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C O R O N A V I R U S

Neighborhood socioeconomic inequality based 
on everyday mobility predicts COVID-19 infection 
in San Francisco, Seattle, and Wisconsin
Brian L. Levy1,2*, Karl Vachuska3, S. V. Subramanian4,5,6, Robert J. Sampson5

Race and class disparities in COVID-19 cases are well documented, but pathways of possible transmission by 
neighborhood inequality are not. This study uses administrative data on COVID-19 cases for roughly 2000 census 
tracts in Wisconsin, Seattle/King County, and San Francisco to analyze how neighborhood socioeconomic 
(dis)advantage predicts cumulative caseloads through February 2021. Unlike past research, we measure a neigh-
borhood’s disadvantage level using both its residents’ demographics and the demographics of neighborhoods its 
residents visit and are visited by, leveraging daily mobility data from 45 million mobile devices. In all three juris-
dictions, we find sizable disparities in COVID-19 caseloads. Disadvantage in a neighborhood’s mobility network 
has greater impact than its residents’ socioeconomic characteristics. We also find disparities by neighborhood 
racial/ethnic composition, which can be explained, in part, by residential and mobility-based disadvantage. 
Neighborhood conditions measured before a pandemic offer substantial predictive power for subsequent inci-
dence, with mobility-based disadvantage playing an important role.

INTRODUCTION
The coronavirus disease 2019 (COVID-19) pandemic exposed the depth 
of health inequality in the United States, with racial and ethnic mi-
norities and lower-income populations much more likely to con-
tract the disease (1, 2). These patterns are consistent with broader and 
long-standing health inequalities in the United States (3). Although 
neighborhood conditions are an important driver of health inequal-
ities (4), to date, research has focused mainly on descriptive variations 
among larger geographic units, such as county, city, or zip-code 
COVID-19 caseloads [e.g., (1, 5, 6)].

In this study, we analyze COVID-19 incidence at the fine-grained 
neighborhood level. Research on health disparities and residential 
segregation (7) is extensive, motivated, in part, by the enduring fact 
of racial segregation in the United States (8). Recent decades also 
had increases in income-based segregation, particularly among families 
(9, 10). Such patterns of residential segregation correlate with in-
equalities across a range of neighborhood-based resources that af-
fect health, including availability and quality of healthcare services; 
exposure to toxins, pollution, or violence; quality of infrastructure; 
location of food deserts; and a broad range of factors promoting 
upward economic mobility (11–14).

In their everyday lives, however, individuals move through many 
neighborhoods as they go about their daily rounds (15). Homophily 
in mobility patterns can reinforce the isolation of affluence or dis-
advantage (16). Among the 50 largest U.S. cities, residents of primarily 
Black and Hispanic neighborhoods—whether poor or not—are far 
less likely to visit either nonpoor or white middle-class neighborhoods 
than residents of primarily white neighborhoods (17). Mobility patterns 

also have the potential to form structural connections between 
neighborhoods with independent consequences for the well-being 
of their residents. One study finds that adjusting for residential dis-
advantage, disadvantage in a neighborhood’s mobility-based net-
work has added value in explaining neighborhood rates of violence; 
this indicates three distinct types of socioeconomic (dis)advantage a 
neighborhood can experience, or potential triple disadvantage (18). 
The first, residential neighborhood disadvantage (RND), is based 
on the socioeconomic characteristics of its residents. The other two 
are based on the average characteristics of the neighborhoods its 
residents tend to visit and receive visits from.

(Dis)advantage in a neighborhood’s mobility network could af-
fect its COVID-19 incidence through individual or institutional 
pathways, although analysis of these is beyond the scope of this 
study. At the individual level, mobility connections between neigh-
borhoods present the opportunity for pandemic transmission (6, 19). 
COVID-19 is transmitted primarily by airborne pathways, and 
lockdowns or requests to stay at home are a recognition that by lim-
iting exposure to human contacts induced by travel across geo-
graphic space, the risk of transmission is reduced (20). Mobility 
travel declined markedly in 2020 after the pandemic escalated (21). 
Given the greater incidence of COVID-19 and reduced capacity for 
distancing in economically disadvantaged communities (1,  22), 
high rates of mobility between disadvantaged neighborhoods po-
tentially increase transmission risk.

