
J R Stat Soc Series B. 2021;83:853–879.	 ﻿	    |  853wileyonlinelibrary.com/journal/rssb

Received: 14 December 2020  |  Accepted: 13 July 2021

DOI: 10.1111/rssb.12466  

O R I G I N A L  A R T I C L E

Approximate Laplace approximations for 
scalable model selection

David Rossell1,2   |   Oriol Abril1  |   Anirban Bhattacharya3

This is an open access article under the terms of the Creat​ive Commo​ns Attri​butio​n-NonCo​mmerc​ial-NoDerivs License, which permits 
use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or 
adaptations are made.
© 2021 The Authors. Journal of the Royal Statistical Society: Series B (Statistical Methodology) published by John Wiley & Sons Ltd on 
behalf of Royal Statistical Society

1Universitat Pompeu Fabra, Barcelona, 
Spain
2Data Science Center, Barcelona 
Graduate School of Economics, 
Barcelona, Spain
3Statistics, Texas A&M Univesrsity, Texas, 
USA

Correspondence
David Rossell, Universitat Pompeu Fabra, 
Barcelona, Spain.
Email: rosselldavid@gmail.com

Funding information
Spanish Government grants Europa 
Excelencia, Grant/Award Number: 
EUR2020-112096, RYC-2015-18544 and 
PGC2018-101643-B-I00; NIH, Grant/
Award Number: R01 CA158113DMS-01

Abstract
We propose the approximate Laplace approximation 
(ALA) to evaluate integrated likelihoods, a bottleneck 
in Bayesian model selection. The Laplace approxima-
tion (LA) is a popular tool that speeds up such com-
putation and equips strong model selection properties. 
However, when the sample size is large or one con-
siders many models the cost of the required optimiza-
tions becomes impractical. ALA reduces the cost to 
that of solving a least-squares problem for each model. 
Further, it enables efficient computation across mod-
els such as sharing pre-computed sufficient statistics 
and certain operations in matrix decompositions. We 
prove that in generalized (possibly non-linear) models 
ALA achieves a strong form of model selection consist-
ency for a suitably-defined optimal model, at the same 
functional rates as exact computation. We consider 
fixed- and high-dimensional problems, group and hier-
archical constraints, and the possibility that all models 
are misspecified. We also obtain ALA rates for Gaussian 
regression under non-local priors, an important exam-
ple where the LA can be costly and does not consist-
ently estimate the integrated likelihood. Our examples 
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A main computational bottleneck in Bayesian model selection is evaluating integrated likeli-
hoods, either when the sample size n is large or there are many models to consider. If said inte-
grals can be obtained quickly, one can often use relatively simple algorithms to explore effectively 
the model space. For example, one may rely on the fast convergence of Metropolis–Hastings 
moves when posterior model probabilities concentrate (Yang et  al., 2016), sequential Monte 
Carlo methods to lower the cost of model search (Schäfer & Chopin, 2013), tempering strate-
gies to explore model spaces with strong multi-modalities (Zanella & Roberts, 2019), or adaptive 
Markov Chain Monte Carlo to reduce the effort in exploring low posterior probability models 
(Griffin et al., 2020). Unfortunately, except for very specific settings such as Gaussian regression 
under conjugate priors, the integrated likelihood has no closed-form, which seriously hampers 
scaling computations to even moderate dimensions.

Our main contribution is proposing a simple yet powerful approximate inference technique, 
the Approximate Laplace Approximation (ALA). Analogously to the classical Laplace approxi-
mation (LA) to an integral, ALA uses a second-order Taylor expansion, the difference being that 
the expansion is done at a point that simplifies calculations. Also, there is a particular version of 
the ALA for which, within the exponential family, one may pre-compute statistics to obtain the 
ALA in all models. After said pre-computation, the computational cost does not depend on n.

We outline the idea. Let y = (y1, …, yn) be an observed outcome of interest and suppose that 
one considers several models γ  ∈  Γ within some set of models Γ. Given prior model probabilities 
p(γ), Bayesian model selection assigns posterior probabilities p(γ|y) = p(y|γ)p(γ)/p(y), where

is the integrated likelihood, p(y |�� , �) the likelihood-function under model γ, �� ∈ ℝ
p� the model 

parameters, p(�� |�) their prior density, and p(y) =
∑

�∈Γp(y ��)p(�). The LA provides an approxi-
mation p̂(y |�) using a Taylor expansion of the log-integrand in Equation (1) at the posterior mode 
�̂�, giving

where Ĥ� is the log-integrand's negative hessian at �̂�. Although p̂(y |�) is typically accurate, the op-
timization to obtain �̂� can be costly when p� = dim(�� ) is large, especially when one repeats such a 
calculation for many models. It is also costly when the sample size n is large, since for most common 
models evaluating the likelihood and derivatives has a linear cost in n, and sometimes higher (e.g. 
high-dimensional models where p� grows with n).

(1)p(y |�) = ∫ p(y |�� , �)p(�� |�)d��

(2)p̂(y |�) = p(y | �̂� , �)p(�̂� |�)(2�)p�∕2 |Ĥ� | −
1
2 ,

include non-linear regression, logistic, Poisson and sur-
vival models. We implement the methodology in the R 
package mombf.

K E Y W O R D S

approximate inference, hierarchical constraints, group 
constraints, model misspecification, model selection, non-local 
priors, non-parametric regression
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ALA avoids the need to obtain �̂� by expanding the log-likelihood at a suitably-chosen 	
initial value ηγ0, saving the associated optimization time to compute �̂�. Let �̃� = ��0 −H −1

�0
g�0 be 

a guess at �̂� given by a Newton–Raphson iteration from ηγ0, where gγ0 and Hγ0 are the gradient 
and hessian of the negative log-likelihood at ηγ0. A quadratic log-likelihood expansion at ηγ0 (see 
Section S1) gives the ALA to the integrated likelihood

leading to ALA posterior probabilities p̃(� �y) = p̃(y ��)p(�)∕∑��∈Γ p̃(y �� �)p(� �). Figure 1 offers a 
simple illustration in a univariate logistic regression example. See Section S1.1 for an alternative 
ALA based on expanding the full integrand, which attains the same rates as (3) under mild condi-
tions and performed similarly in our examples.

We focus attention in regression problems where setting coefficients in ηγ0 to 0 results in fur-
ther simplifications, particularly in exponential family models where it allows pre-computing 
sufficient statistics. The computational savings are substantial, see Figure 2 and Figure S1 for 
logistic and Poisson regression examples. Even when sufficient statistics are not available the 
savings from avoiding the optimization exercise can still be significant, see our survival model 
examples in Table 1.

A caveat is that, unlike LA, in general p̃(y |�) does not consistently estimate p(y|γ) as n → ∞. 
For concave log-likelihoods the LA has relative error converging to 1 in probability, under the 
minimal condition that Ĥ�∕n converges in probability to a positive-definite matrix (Rossell and 
Rubio (2019), Proposition 8). Under further conditions, the LA estimates Bayes factors with 
relative error of order 1/n2 (Kass et al., 1990), see also Ruli et al. (2016) for higher-order ap-
proximations to high-dimensional integrals. The ALA does not equip such properties. Figure 
1 (right) illustrates a situation where, due to the posterior distribution concentrating far from 

(3)p̃(y |�) = p(y |��0, �)p(�̃� |�)(2�)p�∕2 |H�0 | −
1
2 exp{

1

2
gT�0H

−1
�0 g�0},

F I G U R E  1   Logistic regression simulation in one dimension with a standard Gaussian prior on the 
coefficient. The likelihood multiplied by the prior p(y |�� , �)N(�� ; 0, 1) is plotted in grey (Exact). The solid black 
line (LA) plots an approximation by replacing the log-likelihood with a second-order Taylor expansion at the 
MLE. The dashed line (ALA) does the same with a quadratic expansion around zero
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the expansion point, ALA significantly underestimates the integral. Nevertheless ALA attains 
a strong type of model selection consistency, even when (inevitably) models are misspeci-
fied, that is the data are truly generated by a distribution F ∗ outside the considered models. 
Specifically, we prove that the ALA posterior probability p̃(�̃ ∗ |y) converges to 1 in the L1 sense 
for a suitably-defined optimal model �̃ ∗. Said �̃ ∗ is in general different from the model γ* asymp-
totically recovered by exact calculations. Under misspecification, neither γ* nor �̃ ∗ in general 
recover the set of covariates associated to the mean of y under the data-generating F ∗, but the 
optimal covariates under two different implicit loss functions. However we show via examples 
that �̃ ∗ and γ* often coincide, and provide a sufficient condition for �̃ ∗ to discard truly spurious 
parameters. Intuitively, the reason why situations like that in Figure 1 (right) need not be prob-
lematic is that Bayes factors target ratios of integrated likelihoods. Despite the integral being 
under-estimated, it is still very large relative to the likelihood at 0 is very large, signaling that 
the parameter should be included.

