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Abstract. The early universe may have contained internally thermalized dark sectors that
were decoupled from the Standard Model. In such scenarios, the relic dark thermal bath,
composed of the lightest particle in the dark sector, can give rise to an epoch of early matter
domination prior to Big Bang Nucleosynthesis, which has a potentially observable impact on
the smallest dark matter structures. This lightest dark particle can easily and generically
have number-changing self-interactions that give rise to “cannibal” behavior. We consider
cosmologies where an initially sub-dominant cannibal species comes to temporarily drive the
expansion of the universe, and we provide a simple map between the particle properties of
the cannibal species and the key features of the enhanced dark matter perturbation growth
in such cosmologies. We further demonstrate that cannibal self-interactions can determine
the small-scale cutoff in the matter power spectrum even when the cannibal self-interactions
freeze out prior to cannibal domination.
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1 Introduction

While standard cosmology posits that post-inflationary reheating is followed by uninterrupted
radiation domination prior to matter-radiation equality, a variety of well-motivated particle
physics scenarios predict departures from radiation domination in the poorly constrained
epoch between the end of inflation and Big Bang nucleosynthesis (BBN) [1]. For instance,
supersymmetric theories often predict moduli whose energy density can come to dominate the
universe as they coherently oscillate in a quadratic potential, giving rise to an early matter-
dominated era (EMDE) that ends when the modulus decays [2]. The semi-classical evolution
of light spin-zero fields can also give rise to epochs of kination when the scalar field’s kinetic
energy dominates over its potential energy [3–5].

Early departures from radiation domination are also generic consequences of theories that
contain an internally thermalized hidden sector that is thermally decoupled from the Standard
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Model (SM). Such decoupled self-interacting hidden sectors are readily obtained from straight-
forward inflationary scenarios [6–10], and can naturally provide a cosmological origin for the
dark matter (DM) of our universe [6, 11–13], a possibility that becomes ever more compelling
with the continued absence of direct detection signals to date. If the lightest state in the
hidden sector is massive, then it can easily come to dominate the energy density of the universe
after it becomes non-relativistic. If this particle is effectively pressureless when it dominates,
it produces an EMDE [14–18]. However, in many familiar theories, ranging from the simple
and minimal example of a single scalar field to the exceptionally well-motivated scenario of
a confining Yang-Mills sector, the lightest particle in the dark sector has number-changing
“cannibal” self-interactions that remain in equilibrium even after the particle becomes non-
relativistic [19–29]. While this particle dominates the expansion of the universe, these self-
interactions sustain appreciable pressure in the cannibal fluid, giving rise to an early cannibal-
dominated era (ECDE) [30]. In either case, radiation domination is restored when the lightest
hidden sector particle decays into SM particles; this must occur prior to neutrino decoupling
to avoid altering the abundance of light elements [31–34] and the anisotropies in the cosmic
microwave background [35, 36].

Altered expansion histories prior to BBN can leave potentially observable footprints in
dark matter perturbations on scales that experienced altered growth [37–41]. Since subhorizon
dark matter density perturbations grow linearly with the scale factor during matter domina-
tion, an EMDE generates a significantly enhanced population of sub-earth-mass dark matter
halos if the dark matter particles are cold enough to form such structures [37, 40]. The masses
and central densities of the smallest microhalos are determined by the small-scale cutoff in
the matter power spectrum. The rapid growth of perturbations during the EMDE implies
that the observational signatures of these microhalos, such as the dark matter annihilation
rates within their dense cores, are extremely sensitive to the scale of this cutoff [40, 42, 43].
If dark matter does not interact with SM particles, the small-scale cutoff is most often deter-
mined by the microphysics of the species that produces the altered cosmic evolution, making
the microhalo population a probe of the particle physics of the early universe as well as its
expansion history. In the case of ECDEs, the small-scale cutoff in the matter power spectrum
results from the thermal pressure of the cannibal particles. In Ref. [30], we determined how
the cutoff scale is set by the strength of the cannibal self-interactions and the mass of the
cannibal field in scenarios in which the cannibal density exceeds the SM density up until the
decay of the cannibal particles.

Here we extend our study of ECDEs to models with an arbitrary initial temperature
ratio between the relativistic cannibal fluid and the SM plasma, which determines when
the cannibal density exceeds the SM density. We demonstrate that cannibal interactions
continue to control the small-scale cutoff even when they freeze out while the cannibal is still
subdominant to SM radiation. We show that DM perturbations that experience the most
growth are those with wavelengths on the same scale as the cannibal sound horizon, which is
controlled by the strength of the cannibal self-interactions. This enables us to extend the map
between cannibal particle properties and the properties of the resulting microhalo population
to the fully general case and establish its dependence on the initial temperature ratio between
the hidden sector and the SM.

The organization of this paper is as follows. Section 2 discusses the homogeneous evo-
lution of cosmologies with a period of early cannibal domination. In section 3, we study
perturbation growth in these cosmologies and highlight important length scales, showing that
both the magnitude and scale of maximum DM perturbation growth are directly connected
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to cannibal particle properties. We discuss possible breakdowns of the perfect-fluid approx-
imation in section 4. Implications of early cannibal-dominated eras for the earliest-forming
microhalos are discussed in section 5, and we conclude in section 6. Several technical results
are given in the appendices: quantitative detail about our homogeneous background model-
ing is given in appendix A, while appendix B contains derivations governing the evolution
of cannibal density perturbations deep inside the cannibal sound horizon. In appendix C we
compute the cannibal 2-to-2 scattering rate. Finally, in appendix D we derive the leading
corrections to the cosmological perturbation equations from cannibal decays.

2 Homogeneous background evolution

We are interested in a universe comprised of three components: the cannibal species, DM,
and the thermal SM radiation bath. For simplicity, we consider the DM relic abundance to
already be in place at the beginning of our analysis. In the natural and minimal scenario
where DM and the cannibal species are part of the same thermal bath in the early universe,
we expect DM to be heavier than the cannibal: to experience cannibalism the cannibal species
cannot be in equilibrium with any relativistic species while it is non-relativistic, and thus is
generically the lightest state in that sector. The cannibal species must be thermally decoupled
from the SM radiation bath, making the initial temperature ratio between the two sectors
a free parameter. Once the cannibal particle becomes non-relativistic, its energy density
dilutes more slowly than that of the SM radiation and will eventually come to dominate the
universe provided the cannibal is sufficiently long-lived. We focus on the parameter space
where the universe undergoes such an early cannibal-dominated era (ECDE) and caution that
the cannibal may or may not be actively undergoing cannibalism during the ECDE. The
cannibal eventually decays into SM particles, which must occur before neutrino decoupling
to avoid spoiling the successful predictions of BBN [31–34] and altering the features of the
CMB [35, 36].

We consider a simple model of a cannibal species given by a scalar field with cubic and
quartic interactions,

Lcan =
1

2
∂µϕ∂µϕ− 1

2
m2ϕ2 − g

3!
ϕ3 − λ

4!
ϕ4. (2.1)

In this model three-to-two scattering processes maintain chemical equilibrium in the cannibal
plasma even after the cannibal particles have become non-relativistic. In the non-relativistic
limit, the s-wave component of the thermally-averaged 3 → 2 cross-section dominates and is
given by 1

〈σv2〉can =
25

√
5(g/m)2[(g/m)2 − 3λ]2

331776πm5
≡ 25

√
5π2α3

c

5184m5
. (2.2)

Here αc parametrizes the combination of cannibal couplings that determines the strength of
3 → 2 reactions,

(4παc)
3 ≡ (g/m)2[(g/m)2 − 3λ]2. (2.3)

1In contrast to the expression in Refs. [25, 26], we find a negative sign between the cubic and quartic
couplings in the square brackets. When the cubic interaction arises from spontaneous breaking of the Z2 sym-
metry taking φ → −φ, this expression for the three-to-two cross-section vanishes at threshold, in accordance
with the general result [44].
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While eq. (2.1) describes a specific cannibal model, it also provides a useful toy model for a
broad class of theories with cannibal interactions. For instance, the lightest glueballs in a pure
SU(N) sector have cannibal interactions that can be described with an effective Lagrangian
of the form in eq. (2.1) [20, 21, 23, 24, 27].

The Boltzmann equations that describe the homogeneous evolution of the cannibal fluid
in the early universe, together with DM and SM radiation, are

dρcan
dt

+ 3Hρcan(1 + wc(a)) = −Γmncan (2.4)

dρr
dt

+ 4Hρr = Γmncan (2.5)

dρDM

dt
+ 3HρDM = 0 (2.6)

dncan
dt

+ 3Hncan = 〈σv2〉cann2can(ncan,eq − ncan)− Γncan, (2.7)

where the Hubble rate is given by

H =
1√
3MPl

√
ρcan + ρr + ρDM, (2.8)

ρr, ρDM and ρcan are the energy densities of SM radiation, DM and the cannibals, respec-
tively, wc is the cannibal equation of state, ncan is the cannibal number density and ncan,eq
its equilibrium value, Γ is the zero-temperature decay width of the cannibal particle to the
SM, and MPl = 2.435 × 1018 GeV is the reduced Planck mass. The collision operator de-
scribing cannibal decays that appears on the right-hand side of these equations is derived in
appendix A.3.

Chemical equilibrium in the cannibal fluid is maintained as long as the 3 → 2 scattering
rate is rapid compared toH; the freeze-out of this cannibal interaction is described by eq. (2.7).
We assume that two-to-two cannibal scatterings are fast enough to maintain internal kinetic
equilibrium. Thus all the thermal quantities for the cannibal fluid can be expressed in terms
of its chemical potential, µ, and its temperature, Tc:

ρcan =

∫

d3p

(2π)3
Ef

(

E − µ

Tc

)

, wc(a) =

∫ d3p
(2π)3

p2

3E f
(

E−µ
Tc

)

∫ d3p
(2π)3

Ef
(

E−µ
Tc

) , ncan =

∫

d3p

(2π)3
f

(

E − µ

Tc

)

,

(2.9)

where f(x) = (ex − 1)−1 is the Bose-Einstein distribution. Consequently the system of
eqs. (2.4)-(2.7) can be solved for the four unknowns ρr, ρDM, µ, and Tc. We are interested
in models that realize an epoch of cannibalization, which requires that the cannibal species
becomes non-relativistic before the cannibal interactions freeze out. Thus in many numer-
ical integrals of interest we can approximate the cannibal phase space distribution with a
Maxwell-Boltzmann distribution. Further details concerning our numerical methods are given
in appendix A.2.

We set our initial conditions at an initial scale factor ai, defined such that

Tc(ai) = 10m. (2.10)

The cannibal fluid is in chemical equilibrium initially, so that µ(ai) = 0. We find the initial
DM density by scaling the observed relic density back in time. Since the cannibal fluid and
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resulting expressions for ρcan,eq and wc,eq in eq. (2.4), we find while neglecting cannibal decay

ρcan,eq ≈ c1m
4

(a/ai)3 ln(a/(c2ai))
(2.12)

Tc,eq ≈ m

3 ln(a/(c2ai))
. (2.13)

Here c1 = 148 and c2 = 25.6 are numerical factors obtained after numerical integration
in the semi-relativistic regime, 10 < m/Tc < 0.1; see appendix A.1. As shown in Fig. 9,
these equations are an accurate description of equilibrium cannibal evolution for Tc . m/5.
Consequently, we define the scale factor acan that marks the onset of cannibalism through

Tc(acan) ≡
m

5
, (2.14)

which gives

acan = 101ai. (2.15)

As long as the cannibal fluid is in chemical equilibrium, the evolution of ρcan(a) with
a is independent of the Hubble rate. However, the scale at which the cannibal fluid can no
longer maintain chemical equilibrium depends on the Hubble rate and thus on the presence
of other species. We define afz, the scale factor when the cannibal 3 → 2 reactions freeze out,
through

〈σv2〉cann2can(afz) = H(afz). (2.16)

After cannibal freeze-out, the temperature of the cannibal cools as Tc ∝ 1/a2, as expected
for massive non-interacting particles. The residual pressure does not affect the evolution
of the homogeneous cannibal density, it does affect the evolution of cannibal perturbations
[30]. Here, in contrast to Ref. [30], we consider scenarios where the SM radiation bath is
important in determining afz, including cases where the cannibal only comes to dominate
after freeze-out (such as the scenario shown in figure 1).

The universe is initially SM radiation-dominated when ρr(ai) > ρcan(ai) or

g∗[Tr(ai)]T
4
r (ai) > (10m)4, (2.17)

where g∗(Tr) is the effective number of degrees of freedom in the SM. For g∗[Tr(ai)] ∼ 100,
SM radiation domination at ai then requires

ξi .3.2. (2.18)

A universe that is SM radiation dominated at ai will transition to cannibal domination at the
scale factor adom where

ρcan(adom) = ρr(adom), (2.19)

where we have implicitly assumed that the cannibal lifetime is long enough that it will come
to dominate before it decays.

When Γ exceeds the Hubble rate, the cannibal particles decay into the SM radiation
bath and the universe then evolves as in the standard ΛCDM cosmology. We define the
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where c2s,fz and wc,fz are constants that give the correct asymptotic evolution (see dot-dashed
line in figure 2). We find that cs,fz, to a good approximation, is given by cs,eq(3afz) while
wc,fz is given by wc,eq(2afz), where the subscript eq denotes that the variables are computed
assuming the cannibal fluid to be in thermal equilibrium. Then using the fact that in the
non-relativistic limit c2s,eq ≈ wc,eq ≈ Tc,eq/m, we obtain

c2s,fz ≈
1

3 ln(3afz/(c2ai))
wc,fz ≈

1

3 ln(2afz/(c2ai))
. (2.24)

In figure 2, both wc and c2s increase near arh because the cannibal particles with larger
velocities decay later due to time dilation. Consequently, the temperature of the cannibal fluid
increases as cannibal particles with slower speeds are removed first. However, the heating near
arh is unimportant for the evolution of dark matter perturbations because we are interested
in scenarios with arh � afz. Thus, the cannibal fluid is too cold at arh for the heating due to
time dilation to have any impact.

2.1 Mapping between cannibal parameters and cosmological scales

Our early cannibal-dominated cosmology is governed by four free parameters: the initial tem-
perature ratio ξi and the cannibal particle properties m,Trh, and αc. These four parameters
determine the three important scales afz/ai, adom/ai, and arh/ai that will ultimately control
the major features of the matter power spectrum. Due to the non-trivial evolution of the
cannibal density, the exact relations between these cosmological scales and the underlying
cannibal parameters are complicated, but useful approximate relations can be obtained by
fixing a/ai = 103 in the logarithm of the expression for ρcan(a) given in eq. (2.12):

ρcan ∼ 40m4

(a/ai)3
. (2.25)

This approximation is accurate to O(1) for scale factors between acan and arh/10 and will
enable us to provide simple expressions for key quantities, albeit at the cost of obscuring
logarithmic dependence on afz/ai.