At the institutional level, durable neighborhood ties can influ-
ence public or private investment and the allocation of scarce re-
sources (23–25). For example, early in the pandemic, access to 
COVID-19 testing evinced disparities by a zip code’s race and class 
(26). Similar disparities exist in zip code vaccination rate (27). So-
cial resources like collective efficacy, which facilitates behavior reg-
ulation and capacity to act toward a shared goal (28), also promote 
individual and neighborhood well-being during crisis (29, 30). In 
the context of COVID-19, we expect that collective efficacy would 
increase enforcement of norms around social distancing, masking, 
and virus testing. Residential poverty and instability are negatively 

1Department of Sociology and Anthropology, George Mason University, Fairfax, VA 
22030, USA. 2Center for Social Science Research, George Mason University, Fairfax, 
VA 22030, USA. 3Department of Sociology, University of Wisconsin-Madison, 
Madison, WI 53706, USA. 4Department of Social and Behavioral Sciences, Harvard 
T.H. Chan School of Public Health, Boston, MA 02115, USA. 5Department of Sociol-
ogy, Harvard University, Cambridge, MA 02138, USA. 6Harvard Center for Popula-
tion and Development Studies, Cambridge, MA 02138, USA.
*Corresponding author. Email: blevy4@gmu.edu

Copyright © 2022 
The Authors, some 
rights reserved; 
exclusive licensee 
American Association 
for the Advancement 
of Science. No claim to 
original U.S. Government 
Works. Distributed 
under a Creative 
Commons Attribution 
License 4.0 (CC BY).

D
ow

nloaded from
 https://w

w
w

.science.org on June 29, 2022

mailto:blevy4@gmu.edu


Levy et al., Sci. Adv. 8, eabl3825 (2022)     18 February 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

2 of 11

correlated with collective efficacy (23, 28), and recent analysis 
finds that disadvantage in a neighborhood’s mobility network in-
creases interpersonal friction, potentially further reducing collective 
efficacy (18).

Here, we take a “triple disadvantage” perspective and hypothe-
size that socioeconomic disadvantage among a neighborhood’s res-
idents, as well as the neighborhoods they visit and are visited by, will 
affect COVID-19 infection levels (18). The first of these, RND, is the 
domain of traditional neighborhood effects research. The latter two, 
which we combine as mobility-based neighborhood disadvantage 
(MND), are the subject of nascent scholarship. Because there can be 
threshold effects in both neighborhood effects (31, 32) and in dis-
ease spread (33), we expect associations between neighborhood dis-
advantage (ND) and COVID-19 infections to be nonlinear. High 
levels of residential or mobility-based advantage may be especially 
protective, whereas high disadvantage in one or both contexts may 
be especially detrimental.

Data
To analyze neighborhood-level inequality in COVID-19 infection, 
we integrate data from three source types: SafeGraph’s “Social Dis-
tance Metrics” Dataset, the 2015–2019 American Community Sur-
vey (ACS), and administrative data on COVID-19 test results for 
1977 census tracts in three locations (the state of Wisconsin, Seattle/
King County, and San Francisco). These three jurisdictions are 
the only major U.S. geographic locations for which we found well-
documented COVID-19 case data at the neighborhood level. They also 
represent qualitatively different contexts in several ways. Wisconsin 
displays sizable variation in urban or rural land use and is polit-
ically moderate, although it has relatively low levels of racial and 
ethnic diversity compared to other U.S. geographies. San Francisco 
and King County have greater levels of racial and ethnic diversity, 
and San Francisco is entirely urban, whereas King County is a mix 
of urban and suburban. Both are also politically more progressive. 
Our analytic sample reflects all tracts with complete data for all vari-
ables. This includes 1390 of 1409 tracts in Wisconsin, all 397 tracts 
in King County, and 190 of 197 tracts in San Francisco. Of the ex-
cluded tracts, 20 of 26 have zero or minimal resident population 
and cover water or parks. The remaining six excluded tracts lack 
sufficient data to calculate all measures of residential neighborhood 
conditions, primarily due to low or unique populations.

Our dependent variable is the count of residents in a neighbor-
hood that tested positive for COVID-19 by the end of February 2021. 
We focus on cumulative cases through February because this 
window of observation captures essentially all of the winter surge in 
cases across the United States, while avoiding the period from 
March 2021 onward when vaccine access was becoming widely 
available, which could fundamentally alter the relationships of in-
terest. Across all tracts in our sample, we observe 661,612 residents 
testing positive. Counts and incidence are much higher in Wisconsin. 
Mean COVID-19–positive cases per 1000 resident population is 
94.5 across all Wisconsin tracts, whereas it is 38.6 and 36.7 across 
the San Francisco and King County tracts, respectively. The varia-
tion in COVID-19 incidence is another benefit to studying three 
locations, as it allows us to test the significance of ND in contexts of 
relatively high and low infection.