F I G U R E  2   Logistic regression simulation. Top: average run time (seconds) in a single-core i7 processor 
running Ubuntu 20.04. Bottom: average posterior inclusion probabilities for truly active and inactive variables

p = 10, n ∈ {100, 500, 1000, 5000} n = 500, p ∈ {5, 10, 25, 50}
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Relative to approximate inference methods primarily designed for estimation or prediction 
such as variational Bayes (Jordan et al., 1999) or expectation propagation (Minka, 2001), ALA fo-
cuses on model selection problems where the goal is structural learning; see, however, Carbonetto 
and Stephens (2012) and Huang et al. (2016) for variational Bayes approaches to variable selection 
in Gaussian regression with conjugate priors. We focus our study on a wide model class within 
the exponential family, which includes generalized linear, generalized additive models and other 
(possibly non-additive) generalized structured regression. We also illustrate the use of ALA with 
concave log-likelihoods outside the exponential family, via a non-linear additive accelerated 
failure time model (Rossell & Rubio, 2019). We incorporate two aspects where state-of-the-art 
methods encounter difficulties. First, we consider that the model selection exercise may combine 
group and hierarchical constraints, a case where penalized likelihood and shrinkage prior meth-
ods can face difficulties in terms of computational complexity. Said constraints are relevant when 
one considers categorical covariates, interaction terms, and semi- and non-parametric covariate 
effects, for example. Second, we use ALA to facilitate computation for non-local priors (Johnson 
& Rossell, 2010, 2012). Non-local priors attain some of the strongest theoretical properties among 
Bayesian methods in high dimensions, see Shin et al. (2018) and Rossell (2018). However, exact 
calculations are unfeasible, the LA is costly and it does not consistently estimate p(y|γ) for any 
model γ that includes truly spurious parameters (Rossell & Telesca, 2017). Interestingly, although 
we generally view the ALA as fast approximate inference that may perform slightly worse than 
the LA, for non-local priors the ALA often attains better inference.

T A B L E  1   Mean run times for poverty data, survival analysis in truly AFT simulations, truly PH simulations, 
and colon cancer data. Laptop with Ubuntu 18.04, Intel i7 1.8GHz processor, 15.4 Gb RAM, 1 core

Poverty data (n = 89,755)

Main effects (p = 60) Interactions (p = 1469)

gZellner ALA 19.5 s 5.2 min

gZellner LA 10.1 days 17.3 days

Simulation under true AFT model (J = 100, p = 300)

n = 100 n = 500

gMOM ALA 4.0 s 7.5 s

gZellner ALA 9.6 s 13.2 s

gZellner LA 188.9 s 251.1 s

Simulation under true PH model (J = 100, p = 300)

n = 100 n = 500

gMOM ALA 2.0 s 4.1 s

gZellner ALA 2.3 s 10.7 s

gZellner LA 152.4 s 81.1 s

Colon cancer data (n = 260,  p = 175)

Uniform p(γ) BetaBin p(γ)

gMOM ALA 3.3 min 39.3 s

gZellner ALA 11.1 min 48.8 s

gZellner LA 55.0 h 15.1 min
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The paper is structured as follows. Section 1 reviews exponential family models and discusses 
computational savings associated to the ALA. Although the ALA applies to a wide set of priors, 
for concreteness Section 2 outlines specific local and a non-local priors on parameters that we 
use in our examples, and a group hierarchical prior on models p(γ). The development of the non-
local prior is in fact a secondary contribution of this paper: it is a novel class combining additive 
penalties (Johnson & Rossell, 2010) suitable for group constraints with product-type penalties 
required for high-dimensional consistency (Johnson & Rossell, 2012). Section 3 gives specific 
ALA expressions for local priors, and subsequently for the more challenging non-local prior case. 
Section 4 gives model selection consistency results for ALA, specifically rates that hold for fixed 
p under minimal conditions and high-dimensional rates where p grows with n, under slightly 
stronger conditions. We distinguish cases where the exponential family has a known dispersion 
parameter (e.g. logistic and Poisson regression) and cases where it is unknown. In particular our 
high-dimensional theory focuses on the known case, to alleviate the technical exposition, but 
our results also apply to Gaussian outcomes with unknown error variance. Section 5 shows ex-
amples assessing the numerical accuracy of ALA, the computational time, and the quality of its 
associated model selection. We consider logistic, Poisson and survival examples, as well as non-
linear Gaussian regression under non-local priors where p(y|γ) are hard to approximate. We also 
briefly illustrate the use of ALA in combination with importance sampling, variable screening 
and adding optimization iterations to improve the expansion point ηγ0 in Equation (3). Section 
6 concludes. The supplementary material contains proofs, derivations and supplementary re-
sults. R code and data to reproduce our examples are available at https://github.com/david​rusi/
paper_examp​les/tree/main/2020_Rosse​ll_Abril_Bhatt​achar​ya_ALA.

1  |   LIKELIHOOD

We lay out notation. Let xi ∈  be covariates taking values in some domain . Consider a gener-
alized structured regression with predictor

where h() is the canonical link function and zi = (zT
i1
, …, zT

iJ
)T a basis for the effect of xi with coeffi-

cients � = (�T1 , …, �TJ )
T. For example a standard generalized linear model corresponds to zi = xi. We 

also consider situations where each zij ∈ ℝ
pj defines a group with pj elements, e.g. multiple binary 

indicators for a categorical covariate or a non-linear basis expansion for a continuous covariate. That 
is, (4) includes additive regression on functions of xi, non-linear interactions between elements of xi, 
for example. Let p =

∑ J
j=1

pj be the total number of parameters and Z = (zT
1
, …, zTn )

T the n × p 
design matrix.

Our goal is to determine which � j ∈ ℝ
pj should be set to zero. Let � j = I(� j ≠ 0) for j = 1, …, J 

be group inclusion indicators, so that γ = (γ1, …, γJ) indexes the model. We denote by Zγ the n × p� 
submatrix of Z with (blocks of) columns selected by γ where p� =

∑
j:� j=1

pj, and by zγi its ith row. 
For any given model γ, the distribution of y is assumed to be in the exponential family with 	
canonical link and likelihood function

(4)h(E(yi |xi)) =
J∑

j= 1

zTij � j,

(5)
p(y |�,�, �) = exp

{
[yTZ��� −

n∑
i= 1

b(zT�i�� )]∕� +

n∑
i= 1

c(yi,�)

}
,

https://github.com/davidrusi/paper_examples/tree/main/2020_Rossell_Abril_Bhattacharya_ALA
https://github.com/davidrusi/paper_examples/tree/main/2020_Rossell_Abril_Bhattacharya_ALA
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where ϕ > 0 is an optional dispersion parameter and b() an infinitely differentiable function.
The gradient and hessian of the negative log-likelihood − log p(y|β, ϕ, γ) are

where Dγ is an n × n diagonal matrix with diagonal entry b ′′ (zT
𝛾i
𝛽𝛾 ) > 0. For completeness, Section 

S2 provides expressions for logistic and Poisson models.
A computationally-convenient choice for the ALA in Equation (3) is to set a global �0 ∈ ℝ

p 
and let ��0 = (��0, �0), where ��0 contains the entries of �0 selected by γ and, if ϕ is a unknown 
parameter,

is the maximum likelihood estimator conditional on � = �0. Since ϕ0 does not depend on γ it can be 
computed upfront and shared across all models. By basing ALA on such a global choice, one avoids 
the model-specific optimization costs that would be required by a LA.

The choice �0 = 0 gives further computational simplifications (one may also set the intercept 
to a non-zero value at essentially no cost). To ease notation let ỹ = (y − b�(0)�)∕b �� (0) denote a 
shifted and scaled version of y, � = (1, …, 1)T being the n × 1 unit vector. The gradient and hes-
sian at (��0, �) = (0, �0) are

where s(�0) = [2nb(0)∕�20 + �0
∑ n

i=1
∇2
��
c(yi, �0)]∕b

�� (0). To interpret these expressions, the ex-
ponential family predicted variance for ��0 = 0 is V (yi |z�i, ��0 = 0, �) = �b �� (0), hence 
V (ỹi |z�i, ��0 = 0, �) = �∕b �� (0). Thus, (gγ0,  Hγ0) are analogous to the gradient and hessian in a 
least-squares regression of ỹ on Z, with model-based variance ϕ/b′′(0).

Sections 3 and 4 show that ηγ0 = (0, ϕ0)T leads to desirable model selection rates. The ALA 
then basically requires least-squares type computations where (ZT ỹ, ZTZ) play the role of suffi-
cient statistics that can be computed upfront and shared across all models. To further save mem-
ory and computational requirements, in our implementation we store ZTZ in a sparse matrix that 
is incrementally filled the first time that any given entry is required. That is, when searching 
models typically many elements in ZTZ are never used, hence there is no need to compute nor to 
allocate them to memory beforehand. One may also consider alternative ηγ0, say obtained after 
a few Newton–Raphson iterations, in an attempt to obtain an ALA that is closer to the LA in 
Equation (2). See Figure 2 and Sections 5.1 and S12.2 for some examples. Such alternatives can 

g� (�� ,�)= −
1

�

⎛⎜⎜⎜⎜⎝

ZT� y−

n�
i= 1

b�(zT�i�� )z�i

− [yTZ��� −

n�
i= 1

b(zT�i�� )]∕�+�

n�
i= 1

∇�c(yi,�)

⎞⎟⎟⎟⎟⎠

H� (�� ,�)=
1

�

⎛
⎜⎜⎜⎝

ZT� D�Z� g�(�� ,�)

g�(�� ,�)
T −2[yTZ��� −

n�
i= 1

b(zT�i�� )]∕�
2−�

n�
i= 1

∇2
��c(yi,�)

⎞⎟⎟⎟⎠

(6)�0 = argmax
�
p(y |� = �0,�)

(7)

g�0= −
b��(0)

�0

(
ZT� ỹ

0

)

H�0=
b��(0)

�0

(
ZT� Z� −ZT� ỹ∕�0

− ỹTZ�∕�0 s(�0)

)
,
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lead to improved inference, at a higher computational cost. Their theoretical study requires a 
separate treatment, however, and is left for future work.

2  |   PRIOR

Most of our results apply to a wide class of priors p(γ). For concreteness we outline a structure 
that assigns the same probability to all models with the same number of active groups 
�� � = ∑ J

j=1
� j, and an arbitrary distribution p(|γ|) on |γ|.