We can express arh/ai in terms of m and Trh by setting the cannibal density at reheating
equal to the radiation density. Using eq. (2.25) for the cannibal density then gives

arh
ai

∼ 2.3

(

m

Trh

)4/3(g∗(Trh)

10

)−1/3

. (2.26)

Similarly, we can find adom in terms of ξi using eq. (2.25) for the cannibal density in the
definition of adom, eq. (2.19). With ρr(adom) = ρr(ai)(ai/adom)

4, we then find

adom
ai

∼ 80g∗[Tr(ai)]
1

ξ4i
. (2.27)

To express afz in terms of cannibal parameters, we start with its definition in eq. (2.16).
We then approximate ncan(afz) ≈ ρcan(afz)/m and express ρcan and 〈σv2〉can using eq. (2.25)
and eq. (2.2) respectively. In the case where the Hubble rate is dominated by the cannibal
density during freeze-out, i.e. adom < afz, we obtain

afz
ai

∼ 3× 104α2/3
c

(GeV

m

)2/9
. (2.28)
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Similarly, in the case where the Hubble rate is dominated by the SM radiation during freeze-
out, i.e. adom > afz, we use ρr(afz) = ρr(ai)(ai/afz)

4 to obtain

afz
ai

∼ 3.3× 104α3/4
c ξ

1/2
i

(

GeV

m

)1/4(g∗(10m/ξ)

100

)−1/8

. (2.29)

We see that afz/ai decreases slowly as m increases because increasing m reduces the 3 → 2
cross-section for fixed αc. When the universe is SM dominated at afz, afz/ai decreases as
we decrease ξi because decreasing ξi increases ρr, which in turn increases the Hubble rate,
causing freeze-out to occur earlier.

3 Evolution of perturbations

In this section we describe the evolution of cosmological perturbations during an ECDE with
particular focus on the physics underlying the growth in DM density perturbations. We follow
the conventions used in Ma and Bertschinger [45]. We work in conformal Newtonian gauge
with metric given by

ds2 = −(1 + 2ψ)dt2 + a2(t)(1− 2φ)dx2, (3.1)

where φ and ψ are spatial and temporal metric perturbations respectively. We consider all
fluids to be perfect fluids. Thus there is no anisotropic stress, which implies that

ψ = φ. (3.2)

In section 4 we revisit the perfect-fluid assumption for the DM and cannibal fluids.

Perturbations of perfect fluids can be described by two quantities: δ = [ρ(t, xi)− ρ̄(t)]/ρ̄,
which is the density perturbation over the uniform background density ρ̄, and θ = ∂jv

j ,
which is the comoving divergence of the physical fluid velocity, vj = a dxj/dt. Our cannibal
perturbation equations are similar to those in [27, 29, 46] but we also include leading-order
contributions from cannibal decays into radiation, which are derived in appendix D. Our suite
of perturbation equations is then

δ′c(a) + (1 + wc)(
θc
a2H

− 3φ′) +
3

a

(

1− Γ

2H

)

(c2s − wc)δc = − Γ

aH
φ

(

1− 3

2
wc

)

, (3.3)

θc
′(a) +

1

a
(1− 3wc)θc +

w′
c

1 + wc
θc −

c2s
1 + wc

k2

a2H
δc −

k2

a2H
φ =

Γ

aH
θcc

2
s, (3.4)

δ′DM(a) +
θDM

a2H
− 3φ′ = 0, (3.5)

θ′DM(a) +
1

a
θDM − k2

a2H
φ = 0, (3.6)

δ′r(a) +
4

3

θr
a2H

− 4φ′ =
Γmncan
aHρr

[

φ+ δc − δr +
3

2
δc(wc − c2s)

]

, (3.7)

θ′r(a)−
1

4

k2

a2H
δr −

k2

a2H
φ =

Γmncan
aHρr

(3

4
θc − θr

)

, (3.8)

k2φ+ 3(aH)2
(

aφ′ + φ
)

= −1

2
a2

1

M2
Pl

(ρcanδc + ρrδr + ρDMδDM). (3.9)
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Here the subscripts c, r and DM corresponds to perturbations of the cannibal, SM radiation
and DM fluids respectively, and the prime denotes a derivative with respect to a. We have
taken DM to be kinetically decoupled from both the cannibal and radiation fluids, so that
its only interactions are gravitational; we will discuss the effects of adding kinetic couplings
between cannibal and DM fluids below.

At ai, when we begin our numerical calculations, the cannibal particles are still relativis-
tic since Tc(ai) = 10m. For adiabatic perturbations, the initial conditions for super horizon
modes at ai are:

δr =
4

3
δDM = δc = −2φp θr = θDM = θc =

1

2

k2

aH
φp, (3.10)

where φp is the primordial metric perturbation. Adiabatic initial conditions for all fields are
naturally obtained in the minimal cosmological scenario where the decays of a single inflaton
field populate both the SM and a hidden sector containing the cannibals and DM.2

Our primary interest is the evolution of modes that enter the horizon prior to reheating
and thus experience the epoch of modified cosmic expansion. Before numerically solving the
perturbation equations given in eqs. (3.3)-(3.8), we first show how they simplify for modes
deep inside the horizon (k � aH) during the ECDE to gain insight into the essential physics
governing the growth of DM density perturbations. Starting with eq. (3.9) for the metric
perturbation, we neglect the second term on the LHS of eq. (3.9). We can also ignore ρDMδDM

on the RHS of eq. (3.9) because ρDM is at least seven orders of magnitude smaller than ρcan
and ρr prior to reheating (see figure 1), which must occur before BBN. Consequently, deep
inside the horizon and prior to reheating we have

φ = −3

2

(

aH

k

)2 ρcanδc + ρrδr
ρcan + ρr

. (3.11)

Next we consider the evolution of the cannibal perturbations because they determine
the evolution of DM perturbations. We use eq. (3.4) to eliminate θc from eq. (3.3). In doing
so, we make three approximations. First, we neglect terms proportional to c2s − wc, w

′
c(a)

and d(c2s(a))/da, as wc and cs are slowly varying before afz and rapidly become negligible
after afz. Second, we neglect φ′ in eq. (3.3) because the variation of the metric perturbation is
negligible compared to θc/(aH) deep inside the horizon. Third, we neglect terms proportional
to Γ/H: before arh we have Γ/H � 1, and after arh, the cannibal fluid decays and becomes
irrelevant. Around arh, when Γ/H ∼ O(1), the metric perturbation multiplying Γ in eq. (3.3)
is negligible compared to δc for modes deep within the horizon, and the sound speed term
multiplying Γ in eq. (3.4) is much smaller than one by the time of reheating (see figure 2).
Finally we eliminate φ using eq. (3.11) to obtain

δ′′c (a) +
[(a2H)′

a2H
+

1

a
(1− 3wc)

]

δ′c +
1

a2

(

csk

aH

)2

δc =
3

2

(1 + wc)

a2
ρrδr + ρcanδc
ρcan + ρr

. (3.12)

Naively, eq. (3.12) implies that δr may affect δc during SM radiation domination, when
ρr � ρcan. However, subhorizon radiation perturbation oscillate, and thus their gravitational

2Strictly speaking, these adiabatic initial conditions are applicable to ρr as long as energy injection from
cannibal decays is negligible at ai. When instead Γρcan/ρr � H at ai, ρr ∝ a−2, and the initial conditions
for the radiation perturbations become δr = φp/2 and θr = θc.
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influence on δc is negligible. Consequently one can set δr = 0 and rewrite eq. (3.12) in the
form

d2δc(a)

d ln2(a)
− 3wc

dδc(a)

d ln(a)
+

[

(

csk

aH

)2

− 3

2
(1 + wc)

ρcan
ρcan + ρr

]

δc =0. (3.13)

The first term in the square brackets arises from thermal pressure in the cannibal fluid and
induces oscillations in the cannibal density perturbation. The second term in the square
brackets is inconsequential during SM radiation domination, but during cannibal domination,
it induces growth in the cannibal perturbation due to the gravitational attraction between
the cannibal particles. When ρcan � ρr, the terms in the square brackets thus determine a
Jeans wavenumber, kJ , for the cannibal fluid,

kJ ≡
√

3

2
(1 + wc)

aH

cs
. (3.14)

The corresponding Jeans length scale k−1
J determines when gravitational attraction overcomes

the thermal pressure and leads to growth in δc.
If the cannibals dominate the universe prior to cannibal freeze-out, then the Jeans length

grows until a ∼ 2afz because c2s and wc decay logarithmically with scale factor until 2afz (see
figure 2) while H ∝ a−3/2 up to logarithmic factors. After 2afz, the Jeans length decays
as k−1

J ∝ 1/
√
a because cs now decays as ∝ 1/a, while wc � 1 and can be neglected. In

this case, the cannibal Jeans length k−1
J is the relevant length scale separating oscillating

modes from growing modes in the cannibal fluid and thereby determines the growth of DM
modes during the ECDE. Thus when the cannibal species is always dominant over the SM,
the wave number kpk for which δDM experiences maximum growth during the ECDE can be
simply related to the maximum value of the Jeans length, k−1

pk ∼ 1.4k−1
J (2afz) [30]. This peak

wavenumber kpk determines the characteristic mass of the earliest-forming DM microhalos,
as we discuss further in section 5.

We now consider scenarios in which the cannibal is initially subdominant to SM radi-
ation. To understand the evolution of DM perturbations in this scenario, we again need to
determine the length scale that separates oscillating and growing cannibal modes. While the
universe is SM dominated, we find that this length scale is determined by the cannibal sound
horizon. After analyzing the evolution of perturbations in the next subsection, we provide a
new analytical estimate of kpk for scenarios with adom > 2afz in section 3.2.

3.1 Cannibal freeze-out during SM radiation domination

We can understand the essential behavior of the perturbations in cosmologies with an initially-
subdominant cannibal density by separately considering the evolution of perturbation modes
that enter the horizon prior to cannibal freeze-out and modes that enter the horizon between
cannibal freeze-out and cannibal decay.

3.1.1 Modes that enter the horizon prior to cannibal freeze-out

In the top panel of figure 3 we show the comoving horizon, (aH)−1 (solid blue), the cannibal
Jeans length (solid orange), and the comoving cannibal sound horizon,

rs ≡
∫ t

cs
dt̃

ã
=

∫ a cs
ãH

d ln(ã). (3.15)
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horizon at ahor, defined through

ahorH(ahor) ≡ k. (3.16)

All density perturbations grow by a factor of 10 to 100 shortly after they enter the horizon.
Inside the horizon, thermal pressure causes both the cannibal and SM radiation density
perturbations to oscillate, whereas the DM density perturbation grows logarithmically during
radiation domination and then approaches a constant value while the cannibal perturbation
oscillates during ECDE.

When the wavenumber k is much larger than aH/cs, the time scale of cannibal oscil-
lations is much smaller than the time scale over which the instantaneous frequency and the
anti-damping terms in eq. (3.13) evolve. Thus, one can use a WKB approximation to obtain

δc ≈
C1√
cs

exp

(

−
∫ a

as,hor

1− 3wc

2
d ln(ã)

)

sin [krs + C2] , (3.17)

as detailed in appendix B. Here as,hor is the scale factor for which csk/(aH) = 1, and C1

and C2 are constants determined by δc(as,hor) and δ′c(as,hor). Note that the instantaneous
frequency of δc oscillations is set by the cannibal sound horizon.

In the bottom panel of figure 3, we see that the amplitude of δc oscillations decreases
slowly for a < 2afz and reaches a constant value for a > 2afz. The slow decay prior to
2afz results from the logarithmic decay of cs partially compensating for the exponential in
eq. (3.17). While a & 2afz, cs and wc decay as cs = cs,fzafz/a and wc = wc,fza

2
fz/a

2 (see
figure 2). Inserting this evolution in eq. (3.17), one can check that the amplitude of δc
remains constant after 2afz.

Once cannibal domination begins, the Jeans length is again the scale that controls the
oscillations in δc. For instance, the δc oscillations in the bottom panel of figure 3 end when
the mode exits the Jeans horizon in the top panel. The linear growth of δc after the mode
exits the Jeans horizon can be seen analytically by solving eq. (3.12) while neglecting cs, wc,
and ρr and using the fact that Hubble rate evolves as H ∝ a−3/2.

The evolution of δr seen in the bottom panel of figure 3, although interesting, has no
significant impact on δDM. Radiation perturbations have an important gravitational impact
on δDM only during SM radiation domination. However, during SM radiation domination δr
oscillates, and hence its gravitational feedback on both δDM and δc is negligible. The only time
δr has a significant influence on the other perturbations is near horizon entry (a . 10ahor)
before δr starts oscillating.

In the bottom right panel of figure 3 we see that δDM (blue line) grows logarithmically
for ahor < a < adom. This is the expected evolution for δDM in a radiation-dominated universe
and is given by

δDM(a) = −Asφp(k) ln

(

Bsa

ahor

)

ahor < a < adom, (3.18)

where As = 9.11 and Bs = 0.594 are numerical fitting factors [47]. After the universe becomes
cannibal dominated, δDM is constant until δc grows to be of order δDM, after which δDM grows
linearly as δDM = δc ∝ a. After reheating, δDM again grows logarithmically. Consequently,
the growth experienced by DM perturbations during an ECDE is determined by the growth
of the cannibal perturbation.
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3.1.2 Modes that enter the horizon after cannibal freeze-out

The homogeneous cannibal fluid behaves like pressureless matter after 2afz because wc � 1
in this regime. Thus, for modes that enter the horizon after 2afz, one might expect δc to
simply evolve as expected for pressureless matter, i.e., with δc growing logarithmically between
horizon entry and the end of radiation domination. However, lingering thermal pressure affects
the evolution of the cannibal perturbations that enter the horizon shortly after cannibal freeze-
out. The sound horizon grows logarithmically for afz < a < adom, as can be seen analytically
by substituting H ∝ 1/a2 and cs = cs,fzafz/a in eq. (3.15):

rs ∼
cs,fz

(aH)fz
ln

(

a

2afz

)

2afz < a < adom. (3.19)

This logarithmic growth of rs is also evident in figure 3 and in the top right panel of figure 4.
Since the sound horizon continues to grow while the universe is radiation dominated, modes
that enter the horizon after cannibal freeze-out may still oscillate. For example, in the bottom
left panel of figure 4 we can see that δc(k2) undergoes oscillations once k−1

2 enters the sound
horizon in the top left panel.

To better understand the evolution of δc for modes entering the horizon between 2afz
and adom, we solve eq. (3.13). For a > afz, the anti-damping term in eq. (3.13) rapidly decays
while the frequency remains constant. Moreover, since wc is already much less than one by
afz, the anti-damping term never has a significant impact, as we have verified numerically.
Consequently, for a > afz, eq. (3.13) simplifies to a simple harmonic oscillator equation in
ln(a). Using cs = cs,fzafz/a and H = H(afz)a

2
fz/a

2 for a > afz, we can exactly solve this
simple harmonic oscillator equation to obtain

δc = C̃1 sin

(

cs,fzk

afzH(afz)
ln

(

C̃2
a

ahor

))

afz, ahor < a < adom, (3.20)

where C̃1 and C̃2 are constants.