Our primary independent variables are measures of RND and 
MND. Consistent with past research, RND is the principal factor from 
a factor analysis of seven measures of residents’ socioeconomic 

status using nationwide tract-level ACS data. Following Levy et al. 
(18), we calculate two measures of MND using a valued digraph of 
interneighborhood mobility patterns measured with 2019 SafeGraph 
data. Outdegree neighborhood disadvantage (OND) is the weighted 
average RND level of the other neighborhoods visited, often many 
times, by a neighborhood’s residents. Indegree neighborhood dis-
advantage (IND) is the weighted average RND level of neighbor-
hoods from which a neighborhood receives visits. OND and IND 
are very highly correlated, with R ranging from 0.87 to 0.97 over our 
three locations. Extending the approach of Levy et al. (18), we thus 
average OND and IND for our measure of MND. We measure MND 
using 2019 mobility data to avoid endogeneity to the pandemic and 
identify more permanent structural connections. Still, MND values 
are nearly perfectly correlated between 2019 and 2020—despite siz-
able declines in mobility—further reinforcing the structural nature 
of interneighborhood mobility networks (see fig. S1). Measuring 
MND before the pandemic allows us to test its predictive capacity as 
an “ecometric” (34).

Mean RND in Wisconsin is nearly equivalent to the nationwide 
average, whereas mean RND levels are relatively low in San Francisco 
and King County. Mean MND in Wisconsin is also similar to the 
nation, whereas mean levels are lower in the two western counties. 
The absence of disadvantage is a form of privilege, and we look at 
both ends of the distribution to detect independent associations of 
mobility-based advantage and disadvantage. Table S1 presents sum-
mary statistics for all variables. Materials and Methods provides fur-
ther information about our analytic approach.

To illustrate the nature of spatial inequality in our measures, 
Fig. 1 presents maps of the levels of RND and MND along with a 
scaled indicator of the incidence of COVID-19 cases per 1000 resi-
dent population in San Francisco. The top quartiles of both RND 
and MND are concentrated in the southeastern corner of the city, 
which is also where the highest rates of COVID-19 infection are 
seen. The lowest rates of COVID-19 infection generally appear in 
central San Francisco where the lowest levels of RND and MND 
cluster, although low MND is notably more tightly clustered. There 
is a general overlap between quartiles for RND and MND—roughly 
three-fifths match—but there is variation. For example, the Central 
Waterfront/Dogpatch neighborhood in eastern San Francisco is in 
the lowest quartile of RND but the second highest quartile of 
MND. Consistent with the latter, its COVID-19 infection rate is in 
the city’s 60th percentile.

Analysis
We address two research questions in our analysis. First, what is the 
relationship between ND and COVID-19 incidence? We estimate a 
series of Poisson models with robust errors and controls for rele-
vant observed characteristics (see Materials and Methods). Given 
the variation in land use and population characteristics of our three 
locations, we conduct separate analyses for each location. To allow 
for potential nonlinearity in focal relationships, we operational-
ize both RND and MND using location-specific indicator variables 
that identify observations in the lowest and highest quartiles of each 
ND measure, with the middle two quartiles serving as the refer-
ence group.

A primary aim of this first analysis is to assess whether RND and 
MND add predictive power beyond other theoretically relevant co-
variates. Here, we draw on the methodological concept of “ecometrics,” 
which aims to provide reliable, valid, and systematic metrics of a 
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neighborhood’s context that can be regularly updated and used to 
monitor the neighborhood’s well-being (34, 35). Accurate monitor-
ing and prediction is especially important in response to a pandemic 
or other crisis. Although observational research like ours generally pre-
cludes estimation of a precisely identified causal effect, we do consider 
the extent to which estimated associations are robust to unobserved 
confounding using the E value sensitivity analysis (36, 37). The myr-
iad macro-level social structures and micro-level interactional pro-
cesses that mediate and are mediated by neighborhood inequalities 
can be difficult to capture through an experiment—and experiments 
at the neighborhood level are relatively rare. To complement experi-
ments, this paper presents the sort of careful observational research 
that is necessary to identify plausible ways in which neighborhoods af-
fect well-being, in this case COVID-19 incidence (23, 38).