Although unnecessary in canonical regression problems, we also consider that in certain situ-
ations one may want to impose hierarchical constraints, in the sense that � l = 0 implies � j = 0 for 
some l ≠ j. For instance, one may exclude interaction terms unless the corresponding main effects 
are present, or decompose non-linear effects as a linear plus a non-linear term, and only include 
the latter if the linear term is present (Rossell & Rubio, 2019; Scheipl et al., 2012). Such (optional) 
constraints can be added as follows.

Let C ⊆ Γ be the models satisfying the constraints. These are easily incorporated by assigning 
π(γ) = 0 to any γ ∉ C. Specifically,

where J  is the maximum model size one wishes to consider and K a prior normalization constant 
that does not need to be evaluated explicitly. The formulation allows both a number of parameters 
p ≫ n and groups J ≫ n, but restricts the model space to using combinations of at most J  groups. 
Given that models with p� ≥ n parameters result in data interpolation, typically one sets both J ≪ n 
and p𝛾 ≪ n for any allowed γ  ∈  C, see Section 4.2 for further discussion. In a standard generalized 
linear model without groups nor constraints; J = p, the constraint γ  ∈  C is removed, and K = 1.

In Section 4 we provide pairwise Bayes factor rates for general p(|γ|), whereas to ease exposi-
tion for posterior model probability rates we focus on

where c ≥ 0 is a user-specified constant and ∝ denotes “proportional to”. For c = 0 one obtains uni-
form p( |� |) = 1∕(J + 1), which generalizes the Beta-Binomial(1,1) distribution advocated by Scott 
and Berger (2006) to a setting where there may be groups and hierarchical constraints. In our experi-
ence c = 0 strikes a good balance between sparsity and retaining power to detect truly non-zero coef-
ficients, hence in all our examples we used c = 0. One may also set c > 0, which is motivated by the 
so-called Complexity priors of Castillo et al. (2015). These set a stronger prior penalty on the model 
size that leads to faster rates to discard spurious parameters, at the cost of slower rates to detect active 
parameters. See Section 4 for further details.

We remark that adding hierarchical constraints to penalized likelihood and Bayesian shrink-
age frameworks lead to computational difficulties. For instance, hierarchical constraints for 
LASSO penalties lead to a challenging optimization problem, and while one can devise relaxed 
constraints (Bien et al., 2013), our examples indicate the computation can be prohibitive.

(8)p(�) =

⎧⎪⎨⎪⎩

Kp(���)
�
J

���
�−1

, if � ∈C and ���≤ J
0, otherwise

p( |� |) ∝ p− c | � | ,
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2.1  |  Group product priors

Regarding the prior on parameters, our examples use Normal priors and a novel group moment 
(gMOM) prior family factorizing over groups

and, for models where ϕ is unknown, we set p(ϕ)  =  IG(ϕ;  a,  b) for given prior parameters 
gL, gN, a, b > 0. All other parameters (� j such that γj = 0) are zero with probability 1. Both priors fea-
ture a Normal kernel with a group-Zellner precision matrix given by ZT

j
Zj. Other covariances may be 

used, but our choice leads to inference that is robust to affine within-group reparameterizations of � j 
(for example, changing the reference category for discrete predictors), and to simple default param-
eter values gL = gN = 1 (Section 2.2).

The group Zellner pL() is a local prior, in the nomenclature of Johnson and Rossell (2010), 
whereas the gMOM pN() is a non-local prior. The defining property of non-local priors is that the 
density vanishes as �� approaches any value that lies in the parameter space of a submodel of γ, 
i.e. � j = 0 in our setting. Their interest is that they help discard spurious parameters, by inducing 
a data-dependent penalty that has little asymptotic effect on power (Rossell & Telesca, 2017). 
Earlier proposals (Johnson & Rossell, 2010, 2012) did not account for group structure, however. 
The intuition is simple, the gMOM penalizes groups with small contributions �Tj Z

T
j
Zj� j relative 

to its size pj = dim(� j), which helps induce sparsity.

2.2  |  Prior elicitation

Although our focus is computational and our theory applies to any prior parameters (gL,  gN) 
(under minimal conditions), we outline a simple strategy to obtain default (gL, gN) that we used 
in our examples. The strategy builds upon the unit information prior, a popular default leading 
to the Bayesian information criterion (Schwarz, 1978), the difference being that we account for 
the presence of groups in Zγ.

Suppose that there were no groups in Zγ. The unit information prior can be interpreted as con-
taining as much information as a single observation. Another (perhaps more natural) interpre-
tation is its specifying the prior belief that E(�T� Z

T
� Z���∕[n�]) = p�. The expected contribution 

�T� Z
T
� Z���∕n relative to the dispersion ϕ, which is a measure of the predictive ability contained 

in Zγ, is given by the number of variables p�.
Suppose now that a variable defines a group of columns in Zγ, for instance a non-linear basis 

expansion. Then p� depends on the basis dimension, which is often chosen arbitrarily. The unit 
information prior would imply the belief that the predictive power of Zγ increases with the arbi-
trary basis dimension, rather than the number of variables 

∑ J
j=1

� j. Instead, we set prior param-
eters such that the prior expected predictive power depends on 

∑ J
j=1

� j and is unaffected by the 
basis dimension. That is, we set (gL, gN) such that

(9)

pL(�� |�, �)=
∏
� j=1

N

(
� j;0,

�gLn

pj
(ZTj Zj)

−1

)

pN (�� |�, �)=
∏
� j=1

�Tj Z
T
j
Zj� j

�gNnpj∕(pj+2)
N

(
� j;0,

�gNn

pj+2
(ZTj Zj)

−1

)
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For the Normal and gMOM priors in Equation (9) this rule gives gL = gN = 1, see Section S3.

3  |   APPROXIMATE LAPLACE APPROXIMATION

We first discuss the ALA under a local prior pL(), and subsequently that for the gMOM prior pN(). 
Recall that for the latter the integrated likelihood has no computationally-convenient closed-
form, even in Gaussian regression.

3.1  |  Local priors

The ALA to the Bayes factor between any pair of models (� , � ′) is

Expression (10) can be used beyond the exponential family, provided the log-likelihood is concave. As 
an example, Section 5.4 illustrates the Gaussian accelerated failure time model; see Section S2.3 for the 
corresponding log-likelihood, gradient and derivatives, and the conditions for log-likelihood concavity.

We now provide specific expressions for exponential family models (5), and discuss a curva-
ture adjustment designed to improve finite n performance. Consider first the case where ϕ is a 
known constant, as in logistic and Poisson models. Taking ��0 = ��0 = 0 gives

where �̃� = (ZT� Z� )
−1ZT� ỹ and ỹ = (y − b�(0)�)∕b �� (0). See Section S1.2 for the derivation.

Consider now the case where ϕ is an unknown model parameter. Then, taking ηγ0 = (0, ϕ0) as 
in Section 1, one obtains

where

and s(ϕ0) is as in Equation (7), see Section S1.3 for the derivation.

E

�
�T� Z

T
� Z���

n�

�
= E

⎛
⎜⎜⎝
�
� j =1

�Tj Z
T
j
Zj� j

n�

⎞
⎟⎟⎠
=

J�
j= 1

� j.

(10)B̃
L
��� =

p̃L(y|�)
p̃L(y|� �) =exp

{
1

2
(gT�0H

−1
�0 g�0−g

T
��0
H−1

��0
g��0)

}
(2�)

p�−p��

2
|H��0|

1
2 pL(�̃� |�)

|H�0|
1
2 pL(�̃�� |� �)

.

(11)B̃
L
��� =exp

{
b��(0)

2�
(�̃

T
� Z

T
� Z� �̃� − �̃

T
��Z

T
��
Z�� �̃��)

}(
2��

b��(0)

) p�−p��

2 |ZT
��
Z�� |

1
2 pL(�̃� |�, �)

|ZT� Z� |
1
2 pL(�̃�� |�, � �)

(12)

B̃
L
� ,�� = exp

{
b �� (0)

2�0
[t� �̃

T
� Z

T
� Z� �̃� − t�� �̃

T
��Z

T
��
Z�� �̃��]

}
(2�)

p� − p��

2
|H��0 |

1
2 pL(�̃� , �̃� |�)

|H�0 |
1
2 pL(�̃�� , �̃�� |� �)

t� = 1 +
�̃
T
� Z

T
� Z� �̃�

�20(s(�0) − �̃
T
� Z

T
� Z� �̃� )

,
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3.2  |  Curvature adjustment

The Bayes factor in Equation (11) for models where ϕ is known attains desirable theoretical 
properties as n → ∞, see Section 4. There is however an important practical remark, which makes 
us recommend a curvature-adjusted ALA to improve finite n performance. We outline the idea 
and refer the reader to Section S1.4 for a full description. Expression (10) can be given in terms 
of the model-predicted covariance Cov(y |Z� , � = ��0,�) = E((y − ��0)

T (y − ��0) |Z� , � = ��0, �), 
where ��0 = E(y |Z� , � = ��0, �). Even when the data are truly generated from a distribution F ∗ 
included in the assumed model (5) for some � ∗

� , there is a mismatch between said covariance and 
EF∗((y − ��0)

T (y − ��0) |Z� ), due to μγ0 being different from the true mean E(y |Z� , � = � ∗
� ,�). 	

That is, the data may be either over-  or under-dispersed relative to the model prediction at 	
� = ��0, which can adversely affect inference.