Eq. (3.20) suggests that the cannibal perturbation evolves logarithmically with a for a
short time after horizon entry. Since cs,fzk/(aH)fz � 1 for modes entering the horizon after
afz, eq. (3.20) simplifies to

δc ≈ C̃1
cs,fzk

(aH)fz
ln

(

C̃2
a

ahor

)

, (3.21)

while a does not greatly exceed ahor. Hence the naive expectation that δc should evolve
logarithmically for modes entering the horizon after cannibal freeze-out does hold for a brief
period after horizon entry. During this period of logarithmic growth, the influence of thermal
pressure is initially negligible. However, the influence of thermal pressure keeps growing
logarithmically until it becomes large enough that the argument of the sine becomes O(1)
and δc begins to oscillate.

We can find C̃1 and C̃2 for modes entering the horizon after 2afz by using the fact that
the super horizon initial condition is the same for both the cannibal and DM perturbations in
this regime because the cannibal particles are non-relativistic. Consequently, the early-time
solution in eq. (3.21) should match the standard logarithmic growth of DM during radiation
domination in eq. (3.18). By matching eq. (3.21) to eq. (3.18) we find the constants to be
C̃1 = −Asφp(aH)fz/(cs,fzk) and C̃2 = Bs. It follows that the cannibal perturbation evolution
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growth experienced by δDM approximately when the mode enters the sound horizon. This
can also be seen in the left panels of figure 4, where the intersection of k−1

2 and rs in the top
panel coincides with δc(k2) beginning to deviate from δDM(k2) in the bottom panel.

The dark matter density perturbation evolves in the same manner as in the previous
subsection: it grows logarithmically between ahor and adom, after which it remains constant
until δc grows to be of order δDM, and then it grows linearly along with the cannibal per-
turbation, δDM = δc ∝ a. Note that this linear growth occurs independently of whether the
mode enters the horizon before or after afz, as long as the mode is outside the cannibal Jeans
horizon during cannibal domination.

So far we have discussed modes that enter the horizon prior to cannibal domination.
For modes that enter the horizon after adom, δc evolves as cold matter, since k−1 � rs(adom).
Thus, the evolution of perturbations for modes that enter the horizon after adom is the same
as those studied in early matter-dominated eras [37–40, 48].

3.1.3 The linear matter power spectrum after an ECDE

We now compare the present-day linear matter power spectrum following an ECDE to the
matter power spectrum in standard cosmology. Here, by “standard cosmology” we mean that
the universe experienced uninterrupted radiation domination between inflationary reheating
and matter-radiation equality, aeq. With δDM,s denoting the DM density perturbation in the
standard cosmology, we define the transfer function

T (k) ≡ δDM(k, a)

δDM,s(k, a)
, (3.23)

which is evaluated after matter-radiation equality.

After a perturbation mode enters the horizon, δDM,s grows logarithmically with scale
factor while the universe is radiation dominated, as described in eq. (3.18). Since an ECDE
changes the scale factor at a mode’s horizon entry, we must use the appropriate value of ahor
when evaluating eq. (3.18). With Hs denoting the Hubble rate in the standard cosmology,
we define ahor,s through

ahor,sHs(ahor,s) ≡ k. (3.24)

The logarithmic evolution of δDM continues until matter-radiation equality, after which δDM

grows linearly with scale factor. This evolution is described by the growing solution of the
Meszaros equation [47, 49] with initial conditions provided by eq. (3.18),

δDM,s(a) = −3Asφp(k)

2
ln

(

4Bse
−3aeq

ahor,s

)

(1 + a/aeq)
0.9 a > aeq. (3.25)

Here the exponent of 0.9 results from the fact that the scales affected by an ECDE are much
smaller than the baryon Jeans length [50]. Consequently, ∼15% of the matter density does
not participate in the gravitational growth, causing the dark matter overdensities to undergo
slower than linear growth. The argument of the logarithmic term in eq. (3.25) also obtains
O(1) baryonic corrections as described in [47]. However, we have ignored these corrections
because they have an insignificant effect on the final transfer function. The value of φp in
eq. (3.25) is the same as in eq. (3.10) because the universe is radiation dominated at ai
regardless of whether the cannibal fluid or SM radiation is dominant at ai.
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During the radiation-dominated era that follows an ECDE, δDM also grows logarith-
mically with scale factor for subhorizon modes. Consequently, the post-reheating evolution
of δDM can be described by eq. (3.18), but with As and Bs replaced by k-dependent func-
tions A(k) and B(k), which encode the evolution history of δDM prior to reheating. After
matter-radiation equality, the evolution of δDM can similarly be described using eq. (3.25)
but with As and Bs again replaced by A(k) and B(k). For k < krh, we recover A(k) = As

and B(k) = Bs. It follows that

T (k) ≡ δDM(k, a)

δDM,s(k, a)
≈A(k)

As

ln[4B(k)e−3aeq/ahor(k)]

ln[4Bse−3aeq/ahor,s(k)]
, (3.26)

where in the latter equality we have neglected baryonic effects in the logarithm.
In the bottom right panel of figure 4 we plot the transfer function for a scenario with

adom � afz. To increase computational speed while evaluating the transfer function, we
ignore radiation perturbations deep inside the horizon, as the feedback of δr on δDM and δc is
negligible. We also neglect the heating of the cannibal fluid caused by its decay (see figure 2),
which has no noticeable impact on δDM in this regime.

The transfer function is unity for modes that enter the horizon after reheating because
δDM and δDM,s undergo the same evolution for these modes. As we increase k, the transfer
function increases as approximately k2 until k ∼ kdom ≡ (aH)dom. This quadratic increase
results from the linear growth of δDM between ahor and arh. Since the horizon size grows
as (aH)−1 ∝ a1/2 between adom and arh, ahor ∝ k−2. Consequently, δDM(arh) scales as
δ(arh) ∝ arh/ahor ∝ k2. In the case of δDM,s, the modes entering the horizon earlier undergo
more logarithmic growth between ahor,s and aeq but the same linear growth after aeq. Since
the horizon size grows as (aHs)

−1 ∝ a during radiation domination, an increase in k results in
a linear decrease in ahor,s, which implies that δDM,s ∝ ln[k/(8keq)] [47], where keq ≡ (aH)eq.
Thus in this regime the transfer function goes as k2/ ln[k/(8keq)].

For k > kdom, modes enter the horizon during SM radiation domination. Modes with
larger k now see δDM undergo a larger logarithmic growth between ahor and adom but the same
linear growth between adom and arh (seen, for example, in the differing growth of δDM(k1)
and δDM(kpk) in the bottom left panel of fig. 4). Consequently, an increase in k results in
a ∼ ln[k/(8kdom)] increase in the growth experienced by δDM. Thus the transfer function
increases as approximately ln[k/(8kdom)]/ ln[k/(8keq)], and as kdom � keq, the k-dependence
of the transfer function is primarily driven by the logarithm in the numerator.

As we further increase k beyond kdom in the top right panel of figure 4, the transfer
function continues to grow until k−1 intersects the cannibal sound horizon in the top left panel.
For these modes, the cannibal perturbations undergo oscillations while their wavelength is
contained within the yellow shaded region in the top left panel, which inhibits the growth of
DM perturbations. Modes with larger k spend more time within the Jeans horizon, and thus
have less time to grow prior to reheating. Since the Jeans length decays as a−1/2 for a > afz,
the envelope of the transfer function for k > kpk falls as k−2/ ln[k/(8keq)]. The oscillations
in T (k) are caused by changes in the phase of the cannibal perturbation between horizon
entry and Jeans horizon exit; the dark matter inherits these oscillations because it falls into
the gravitational wells generated by the cannibal perturbations after they stop oscillating
[30]. When δc keeps oscillating until arh, however, the cannibal mode does not have a net
gravitational impact on δDM, and thus for k > kJ(arh) the oscillations in T (k) stop.

Large values of the transfer function imply that the DM perturbations after an ECDE
reach the nonlinear regime much earlier than they would in a standard cosmology. Once
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δDM & 1, overdense fluctuations collapse to form halos [51]. In section 5 we discuss how kpk
determines the mass of the earliest-forming microhalos, while T (kpk) determines the redshift of
their formation. Due to the importance of kpk and T (kpk) in controlling microhalo formation,
in the following subsection we find analytical estimates for both quantities and highlight their
connection to cannibal parameters.

3.2 Analytical estimate of the peak of the matter power spectrum

If cannibal reactions freeze out while the universe is SM dominated, then the matter power
spectrum peaks near the smallest-scale mode that never enters the cannibal sound horizon,
i.e.,

kpk ≈ r−1
s (adom). (3.27)

We can more accurately determine kpk by using the fact that δDM(arh) = δc(arh) for wavenum-
bers in the vicinity of kpk. For these wavenumbers, δc and δDM undergo the same amount
of linear growth between adom and arh, as illustrated in the bottom left panel of figure 4.
Consequently, we can find kpk by finding the wavenumber that maximizes δc(adom).

As the top left panel of figure 4 demonstrates, wavenumbers with k ∼ r−1
s (adom) enter

the horizon between afz and adom. We can estimate δc(adom) for these modes using the
analytical solution for δc given in eq. (3.22). Strictly speaking, the approximations yielding
eq. (3.22) do not include the gradual transition to cannibal domination around adom, but
as the impact of this transition is similar for all modes with k between kdom and kfz, these
neglected terms will not affect the determination of kpk.

In eq. (3.22), some of the k-dependence is hidden inside ahor. This dependence can be
made explicit by using the fact that the modes near kpk enter the horizon during radiation
domination, yielding k/(aH)fz = (aH)hor/(aH)fz = afz/ahor. Expressing k in terms of ahor
and defining γ ≡ ahor/afz, eq. (3.22) becomes

δc(adom) ≈ −Asφp
γ

cs,fz
sin

(

cs,fz
γ

ln

(

Bs

γ

adom
afz

))

. (3.28)

Apart from the weak k-dependence in φp (φp ∝ k−0.02) [52], the rest of the k dependence is
now encoded inside γ. We maximize δc(adom) by taking φp to be constant and setting the
derivative of δc(adom) with respect to γ to zero. Doing so yields

tan

[

cs,fz
γ

ln

(

Bs

γ

adom
afz

)]

=
cs,fz
γ

+
cs,fz
γ

ln

(

Bs

cs,fzγ

adom
afz

)

. (3.29)

This equation has multiple solutions. We want the largest γ for which the above equation is
satisfied, because the largest solution corresponds to the value of ahor for which δc does not
oscillate. Since oscillations suppress δc(adom), this mode is the global maximum of δc(adom).
For the largest γ satisfying the above equation, the tangent is well-approximated by a second-
order Taylor expansion. After simplifying the resulting equation we obtain

γpk =
3cs,fz

2
√
2
W 3/2

[

2

(

Bs

3cs,fz

adom
afz

)2/3
]

, (3.30)

where W is the Lambert function. Using γ = ahor/afz = (aH)fz/k, we obtain

k−1
pk =

γpk
(aH)fz

. (3.31)
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In figure 5, we also plot the cannibal sound horizon at reheating, rs(ah). We plot rs(arh) and
not rs(adom) because rs(adom) provides an approximate estimate of kpk only for adom > 2afz,
while rs(arh) can provide an order-of-magnitude estimate of kpk for all values of ξi.

To understand how kpk depends on ξi, we need to express kpk in terms of cannibal

parameters: m, αc, Trh, and ξi. We first use γpk ≈ ln3/2(adom/afz)/3.5 in eq. (3.31). This
approximation for γpk is an empirical relation that we found to be accurate to within 20%
for 10 < adom/afz < 105 and 102 < afz/ai < 104. Furthermore, we use (aH)fz = khor,iai/afz
because the universe is radiation dominated between ai and afz. We can get an estimate of
khor,i as a function of our cannibal parameters by splitting ai/a0 = ai/arh×arh/a0, estimating
arh/a0 using eq. (2.21) and arh/ai using eq. (2.26), and using the initial densities of SM
radiation and cannibals in the Hubble rate to obtain

khor,i
a0

∼ 34.5 pc−1 ×
(

Trh
10MeV

)1/3
( m

GeV

)2/3
√

[1 + g∗(10m/ξi)ξ
−4
i ]. (3.33)

Finally, expressing afz and adom in terms of cannibal parameters using eq. (2.29) and eq. (2.27)
respectively, we obtain for adom > 2afz

kpk
a0

∼ 3.7× 10−2 pc−1α−3/4
c ξ

−5/2
i

( m

GeV

)11/12
(

Trh
10MeV

)1/3(g∗(10m/ξi)

100

)5/8

× ln−3/2

(

1

4
α−3/4
c ξ

−9/2
i

( m

GeV

)1/4
(

g∗(10m/ξi)

100

)9/8
)

pc−1. (3.34)

The location of the peak in the transfer function thus depends on all four cannibal parameters,
but it is most sensitive to ξi. In contrast, kpk can be estimated by [30]

kpk
a0

∼ 0.05× α−1/3
c

( m

GeV

)7/9
(

Trh
10MeV

)1/3

pc−1, (3.35)

for cases when adom < 2afz, which is independent of the initial temperature ratio, ξi.
While our analytic estimates of kpk in the scenarios with adom < 2afz and adom > 2afz

are given by different functions, the underlying scale determining kpk in both cases is the
cannibal sound horizon, up to an order of magnitude. For adom > 2afz we have already shown
that k−1

pk ≈ rs(adom). In the case of adom < 2afz one can show that rs(2afz) is within an O(1)

factor of k−1
J (2afz) ≈ k−1

pk . Moreover, after cannibals freeze out and dominate the universe,

rs asymptotes to a constant value (see figure 3 and 4) as seen by inserting H ∝ a−3/2 and
cs ∝ 1/a in the definition of rs, eq. (3.15). Consequently, the total comoving distance traveled
by the sound waves in the cannibal fluid, rs(arh), provides an order-of-magnitude estimate of
kpk for all scenarios. In figure 5, we compare the dependence of r−1

s (arh) on ξi to that of kpk.
The value of r−1

s (arh) always falls within a factor of 5 from kpk in our parameter space.
Next we find an analytic estimate of T (kpk) for scenarios with adom > 2afz.

