant lion optimization algorithm
to enhance the choice of an appropriate software reliability growth
model,” International Journal of Computer Applications, vol. 182, no. 4,
pp. 1–8, 2018.

[31] K. Lu and Z. Ma, “Parameter estimation of software reliability growth
models by a modified whale optimization algorithm,” in Proc. IEEE
International Symposium on Distributed Computing and Applications
for Business Engineering and Science, 2018, pp. 268–271.

[32] M. Rao and K. Anuradha, “A hybrid method for parameter estimation
of software reliability growth model using modified genetic swarm
optimization with the aid of logistic exponential testing effort function,”
in Proc. IEEE International Conference on Research Advances in
Integrated Navigation Systems, 2016, pp. 1–8.

[33] A. Kumar, R. P. Tripathi, P. Saraswat, and P. Gupta, “Parameter
estimation of software reliability growth models using hybrid genetic
algorithm,” in Proc. IEEE International Conference on Image Informa-
tion Processing, 2017, pp. 1–6.

[34] J. Alneamy and M. Dabdoob, “The use of original and hybrid grey wolf
optimizer in estimating the parameters of software reliability growth
models,” International Journal of Computer Applications, vol. 167,
no. 3, pp. 12–21, 2017.

[35] Z. Li, M. Yu, D. Wang, and H. Wei, “Using hybrid algorithm to estimate
and predicate based on software reliability model,” IEEE Access, vol. 7,
pp. 84 268–84 283, 2019.

[36] H. Okamura, Y. Watanabe, and T. Dohi, “Estimating mixed software
reliability models based on the EM algorithm,” in Proc. Proceedings
International Symposium on Empirical Software Engineering, oct 2002,
pp. 69–78.

[37] ——, “An iterative scheme for maximum likelihood estimation in
software reliability modeling,” in Proc. International Symposium on
Software Reliability Engineering, nov 2003, pp. 246–256.

[38] P. Zeephongsekul, C. Jayasinghe, L. Fiondella, and V. Nagaraju,
“Maximum-likelihood estimation of parameters of NHPP software reli-
ability models using expectation conditional maximization algorithm,”
IEEE Transactions on Reliability, vol. 65, no. 3, pp. 1571–1583, 2016.

[39] V. Nagaraju, L. Fiondella, P. Zeephongsekul, C. Jayasinghe, and
T. Wandji, “Performance optimized expectation conditional maximiza-
tion algorithms for nonhomogeneous Poisson process software reliability
models,” IEEE Transactions on Reliability, vol. 66, no. 3, pp. 722–734,
2017.

[40] K. Deb, Multi-Objective Evolutionary Algorithms. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2015, pp. 995–1015. [Online]. Available:
https://doi.org/10.1007/978-3-662-43505-2 49

[41] A. Messac, A. Ismail-Yahaya, and C. Mattson, “The normalized normal
constraint method for generating the pareto frontier,” Structural and
Multidisciplinary Optimization, vol. 25, no. 2, pp. 86–98, Jul. 2003.

[42] D. Mueller-Gritschneder, H. Graeb, and U. Schlichtmann, “A successive
approach to compute the bounded pareto front of practical multiobjective
optimization problems,” SIAM Journal on Optimization, vol. 20, no. 2,
pp. 915–934, Jan. 2009.

[43] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, apr 2002.

[44] E. Zitzler, M. Laumanns, and L. Thiele, “Spea2: Improving the strength
pareto evolutionary algorithm,” TIK-report, vol. 103, 2001.

[45] W. Farr, “Software reliability modeling survey,” in M. Lyu (ed): Hand-
book of Software Reliability Engineering. McGraw-Hill, 1996, vol.
222, pp. 71–117.

[46] D. E. Goldberg, Genetic algorithms in search, optimization, and machine
learning. Addison-Wesley, 2012.

[47] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in Proc. IEEE International Symposium on Micro Machine and
Human Science, Nagoya, Japan, oct 1995, pp. 39–43.

[48] X.-S. Yang, A New Metaheuristic Bat-Inspired Algorithm. Springer
Berlin Heidelberg, 2010, vol. Nature Inspired Cooperative Strategies for
Optimization, pp. 65–74.