The curvature-adjusted ALA is obtained by replacing Cov(y |Z� , � = ��0,�) for 
�̂Cov(y |Z� , � = ��0,�) = �̂�diag(b �� (Z���0)), where �̂ =

∑ n
i=1

(yi − y)2∕[�b �� (h(y))(n − 1)] is a 
Pearson residual-based estimate of over-dispersion, h() is the link function in Equation (4) and 
y =

∑ n
i=1

yi∕n the sample mean. The curvature-adjusted Bayes factor is

where �̃� = (ZT� Z� )
−1ZT� [y − b�(h(y))�]∕b �� (h(y)). Note that �̃� here denotes the parameter estimate 

after one Newton–Raphson iteration from the maximum likelihood estimator under the intercept-
only model. It is possible to use alternative over-dispersion estimators that are specific for each 
model, at a slightly higher computational cost, see Section S1.4 for a discussion. In all our logistic 
and Poisson regression examples we used �̂ as outlined above, since in our experience this simple 
choice performs fairly well in practice. See Section 5.1 and Figure S1 for a Poisson example where the 
curvature adjustment significantly improves inference.

3.3  |  Non-local priors

The ALA Bayes factors B̃N��� = p̃N (y |�)∕p̃N (y |� �) for the gMOM prior in Equation (9) require an 
alternative strategy. Let �(�� , � |�) = (�� ; 0, �V

−1
j

) where Vj = ZT
j
Zj(pj + 2)∕(npjgN ), so that 

the gMOM prior equals

Denote by �(�� , � |y, �) the posterior density and π(y|γ) the integrated likelihood associated to the 
prior �(�� ,� |�). By Proposition 1 in Rossell and Telesca (2017), the identity

(13)B̃��� =
p(�̃� |�, �) |ZT��Z�� |1∕2
p(�̃�� |�, � �) |ZT� Z� |1∕2

(
2��

�̂b �� (h(y))

)(p� −p�� )∕2

e
b �� (h(y))
2�̂�

[�̃
T
� (Z

T
� Z� )�̃� − �̃

T
��
(ZT

��
Z�� )�̃�� ],

pN (�� |�, �) = �(�� |�, �)
∏
� j =1

�Tj Vj� j

�pj
.

(14)pN (y��)=�(y��) ∫
⎛⎜⎜⎝
�
� j=1

�Tj Vj� j

�pj

⎞⎟⎟⎠
�(�� ,��y, �)d��d�
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holds exactly. π(y|γ) is the integrated likelihood under a local prior, hence one may obtain an 
ALA �̃(y |�) as described in Section 3.1. The second term in Equation (14) is the posterior expec-
tation of a product, and its computation requires a number of operations that grow exponentially 
with the model dimension p�. As an alternative, in Equation (14) we replace �(�� |�, y) by its 
ALA-based normal approximation and we also replace the integral by a product of expectations. 
Specifically,

where mj and Sj are the sub-vector of �̃� = (ZT� Z� )
−1ZT� ỹ and sub-matrix of (ZT� D�Z� )

−1 associated 
to � j, and recall that Dγ is diagonal with (i, i) entry zT

i�
�̃�. The following lemma is useful.

Lemma 1  Let A and S be l × l full-rank matrices and a, b > 0 be constants. Then

By Lemma 1 when ϕ is known the integral in Equation (15) has the simple expression

As a remark, in linear regression with known error variance ϕ where the groups � j are independent 
a posteriori (ZTZ is block-diagonal), then pN (y |�, �) = p̃N (y |�, �), i.e. Expression (16) is exact. In 
contrast, Laplace approximations p̂N (y |�, �) are not consistent even in this simplest setting. See 
Section 5.2.1 for examples.

Lemma 1 is also useful in Gaussian regression with unknown error variance ϕ. Suppose that 
one sets the prior ϕ ∼ IG(ϕ; a′, b′), then

where E(1∕� |y, �) = (a� + n)∕(b� + yTy − �̃
T
� Z

T
� Z� �̃� ) and π(y|ϕ,  γ) has closed-form expression. 

Finally, for non-Gaussian regression case and unknown ϕ we propose

(15)p̃N (y ��) = �̃(y ��)
⎡⎢⎢⎣
�
� j =1

�
�Tj Vj� j

�pj
 (� j;mj,�Sj)�̃(��y, �)d� jd�

⎤⎥⎥⎦

�
�TA�

�
 (�;m, �S)d�= tr(AS)+

mTAm

�

� �
�TA�

�
 (�;m, �S)IG(�;a, b)d�d�= tr(AS)+

a

b
mTAm.

(16)p̃N (y��, �)= �̃(y��, �)
⎡⎢⎢⎣
�
� j=1

tr(VjSj)∕pj+
mT
j
Vjmj

�pj

⎤⎥⎥⎦
.

p̃N (y ��, �) = �(y ��, �)
⎡⎢⎢⎣
�
� j =1

tr(VjSj)∕pj +mT
j VjmjE(1∕��y, �)∕pj

⎤⎥⎥⎦
,

(17)p̃N (y ��) = �̃(y ��)
⎡⎢⎢⎣
�
� j =1

tr(VjSj)∕pj +
mT
j
Vjmj

�̃�pj

⎤⎥⎥⎦
.
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4  |   THEORY

We consider a general setting where (y, Z) arise from a data-generating F ∗ that may be outside 
the assumed model class (5). We prove that as n grows the ALA-based p̃(� |y) assign probability 
increasing to 1 to an optimal �̃ ∗. For the particular choice ηγ0 = (0, ϕ0), such �̃ ∗ is the smallest 
model minimizing a mean squared loss associated to linear projections. We first explain that 
exact p(γ|y) asymptotically select a γ*, in general different from �̃ ∗, defined by a log-likelihood 
loss and Kullback-Leibler (KL) projections to F ∗. We then provide Theorem 1, characterizing 
certain situations where γ* coincides with �̃ ∗. Subsequently, in Section 4.1 we consider fixed 
p settings where one may characterize p̃(�̃ ∗ |y) via the rate at which pairwise Bayes factors 
B̃� , �̃∗ = p̃(y |�)∕p̃(y | �̃ ∗ ) converge to 0 in probability. Section 4.2 considers high-dimensional set-
tings where p may grow with n.

For any model γ, denote the KL-optimal �� under F ∗ by

and by η* that under the full model p(y|η) including all parameters. Multiple models may attain the 
global maximum EF∗(logp(y |� ∗

� , �)) = EF∗(logp(y |� ∗ )), and we define the optimal γ* as that with 
smallest dimension. If the model is well-specified, that is F ∗ is truly contained in Equation (18) for 
some η*, then γ* drops any parameters such that � ∗

j
= 0. Under misspecification, then γ* is such that 

adding any parameter to γ* cannot improve the fit, as measured by the expected log-likelihood in 
Equation (18).

In contrast, the ALA optimal model �̃ ∗ is based on mean squared error or, equivalently, on 
linear projections of EF∗(ỹ |Z), where ỹ = (y − b�(0)�)∕b �� (0) as in Equation (7). Let

be the parameters giving the linear projection of EF∗(ỹ |Z) on Zγ, where we assume EF∗(ZT� Z� ) to 
be a finite positive-definite matrix for all γ ∈ Γ (see Condition (C1) below). Then �̃ ∗ is the smallest 
model minimizing mean squared error, that is �̃ ∗ = arg min�∈Γ̃

∗p� where

For simplicity we assume �̃ ∗ to be unique, but our results generalize when there are multiple such 
models by defining �̃ ∗ to be their union.

It is important to note that when (5) is misspecified neither γ* nor �̃ ∗ recover the truth, but the 
simplest model according to their implicit loss functions. That said, Theorem 1 below delineates 
an interesting robustness property of the linear projection �̃ ∗

= [EF∗(ZTZ)]−1EF∗(ZT ỹ), under 
which terms that do not affect EF∗(y |Z) are discarded by �̃ ∗.

Theorem 1  Suppose (yi, zi)
i.i.d.
∼ F ∗ for i  =  1,  …,  n, where F ∗ is a probability distribution on 

ℝ⊗ℝ
p with a finite positive-definite covariance matrix. Also, assume EF∗(zi) = 0, i.e., the 

covariate distribution is centered. Let δ⊆ { 1, …, p} denote the true regression model so that 
EF∗(yi |zi) = f (zi�) almost-everywhere F ∗, where f : ℝp� → ℝ is a measurable function. 
Letting υ = {1, …, p}∖δ indicate the truly inactive parameters, assume that

(18)� ∗
� = argmax

��
EF∗[logp(y |�� , �)],

(19)�̃
∗

� = argmin
��

EF∗ ‖ ỹ − Z��� ‖22 = [EF∗(ZT� Z� )]
−1EF∗[ZT� ỹ]

Γ̃
∗
= {� :EF∗ ‖ ỹ − Z� �̃

∗

� ‖22 =min
�

EF∗ ‖ ỹ − Z� ‖22}
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where A ∈ ℝ
(p−p�)×p�. Then, �̃ ∗

= (�̃
∗

� ; 0), where recall that �̃ ∗

� = [EF∗(ZT� Z�)]
−1EF∗[ZT� ỹ]. In 

particular, �̃ ∗

j = 0 whenever j ∉ δ.

The assumption in Equation (20) states that the conditional mean of truly spurious variables 
is linear in the truly active ziδ. For example, the assumption is satisfied when the components of 
zi are independent, or when their marginal distribution under F ∗ follows a (centered) elliptical 
distribution, such as the multivariate Gaussian or T family. Since we assumed that zi has a finite 
positive-definite covariance, standard elliptical results (see, e.g., Chapter 1 of Muirhead (2009)) 
give that EF∗(zi� |zi�) is linear in ziδ.