3 Since the
value of δDM(kpk, arh) is equal to that of δc(kpk, arh), we first estimate the value of δc(arh).
Since the mode with wavenumber kpk typically remains outside of the cannibal sound horizon,
δc(kpk) evolves similarly to a cold matter perturbation. That is, δc evolves logarithmically

3Due to the presence of δDM,s in the denominator of the transfer function (eq (3.26)), the location of the
peak in the transfer function is slightly different from kpk. However, this difference is negligible, as can be
seen in figure 4.
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from horizon entry at ahor = γpkafz until adom. The linear growth of δc(kpk) after cannibal
domination is well described by the growing solution of the Meszaros equation:

δc(kpk, a) ≈
3Asφp

2
ln

[

4Bse
−3adom

γpkafz

]

a

adom
. (3.36)

As δDM(kpk, arh) = δc(kpk, arh), the logarithmic growth of δDM after reheating will then be of
the form

δDM(kpk, a) =
3Asφp

2
ln

[

4Bse
−3adom

γpkafz

]

arh
adom

b̃1 ln

(

b̃2
a

arh

)

. (3.37)

Here b̃1 and b̃2 parameterize the transition from linear to logarithmic growth through reheat-
ing. Numerically we find b̃1 = 1.29 and b̃2 = 1.66.

Comparing eq. (3.37) with the standard logarithmic growth of δDM during radiation
domination, eq. (3.18), we find

A(kpk) =
3As

2
ln

[

4Bse
−3adom

γpkafz

]

arh
adom

b̃1 B(kpk) = b̃2
ahor
arh

. (3.38)

Using the above relations in the definition of the transfer function, eq. (3.26), gives

T (kpk) ≈
3

2
b̃1 ln

(

4Bse
−3adom

γpkafz

)

arh
adom

[

1− ln(Bsb̃
−1
2 arh/ahor,s)

ln(4Bse−3aeq/ahor,s)

]

. (3.39)

This estimate is accurate to within 5% as long as adom > 100afz and arh > 10adom, and is
shown as a black dot-dashed line in the right panels of figure 4).

We obtain a simple approximation for T (kpk) by neglecting the logarithmic factors in
the square bracket in eq. (3.39) as they provide only an O(1) correction and using the fact
that γpk is typically of O(1), yielding

T (kpk) ∼ 2 ln

(

adom
10afz

)

arh
adom

. (3.40)

In contrast, the peak of the transfer function for adom < 2afz is approximately [30]

T (kpk) ∼
1

5

arh
afz

. (3.41)

Notice that in both scenarios, the peak of the transfer function is primarily determined by the
duration of cannibal domination after the freeze-out of cannibal reactions. In the scenarios
with 2afz < adom one also gets an additional logarithmic enhancement due to the logarithmic
growth of δc(kpk) prior to adom.

3.3 The effects of DM-cannibal interactions

Until now we have focused on scenarios where the DM only interacts gravitationally with
the other constituents of the universe. However, if DM and the cannibal particle are part
of the same hidden sector, then it is natural for the two species to have non-gravitational
interactions as well. In this section we show that the presence of non-gravitational DM-
cannibal interactions does not change the key features of the transfer function and does not
change kpk and T (kpk).
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modes, δc oscillates until reheating and so never generates a coherent gravitational pull on
the DM perturbation. In scenarios with only gravitational interactions, shown by the blue
line in figure 6, δDM is larger than δc at reheating for these small-scale modes because δc
oscillates while δDM grows logarithmically until adom. However, in the opposite limit where
DM remains kinetically coupled to the cannibals until 2arh, shown with the green line, δDM

has the same value as δc at arh.

The intermediate case shown by the orange line in figure 6 is more suppressed on very
small scales than the tightly coupled case shown in green, even though the intermediate case
has a smaller value of 〈σDM,cvc〉. This relative suppression results from diffusion damping
of the dark matter perturbations. Diffusion damping occurs when the cannibal perturba-
tions oscillate faster than the DM-cannibal scattering rate prior to kinetic decoupling, i.e.
csk > ncan〈σDM,cvc〉 > H. During this period, the DM perturbations oscillate with the
same frequency as the oscillations in the cannibal perturbations, but the amplitude of their
oscillation is highly damped. This damping is similar to the Silk damping of baryon den-
sity perturbations [54]. In figure 6, the orange line is more suppressed than the green line
because the diffusion damping scale, k−1

D ∼ cs/(ncan〈σDM,cvc〉), is larger for smaller values
of 〈σDM,cvc〉. Consequently, the modes experience damping at smaller k values when DM
decouples shortly before reheating compared to the tightly coupled case.

4 Beyond the perfect-fluid approximation

So far we have assumed that the cannibals and the DM fluids are perfect fluids. The perfect-
fluid approximation will break down on scales where the random motion of the particles
comprising the fluid cannot be neglected, which can occur in a variety of regimes. Even while
the homogeneous cannibal fluid is in kinetic equilibrium, the cannibals still have a finite dif-
fusion length. For perturbations on scales smaller than the diffusion length, a perfect-fluid
description is not sufficient. Once kinetic equilibrium is lost, the random thermal motion
of particles becomes important on scales quantified by either the free-streaming length or
the collisionless Jeans length, depending on the gravitational forces experienced by the par-
ticles. Again, for perturbations with wavelengths smaller than these scales, the perfect-fluid
description breaks down.

Momentum exchange among cannibal particles is dominated by elastic 2-to-2 scatterings,
with a rate given by ncan〈σcvc〉. In appendix C we derive the two-to-two scattering rate for the
ϕ4 theory described by eq. (2.1). We find that the s−wave contribution in the non-relativistic
limit is

〈σcvc〉 =
1

64π3/2m2

(

λ− 5

3

g2

m2

)2

×
√

Tc
m

≡ σeff

√

Tc
m
, (4.1)

where λ and g are the coupling constants of the cubic and quartic interactions in eq. (2.1),
respectively, and in the second equality we pulled out a factor of vc =

√

Tc/m to define
an effective scattering cross-section. Note that the parameter αc that controls the cannibal
number-changing interactions does not uniquely determine σc because αc and σc depend on
different combinations of g and λ.

In a Hubble time, a cannibal particle will undergo N = (ncan〈σcvc〉)/H scatterings. The
average distance travelled by a cannibal particle between two collisions is `mfp ∼ 1/(ncanσeff).
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Consequently, the comoving diffusion length is given by

λdiff =
1

a

√
N × `mfp =

1

a

√

vc
ncanσeffH

. (4.2)

For modes with wavelengths shorter than the comoving diffusion length, the higher moments
of the Boltzmann hierarchy can no longer be neglected, and will suppress δc [55]. The perfect-
fluid approximation also breaks down for modes that oscillate faster than the 2-to-2 scattering
rate, i.e. if csk > ncan〈σcvc〉. Since cs ∼ vc, requiring the oscillation frequency to be slower
than the scattering rate is equivalent to requiring k−1 > `mfp. Since the cannibal diffusion
length is larger than the mean free path prior to kinetic decoupling (as N > 1), modes will
be damped by diffusion before the scattering rate falls below the oscillation frequency.

The diffusion length is relevant as long as the cannibal fluid maintains internal kinetic
equilibrium, i.e. ncan〈σcvc〉 > H. We define the scale factor, akd, at which the cannibal fluid
falls out of its kinetic equilibrium through the relation

ncan(akd)〈σcvc(akd)〉 = H(akd). (4.3)

After kinetic decoupling, the cannibal fluid is effectively collisionless. Cannibal number-
changing interactions, which involve three particles in the initial state, freeze out substantially
before the cannibal fluid loses internal kinetic equilibrium, so after kinetic decoupling the
cannibal fluid evolves as pressureless matter.4

While the universe is radiation dominated, the cannibals experience no coherent gravi-
tational force and have a comoving free-streaming length given by

λfs(a) = λdiff(akd) +

∫ a

akd

vc
a2H

da akd < a < adom. (4.4)

Here we have imposed that the cannibal diffusion length is equal to the free-streaming length
at kinetic decoupling. When the cannibal comes to dominate the universe, metric perturba-
tions can begin to pull particles toward overdense regions. In this regime, departures from
perfect-fluid behavior are governed by the collisionless Jeans length. Analogous to the colli-
sional Jeans length described in the previous section, the collisionless Jeans length determines
the scale above which gravitational attraction is sufficient to overcome the random motion of
particles.

To find the collisionless Jeans length we need to include the anisotropic stress, σcan,
in eq. (3.4), which governs the evolution of θc. Before kinetic decoupling, elastic cannibal
scattering ensures that σcan is only relevant for modes within the diffusion length. After kinetic
decoupling, the anisotropic stress is determined by the free-streaming velocity of the cannibals.
Ref. [56] finds the anisotropic stress for a collisionless fluid to be given by σ = −5

3〈v2〉δ, which
follows from the assumption that the phase-space density of the particles remains unchanged
while particles fall into gravitational potential wells. After kinetic decoupling, the sound

4The s-wave component of the two-to-two scattering cross-section vanishes for λ = (5/3)g2/m2; for cou-
plings in the neighborhood of such values, the p-wave component will dominate the elastic scattering cross-
section in the non-relativistic regime. As the three-to-two cannibal interactions are phase-space suppressed
as well as higher order in the couplings, they will still generically decouple earlier than the elastic scattering
interactions, but to examine this specific sliver of parameter space in detail requires the retention of p-wave
contributions beyond eq. 4.1, and is beyond the scope of this work.
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growth of the diffusion length up until akd, which, in the left panel, transitions smoothly into
the free-streaming length given in eq. (4.4) in the region akd < a < adom. In the left panel, the
solid orange line after adom shows the collisionless Jeans length. In the right panel, the orange
line shows the collisional Jeans length before akd and the collisionless Jeans length after akd.
The green shaded region indicates the scales where the cannibal particles no longer behave as
a perfect fluid. For modes that enter the green shaded region in figure 7, we expect δc(arh) to
experience a suppression that is not captured in our suite of perturbation equations. The black
dashed line shows the peak of the matter power spectrum in the perfect-fluid approximation,
and thus indicates the location of the cutoff that follows from oscillations in the cannibal
fluid. We see that, in the cases shown, the modes that are affected by the breakdown of the
perfect-fluid approximation are already suppressed by the cannibal oscillations.

Cutoffs arising from imperfect-fluid behavior can be important for the transfer function
when they occur on scales larger than the small-scale cutoff provided by cannibal oscillations.
In scenarios where the cannibals freeze out during cannibal domination, the cutoff provided by
cannibal interactions sets kpk ≈ kJ(2afz)/1.4, which ensures that any deviations from perfect-
fluid behavior occur at scales substantially below k−1

pk when afz � akd. In scenarios where the
cannibals freeze out during radiation domination, however, the situation is a little more subtle.
In this case, the perfect-fluid calculation of the cannibal cutoff gives kpk ∼ rs(adom). As both
the sound horizon and the free-streaming length grow logarithmically during the period of
radiation domination following akd, the sound horizon will generically stay outside the free-
streaming length, and therefore the cannibal oscillation cutoff k−1

pk as given by eq. (3.31) will
occur at larger scales than the free-streaming length. However, the derivation of eq. (3.31)
assumes a collisional fluid. Thus while we expect the cannibal oscillation cutoff to be the
relevant small-scale cutoff for akd > adom, this conclusion does not necessarily hold if akd <
adom. The regime with akd < adom can be realized in a small region of parameter space,
as we show in section 5. A full calculation of the small-scale cutoff in this regime would
require incorporating higher moments of the Boltzmann hierarchy and is beyond the scope
of this work; see [57] for related calculations in a similar model. However in general we
can expect this cutoff to lie somewhere in the vicinity of rs(akd) and λfs(adom). These two
scales are relatively similar: the sound horizon is governed by the distance traveled by sound
waves in the cannibal fluid, while the free-streaming horizon is governed by the distance
traveled by the non-relativistic cannibal particles in this epoch. Both the sound speed and
the cannibal particle speed are determined by the cannibal temperature, which changes only
logarithmically between akd and adom.

Finally, we quantify the relationship between afz and akd in our cannibal model. Since
the 2 → 2 and 3 → 2 scattering cross-sections depend on different combinations of the quartic
coupling λ and cubic coupling g/m, we can obtain a range of possible akd for a fixed afz. To
evaluate akd/afz in terms of the Lagrangian couplings, we first divide eq. (4.3) by eq. (2.16):

ncan(akd)〈σcvc(akd)〉
n2can(afz)〈σv2〉can

=
H(akd)

H(afz)
. (4.7)

We then express ncan(akd) and Tc(akd) in terms of their values at afz by using ncan ∝ 1/a3 and
Tc ∝ 1/a2 for a > afz. Next, we approximate mncan(afz) ≈ ρcan,eq(afz) and Tc(afz) ≈ Tc,eq(afz)
and use eqs. (2.12)-(2.13) to express ρcan,eq and Tc,eq in terms of the scale factor. Finally, we
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set afz/ai = 103 inside the logarithms to obtain

a4kd
a4fz

H(akd)

H(afz)
∼ 10−2

(

afz
ai

)3 σeff
m3〈σv2〉can

= 10−2

(

afz
ai

)3 5184

25
√
5π

[

λ− 5g2/(3m2)
]2

(g/m)2[(g/m)2 − 3λ]2
.

(4.8)

In the last equality above we used eq. (4.1) and eq. (2.2) for σeff and 〈σv2〉can respec-
tively. When the universe is cannibal dominated between afz and akd, then H(afz)/H(akd) =
(akd/afz)

3/2 and afz is given by eq. (2.28). Defining q as the ratio of the quartic and the cubic
coupling, q ≡ λ/(g/m)2, and expressing (g/m)2 using the definition of αc in eq. (4.8) yields

akd
afz

∼ 105α2/5
c

(

GeV

m

)4/15 ∣
∣

∣

∣

q − 5/3

(3q − 1)2/3

∣

∣

∣

∣

4/5

. (4.9)

Similarly, if the universe is radiation dominated between afz and akd, H(afz)/H(akd) =
(akd/afz)

2 and afz is given by eq. (2.29). Eq. (4.8) then implies that

akd
afz

∼ 2× 106α5/8
c ξ

3/4
i

(

GeV

m

)3/8 ∣
∣

∣

∣

q − 5/3

(3q − 1)2/3

∣

∣

∣

∣

. (4.10)

In most of the parameter space that realizes an ECDE, varying λ while keeping αc fixed
results in a variation in akd/afz of up to an order of magnitude. Figure 7 shows results with
λ = q = 0; for the value of αc shown in figure 7 increasing λ to non-perturbative values results
in a correction of less than 30% to the values of akd shown in the figure.