Our second research question investigates the extent to which ND 
can explain neighborhood-level racial disparities in COVID-19 case 
counts. Black and Hispanic Americans are enduring outsized impacts 
from COVID-19, and both groups, though especially Black Americans, 
have experienced persistent inequity in neighborhoods, housing, and 
activity spaces due to racial segregation. We use the approach de-
scribed by Valeri and VanderWeele (39) to investigate whether RND 
or MND mediates the relationships between a neighborhood’s per-
centages of Black and Hispanic residents and its COVID-19 cases. We 
estimate the total “effect” of neighborhood racial composition as 
the difference in adjusted predicted COVID-19 incidence between 
neighborhoods with low (5th percentile) and high (95th percentile) 
shares of a racial/ethnic group. This estimated total effect is not, of 
course, a race effect; rather, it is an estimated impact of the many 
long-standing aspects of racism in the U.S. net of other covariates. 
Given the lack of overlap in racial demographics between Milwaukee 
and the rest of Wisconsin (see Materials and Methods), we estimate 
separate models for Milwaukee County and all other Wisconsin 
tracts. We consider these models exploratory “mechanism sketch[es]” 
(40) of the potential role of ND in racial inequality.

Limitations
We acknowledge two limitations to this study. First, given testing 
challenges and asymptomatic cases, observed COVID-19 case counts 

will be undercounts. We expect this to conservatively bias our esti-
mates of hypothesized associations because undercounts are likely 
higher among traditionally disadvantaged groups (see also Materials 
and Methods). Second, our models control for many important co-
variates, but unobserved confounding remains a potential source of 
bias. We use the E value to calculate how robust our estimated rela-
tionships between ND and COVID-19 incidence are to potential 
confounders. More generally, observational research is an impor
tant tool for identifying, analyzing, and intervening to address 
neighborhood-based inequalities (23).

RESULTS
ND and COVID-19 incidence
Our baseline model of tract COVID-19 counts in Wisconsin (Table 1, 
model 0) adjusts only for residential population and provides a 
benchmark against which we can judge the added value of the ND 
measures and controls. Our four indicators for RND or MND 
(model 1) have explanatory power that is 35 to 45% the size of 
all controls combined (model 2), based on all three measures of 
fit and predictive power—Bayesian information criterion (BIC), 
pseudo-R2, and root mean square error (RMSE). Once we adjust for 
controls, the added explanatory value of MND (model 4) is roughly 
four to five times that of RND (model 3). The reduction in RMSE 
from adding MND to the controls-only model is more than one-
fifth of the reduction in RMSE achieved by adding all controls to the 
baseline model. This indicates the substantive importance of MND 
in explaining Wisconsin COVID-19 cases. In Wisconsin, the bene-
fits associated with low RND or MND are greater than the potential 
harm of high ND. Including both RND and MND (model 5), MND 
remains salient. The concentration of mobility-based advantage, 
and likely a wealth of correlated resources, is an independent pro-
tective factor against COVID-19 infection.

Unobserved confounding is a concern with these models, partic-
ularly in a geographically diverse location like Wisconsin. To ac-
count for time-invariant county-level characteristics, we add county 
fixed effects in model 6. Our main model includes indicator vari-
ables for each of the nine counties with 30 or more tracts in an 

Low High
RND quartile:

Residential ND

Low High
MND quartile:

Mobility ND

Fig. 1. Map of San Francisco neighborhood proportions COVID-19 positive by RND and MND quartiles. Note that COVID-19 cases per 1000 resident population 
range from 4.4 to 182.5. Dots are scaled proportionally to a tract’s incidence.
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attempt to balance concerns with statistical power with those of 
county-level confounding; more than half of the 72 counties have 
10 or fewer tracts. Results are substantively quite similar using alter-
native strategies—fixed effects for the largest three counties, coun-
ties with 50 or more tracts, or all counties (fig. S2). The significance 
and magnitude of the association between low MND and COVID-19 
cases are unchanged. In addition, coefficients on low and high RND 
emerge as marginally significant, though still smaller in magnitude 
than low MND. We also explore whether spatial clustering of simi-
lar neighborhoods and propinquity effects explain the significance 
of MND by adding a spatial lag of RND as the average RND of all 
adjacent neighborhoods using a queen contiguity matrix (model 7). 
Again, the association between MND and COVID-19 is unchanged.