Under the assumptions of Theorem 1, the ALA-optimal model �̃ ∗ is contained in the true 
model δ. In fact, �̃ ∗ = � whenever all the entries of �̃ ∗

�  are non-zero. More generally, since �̃ ∗ is 
defined by zeroes in �̃ ∗, we have that �̃ ∗ includes any term j conditionally uncorrelated with the 
true regression function f(ziδ), that is satisfying CovF∗(zij, f (zi�) |zi �̃∗) = 0. Observe that f(ziδ) need 
not be linear for the theorem to hold. For example, for a truly generalized linear model with 
EF∗(yi �zi) = f (

∑
j∈��

∗
j zij), we have f = h−1 from Equation (4). More flexible models such as mix-

tures of generalized linear models are also permitted. For example, consider a two-component 
mixture with E(yi �zi) = �f (

∑
j∈�1

� ∗
1jzij) + (1 − �)f (

∑
k∈�2

� ∗
2k
zik), π  ∈  [0,  1]. Then, �̃ ∗ discards 

any variable outside the true model δ = δ1 ∪ δ2 under the theorem assumptions. We remark that 
there are simple examples where the ALA asymptotic model �̃ ∗ ≠ �. For instance, for 
EF∗(yi |zi) = z2

i1
 we have that truly δ = {1} but �̃ ∗

j = 0, see also the Poisson example in Section 
S12.2. In practice, however, in most of our examples we observed that the ALA-based �̃ ∗ largely 
coincides with the model-based γ*.

We next prove that ALA asymptotically recovers �̃ ∗, and give the associated rates.

4.1  |  Finite-dimensional problems

The assumptions to obtain ALA Bayes factor rates are minimal. For any model γ ∈ Γ and �̃ ∗

�  in 
Equation (19), we assume the following conditions.

1.	 (yi, zi) ∼ F ∗ independently for i  =  1,  …,  n, with finite positive-definite Σz� = CovF∗(zi� ) 
and finite Σy|z,� = diag(CovF∗(y1 |Z� ), …, CovF∗(yn |Z� )).

2.	 The matrix L� = EF∗(zi�z
T
i�
[EF∗(yi |zi� ) − zT

i�
� ∗
� ]

2) has finite entries.
3.	 The prior density pL(�� |�, �) is continuous and strictly positive at �̃ ∗

� .
4.	 The equations �2

∑ n
i=1

c(yi,�)∕n = − b(0) and �2EF∗[∇�c(yi,�)] = − b(0) have unique roots 
ϕ0 and �∗

0 respectively, where EF∗[∇𝜙c(yi,𝜙)] < ∞.

Conditions (C1)–(C2) require that (yi,zi) have finite full-rank second-order moments. 
Condition (C3) states that pL(�� |�, �) is a local prior assigning positive density to �̃ ∗

� , Theorem 2 
and Corollary 1 below give Bayes factor rates for such prior and also for the non-local pN (�� |�, �) 
in Equation (9). Condition (C4) states that ϕ0 and �∗

0 are the unique maximizers of the observed 
and expected log-likelihood under F ∗, conditional on β  =  0. (C4) is only used in Corollary 1 
where ϕ is unknown to show that �0

P
⟶�∗

0, and can be easily replaced, should (�, �∗
0 ) not be 

unique. One may instead assume that  log p(y|β = 0, ϕ) defines a Glivenko-Cantelli class, a suf-
ficient condition being that the log-likelihood is dominated by an integrable function under F ∗ 
(van der Vaart (1998), Theorems 5.7, 5.9 and Lemma 5.10).

(20)EF∗(zi� |zi�) = Azi� almost-everywhere F
∗ ,
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Theorem 2 states that for any model γ adding spurious parameters (in the linear projection 
sense) to �̃ ∗, then B̃L� �̃ ∗ = Op(n

− (p� −p �̃∗ )∕2), for any local prior pL(� |�). Hence ALA Bayes factors 
discard spurious parameters at a polynomial rate in n. The rates for the gMOM-based B̃N� �̃ ∗ are 
faster, akin to results on exact Bayes factors (Johnson & Rossell, 2010, 2012). In contrast, if γ 
misses active parameters, then B̃L� �̃ ∗ and B̃N� �̃ ∗ decrease exponentially in n. Corollary 1 extends 
Theorem 2 to the unknown ϕ case.

Theorem 2  Assume Conditions (C1)–(C3). Let B̃L� , �̃ ∗ and B̃N� , �̃ ∗ = p̃N (y |�, �)∕p̃N (y |�, �̃ ∗ ) be the 
ALA Bayes factor in Equations (11) and (16) when ϕ is known.

(i)	 Suppose that 𝛾̃ ∗ ⊂ 𝛾. Then B̃L� �̃ ∗ = n(p �̃∗ −p� )∕2Op(1) and B̃N� �̃ ∗ = n3(p �̃∗ −p� )∕2Op(1) as n → ∞.
(ii)	Suppose that 𝛾̃ ∗ ⊈ 𝛾. Then 1

n
logB̃

L
𝛾 𝛾̃ ∗ < op(1) +W∕n and 1

n
logB̃

N
𝛾 𝛾̃ ∗ < op(1) +W∕n for a ran-

dom variable W satisfying W∕n
P

⟶ c > 0, as n → ∞.

Corollary 1  Assume Conditions (C1)–(C4). Let B̃L� , �̃ ∗ and B̃N� , �̃ ∗ be the ALA Bayes factor corre-
sponding to the local and non-local priors in Equations (12) and (17) when ϕ is unknown. 
Then the statements in Theorem 2 (i)–(ii) remain valid.

The rates in Theorem 2 are of the same form, as a function of n, as those for standard (Dawid, 
1999; Johnson & Rossell, 2010) and miss-specified Bayes factors (Rossell & Rubio, 2018, 2019). 
The main difference with such standard rates is in Part (ii). The leading term in B̃� , �̃∗ is given by 
a random variable W that converges to a chi-square distribution with non-centrality parameter 
l(𝛾̃ ∗ , 𝛾) = n(b̃

∗
)T S̃b̃

∗
> 0, where S̃ is a positive-definite matrix and b̃∗ ≠ 0 are asymptotic par-

tial regression coefficients for columns in �̃ ∗ �� (see the proof for details). In contrast, the leading 
term in exact B� ,�∗ has a different non-centrality parameter n(b*)TSb*, where (b*,S) now depend 
on KL projections. That is, although p(γ|y) and p̃(� |y) are both exponentially fast in n at discard-
ing models γ that miss truly active parameters in γ* and �̃ ∗ respectively, the coefficients governing 
these rates may change. For instance, if the exponential family model (5) is well-specified, even 
when �̃ ∗ = � ∗ one expects B̃� , �̃∗ to have lower statistical power than B��∗ to detect active param-
eters. In contrast, if (5) is misspecified and EF∗(yi |zi) is better approximated by a linear function 
of zi than by (4), then one expects B̃� , �̃∗ to attain higher asymptotic power.

From a technical point of view a contribution of Theorem 2 relative to earlier results is that, 
by building upon parameter estimation results for concave log-likelihoods in Hjort and Pollard 
(2011), it requires near-minimal technical conditions.

4.2  |  High-dimensional problems

Our main result proves that p̃(�̃ ∗ |y) L1
⟶1 as n → ∞ and provides the associated convergence 

rates. Recall that �̃ ∗ is the ALA-optimal model, where �̃ j = I(�̃
∗

j ≠ 0) indicates zeroes in the 
ALA-optimal parameter �̃ ∗ in Equation (19). By definition of L1 convergence, this is equivalent 
to EF∗

∑
� ≠ �̃∗ p̃(� �y) converging to 0. L1 convergence guarantees the asymptotic control of certain 

frequentist model selection probabilities. Let �̂ = arg maxp̃(y |�) be the highest posterior proba-
bility model, then PF∗(�̂ ≠ �̃ ∗ ) ≤ 2(EF∗[p̃(�̃ ∗ |y)] − 1) (Rossell (2018), Proposition 1). The same 
bound applies to the family-wise type I-II error probabilities, and when setting ̂�  to be the median 
probability model of Barbieri and Berger (2004) (Rossell (2018), Corollary 1).

Our main assumption is that ỹ has sub-Gaussian tails with variance parameter σ2 under F ∗, 
see Definition 1 in the supplement. We use the assumption to derive novel bounds on integrated 
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tail probabilities of sub-Gaussian quadratic forms, see Propositions S1 and S2, which may have 
some independent interest. The assumption is satisfied for example if F ∗ has Gaussian tails or 
ỹ is bounded as in logistic, multinomial or ordinal regression, and in fact allows for dependence 
in ỹ, but is not satisfied when ỹ has thick tails such as the Poisson distribution. One may extend 
Propositions S1 and S2 to thicker-tailed F ∗, then the L1 rates could be slower than those presented 
here. For simplicity we focus on the known dispersion parameter ϕ case, non-random design ma-
trix Z and Zellner's prior pL(�� |�, �) = (�� ;0, (gL�∕n)(Z

T
� Z� )

−1). Our proofs can be extended 
to unknown ϕ and other priors, see the proof for a discussion, at the expense of more involved 
arguments and technical conditions. By default we recommend setting constant gL, say gL = 1 as 
in Section 2.2, but our results allow for gL to change with n. For example, Narisetty and He (2014) 
proposed letting gL grow with n to obtain sparser solutions, whereas proceeding analogously to 
the uniformly most powerful tests of Johnson (2013) one might let gL decrease with n to improve 
power.