Departures of the DM from perfect-fluid behavior can also be important for determining
the transfer function. Prior to reheating, the DM free-streaming, diffusion, and collisionless
Jeans lengths are always smaller than the perfect-fluid result for k−1

pk , as the DM speed

vDM =
√

TDM/mDM is always smaller than the cannibal sound speed, cs ∼
√

T/m, which
controls the scale of kpk. However, DM free streaming after reheating can affect the peak
of the DM transfer function in some regions of parameter space. Ref. [30] evaluated the
post-reheating free streaming of DM in the case where DM kinetically decouples from the
cannibal fluid after afz. In this case we have TDM(arh) = Tc(arh), which gives for the DM
free-streaming length

λDM,fs ≈
∫ t0

trh

vDM
dt

a
=

√

Tc(arh)

mDM

1

(aH)rh

∫ a0

arh

da

a3

[

G(a)

(

1

a

)4

+G(aeq)

(

1

a3aeq

)

]−1/2

,

(4.11)

where we defined G(a) ≡ g∗(a)g
1/3
∗ (arh)/g

4/3
∗s (a) and dropped negligible contributions from

dark energy at late times. This result is applicable regardless of whether the universe was
radiation dominated or SM radiation dominated at ai. While the DM free-streaming length in
any given model will depend in detail on the DM coupling to the cannibal species, eq. (4.11)
provides an upper bound on λDM,fs: DM that decouples from the cannibals prior to afz will
have a reduced free-streaming length as the temperature of the DM at reheating will be colder
than the cannibal temperature.

If the DM free-streaming length is larger than the small-scale cutoff coming from cannibal
self-interactions, then the DM transfer function will be maximized on a scale ∼ λ−1

DM,fs, which
depends on DM as well as cannibal microphysics. FormDM & 10m, we find DM free-streaming
can provide the small-scale cutoff in the transfer function in a small portion of the parameter
space, as we discuss in the following section.
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5 Implications for microhalo formation

In this section, we first discuss how the key features of the linear transfer function, namely
kpk and T (kpk), relate to the properties of the earliest-forming microhalos. We then express
kpk and T (kpk) as a function of the cannibal parameters m,Trh, αc, and ξi. Finally, we briefly
discuss the microhalos’ observational signatures and how these observations probe cannibalism
in the early Universe.

After an ECDE, the DM perturbations with wavenumber kpk have experienced the
most growth. Although the stochastic nature of the primordial perturbations prevents us
from knowing exactly which mode has the largest amplitude, the near scale-invariance of
the primordial power spectrum implies that perturbations on scales near kpk are the first
to collapse and form gravitationally bound structures. Since perturbations that enter the
horizon prior to BBN form halos that are too small to capture baryons [58], the characteristic
mass of the earliest-forming halos is given by the amount of DM in a sphere of comoving
radius k−1

pk :

Mpk ≡ 4π

3
k−3
pk ρDM,0, (5.1)

where ρDM,0 is the dark matter density today, which we take to be ρDM,0 = 9.7 × 10−48

GeV4 [52]. When cannibals freeze out while they dominate the energy density of the universe
(adom < 2afz), we calculate Mpk from the expression for kpk given in eq. (3.35):

Mpk ∼ 10−11M�

( αc

0.1

)

(

10MeV

Trh

)(

TeV

m

)7/3

. (5.2)

For adom > 2afz, we calculate Mpk from the expression for kpk given in eq. (3.34):

Mpk ∼ 3× 10−13M�

( αc

0.1

)9/4
(

ξi
0.4

)15/2(10MeV

Trh

)(

TeV

m

)11/4( 100

g∗(10m/ξi)

)15/8

×
(

1

6
ln

[

500

(

0.4

ξi

)9/2(0.1

αc

)3/4
( m

TeV

)1/4
(

g∗(10m/ξi)

100

)9/8
])9/2

. (5.3)

We remind the reader that the expression for kpk given in eq. (3.34) is a good approximation
for 10 < adom/afz < 105 and 102 < afz/ai < 104. Since the peak halo mass is typically much
smaller than one Earth mass, the earliest-forming halos are microhalos.

In both cases, Mpk increases as either Trh or m decreases because Mpk is determined by
the sound horizon at reheating, rs(arh). Decreasing Trh delays reheating and hence increases
rs(arh). Decreasing m increases rs(arh) by delaying the freeze-out of cannibal reactions, which
increases the cannibal temperature. Since increasing αc also delays the freeze-out of cannibal
reactions, we see a positive correlation between Mpk and αc. The peak halo mass has a
stronger dependence on αc when the cannibals freeze out while the universe is SM radiation
dominated because the Hubble rate falls faster in a radiation-dominated universe compared
to a cannibal-dominated universe.

An ECDE enhances the amplitude of all perturbations with k < kpk that enter the
horizon during the ECDE. Therefore, the largest halos that are affected by the ECDE have
masses equal to the amount of DM within the horizon at reheating, Mrh, which is given
by eq. (5.1) but with kpk replaced by krh = arhH(arh). We find Mrh in terms of cannibal
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parameters by taking H(arh) ∼ Γ and then expressing Γ in terms of Trh.
5 We then express

arh/a0 in terms of SM temperatures using entropy conservation to obtain

Mrh ∼ 10−4M�

(

10MeV

Trh

)3( 10

g∗(Trh)

)1/2

. (5.4)

While deriving the above relation we set g∗s(Trh) = g∗(Trh). An ECDE increases the abun-
dance of all halos with masses between Mpk and Mrh, and these halos form earlier than they
would in a standard cosmology.

Halos form when δDM becomes of order unity. In a standard cosmology, the amplitude
of small-scale perturbations increases only logarithmically with k, so microhalos with masses
within several orders of magnitude of an earth mass form near a redshift of 60 [59, 60]. Since
baryons do not participate in structure formation for modes that enter the horizon during
an ECDE, δDM ∝ (1 + z)−0.9 for z < zeq on these scales [47, 50]. Consequently, the collapse
redshift of the microhalos corresponding to overdensities with wavenumber k increases by
a factor of ∼ [T (k)]1.11 compared to that in the standard cosmology as long as the collapse
occurs after matter-radiation equality, i.e. for T (k) < 30. For T (k) > 30, the formation of the
microhalos occurs prior to matter-radiation equality, and the exact increase in the collapse
redshift depends non-trivially on T (k) [61].

The central density of a dark matter halo scales with the homogeneous matter den-
sity at the time of its formation [62–64], so the microhalos that form after an ECDE have
central densities that are significantly larger than those in standard cosmology [65]. These
central densities are large enough for the microhalos to survive within galaxies, although they
experience significant mass loss [43, 60, 66–69].

If T (kpk) is significantly large, then the cannibals and DM particles assemble into micro-
halos before reheating. For modes in the vicinity of the peak in the matter power spectrum,
eq. (3.38) implies that the DM overdensity at reheating is related to the primordial met-
ric fluctuation via δDM(k, arh) ≈ A(k)φP . For a nearly scale-invariant spectrum, we expect
φP ∼ 10−5 [52], and thus density perturbations on all scales remain perturbative until reheat-
ing provided A(kpk) . 105. As T (kpk) ≈ A(kpk)/As, where As = 9.11, microhalos will form
prior to reheating if T (kpk) exceeds 104. These microhalos are destroyed once reheating oc-
curs because they are primarily composed of cannibal particles. When the cannibal particles
decay, DM particles free stream out of the microhalos with typical speeds given by the virial
speed within the microhalos, which is of order 10−2 [61]. The subsequent free streaming of
DM particles acts to erase the structure within the comoving horizon at the time of reheating,
thus washing out much of the enhanced structure resulting from the ECDE.

The peak amplitude of the transfer function, and thus the formation time of the first
microhalos, can be directly related to the properties of the cannibal field. In the case where
cannibal freeze-out occurs during cannibal domination (adom < 2afz), we use the expression for
T (kpk) given in eq. (3.41) and express afz and arh using eq. (2.28) and eq. (2.26) respectively
to obtain

T (kpk) ∼ 2× 103
(

0.1

αc

)2/3
( m

TeV

)14/9
(

10MeV

Trh

)4/3( 10

g∗(Trh)

)1/3

. (5.5)

5The Hubble rate at arh does not equal Γ because arh is defined as the scale factor when the Hubble rate
equals Γ in a standard cosmology. However, since ρcan ∼ ρr at arh, H(arh) is some O(1) factor times Γ.
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For adom > 2afz, we use eq. (3.40) for T (kpk) and express afz, arh, and adom using eq. (2.29),
eq. (2.26), and eq. (2.27) respectively to obtain

T (kpk) ∼ 2× 102
(

ξi
0.4

)4
( m

TeV

)4/3
(

10MeV

Trh

)4/3( 10

g∗(Trh)

)1/3( 100

g∗(10m/ξi)

)

× 1

6
ln

[

50

(

0.4

ξi

)9/2(0.1

αc

)3/4
( m

TeV

)1/4
(

g∗(10m/ξi)

100

)9/8
]

. (5.6)

In both cases, T (kpk) is approximately proportional to m/Trh because for a given αc and ξi
this ratio determines the post-freeze-out duration of the ECDE. Since δDM(kpk) grows faster
during this period than at any other time prior to matter-radiation equality, increasing this
duration increases T (kpk). The amplitude of the transfer function at kpk has a power-law
dependence on αc when the cannibals freeze out in a cannibal-dominated universe, while it
only depends logarithmically on αc when the cannibals freeze out in a SM radiation-dominated
universe. This difference in sensitivity to αc reflects the linear growth of δDM(kpk) between
afz and arh for adom < 2afz, as opposed to its logarithmic growth between afz and adom for
adom > 2afz. These two growth histories for δDM(kpk) also explain why T (kpk) is independent
of ξi when adom < 2afz, but is strongly dependent on ξi when adom > 2afz: since ξi determines
adom/ai, it sets the transition from logarithmic to linear growth when cannibals freeze out
prior to the start of the ECDE.

In figure 8, white-dashed contours show Mpk as a function of m and Trh for fixed values
of ξi and αc. The Mpk contours were calculated from the expression for kpk given in eq. (3.32)
if the cannibals freeze out in a cannibal-dominated universe and eq. (3.31) if the cannibals
freeze out in a SM radiation-dominated universe. The colored contours show T (kpk), which
is evaluated by numerically solving the cosmological perturbation equations for kpk. The
secondary y-axis on the right shows the values of Mrh obtained from eq. (5.4). The parameter
space with 5 . T (kpk) . 104 is the region that generates a significantly enhanced abundance
of microhalos with masses between Mpk andMrh. As T (kpk) is roughly proportional to m/Trh,
there is an enhanced abundance of microhalos for a band of m/Trh values.

The parameter space shown in figure 8 is bounded on all sides by three conditions.
First, the reheat temperature defined by eq. (2.20) must exceed 8.1 MeV to be compatible
with the constraints from BBN and the CMB [35, 36]. Second, significantly increasing the
microhalo abundance requires a period of cannibal domination following cannibal freeze-out,
i.e. max(afz, adom) < arh. Finally, as here we are specifically interested in the impact of
cannibal interactions on perturbation growth, we require an epoch of cannibalism to occur,
i.e., acan < afz.

A period of cannibalism only occurs if the cannibals remain in chemical equilibrium after
they become non-relativistic. For a fixed value of αc, this condition imposes an upper bound
on m because afz/ai decreases as m increases. Using eq. (2.28) and eq. (2.29) for afz/ai and
the fact that acan ≈ 100ai, the afz > acan condition can be rewritten as:

( m

GeV

)

<























108
( αc

0.1

)3
adom < 2afz,

2× 106
(

ξi
0.4

)2
( αc

0.1

)3
(

100

g∗(10m/ξ)

)1/2

adom > 2afz.

(5.7)
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era. The evolution of perturbations in such scenarios (without cannibal interactions) have
already been studied in the context of decoupled hidden sector theories [14, 61].

To obtain a substantial amount of growth, reheating must occur well after the cannibal
reactions freeze out (arh > 5afz) and in a cannibal-dominated universe (arh > adom).6 This
requirement imposes a lower bound on m for a given Trh, following from the expressions for
arh, afz, and adom given in eq. (2.26), eq. (2.28), and eq. (2.27):

( m

GeV

)

>


























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0.1

)3/7 ( Trh
10MeV

)6/7
(
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)3/14

adom < 2afz,

70

(

0.4

ξi

)3( Trh
10MeV

)(

g∗(10m/ξi)

100

)3/4(g∗(Trh)

10

)1/4

adom > 2afz.

(5.8)

If arh < 5afz, the modes that enter the horizon during the ECDE do not escape the cannibal
Jeans horizon much prior to reheating. Consequently, there is no significant enhancement of
DM perturbations, and the arh < 5afz section of parameter space does not provide interesting
cosmological signatures.

As the initial density of the cannibals decreases relative to the SM radiation density,
the upper and lower bounds on m given by eqs. (5.7) and (5.8) become more restrictive, as
seen in figure 8. For smaller ξi, larger values of m/Trh are needed to give sufficient time for
the cannibal density to overcome the SM radiation density prior to reheating. Decreasing ξi
also increases the Hubble rate at a given cannibal temperature, so smaller values of m/α3

c are
required to keep the cannibals in equilibrium after they become non-relativistic.

Figure 8 also illustrates how decreasing αc shrinks the region of cannibal parameter space
that yields a substantially enhanced microhalo population. If cannibal freeze-out occurs
while the universe is cannibal dominated, then decreasing αc makes it possible for lighter
cannibals to freeze out before reheating (for fixed Trh). However, decreasing αc also reduces
the parameter space where the cannibal particles will freeze out while non-relativistic, so the
net effect of lowering αc is to reduce the range of m values that can realize acan < afz < 5arh.
If cannibal freeze-out occurs during SM radiation domination, the lower bound on m is set
by the requirement that adom < arh, which is independent of αc. Consequently, in the right
panels in figure 8, only the upper bound on m moves as αc is changed.

If either ξi or αc becomes too small, then it is not possible for particles that undergo
an epoch of cannibalism to significantly affect the growth of structure because they do not
dominate the universe after freezing out. Since decreasing Trh reduces the lower bound on
m given by eq. (5.8), we compare the lower and upper bounds on m at the smallest reheat
temperatures allowed by BBN and the CMB constraints. With Trh = 10 MeV, it is possible
to satisfy both upper and lower bounds on m if

αc >






















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
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g∗(Trh)
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)1/12

adom � 2afz

10−3ξ
−5/3
i

(

g∗(10m/ξi)

100

)5/12(g∗(Trh)

10

)1/12

adom � 2afz.

(5.9)

6Our numerical calculations neglect cannibal decays during cannibal freezeout. For the parameter space of
interest for enhanced structure formation, this is an excellent approximation, but for arh < 5afz, the impact
of cannibal decays can be nonnegligible during freezeout. Thus we only show numerical results for arh > 5afz.
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Not all regions of cannibal parameter space that realize an ECDE are compatible with
DM production through thermal freeze-out. If we suppose that the DM relic abundance is
fixed by annihilations to hidden sector species (e.g., the cannibal itself), then for a given set
of cannibal parameters, {m,Trh, αc, ξi}, we can solve for the value of the DM annihilation
cross-section, 〈σv〉DM, that generates the observed DM abundance. If the DM annihilation
cross-section takes the form

〈σv〉DM ≡ πα2
DM

m2
DM

, (5.10)

requiring αDM < 1 for perturbativity then implies an upper bound on mDM.