[49] X.-L. Li, Z.-J. Shao, and J.-X. Qian, “An optimizing method based
on autonomous animats: Fish-swarm algorithm,” Systems Engineering
- Theory & Practice, vol. 22, no. 11, pp. 32–38, 2002.

[50] X. Yang and Suash Deb, “Cuckoo search via Lévy flights,” in Proc.
World Congress on Nature Biologically Inspired Computing, dec 2009,
pp. 210–214.

[51] X.-S. Yang, “Firefly algorithms for multimodal optimization,” in In-
ternational symposium on stochastic algorithms. Springer, 2009, pp.
169–178.

[52] ——, “Flower pollination algorithm for global optimization,” in Proc.
International Conference on Unconventional Computing and Natural
Computation. Springer, 2012, pp. 240–249.

[53] D. Karaboga and B. Basturk, “A powerful and efficient algorithm for nu-
merical function optimization: Artificial bee colony (ABC) algorithm,”
Journal of Global Optimization, vol. 39, no. 3, pp. 459–471, 2007.

[54] R. Tang, S. Fong, X. Yang, and S. Deb, “Wolf search algorithm
with ephemeral memory,” in Proc. International Conference on Digital
Information Management, aug 2012, pp. 165–172.

[55] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. Jarrod Millman, N. Mayorov,
A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. Carey, İ. Polat,
Y. Feng, E. W. Moore, J. Vand erPlas, D. Laxalde, J. Perktold, R. Cim-
rman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald,
A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and C. ontributors
SciPy 1.0, “SciPy 1.0–Fundamental Algorithms for Scientific Computing
in Python,” arXiv e-prints, p. arXiv:1907.10121, jul 2019.

[56] J. A. Nelder and R. Mead, “A simplex method for function minimiza-
tion,” The Computer Journal, vol. 7, no. 4, pp. 308–313, Jan. 1965.

[57] M. J. D. Powell, “An efficient method for finding the minimum of
a function of several variables without calculating derivatives,” The
Computer Journal, vol. 7, no. 2, pp. 155–162, Feb. 1964.

[58] M. Hestenes and E. Stiefel, “Methods of conjugate gradients for solving
linear systems,” Journal of Research of the National Bureau of Stan-
dards, vol. 49, no. 6, p. 409, Dec. 1952.

[59] R. Fletcher, Practical methods of optimization. John Wiley & Sons,
1986.

[60] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A limited memory algo-
rithm for bound constrained optimization,” SIAM Journal on Scientific
Computing, vol. 16, no. 5, pp. 1190–1208, Sep. 1995.

[61] L. Grippo, F. Lampariello, and S. L. I. L, “A truncated newton method
with nonmonotone line search for unconstrained optimization,” Journal
of Optimization Theory and Applications, vol. 60, no. 3, pp. 401–419,
1989.

[62] J.-F. Bonnans, J. C. Gilbert, C. Lemaréchal, and C. A. Sagastizábal,
Numerical optimization theoretical and practical aspects. Springer,
2006.

[63] “Standard glossary of software engineering terminology (std-729-
1991),” ANSI/IEEE, Tech. Rep., 1991.

[64] S. Yamada and S. Osaki, “Reliability growth models for hardware
and software systems based on nonhomogeneous Poisson processes: A
survey,” Microelectronics Reliability, vol. 23, no. 1, pp. 91–112, 1983.

[65] A. Goel, “Software reliability models: Assumptions, limitations,
and applicability,” IEEE Transactions on Software Engineering, vol.
SE-11, no. 12, pp. 1411–1423, Dec. 1985. [Online]. Available:
https://doi.org/10.1109/tse.1985.232177

[66] M. Lyu, Ed., Handbook of Software Reliability Engineering. New York,
NY: McGraw-Hill, 1996.

https://doi.org/10.1007/978-3-662-43505-2_49
https://doi.org/10.1109/tse.1985.232177

	Introduction
	Stable, efficient, and accurate multi-phase algorithm design
	Non-dominated Sorting Genetic Algorithm-II

	Likelihood Function
	Illustrations
	NHPP Software Reliability Growth Model

	Conclusions and future research
	References