Theorem 3 below provides a first result on pairwise Bayes factors, specifically on

that is the posterior probability assigned to γ if one only considered the models γ and �̃ ∗. Bounding 
this quantity also bounds the rate at which B̃� �̃∗

P
⟶0, hence Theorem 3 extends Theorem 2 to high 

dimensions. Theorem 4 is our main result characterizing p̃(�̃ ∗ |y).
We first interpret Theorem 3, subsequently discuss the required technical conditions and fi-

nally state the theorem. Part (i) says that models adding spurious parameters to �̃ ∗ are discarded 
at the same polynomial rate in n (up to log terms) as in the fixed p case,

This rate holds when the model-predicted variance V (ỹi |zi, 𝛽 = 0, 𝜙) = 𝜙∕b �� (0) > 𝜎2, that is data 
under F ∗ are under-dispersed. Alternatively, if ϕ/b″(0) < σ2 (over-dispersion) then a (slower) rate ra�  
is attained, where a = ϕ/[b′′(0)σ2] < 1. The intuition is that, if the model underestimates σ2 then it 
becomes easier to add spurious parameters to �̃ ∗. Part (ii) states that models missing active parame-
ters are discarded at an exponential rate in the non-centrality parameter

where H� = Z� (Z
T
� Z� )

−1ZT�  is the projection matrix onto the column space of Zγ. For simplicity the 
result raises the rate at a constant power b arbitrarily close to 1, but one can actually take b = 1 and 
add logarithmic terms, see the proof for details.

The parameter λγ has a simple interpretation, it is the reduction in mean squared error when 
one approximates EF∗(y |Z) with Z �̃∗�

∗
�̃ ∗, relative to Z�� ∗

� . A common strategy in high-dimensional 
model selection theory is to assume conditions on the eigenvalues of ZTZ to lower-bound λγ in 
terms of �T

�̃ ∗ � �̃∗. Instead, here we give the result directly in terms of λγ, and state near-minimal 
conditions on λγ required for the result to hold. To build intuition, however, in a simplest case 

EF∗

([
1 + B̃ �̃∗�

p(�̃ ∗ )

p(�)

]−1
)
,

r� =
(
ngL

) p� − p �̃∗

2
p(�̃ ∗ )

p(�)
.

(21)�� = (Z �̃∗�
∗
�̃ ∗ )

T (I −H� )Z �̃∗�
∗
�̃ ∗
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where the columns in �̃ ∗ �� are uncorrelated with those in γ, then � = (� ∗
�̃ ∗ � �

)TZT
�̃ ∗ � �

Z �̃∗���
∗
�̃ ∗ � �

 
and one can roughly think of λγ as being linear in n.

The technical conditions required for Theorem 2 and any model γ ∈ Γ are below. For two se-
quences an, bn, an ≪ bn denotes that limn→∞an∕bn = 0.

D1	 �There exists a finite σ2  >  0 such that ỹ − Z �̃∗ �̃
∗

�̃ ∗ ∼ SG(0, �2), where �̃ ∗

�̃ ∗ is as in Equation 
(19).

D2	 ZT� Z� is invertible.
D3	 For any 𝛾 ⊃ 𝛾̃ ∗,

For any 𝛾 ⊅ 𝛾̃ ∗ of dimension p� ≥ p �̃∗,

For any 𝛾 ⊅ 𝛾̃ ∗ of dimension p𝛾 < p 𝛾̃∗,

As discussed earlier, Condition (D1) states that the data-generating F ∗ satisfies a tail prop-
erty, specifically that the ALA-optimal errors ỹ − Z ∗

�̃ �̃
∗

�̃ ∗ are no thicker than sub-Gaussian. 
(D2) can be relaxed but ensures that pL(�� |�, �) = (�� ;0, (gL�∕n)(Z

T
� Z� )

−1) is proper. (D2) 
requires that p� ≤ n, as discussed in Section 2 one may have p  ≫  n but only models with 
up to p𝛾 < n parameters receive positive prior probability p(γ) > 0. (D3) are minimal condi-
tions on the prior parameters and the signal strength λγ. If the number of truly active groups 
| 𝛾̃ ∗ | < J∕2, where J is the number of total groups, p(|γ|) in Equation (8) is non-increasing in 
|γ|, and gL is non-decreasing in n, then (22) and (23) hold. (D3) states weaker, near-necessary 
assumptions for pairwise B��∗ convergence. Also, for p(γ) in Equation (8), a sufficient condition 
for Equation (24) is that

that is (D3) allows the number of parameters p �̃∗ (and groups | �̃ ∗ |) in �̃ ∗ to grow near-linearly in λγ, 
and the total number of groups J to grow near-exponentially.

Theorem 3  Let pL(�� |�, �) = N(�� ; 0, (gL�∕n)(Z
T
� Z� )

−1), where ϕ  >  0 is fixed, and assume 
Conditions D1–D3.

(i)	Suppose that 𝛾̃ ∗ ⊂ 𝛾. If ϕ/b″(0)  >  σ2, then

(22)
log(ngL) +

2

p𝛾 − p 𝛾̃∗
log

(
p(𝛾̃ ∗ )

p(𝛾)

)
≫ 1.

(23)(p 𝛾̃∗ − p𝛾 )log
(
ngL

)
+ log

(
p(𝛾)

p(𝛾̃ ∗ )

)
+ p𝛾 ≪

𝜆𝛾

log(𝜆𝛾 )
.

(24)(p 𝛾̃∗ − p𝛾 )log
(
ngL

)
+ log

(
p(𝛾)

p(𝛾̃ ∗ )

)
+ p 𝛾̃∗ ≪

𝜆𝛾

log(𝜆𝛾 )
.

p 𝛾̃∗ log(gLn) + | 𝛾̃ ∗ | logJ ≪ 𝜆𝛾

log𝜆𝛾
,
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for all n ≥ n0, and some fixed n0. Further, if ϕ/b″(0) ≤ σ2, then

for all n ≥ n0, � = 1∕
√
alogr� , a = ϕ/[b″(0)σ2].

(ii)	 Suppose that 𝛾̃ ∗ ⊄ 𝛾. For any b < 1 there exists a finite n0 such that, for all n ≥ n0,

Theorem 4 below states that the posterior probability p̃(�̃ ∗ |y) converges to 1. Separate 
rates are given for the set of models S = {𝛾 : 𝛾̃ ∗ ⊂ 𝛾} containing spurious parameters and its 	
complement Sc = {𝛾 : 𝛾̃ ∗ ⊄ 𝛾}. The result assumes the model prior in Equation (8), with 
p( |� |) ∝ p− c | � |, for c ≥ 0. Recall that in the canonical case with no groups nor hierarchical con-
straints, c = 0 reduces to the Beta-Binomial(1, 1) prior and c > 0 to a Complexity prior. Theorem 
2 requires a technical condition.

D4	�Let a  =  1 if ϕ/b″(0)  >  σ2 and a  <  ϕ/[b″(0)σ2] otherwise, q =min{pj: �
∗
j
= 0} be the 

smallest spurious group size and q� =max{pj}. Then, assume that

Further, let � =min|�|≤| �̃∗|��∕max{ | �̃ ∗ | − |� | , 1} and 𝜆 =min|𝛾|>| 𝛾̃∗|,𝛾⊄𝛾̃∗𝜆𝛾. Then

Condition (D4) ensures that (D3) holds uniformly across models γ ∈ Γ. It is stated in terms 
of ( �, �) bounding the non-centrality parameter λγ for models of smaller and larger size than �̃ ∗ 
groups, respectively. Expressions (25)–(26) impose mild assumptions on the number of active 
groups | �̃ ∗ |, total groups J and largest number of allowed groups J . These expressions guarantee 

EF∗

([
1+ B̃

L
�̃∗�

p(�̃∗)

p(�)

]−1)
≤
2max

{
[(2∕[p� −p �̃∗])logr� ]

(p�−p �̃∗ )∕2, log(r� )
}

r�
,

EF∗

��
1+ B̃

L
�̃∗�

p(�̃∗)

p(�)

�−1�
≤
2.5max

��
(2∕[p� −p �̃∗])log(r

a
1+�
� )

�(p�−p �̃∗ )∕2
, log

�
r

a
1+�
�

��

r

a

(1+�
√
2(1+

√
2))

�

EF∗

��
1+ B̃

L
�̃∗�

p(�̃∗)

p(�)

�−1�
≤
⎛
⎜⎜⎜⎝

p(�)e
−

��

2max{�∕b��(0),�2}log(�� )

p(�̃∗)(ngL)
(p�−p �̃∗ )

2

⎞
⎟⎟⎟⎠

b

(25)( | 𝛾̃ ∗ | + 1)(J − | 𝛾̃ ∗ |)≪ (ngL)
aq∕2pca+a−1.

(26)( | 𝛾̃ ∗ | + 2)logJ ≪ 𝜆 + clogp +
q

2
log(ngL)

(27)q�

2
log(ngL) + clogp + ( | 𝛾̃ ∗ | + 1)logJ ≪ 𝜆
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that models of size |𝛾 | > | 𝛾̃ ∗ | receive vanishing probability, and in particular they are satisfied 
when setting c > 0. Expression (27) ensures that models of size |� | ≤ | �̃ ∗ | receive vanishing 
probability, and imposes an upper-bound on c in terms of the signal strength λ.

Theorem 4  Let pL(�� |�, �) = N(�� ;0, (gL�∕n)(Z
T
� Z� )

−1), for known ϕ  >  0, and p(γ) as in 
Equation (8) with p( |� |) = p− c | � |, c ≥ 0.

(i)	 �Suppose that Conditions D1, D2 and D4 hold, and that limn→∞ | �̃ ∗ |∕[pc(ngL)q∕2] = 0. 
Then there is a finite n0 such that, for all n  ≥  n0 and all ε  >  0, if ϕ/b″(0)  <  σ2 then

Further, if ϕ/b″(0) < σ2, then

where a < 1 is a constant smaller than but arbitrarily close to ϕ/[b″(0)σ2].