We can estimate this upper bound using a sudden freezeout approximation for the DM
abundance,

nDM(af,DM) ≡ H(af,DM)

〈σv〉DM
, (5.11)

which defines the scale factor at DM freeze-out, af,DM. The DM number density today is

nDM(a0) ≈ nDM(af,DM)

(

af,DM

a0

)3

=
H(af,DM)

〈σv〉DM

(

af,DM

ai
× ai
arh

× arh
a0

)3

. (5.12)

As the cannibals evolve like radiation prior to ai, we have

af,DM

ai
=

Tc(ai)

Tc(af,DM)
=

10m

mDM
xDM, (5.13)

where xDM ≡ mDM/Tc(af,DM). We use eq. (2.21) and eq. (2.26) to express arh/a0 and arh/ai
in terms of Trh and m. Given that

H(af,DM) = H(ai)
a2i

a2f,DM

= H(ai)
m2

DM

(10m)2
x−2
DM, (5.14)

eq. (5.12) implies that

〈σv〉DM ≈ 10−12

GeV2
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[1 + g∗(10m/ξi)/ξ4i ]
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)
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Ωdmh
2
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10MeV

)(

TeV

m

)

, (5.15)

where we assume g∗s(Trh) = g∗(Trh). Keeping αDM < 1 then demands that

(xDM

10

)

(

mDM/m

10

)2(Ωdmh
2

0.12

)−1(
Trh

10MeV

)

( m

TeV

)

√

[1 + g∗(10m/ξi)/ξ4i ] < 104. (5.16)

The above bound still depends on xDM. While xDM is typically determined by inserting
the equilibrium number density into Eq. (5.11), this procedure makes xDM logarithmically
dependent on 〈σv〉DM. To avoid this dependency, we instead determine xDM through

nDM,eq(xDM)
a3f,DM

a30
= nDM(a0). (5.17)

– 33 –



Thus, givenmDM/m, eq. (5.16) provides an upper bound on m. The red dashed line in figure 8
shows the upper bound on m resulting from the condition αDM < 1 for mDM = 10m.7 For
larger values of m, alternative production mechanisms such as freeze-in can still generate the
observed DM density [70].

As discussed in section 4, departures from perfect-fluid behavior for either the cannibals
or DM can be important in some regions of parameter space. The impact of DM free streaming
depends on its kinetic coupling to the cannibal fluid and is model-dependent. In figure 8 the
black dashed lines show where the free-streaming horizon λDM,fs, given in eq. (4.11), equals
kpk for mDM = 10m, in the case where DM kinetically decouples from the cannibal fluid
after cannibal freeze-out. Above and to the left of this line, DM free-streaming, rather than
cannibal interactions, can determine the peak of the transfer function.

To better illustrate when DM free-streaming can be relevant, we simplify eq. (4.11) by
neglecting the temperature dependence of g∗ and the DM density inside the Hubble rate.
This yields

λDM,fs ∼
√

Tc(arh)

mDM
(aH)−1

rh log(aeq/arh) ∼
√

m

mDM
k−1
J (arh) log(aeq/arh). (5.18)

In the last relation we have used the definition of the Jeans length, eq. (3.14), and the fact
that c2s = 5Tc/(3m) and wc = Tc/m� 1 for a� afz. For scenarios where cannibals freeze out
in a cannibal-dominated universe, we have k−1

J (arh)/k
−1
pk ≈ kJ(2afz)/kJ(arh). Consequently,

DM free streaming becomes relevant when arh is close to afz and the ratio m/mDM is not
too small. In contrast, when cannibals freeze out in a SM-dominated universe, we have
k−1
J (arh)/k

−1
pk ≈ k−1

J (arh)/rs(adom). Here, the logarithmic growth of the sound horizon until

adom increases the gap between k−1
J (arh) and k−1

pk (as seen in the top left panel of figure 4). In
the bottom left panel of figure 8, this gap is large enough that the DM free-streaming horizon
remains less than k−1

pk for mDM ≥ 10m.

In the bottom left panel of figure 8, the cannibal fluid becomes collisionless prior to adom,
i.e. akd < adom, in the region right of the orange dashed line. In this regions, the peak of the
transfer function is determined by the cannibal free-streaming horizon instead of the cannibal
sound horizon. In computing the akd = adom boundary shown in figure 8 we set λ = 0 when
evaluating 〈σcvc〉 through eq. (4.1). To see how the timing of cannibal kinetic decoupling
depends on cannibal parameters more generally, we begin with the inequality akd > adom,
write akd = akd/afz × afz, and subsequently use eqs. (4.10), (2.29), and (2.27) for akd/afz,
afz, and adom, respectively. The condition akd > adom then becomes

m < 6× 105
( αc

0.1

)11/5
(

ξi
0.4

)42/5 ∣
∣

∣

∣

q − 5/3

(3q − 1)2/3

∣

∣

∣

∣

8/5

GeV, (5.19)

where q ≡ λ/(g/m)2. This restriction on m is only relevant if it is more constraining than
eq. (5.7). Consequently, the restriction on m in eq. (5.19) becomes relevant when

ξi < 0.68
( αc

0.1

)1/8
∣

∣

∣

∣

q − 5/3

(3q − 1)2/3

∣

∣

∣

∣

−1/4

. (5.20)

7While decreasing mDM relative to m relaxes the upper bound on m, our analysis assumes the DM and
cannibal species to be chemically decoupled by Tc(ai) = 10m, and thus we consider mDM & 10m.
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For values of ξi larger than the RHS of eq. (5.20), akd is always greater than adom, and canni-
bal free streaming does not affect kpk in the parameter space where the cannibals significantly
enhance microhalo abundance and also undergo cannibalism. Thus, there is no akd = adom
boundary in the panels with ξi = 1 or 10 in figure 8. As we decrease ξi below the RHS of
eq. (5.20), a larger fraction of the parameter space has akd < adom. However, the parameter
space where the cannibals significantly enhance microhalo abundance also shrinks as we de-
crease ξi, until there is no allowed parameter space for ξi < 0.07(αc/0.1)

−3/5 (see eq. (5.9)).
Consequently, cannibal free streaming may affect kpk only in the narrow parameter space

between 0.07(αc/0.1)
−3/5 < ξi < 0.68(αc/0.1)

1/8
∣

∣

∣

q−5/3

(3q−1)2/3

∣

∣

∣

−1/4
. Furthermore, as discussed

in section 4, we expect only a marginal correction to the perfect-fluid result for kpk in the
parameter space where akd < adom.

The early-forming microhalos generated by an ECDE have large enough central densi-
ties to survive accretion into galaxies [43, 67, 68]. While sub-Earth-mass halos are too diffuse
to be detected by photometric microlensing searches [71] and too small to be detected via
astrometric microlensing [71–73], they can be detected by pulsar timing arrays [74, 75] and
by their impact on stellar microlensing within galaxy clusters [48, 69, 76]. Furthermore, if
the dark matter is a thermal relic, early-forming halos significantly boost the dark matter
annihilation rate regardless of their masses, and the isotropic gamma-ray background places
powerful constraints on the microhalo population [43, 61]. If dark matter annihilation is
eventually detected in dwarf spheroidal galaxies, the emission profile could distinguish an-
nihilation within microhalos from both decaying dark matter and dark matter annihilation
outside of microhalos [43].

A full analysis of the observational constraints on cannibalism within a hidden sector lies
beyond the scope of this article, but we can use constraints on EMDE cosmologies to forecast
which regions of cannibal parameter space are likely to be probed by current and future
observations. Constraints on EMDE cosmologies are often expressed in terms of a generic
exponential cutoff scale: P (k) ∝ exp[−k2/k2cut]. Ref. [77] showed that weekly observations of
500 pulsars over 20 years with an rms timing residual of 10 ns would detect microhalos arising
from an EMDE with kcut/krh > 20 and Trh ≤ 30 MeV. Increasing the observational period to
40 years extends the reach of pulsar timing arrays to reheat temperatures up to 100 MeV with
200 pulsars; see also Ref. [78]. The EMDE transfer function [37] implies that T (kpk) ' 25 for
kcut/krh = 20, nearly independently of the reheat temperature. If cannibal reactions freeze
out during the ECDE, then the power spectrum on scales k . kpk is the same in EMDE
and ECDE cosmologies, and ECDE scenarios with 25 . T (kpk) . 104 would generate pulsar
timing signals that are at least as strong as those produced by an EMDE with kcut/krh ' 20.
If cannibal reactions freeze out prior to cannibal domination, then the ECDE power spectrum
differs more substantially from the EMDE power spectrum analyzed by Ref. [77] for k & kdom,
but we can still predict which ECDE scenarios are likely to be accessible by pulsar timing
arrays. If kcut/krh = 20, then the EMDE power spectrum peaks at kpk ' 27krh. Therefore,
ECDE scenarios with T (27krh) & 25 and T (kpk) . 104 will generate a microhalo population
that is at least as detectable as the microhalos that result from an EMDE with kcut/krh = 20.
For αc = 0.1, obtaining T (27krh) & 25 requires T (kpk) & 100 for ξi = 1 and T (kpk) & 500 for
ξi = 0.4. Estimates of potential sensitivity from observations of cluster caustic microlensing
are at a far more preliminary stage, but suggest broadly similar reach for Trh and T (kpk)
individually [69].

The best current constraints on EMDE cosmologies with thermal relic dark matter come
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from the isotropic gamma-ray background [43, 61]. Since the dark matter annihilation rate
within microhalos does not change after the microhalos form and the microhalos track the
dark matter density, dark matter annihilations within early-forming microhalos generate the
same constant emission per dark matter mass as decaying dark matter. It is therefore possible
to define an effective dark matter decay lifetime for these scenarios [61]:

τeff =

(

10−10GeV−2

〈σv〉DM

)

( mDM

106GeV

)

(

7× 1038 seconds

B0

)

, (5.21)

where B0 ≡ 〈ρ2DM〉/ρ̄2DM is the structure boost factor generated by the microhalos. This
effective lifetime should be compared to bounds on dark matter lifetime for particles with
twice the mass. When accounting for emission from astrophysical sources, Ref. [79] found
that Fermi-LAT observations of the IGRB [80] demand that τeff & 1028 seconds for mDM

between 10 GeV and 109 GeV and a wide range of annihilation channels.
The microhalo boost factor that arises from an EMDE has been calculated for scenarios

in which all modes with krh < k < kcut enter the horizon during the EMDE [40, 43] and for
scenarios that include a radiation-dominated era prior to the EMDE with kcut > kdom [61].
The former case generates a sharp peak in the matter power spectrum that is qualitatively
similar to the peak generated when cannibal reactions freeze out during the ECDE, while
the latter generates the same plateau feature as an ECDE that starts after cannibals freeze
out. However, for the limited range of T (kpk) values that were considered in both analyses,
the two scenarios have values of B0 that differ by less than a factor of 10, and much of that
variation can be attributed to differing assumptions regarding the microhalo density profiles
[43]. The fact that B0 is largely insensitive to changes in reheat temperature for fixed T (kpk)
further supports the conclusion that the shape of the peak in the power spectrum does not
significantly affect the dark matter annihilation rate: it does not matter how the microhalos
are distributed in mass as long as they have the same formation time and contain the same
fraction of the dark matter, both of which are determined by T (kpk).

The ECDE scenarios shown in Figure 8 generally require 〈σv〉DM & 10−12 GeV−2 to
generate the observed DM abundance through thermal freeze-out, which implies that mDM .

2 × 106 GeV is required to satisfy the unitarity bound. For these parameters, B0 . 1013 is
required to keep τeff > 1028 seconds if the annihilations are predominantly s-wave so that
〈σv〉DM is independent of the DM velocity. Refs. [40, 43] did not consider boost factors this
large because they restricted their analyses to microhalos that form after matter-radiation
equality, but Ref. [61] included microhalos that form during radiation domination and found
that B0 & 1013 for T (kpk) & 80. However, if we only consider ECDE scenarios with T (kpk) .
80, then 〈σv〉DM & 10−10 GeV−2 and mDM . 2× 105 GeV. For these parameters, the IGRB
bound on τeff demands that B0 . 1010, which corresponds to T (kpk) . 20. It therefore
seems likely that all of the ECDE parameter space in Figure 8 that contains dark matter
that thermally froze out (via s-wave annihilations) prior to the ECDE is already ruled out by
observations of the IGRB.

6 Summary and conclusions

We have shown that an early cannibal-dominated era (ECDE) leaves a distinctive peak in
the matter power spectrum. Perturbation modes that enter the horizon after the freeze-out
of cannibal reactions but before the end of the ECDE are enhanced. On smaller scales, the
pressure generated by the self-heating of the cannibal particles suppresses the growth of dark
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matter perturbations. Consequently, the properties of the cannibal field generally establish
the minimum halo mass following an ECDE. In Ref. [30], we calculated this minimum halo
mass in scenarios where the cannibals freeze out during the ECDE. In this paper, we show
how the properties of the cannibal field establish the minimum halo mass even if the cannibal
reactions freeze out prior to cannibal domination.

Cannibals are generically predicted in theories with thermally decoupled hidden sectors
that have a mass gap and a number-changing self-interactions. If the lightest particle in such
a hidden sector remains in chemical equilibrium after it becomes non-relativistic, it undergoes
a period of cannibalism. During cannibalism, the cannibal number-changing self-interactions
convert the particles’ rest-mass energy into kinetic energy to maintain chemical equilibrium
while conserving entropy within the cannibal fluid. The period of cannibalism ends when the
rate of number-changing self-interaction falls below the Hubble rate. Such a cannibal fluid
can easily come to dominate the energy density of the universe even if the hidden sector was
initially colder than the SM bath. The ECDE ends when the cannibal particles decay into
relativistic SM particles prior to the onset of BBN.

During the ECDE, we find that sub-horizon cannibal density perturbations grow lin-
early with the scale factor on scales that are larger than the cannibal Jeans length. The
DM perturbations follow the cannibal density perturbations because the DM particles fall
into the gravitational potential wells formed by the cannibals. Consequently, the enhance-
ment of the DM perturbations after an ECDE relative to those in the standard cosmology
reflects the cannibal perturbation spectrum and contains information about the cannibal self-
interactions. This enhancement of the DM perturbations due to an ECDE is unaffected by
possible scattering between the DM and the cannibals.

Enhanced small-scale DM perturbations collapse earlier than they otherwise would and
hence lead to an enhanced population of halos at high redshift. Since an ECDE only affects
perturbations on scales that enter the horizon during the ECDE, perturbations on these scales
form microhalos with masses far less than the mass of the Sun. The characteristic mass of the
earliest-forming microhalos, Mpk, is determined by the scale with the largest enhancement in
DM perturbations (kpk) whereas the formation time of these microhalos is determined by the
amplitude of the enhancement, which is given by T (kpk).

The location of the peak of the DM power spectrum is determined by the process that
counteracts gravitationally induced growth and prevents structure formation on small scales.
In earlier works that have studied microhalo formation due to an early matter-dominated era
(EMDE), this cutoff in the matter power spectrum was assumed to be generated by DM free
streaming [37–40] or axion DM oscillations [48]. Consequently, the peak scale is determined
by DM microphysics. If the DM belongs to a hidden sector whose lightest particle causes
the EMDE, then the DM particle may be cold enough that the relativistic pressure of the
lightest hidden-sector particle sets the small-scale cutoff [14, 61]. We showed in Ref. [30] that
the cutoff in the matter power spectrum following an ECDE is typically generated by the
thermal pressure in the cannibal fluid and is independent of DM microphysics when there
is no period of SM radiation domination prior to the ECDE. In this work, we extended our
analysis to scenarios in which the cannibals freeze-out while cannibal density is subdominant
to SM density and showed that the cannibal thermal pressure still determines the cutoff. We
find the cutoff scale to be given by the cannibal sound horizon at reheating, up to an order
of magnitude, irrespective of the initial temperature ratio between the cannibal fluid and SM
plasma and the properties of the DM particles. The only exceptions occur in narrow bands of
parameter space where the DM free-streaming horizon overcomes the cannibal sound horizon
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or where the cannibal fluid becomes collisionless prior to cannibal domination.

While the cannibal sound horizon provides a rough estimate of the wavenumber at which
the power spectrum is maximized, kpk, we have also found a more accurate (within ∼ 10%)
expression for kpk. In the case where the freeze-out of cannibal reactions occurs during
cannibal domination we find kpk ≈ kJ(2afz)/1.4, where k−1

J is the cannibal Jeans length, and
afz is the scale factor when cannibal reactions freeze out [30]. If the freeze-out of cannibal
reactions occurs during SM radiation domination, then we find kpk to be given by eq. (3.31).
These analytical estimates allow us to provide a map between the key microhalo properties,
Mpk and T (kpk), and the cannibal particle properties.

The peak amplitude of enhancement in dark matter perturbations due to an ECDE,
T (kpk), is determined by how long cannibals dominate the universe after they freeze out,
which depends on the cannibal mass, m, its 3 → 2 reaction coupling, αc, its initial temperature
relative to the SM, ξi, and the reheat temperature, Trh. A longer period of post-freeze-out
cannibal domination leads to larger values of T (kpk) and earlier microhalo formation. If
T (kpk) & 104, the cannibals and DM particles assemble into halos prior to reheating. After
the cannibals decay, the DM particles are released from these halos with sufficient velocity
that their subsequent motion erases nearly all the perturbations that are within the horizon at
reheating [61]. Consequently, an ECDE will generate a significantly enhanced abundance of
microhalos for 5 . T (kpk) . 104. Since T (kpk) is roughly proportional to the ratio m/Trh, a
band of m/Trh values is expected to yield an enhanced microhalo population. The upper and
lower limits of this band are fixed by αc and ξi. The range of possible values for m, Trh, αc,
and ξi, is further constrained by the requirement that cannibals undergo cannibalism and
that reheating occurs early enough to avoid altering the neutrino abundance, which would
spoil the success of BBN [31–34] and alter the anisotropies in the CMB [35, 36]. Thus, we
have identified a bounded region in the cannibal parameter space that produces an enhanced
abundance of microhalos due to an ECDE. Within this parameter space, we provide estimates
for the masses of the earliest-forming halos and their formation times in terms of the properties
of the cannibal field.

Finally, we briefly discussed potential observational sensitivity to this enhanced micro-
halo population. We expect the microhalos generated by ECDEs with reheat temperatures up
to Trh ' 100 MeV with T (27krh) & 25 and T (kpk) . 104 to be detectable in the future pulsar
timing arrays analyzed in Refs. [77, 78], while the results of Refs. [43, 61, 79, 80] imply that
the observed IGRB likely excludes s-wave thermal relic DM in almost all ECDE scenarios.
Cluster caustic microlensing is a promising alternative gravitational means of detecting the
ECDE-enhanced population of microhalos in the low-redshift universe, but projections for
such observations are not developed enough to allow for similarly definitive statements.

It is important to remember, however, that all of these observational probes are sensitive
to the internal structure of the microhalos. While it is possible to predict the density profiles
of the first microhalos from the matter power spectrum [65], it is unknown how subsequent
mergers between microhalos and their further evolution within galactic halos affect their inter-
nal structure. Analyses that employ different assumptions regarding the microhalos’ density
profiles, substructure, and survival rate give similar but not identical bounds on EMDE cos-
mologies. There is also a great deal of uncertainty regarding how the gravitational heating
of the dark matter following structure formation during the EMDE or ECDE affects the
subsequent formation of microhalos [61], and it has been suggested that microhalo remnants
could persist through reheating [81]. Therefore, we cannot yet establish robust observational
constraints on cannibalism within a hidden sector. Nevertheless, we have identified which
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regions of cannibal parameter space enhance the microhalo abundance, which demonstrates
how observations of small-scale structure provide a window into the evolution and particle
content of the early Universe.
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A Homogeneous cannibal evolution

In this appendix, we determine the cosmological evolution of the cannibal fluid as it becomes
non-relativistic as well as when the cannibal reactions freeze out. We consider the case where
the cannibal particles become non-relativistic before both freeze-out and decay.

A.1 Equilibrium evolution

We are interested in finding the equilibrium cannibal density and temperature as a function
of scale factor. We begin by writing the Boltzmann equation for the cannibal energy density:

a
dρcan,eq
da

+ 3(1 + wc,eq(a))ρcan,eq = 0. (A.1)

While the cannibal fluid is in equilibrium, its energy density and equation of state can be
written in terms of the cannibal temperature, Tc, using the relations

ρcan,eq =
m4

2π2

∫

∞

1
dẼẼ2

√

Ẽ2 − 1feq(Ẽx) ≡
m4

2π2
h(x), (A.2)

wc,eq =

∫

∞

1 dẼ(Ẽ2 − 1)3/2feq(Ẽx)

3
∫

∞

1 dẼẼ2
√

Ẽ2 − 1feq(Ẽx)
≡ g(x)

h(x)
, (A.3)

where Ẽ ≡ E/m, x ≡ m/Tc, and feq is the Bose-Einstein distribution at zero chemical
potential. Consequently, eq. (A.1) can be integrated to find x as a function of scale factor
through

− ln(a/ai) =

∫ x

0.1

h′(x̃)

3[h(x̃) + g(x̃)]
dx̃ ≡ F (x), (A.4)

where we have used x(ai) = 0.1 and primes denotes derivatives with respect to x. We evaluate
F (x) at several values of x and use the resulting table to define an interpolating function for x
as a function of F = ln(a/ai). We find ρcan,eq(a) by inserting the resulting x(a) into eq. (A.2).
For a < afz/3 in figure 9, the blue and black curves shows the evolution of the equilibrium
cannibal density and temperature obtained using this procedure.
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In the limits x� 1 and x� 1, we find simple analytical expressions for F (x) using the
asymptotic expansions

h(x) ≈























π4

15

1

x4
x� 1

1

x3/2

(

1 +
27

8x
+

705

128x2
+O(x−3)

)

√

π

2
e−x x� 1

(A.5)

g(x) ≈






















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45
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1

x3/2

(1

x
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)

√

π

2
e−x x� 1.

(A.6)

Using the x � 1 limits for g(x) and h(x) in eq. (A.4) gives the expected T ∝ 1/a scaling
for relativistic particles. The x � 1 limits give us the evolution of the cannibal fluid during
cannibalism. To connect the non-relativistic evolution of the cannibal fluid to its early rela-
tivistic evolution we need to integrate in the semi-relativistic regime (x ∼ 1) where no simple
analytical expressions are available. To handle the integration in the semi-relativistic regime,
we break up the integral in eq. (A.4) into two integrals: one in the region 0.1 < x̃ < 10, and
one in the region 10 < x̃ < x. Then we use the large-x approximations for h(x) and g(x) in
the second integral to obtain

F (10)− 1

3

∫ x

10

(

1 +
1

2x̃
+

35

8x̃2
+O(x̃−3)

)

dx̃ ≈ − ln(a/ai). (A.7)

Taking F (10) = −6.5 in eq. (A.7) implies

x = 3 ln

(

a/ai

17.5x1/6

)

+
35

8x
+O

(

x−2
)

. (A.8)

To obtain a simpler relation between x and a, we neglect the 1/x term and set x = 10 in the
logarithm, which is approximately true during cannibalism, as seen in figure 9. With these
simplifications,

x ≈ 3 ln

(

a

25.6ai

)

. (A.9)

In the left panel of figure 9 the red dashed curve shows this result for the temperature
evolution, which accurately describes the evolution of the cannibal fluid once it becomes
non-relativistic.

To determine the evolution of the cannibal density in the non-relativistic regime we
first write its density in the large x limit by using eq. (A.5) in eq. (A.3). Since h(x) has an
exponential dependence on x, we use eq. (A.8) instead of eq. (A.9) in the exponential term.
Expanding the resulting equation to order 1/x2 gives

ρcan,eq ≈ m4

[
√

π

2

(17.5)3

2π2

]

1

(a/ai)3x

[

1− 1

x
+O(x−2)

]

. (A.10)

Since the temperature of cannibal particles remains of order 0.1m during cannibalism, as
seen in left panel of figure 9, the next-to-leading order term in 1/x above provides a ∼ 10%
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Since the cannibal particles are non-relativistic by the time freeze-out occurs, we use Maxwell-
Boltzmann statistics in eq. (2.9) to obtain

ncan = eµ/Tncan,eq = eµx/m
m3

2π2
K2(x)

x
; (A.14)

ρcan = eµ/Tρcan,eq = eµx/m
m4

2π2

(xK1(x) + 3K2(x)

x2

)

; (A.15)

wc =
Pcan

ρcan
=

Pcan,eq

ρcan,eq
=

K2(x)

xK1(x) + 3K2(x)
; (A.16)

where Ki(x) is the modified Bessel function of ith order.
To find the evolution equation for x we begin by expressing ρcan in terms of ncan and x

using eqs. (A.14)-(A.16),

ρcan = mncan
1

xwc(x)
. (A.17)

Using the above relation to express ρcan in terms of ncan in the energy conservation equation,
eq. (2.4), yields

m

xwc

(

a
dncan
da

+ 3ncan + Γnxwc(x)

)

− mncan
x2

(

wc + xw′
c(x)

w2
c

a
dx

da
− 3x

)

= 0. (A.18)

We then simplify the first bracket using eq. (A.13) to obtain the evolution equation for x,

a
dx

da
− 3

xw2
c

wc + xw′
c(x)

=
xwc

wc + xw′
c(x)

〈σv2〉
H

ncan(ncan,eq − ncan) +
xwc(xwc − 1)

wc + xw′
c(x)

Γ

H
. (A.19)

Eq. (A.13) and eq. (A.19) form coupled differential equations which are evaluated to-
gether to solve for ncan(a) and x(a). In the left panel of figure 9 we plot the temperature
(blue and black lines) for a > afz/3 by numerically solving eq. (A.13) and eq. (A.19). In
the right panel we plot the cannibal density for a > afz/3 using the numerically evaluated x
and ncan in eq. (A.17). Notice that the evolution of the cannibal thermodynamic quantities
is very similar in the two cases where the universe is cannibal dominated (blue line) or SM
radiation dominated (black line), with the only difference being the specific value of afz. Here
afz is evaluated by finding where equality in eq. (A.12) is satisfied for numerically obtained
ncan.

A.3 Cannibal decay

The collision term describing the energy transferred from the cannibal bath to SM-radiation
due to a cannibal particle decaying into two SM particles is given by

dρcan
dt

+3(1+wc)Hρcan = ĈE = −
∫

dΠdΠ1dΠ2 (2π)
4δ4(p−p1−p2)S|MΓ|2fc(p)E, (A.20)

where fc is the distribution function for the cannibals, dΠk = d3pk/[(2π)
32Ek], |MΓ|2 is the

matrix element corresponding to cannibal decays into radiation, S is the symmetry factor,
and variables with subscripts 1 and 2 correspond to the daughter particles while those with
no subscripts correspond to the cannibal particle. We have neglected the contribution from
final state effects as well as those from inverse decays. These approximations are valid as we
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consider the cannibal decays to become important (Γ ∼ H) when the cannibal particles are
non-relativistic.

Next, we perform the phase space integration of the daughter particles in the rest frame
of the cannibal particle by using the definition of the rest frame decay width,

2mΓ ≡
∫

dΠ1dΠ2 (2π)
4δ4(p− p1 − p2)S|MΓ|2. (A.21)

Doing so simplifies the collision term to

ĈE = −mΓ

∫

d3p

(2π)3
fc(p) = −mncanΓ. (A.22)

The net energy transfer depends on the product mncan and not on ρcan because the longer
cosmic rest-frame lifetime experienced by higher-energy particles exactly compensates for the
increased energy released in their decays.

B WKB approximation for cannibal density perturbations

In this appendix we find an analytical expression for the evolution of cannibal density per-
turbations while the perturbations are rapidly oscillating, i.e. when csk � aH.

In the limit csk � aH, the sub-horizon evolution of cannibal density perturbations given
in eq. (3.13) simplifies to

δ′′c (a) +
[(a2H)′

a2H
+

1

a
(1− 3wc)

]

δ′c +
1

a2

(

csk

aH

)2

δc = 0, (B.1)

where prime denotes derivative with respect to a. Without any loss of generality, we can
express the solution to the above equations as

δ = D(a)ei
∫
Ω(a)/(a2H)da, (B.2)

where D and Ω determine the amplitude and frequency of oscillations, respectively. Substi-
tuting this ansatz into eq. (B.1) gives

[

D′′ +

(

(a2H)′

a2H
+

1− 3wc

a

)

D′ +
D

(a2H)2
(

c2sk
2 − Ω2

)

]

+i

[

2D′
Ω

a2H
+D

Ω′

a2H
+

(

1− 3wc

a

)

D
Ω

a2H

]

= 0. (B.3)

Both the imaginary part and the real part above have to equal zero. Setting the imaginary
part to zero implies

D2 Ωe
∫ a
a∗

[1−3wc(ã)]d ln(ã) = constant, (B.4)

where a∗ is some initial scale factor.
We solve the real part of eq. (B.3) by assuming that the oscillation frequency is much

greater than the rate at which the amplitude is changing: c2sk
2/(a2H)2 � D′′/D and

D′/(aD). This WKB approximation allows us to neglect the terms containing derivatives
of D when setting the real part of eq. (B.3) to zero, which implies that

Ω(a) ≈ ±csk. (B.5)
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Calculating the amplitude D by substituting the above relation in eq. (B.4) gives the full
solution as

δ(a) =
1√
csk

e−
∫ a
a∗

[1−3wc(ã)]d ln(ã)/2
(

Aei
∫ a
a∗

csk/(ã2H)dã +Be−i
∫ a
a∗

csk/(ã2H)dã
)

. (B.6)

Here A and B are constants determined by the initial conditions at a∗. We can equivalently
express the above equation in terms of the sine function:

δ(a) = C1
1√
csk

e−
∫ a
a∗

[1−3wc(ã)]d ln(ã)/2 sin

(
∫ a

a∗

csk

ã2H
dã+ C2

)

, (B.7)

where the initial conditions now determine the constants C1 and C2.