(ii)	 �Suppose that (D1), (D2) and (D4) hold. Then there is a finite n0 such that, for all 
n  ≥  n0, the posterior probability assigned to Sc = {𝛾 : 𝛾̃ ∗ ⊈ 𝛾} satisfies

The three terms in the bound for EF0
(
p̃L(Sc|y)) correspond to the posterior probability assigned 

models with |𝛾 | > | 𝛾̃ ∗ |, |� | = | �̃ ∗ | and |𝛾 | < | 𝛾̃ ∗ |, respectively. That is, Theorem 2 does not only 
characterize the posterior probability p̃(�̃ ∗ |y) assigned to the ALA-optimal model �̃ ∗, but also to 
other interesting model space subsets: those adding spurious parameters to �̃ ∗, and those missing 
parameters with either smaller/larger size than | �̃ ∗ |. These rates reflect that sparse priors, for ex-
ample Complexity priors (c > 0) or diffuse priors (gL grows with n), are faster at discarding models 
larger than | �̃ ∗ |. The trade-off is that they attain slower rates for models of size |𝛾 | < | 𝛾̃ ∗ |, that is 
they have lower statistical power to discard small models missing truly active parameters.

5  |   RESULTS

We illustrate the performance of ALA in terms of numerical accuracy, computation time and 
quality of the model selection inference in simulated and empirical data. Section 1 shows the 
computational scalability in logistic and Poisson regression, as either n or p grow. We consider 
the default ALA at �0 = 0 and refined versions where ��0 is obtained by 1 and 2 Newton-Raphson 
iterations starting at zero, respectively. We also consider the combined use of ALA with impor-
tance sampling to obtain samples from the exact posterior. Section 5.2 studies the accuracy of 
ALA under the non-local gMOM prior in Equation (15). For this prior, ALA are faster and often 
more precise than LA, particularly for models that include spurious covariates. We also com-
pare the gMOM ALA model selection performance in a non-linear regression example to exact 

EF0
(
p̃L(S|y)) ≤ ( | �̃ ∗ | + 1)(J − | �̃ ∗ |)(log(ngq∕2

L
) + [c + 1]log(p) + �)

pc(ngL)
q∕2

.

EF0
(
p̃L(S|y)) ≤ ( | �̃ ∗ | + 1)(J − | �̃ ∗ |)[log ((ngL)q∕2

)
+ (c + 1)log(p) + �]

pa(c+1)−1(ngL)
aq∕2

,

EF0
(
p̃L(Sc|y)) ≤ (|�̃∗|+1)e(| �̃∗|+2)logJ

[e�pc(ng)q∕2]b
+
e| �̃∗|logJ
e�

+
e| �̃∗|logJ

e(| �̃∗|+1)[�−clog(p)−(q�∕2)log(ng)]
.
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gZellner calculations, the group LASSO (Bakin, 1999), group SCAD (Fan & Li, 2001) and group 
MCP (Zhang, 2010). In Section 5.3 we analyze a poverty dataset that has a binary outcome and 
large n and p. Finally, Section 5.4 shows survival examples where the likelihood lies outside the 
exponential family, but is nevertheless log-concave, making it amenable to the ALA.

In all examples we used the gMOM and gZellner priors with default gN = 1 and gL = 1 pa-
rameters and the Beta-Binomial prior on models, truncated to models satisfying the hierarchical 
constraints when required (Section 2). To ensure that run times between LA and ALA are compa-
rable, we implemented both in C++ in R package mombf. For problems with >106 models where 
full enumeration was unfeasible, we used the augmented Gibbs sampling algorithm from Rossell 
and Rubio (2019). We used the software defaults producing 10,000 full Gibbs scans and no paral-
lel computing, hence our run times are a conservative figure relative to those potentially attain-
able with more advanced model search strategies. Packages grplasso and grpreg (Breheny & 
Huang, 2015) were were used to implement group LASSO, group SCAD and group MCP.

5.1  |  Simulations for logistic and Poisson regression

We considered simulated examples where the data are truly generated from logistic and Poisson 
models with linear predictor � ∗ = (0, …, 0, 0.5, 1) and zi ∼ (0, Σ), Σii = 1, Σij = 0.5, and we 
set the group Zellner prior in Equation (9). We consider a first setting with fixed p = 10 and 
n  ∈  {100, 500, 1000, 5000}, and a second setting with fixed n = 500 and p  ∈  {5, 10, 25, 50}.

Figure 2 summarizes the logistic regression results, and Figure S1 those for Poisson regression. 
ALA at �0 = 0 significantly reduced run times for larger n or p. In terms of the resulting inference, 
ALA and LA attained consistency as n grows (bottom left) and discriminateed truly active versus 
inactive variables, even for larger p (bottom right). Figure S1 also shows that ALA Bayes factors 
that do not incorporate the over-dispersion curvature adjustment in Equation (13) led to assigning 
significantly higher inclusion probabilities to truly spurious parameters, even for fairly large n.

We also applied ALA with ��0 given by 1 and 2 Newton-Raphson iterations from zero 	
(Figure 2). This refinement gave a closer approximation to the LA posterior, at a non-negligible 
computational cost, particularly in scalability as n grows.

Finally, we studied the use of ALA as a tool to identify promising models that can be sub-
sequently refined with exact methods. Specifically, we used importance sampling to re-weight 
models sampled from the ALA posterior. Section S12.2 offers a full description. Briefly, from our 
theory, the ALA and LA posteriors in general concentrate on two different models �̃ ∗ and γ* re-
spectively, resulting in degenerate importance weights as n → ∞. However, in practice for finite 
n there are situations where importance sampling is effective; see the logistic regression example 
in Section S12.2. In other cases, such as the Poisson example in Section S12.2, ALA is useful to 
screen out certain truly inactive covariates, but cannot be directly combined with importance 
sampling. Recall that Theorem 1 gives conditions where ALA asymptotically recovers or screens 
out the correct parameters. More generally, combining ALA with exact strategies is an interesting 
avenue for future research that deserves a separate treatment elsewhere.

5.2  |  Simulations under Gaussian outcomes

Even for Gaussian outcomes the marginal likelihood under the gMOM prior requires a number 
of operations growing exponentially with model size (Kan, 2008). Section 5.2.1 illustrates that 
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ALA not only provides faster integrated likelihoods than the LA, but that it can also be more pre-
cise. Section 5.2.2 compares ALA-based gMOM model selection versus exact calculations under 
the group-Zellner prior and three penalized likelihood methods.

5.2.1  |  Numerical accuracy under non-local priors

Consider an example with p  =  10, n  ∈  {50,  200,  500} and truly y ∼ (Z� ∗ , I), where 
� ∗ = (0.4, 0.6, 1.2, 0.8, 0, …, 0). The rows in Z are independent draws zi ∼ (0, I) or, alterna-
tively, zi ∼ (0, V ) for random non-diagonal V. Specifically, V is the correlation matrix associ-
ated to WTW, where W is a p × p matrix with wij ∼ (0, 1) independently across i, j. We evaluated 
the integrated likelihood pN (y |�) under the gMOM prior for a sequence of models including 
p� = 1, 2, …, 10 covariates. For p� ≤ 10 one can evaluate pN (y |�) exactly, and hence the error 
when estimating p̂N (y |�). We report average errors across 100 simulations.

Figure 3 summarizes the results for the n  =  50 case. The left panel shows the mean of 
log(p̂

N
(y |�)∕pN (y |�)), which quantifies the relative approximation error. Both LA and ALA 

provided fairly accurate estimates for models including up to 4 covariates. Note that � ∗ is such 
that for p� ≤ 4 all included covariates are truly active. For models with > 4 covariates the LA 
error was significantly higher than for ALA, particularly in the non-diagonal covariance set-
ting. The right panel in Figure 3 illustrates the difficulty of the integration exercise by plotting 
the contours of the log-integrand p(y |�, � = 1)pN (� |� = 1, �) versus two truly spurious pa-
rameters (�5, �6) in a randomly selected dataset. The marked multi-modality, in general, does 
not disappear even as n → ∞. The results for n = 200 and n = 500 were largely analogous, see 
Figure S4.

F I G U R E  3   Simulated linear regression, gMOM prior (n = 50, p = 10, β = (0.4, 0.6, 1.2, 0.8, 0, …, 0), ϕ = 1). 
Left: mean error logp̃N (y |�) − logpN (y |�) for xi ∼  (0, I) and xi ∼  (0, V ), random non-diagonal V. Right: 
log-integrand p(y |�,�)pN (� |�) contours versus two spurious parameters for a randomly-selected dataset, 
xi ∼  (0, V )
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5.2.2  |  Group constraints in non-linear regression

We present a simulation example where one incorporates group constraints to model non-linear 
covariate effects. See Section S12.3 for examples where groups are defined by a categorical covari-
ate. We considered the following data-generating truth

where �i ∼ (0, 1). We considered scenarios where one observes a total of 5 and 50 covariates (in-
cluding the two truly active covariates), generated from a multivariate Normal with zero mean, unit 
variances and 0.5 pairwise correlations.

Suppose that the data analyst poses an additive model that considers non-linear effects but, 
unaware that the true expectation of yi depends on   sin   functions, misspecifies their form. 
Specifically, the assumed model decomposes covariate effects into a linear plus a deviation-from-
linearity component via a 5-dimensional cubic splines, following Rossell and Rubio (2019). That 
is, each covariate is coded into the design matrix via one column for its linear effect and a five-
variable group capturing deviations from linearity. Hence the scenarios with 5 and 50 covariates 
result in J = 10 and J = 100 groups (respectively) and in p = 30 and p = 300 total parameters 
(respectively).

Figure 4 reports the proportion of correct model selections across 150 simulations. The reg-
ularization parameter for grLASSO, grMCP and grSCAD was set via 10-fold cross-validation. In 
all settings the proportion of correct model selections were highest for either the exact gZellner 
calculation (particularly for smaller n) or the ALA-based gMOM prior (for larger n), showing that 
the latter leads to high-quality approximate inference.

yi = sin( − xi1 + 0.1) + sin(2.5xi2) + �i

F I G U R E  4   Proportion of correct model selections in Gaussian simulations with non-linear effects for two 
truly active covariates and a total of J = 5 and J = 25 covariates (p = 30 and 150, respectively)

Non-linear (xi1, xi2) (J = 5, p = 30) Non-linear (xi1, xi2) (J = 25, p = 150)
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5.3  |  Poverty line

We studied what factors are associated to individuals working full-time being below the poverty 
line in the USA. We used a large dataset from the Current Population Survey (Flood et al., 2020) 
conducted in 2010 and 2019 for single-race individuals aged 18–65 years who were non-military 
employed for 35–40 h/week.

The response is a binary indicator yi ∈ {0, 1} for individual i being below the poverty line. 
The covariates xi include gender and hispanic origin indicators, race, marital status, level of ed-
ucation, citizenship status, nativity status, occupation sector, size of the firm employing the in-
dividual, the presence of impairment/difficulties, type of employment, moving to another state 
from within or outside the USA, and the weekly hours worked (35–40). Many of these variables 
are categorical, see Section S12.4 for a description. The data has n = 89,755 individuals. In a 
first exercise we considered a logistic regression analysis with only main effects, where p = 60. 
Subsequently we considered pairwise interactions between all covariates, then the correspond-
ing design matrix Z has p = 1469 columns.

We first discuss the computation times. In the main effects analysis LA took > 10 h to run 
and ALA took 19.5 s. For comparison, GLASSO took 42.7 s. When adding interactions LA took 
17.3 days, ALA 5.2 min and grLASSO 10.7 min.

In the main effects analysis ALA and LA selected the same model, with virtually identi-
cal marginal posterior inclusion probabilities (the correlation between p̂(� |y) and p̃(� |y) was 
> 0.999). All main effects had posterior inclusion probability > 0.95, except for nativity status, 
with posterior probability < 0.02. To help interpret the results, Table S3 provides the estimated 
coefficients. Briefly, higher poverty odds were estimated for females, hispanics, blacks and native 
Americans, individuals with difficulties, lower education levels, non-citizens, working in small 
firms, having moved from outside the US, and working in sectors such as farming or mainte-
nance. The grLASSO results were similar, except that it selected all main effects, including nativ-
ity status (both when setting the penalization parameter via cross-validation or to minimize the 
BIC). For comparison, the P-value obtained from a maximum likelihood fit under the full model 
was 0.1959 for nativity, and < 0.0001 for all other main effects.

Regarding the analysis with interactions, LA and ALA selected the same 13 main effects (in-
clusion probability > 0.5, Table S4). LA selected 5 interaction terms and ALA selected 8. Both 
selected the interaction of gender vs. marital status, education level vs. hispanic origin, and his-
panic origin vs. marital status. LA also selected education vs firm size, whereas ALA selected 
education vs marital status, and moving state vs hispanic origin, marital status and education 
level. The ALA- and LA-estimated marginal posterior probabilities p̃(� |y) and p̂(� |y) had 0.827 
correlation.

Table S5 displays parameter estimates. We refrain from making any causal interpretation of 
these findings, but they suggest interesting future research to better understand poverty. For in-
stance, gender and hispanic origin were associated with poverty, but the differences between his-
panic and non-hispanic males was larger (estimated odds-ratio=1.63) than between hispanic and 
non-hispanic females (odds-ratio= 1.36). As another example, the odds of poverty were similar 
for non-hispanic married males and divorced males (odds-ratio=0.92), but married females had 
significantly lower odds than divorced females (odds-ratio=0.281) and married hispanics had 
higher odds than divorced hispanics (odds-ratio= 1.46)

For comparison, the grLASSO selected 4 main effects and 16 interaction terms. For only 1 out 
of the 16 interactions the two corresponding main effects were also selected, illustrating the need 
to explicitly enforce hierarchical restrictions.
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5.4  |  Cancer survival

We illustrate the ALA in models outside the exponential family via the non-linear additive sur-
vival model from Rossell and Rubio (2019), a spline-based log-normal accelerated failure time 
(AFT) model. If one re-parameterizes the model by dividing the regression parameters by the 
error standard deviation, then the log-likelihood is concave (Silvapulle & Burridge, 1986), hence 
amenable to be analyzed via ALA. We present a simulation study, and analyze a colon cancer 
dataset in Section S12.5.

We compared the ALA results obtained under gMOM and gZellner priors to the LA under the 
gZellner prior, the semi-parametric AFT model with LASSO penalties of Rahaman-Khan and 
Shaw (2019) (AFT-LASSO), and to the Cox model with LASSO penalties of Simon et al. (2011) 
(Cox-LASSO). For AFT-LASSO and Cox-LASSO we used functions AEnet.aft and glmnet in 
R packages AdapEnetClass and glmnet, and we set the penalization parameter via 10-fold 
cross-validation.

The simulation study extends that in Rossell and Rubio (2019) (section 6.2). Briefly, there are 
two covariates that truly have non-linear effects and 48 spurious covariates, generated from a 
zero-mean multivariate normal with unit variances and 0.5 correlation between all covariate 
pairs. The assumed model poses E(yi �xi) = ∑ 50

j=1
xij� j +

∑ 100
j=51

zT
ij
� j, where xij ∈ ℝ and zij ∈ ℝ

5 
captures deviations from linearity by projecting xij onto a spline basis and orthogonalizing the 
result to xij. We used a five-dimensional spline basis given that Rossell and Rubio (2019) found 
that larger dimensions gave very similar results. In our notation, there are J = 100 groups and 
p = 50 + 250 = 300 parameters.

We considered two data-generating truths. In Scenario 1 the truth is an accelerated failure 
time model and in Scenario 2 a proportional hazards model. Both scenarios are challenging in 
that there is a significant amount of censored data, which effectively reduces the information in 
the likelihood, and the dimension is moderately high.

•	 Scenario 1. Log-survival times are xi1 + 0.5log( |xi2 |) + �i, where εi ∼ N(0, σ = 0.5). All log-
censoring times are 0.5, giving an average of 69% censored individuals.

•	 Scenario 2. Let h0 be the log-Normal(0,0.5) baseline hazard. Log-survival times arise from a 
proportional hazards structure h(t) = h0(t)exp

{
3xi1∕4 − 5log(|xi2|)∕4

}
. All log-censoring times 

are 0.55, giving an average of 68% censored individuals.

In Scenario 1 the assumed model is well-specified, except for approximating the non-linear 
truth by a finite spline basis, whereas in Scenario 2 the whole hazard function is misspecified. 
Figure 5 shows the proportion of correct model selections, across 250 independent simula-
tions for n ∈ {100, 500}. Generally, ALA showed a competitive performance. The LA selected 
the data-generating model slightly more frequently under n  =  100 and the well-specified 
Scenario 1 (upon inspection this was due to higher power to include xi1), whereas it performed 
similar to ALA for larger n and in Scenario 2. For n = 500 the proportions of correct model 
selections for ALA were near 1. Both ALA and LA outperformed significantly AFT-LASSO 
and Cox-LASSO.

The ALA provided significant computational gains over LA. In most scenarios the computa-
tion time was reduced by a factor ranging from 20–70, see Table 1.
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6  |   DISCUSSION

Our main contribution was proposing an approximate inference tool that can be particularly 
helpful in non-Gaussian regression, and in Gaussian outcomes where one wishes to use non-
local priors. The proposal focuses on scoring models quickly for structural learning problems, 
and can be combined with parallel computing strategies to accelerate model search. The pos-
terior probability rates require the same type of technical conditions than exact inference, and 
attain essentially the same functional rates in n. Importantly, ALA and exact calculations asymp-
totically recover, in general, different models. However we characterized situations where the 
ALA recovers the correct model, even under misspecification, and showed numerous examples 
where ALA results agree with exact inference. We also illustrated a significant applied potential 
in reducing computation times, enabling the use of Bayesian model selection to settings where it 
was previously impractical.

We focused our theory and examples on a simple strategy where Taylor expansions are taken 
around an ηγ0 with zero regression coefficients. We also illustrated that ηγ0 given by 1–2 Newton-
Raphson steps typically improves precision, though computations scale more poorly with (n, p). 
In future work it may be interesting to study alternative choices of ηγ0 that balance computational 
cost and accuracy and/or model selection properties. For instance, under concave log-likelihoods 
and minimal regularity conditions, it is possible to show that if ��0 = � ∗

� +Op(1∕
√
n), then the 

ALA provides a consistent estimator of the exact integrated likelihood.
The ALA can in principle be applied to any model, but one expects it to work best when the 

log-likelihood is concave or at least locally concave around ηγ0, e.g. models satisfying local asymp-
totic normality. Yet another avenue is to apply ALA to conditionally concave settings in the spirit 
of INLA for latent Gaussian models (Rue et al., 2009).

From a foundational Bayesian point-of-view, a limitation of ALA is it they only provides ap-
proximate inference. It would be interesting to explore strategies to combine the ALA with exact 
computation, e.g. to build proposal distributions for MCMC algorithms, or sequential Monte 

F I G U R E  5   Non-linear survival regression (J = 100, p = 300). Proportion of correct model selections under a 
truly accelerated failure (left) and truly proportional hazards model (right)
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Carlo strategies as in Schäfer and Chopin (2013). Such extensions require care as both our the-
ory and examples show that a naive combination of ALA and importance sampling can lead to 
degenerate weights. In summary, the current work provides a basis which we hope may lead the 
ground for multiple interesting extensions.
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