Note that the damping due to the Hubble term present in the coefficient of δ′ in eq. (B.1)
is exactly compensated by the Hubble term appearing in the frequency. Hence the expansion
of the universe does not lead to damping of perturbations as one might naively think by looking
at eq. (B.1). In fact by rewriting eq. (B.1) in terms of conformal time, dη = da/(a2H), one
can see that the Hubble damping term does not appear.

C Cannibal 2-to-2 scattering rate

The 2-to-2 scattering rate can be computed from the forward piece of the collision term,
Γsc = Ĉ/ncan, where Ĉ is given by

Ĉ =

∫

d3p1
2E1(2π)3

d3p2
2E2(2π)3

d3p3
2E3(2π)3

d3p4
2E4(2π)3

(2π)4δ4(p1 + p2 − p3 − p4)S|M|2f(p1)f(p2).

(C.1)

Here |M|2 is the matrix element, S = 1/4 includes the identical particle factors of initial
and final states and f is the phase-space distribution. Since we are primarily concerned with
the scattering rate when the cannibal particles are non-relativistic, we have dropped the final
state phase space distributions.

When the cannibal fluid is in kinetic equilibrium, f is given by the Maxwell-Boltzmann
distribution,

f(p) = e(µ−E)/Tc . (C.2)

In equilibrium, the collision term can be written as

Ĉ =e2µ/Tc
Tc

64π4
1

2

∫

∞

4m2

dsA(s)
√

s− 4m2K1(
√
s/Tc) (C.3)

where K1 is the modified Bessel function of the second kind, s is the Mandelstam variable,
and A(s) is the integral of the squared matrix element over final state phase space,

A(s) =
1

2

1

8π

√
s− 4m2

√
s

∫

dΩ

4π
|M|2. (C.4)

We have included factors of 1/2 in both eq. (C.3) and eq. (C.4) to account for identical
particles appearing in both the final and initial states.
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For the cannibal Lagrangian given in eq. (2.1), we find the matrix element describing
scattering is, in the non-relativistic limit,

|M|2 =
(

λ− 5

3

g2

m2

)2

. (C.5)

Inserting the above matrix element in eq. (C.3) and expanding the integrand in T/m gives
the leading contribution to the collision term in the non-relativistic limit:

Ĉ ≈e2(µ−m)/Tc

(

mTc
2π

)3
√

Tc
m

(

λ− 5
3

g2

m2

)2

64π3/2m2
. (C.6)

Expressing the chemical potential in terms of number density and the temperature of
the cannibal fluid using the relation

ncan = eµ/Tcncan,eq = e(µ−m)/Tc

(

mTc
2π

)3/2

(C.7)

yields our desired result

Γsc =
Ĉ

ncan
=ncan〈σcvc〉, (C.8)

where

〈σcvc〉 =
1

64π3/2m2

(

λ− 5

3

g2

m2

)2
√

Tc
m
. (C.9)

D Perturbed collision operators for a decaying semi-relativistic particle

In this section we derive the contribution from cannibal decays to the cosmological perturba-
tion equations. We include the decay terms up to first order in wc and c2s, or equivalently up
to first order in Tc/m.

We begin by writing the Boltzmann equations for a generic particle in a perturbed FRW
universe, whose metric given by

ds2 = −[1 + 2ψ]dt2 + a2(t)[1− 2φ](dx2 + dy2 + dz2). (D.1)

Expressing the particle’s phase space distribution in the form, f(~p, ~x, t) = f̄(p, t)+ δf(~p, ~x, t),
where f̄ and δf are unperturbed homogeneous and perturbed inhomogeneous pieces, respec-
tively, the Fourier transform of the Boltzmann equation is given, to first order in perturbations,
by

df

dt
=
∂f

∂t
+ i

~k · ~p
aE

δf −
[

H − dφ

dt

]

p2

E

∂f

∂E
− i

~k · ~p
a
ψ
∂f̄

∂E
=

1 + ψ

E
Ĉ[f ]. (D.2)

Here ~k is the comoving Fourier wavenumber and Ĉ is the collision operator.
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We are interested in the collision operator that describes the cannibal particle decaying
into pairs of relativistic SM particles. The corresponding collision operators for the cannibal
and radiation distributions are then given by

ĈΓ[fc(p)] = −1

2

∫

dΠ1dΠ2(2π)
4δ(E − E1 − E2)δ

3(~p− ~p1 − ~p2)S|MΓ|2fc(p) (D.3)

ĈΓ[fr(p1)] =

∫

dΠdΠ2(2π)
4δ(E − E1 − E2)δ

3(~p− ~p1 − ~p2)|MΓ|2fc(p), (D.4)

where fc and fr are distribution functions for the cannibals and relativistic SM particles,
respectively, dΠk = d3k/[(2π)32Ek], |MΓ|2 is the matrix element corresponding to cannibal
decays into radiation, and S is the identical particle factor. The collision term for SM radiation
does not include a factor of 1/2 because two SM particles are produced in the decay. We
have neglected the contribution from final state effects as well as those from inverse decays
because the cannibal decays become important (Γ ∼ H) when Tc � m.

To obtain the evolution equations for density and velocity perturbations we take the

energy-weighted phase space integral (
∫ d3p

(2π)3
E) and the phase space integral of the first

moment (
∫ d3p

(2π)3
[~k · ~p]) of eq. (D.2).

D.1 Cannibal Perturbation Equations

First we use the definition of the rest-frame decay width, Γ, in eq. (A.21) to evaluate eq. (D.3)
for the cannibal collision operator:

ĈΓ[fc] = −mΓfc, (D.5)

wherem is the mass of the cannibal particle. The Boltzmann equation for cannibals (eq. (D.2))
will also include collision operators originating from cannibal self-interactions. However, these
collision operators do not contribute to the perturbation equations for energy density or veloc-
ity as the self-interactions do not affect the energy and momentum of the fluid. Consequently,
only the contribution from the decay collision operator remains after integrating the Boltz-

mann equation for cannibals over
∫ d3p

(2π)3
E:

∂ρcan
∂t

+
1

a
(ρ̄can + P̄can)θcan + 3

[

H − dφ

dt

]

(ρcan + Pcan) = −mΓ(1 + ψ)ncan. (D.6)

To obtain the above result we used the definitions of energy density (ρ), number density (n),
and pressure (P) in terms of f . We also used the definition of the divergence of fluid velocity:

θ =
i

ρ̄(1 + w)

∫

d3p

(2π)3
(~k · ~p)δf. (D.7)

Writing ρ and P in terms of homogeneous and perturbed pieces,

ρ = ρ̄(1 + δ) P = wρ̄+ c2sρ̄δ, (D.8)

in eq. (D.6) and using the energy conservation equation of the cannibal fluid (eq. (2.4)) to
evaluate dρ̄can/dt, we obtain

δ̇c +
1

a
(1 + wc)θc − 3φ̇(1 + wc) + 3H(c2s − wc)δc = −Γ

mn̄can
ρ̄can

[

ψ +
δncan
n̄can

− δc

]

, (D.9)
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where dot denotes differentiation with respect to t.
While Tc � m, we can further simplify the RHS by relating ncan to ρcan and Pcan using

ρcan ≈ m

∫

d3p

(2π)3

(

1 +
p2

2m2

)

fc = mncan +
3

2
Pcan. (D.10)

It follows that

δncan
n̄can

≈ δc
1− 3

2c
2
s

1− 3
2wc

≈ δc

[

1 +
3

2
(wc − c2s) +O(w2

c )

]

. (D.11)

Using the above result to evaluate δncan/ncan in eq. (D.9), we obtain the perturbation equation
for δc by expanding the terms proportional to Γ to first order in wc and c2s,

δ̇c +
1

a
(1 + wc)θc − 3φ̇(1 + wc) + 3

(

H − Γ

2

)

(c2s − wc)δc = −Γψ

(

1− 3

2
wc

)

. (D.12)

Next we calculate the perturbation equation for the divergence of fluid velocity, θ, by

evaluating the phase-space integration of the first moment (
∫ d3p

(2π)3

(

~k · ~p
)

) of the Boltzmann

equation for cannibals (eq. (D.2)). Note that all integrals that are odd in p̂ will be proportional
to δf , so any products of such integrals with metric perturbations can be neglected. Most of
the remaining integrals can be evaluated using the definitions of ρ, n, P , and θ. The only
integral not covered by these definitions contains (k̂ · p̂)2 in the integrand, which is contained
in the definition of anisotropic stress:

σ ≡ − 1

ρ̄(1 + w)

∫

d3p

(2π)3
p2

E

[

(

k̂ · p̂
)2

− 1

3

]

δf. (D.13)

Finally, we use ˙̄P = c2s ˙̄ρcan and evaluate ˙̄ρcan using the energy conservation equation (eq. (2.4))
to obtain

θ̇c +H(1− 3c2s)θc −
k2

a
ψ +

k2

a
σcan −

c2sk
2

a(1 + wc)
δc

= mΓ

[

n̄can(1 + c2s)

ρ̄can(1 + wc)
θc −

i

ρ̄can(1 + wc)

∫

d3p

(2π)3

(

~k · ~p
) δf

E

]

. (D.14)

We further simplify the square bracket on the RHS by approximating E ≈ m+ p2/(2m) and
using eq. (D.10). Simplifying the resulting expression by keeping only leading order terms in
wc and c2s and then using the definition of θ, we obtain

θ̇c +H(1− 3c2s)θc −
k2

a
ψ +

k2

a
σcan −

c2sk
2

a(1 + wc)
δc

= Γ

[(

−5

2
wc + c2s

)

θc +
i

ρ̄can(1 + wc)

∫

d3p

(2π)3
p2

2m2

(

~k · ~p
)

δf

]

. (D.15)

To simplify the integral on the RHS, we note that the distribution function for a non-
relativistic perfect fluid can be written as

f = e(µ+δµ)/T e−(E−~p·~v)/T ≈ f̄(E)− f̄ ′(E)(δµ+ ~p · ~v), (D.16)
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where δµ and ~v encode the density and velocity perturbations in the fluid. Using the above
expression of f in the θ definition (eq. (D.7)) we obtain θ = i~k ·~v. Consequently, the integral
on the RHS of eq. (D.15) simplifies to yield
∫

d3p

(2π)3
p2

2m2

(

~k · ~p
)

δf ≈ −
∫

d3p

(2π)3
p2

2m2

(

~k · ~p
)

f̄ ′(E)(~p · ~v) = −iρ̄canθc
[

5

2
wc +O(w2

c )

]

.

(D.17)

Therefore, the perturbation equation for θc is given by

θ̇c +H(1− 3c2s)θc −
k2

a
ψ +

k2

a
σcan −

c2sk
2

a(1 + wc)
δc = Γc2sθc (D.18)

to leading order in wc and c2s for terms proportional to Γ.

D.2 Radiation Perturbation Equations

We find the equation for radiation density perturbations by taking the energy-weighted phase

space integral (
∫ d3p

(2π)3
E) of the Boltzmann equation for radiation (eq. (D.2)). The resulting

integral of the collision term on the RHS is same as that encountered for the cannibal except
with an opposite sign,

(1 + ψ)

∫

d3p1
(2π)3E1

SE1ĈΓ[fr(p1)] = −(1 + ψ)

∫

d3p

(2π)3E
EĈΓ[fc(p)] = (1 + ψ)mncanΓ,

(D.19)

where ĈΓ[fc(p)] and ĈΓ[fr(p1)] are given in eq. (D.3) and eq. (D.4). The above equality is
a direct consequence of energy conservation, which sets the energy of the daughter particle
equal to half of the energy of the cannibal particle, E1 = E/2. Since the expression on the
LHS now features integration over the phase space of both radiation particles, the symmetry
factor S appears.

Similar to the cannibal case, we simplify the LHS of the energy-weighted phase space
integral of the Boltzmann equation by using the definitions in eq. (D.8) and using the energy
conservation equation for ρr (eq. (2.5)) to yield

δ̇r +
4

3

θr
a

− 4φ̇ =
mΓn̄can
ρ̄r

[

ψ +
δncan
n̄can

− δr

]

. (D.20)

Above we have made use of the fact that w = c2s = 1/3 for radiation. The δncan in the RHS
can be further simplified using eq. (D.11) to give

δ̇r +
4

3

θr
a

− 4φ̇ =
mΓn̄can
ρ̄r

[

ψ + δc − δr +
3

2
δc(wc − c2s)

]

. (D.21)

Next, we find the perturbation equations for the divergence of the radiation fluid velocity

by evaluating the phase-space integration of the first moment (
∫ d3p

(2π)3
[~k ·~p]) of the Boltzmann

equation for radiation (eq. (D.2)). The RHS of the resulting equation is of the form

(1 + ψ)

∫

d3p1
(2π)3E1

(~p1 · ~k)ĈΓ[fr(p1)]

= 2(1 + ψ)

∫

dΠdΠ1dΠ2(2π)
4(~p1 · ~k)δ(E − E1 − E2)δ

3(~p− ~p1 − ~p2)S|MΓ|2fc(p). (D.22)
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In the above integral we replace ~p1 ·~k → (~p1+~p2)·~k/2 as the labels 1 and 2 are interchangeable.
Moreover, by momentum conservation we have ~p1 + ~p2 = ~p, which yields

(1 + ψ)

∫

d3p1
(2π)3E1

(~p1 · ~k)ĈΓ[fr(p1)]

=(1 + ψ)

∫

dΠ

[
∫

dΠ1dΠ2(2π)
4δ4(p− p1 − p2)S|MΓ|2

]

(~p · ~k)fc(p) (D.23)

=Γ

∫

d3p

(2π)3

(

~k · ~p
) δf
√

1 + p2/m2
≈ −iΓρ̄canθc

[

1− 3

2
wc

]

. (D.24)

Here in the second line we first expanded the denominator to first order in p2/m2 and then
used the definition of θ (eq. (D.7)) along with the result given in eq. (D.17) to obtain the
final answer.

We simplify the phase space integration of the first moment of the LHS of Boltzmann
equation in the same way as we did for cannibal perturbations. Expressing the cannibal
energy density in terms of the cannibal number density using eq. (D.10) gives

θ̇r −
k2

4a
δr −

k2

a
ψ +

k2

a
σr = Γ

mn̄can
ρ̄r

[

3

4
θc − θr

]

. (D.25)
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