Figure 2 graphs the coefficients on the ND variables and their 
95% confidence intervals from our main model for Wisconsin, as 
well as the analogous models for San Francisco and King County. 
Across all three locations, disparities in COVID-19 cases by MND 
are larger than those by RND. In King County, all four indicators 
for low and high levels of RND and MND are significant in the ex-
pected direction. Three of the four indicators are significant in 
San Francisco. Magnitudes of the associations for each ND indicator 
are broadly similar across the jurisdictions with one clear exception. 
High MND is strongly associated with increased COVID-19 cases 
in San Francisco and King County, whereas it is not significantly 
associated with cases in Wisconsin. The cutoffs for classification in 
the top quartile of MND in San Francisco and King County (−0.72 
and −0.29, respectively) are not far removed from the cutoff for the 

bottom quartile of MND in Wisconsin (−0.33). Thus, the observed 
pattern of MND associations across the three locations could reflect 
a particular benefit of overall affluence in the neighborhood net-
work regardless of location-specific rank.

Measures of ND also yield appreciable improvement in explanato-
ry power in San Francisco and King County (see the Supplementary 
Materials). In San Francisco, improvement in explanatory power 
associated with the ND measures alone is roughly 40 to 60% of the 
size of improvement with all controls combined. In King County, 
the explanatory power gains based on ND measures over baseline 
are essentially equivalent to those based on adding all controls. In 
both counties, we also find that MND provides greater explanatory 
power over a controls-only model than does RND.

Figure 3 plots tract average adjusted predicted COVID-19 case 
counts based on values of the ND variables and estimates from our 
main models. For each location, the left cluster of plots is based only 
on RND values, the middle cluster is based only on MND values, 
and the right cluster is based on illustrative combinations of RND 
and MND. All covariates not used in a cluster are held at their ob-
served values for predictions. In Wisconsin, looking at variation only 
in MND, middle and high MND tracts have predicted COVID-19 
case counts that are 11 to 15% larger than low MND tracts, adjust-
ing for all other covariates. Considering the joint impact of RND 
and MND, tracts with middle and high levels of ND on both mea-
sures have predicted counts that are 21 and 23% larger, respectively, 
than tracts with low ND values. As in Wisconsin, disparities in pre-
dicted counts based on MND in the two western counties are larger 

Table 1. Poisson models of cumulative tract COVID-19–positive cases through February 2021 (Wisconsin). Note that controls include tract-level log 
population density, age composition (shares 0 to 4, 5 to 17, 18 to 24, and 65+), share living in a household with four or more members, mean household size, 
share living in group quarters, shares of workers in four sectors (health services, food preparation/service, personal care, and production), share of workers that 
carpool, share of workers that take public transit, share Black, and share Hispanic. County fixed effects (F.E.) are dummy variables separately identifying each 
county with at least 30 tracts. Robust SEs are in brackets. N = 1390 for all models. ***P ≤ 0.001, **P ≤ 0.01, *P ≤ 0.05, †P ≤ 0.1. 

Model 0 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

RND low −0.030 −0.074*** −0.024 −0.051* −0.053*

[0.019] [0.022] [0.021] [0.021] [0.021]

RND high 0.110*** 0.043 0.041 0.047† 0.055*

[0.025] [0.028] [0.027] [0.026] [0.026]

MND low −0.143*** −0.144*** −0.136*** −0.136*** −0.141***

[0.019] [0.018] [0.019] [0.027] [0.025]

MND high −0.059* −0.040† −0.047* −0.029 −0.002

[0.023] [0.022] [0.021] [0.022] [0.024]

Constant −2.355*** −2.320*** −2.444*** −2.393*** −2.361*** −2.341*** −2.186*** −2.194***

[0.008] [0.012] [0.139] [0.136] [0.136] [0.135] [0.131] [0.131]

Offset: ln(pop.) X X X X X X X X

Main controls X X X X X X

County F.E. X X

Spatial lag RND X

BIC 51,580 47,384 39,668 39,284 38,150 38,063 35,292 35,174

Pseudo-R2 0 0.0819 0.2332 0.2410 0.2629 0.2649 0.3199 0.3225

RMSE 124.1 116.5 106.5 105.8 102.7 102.6 97.9 97.7 D
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than those based on RND. When considering the joint impact of 
RND and MND, tracts with high levels on both metrics have predicted 
COVID-19 counts that are 99 and 112% larger than the counts of 
tracts with low levels of both ND types in San Francisco and King 
County, respectively. Whereas low levels of ND were especially pro-
tective in Wisconsin, high levels of ND are particularly detrimental in 
San Francisco. Low and high levels of both ND measures are of 
roughly similar importance for COVID-19 cases in King County.

We now calculate the E value to consider the extent to which 
these rate ratios of adjusted disparities in COVID-19 caseloads be-
tween neighborhoods with high levels of both RND and MND 
(“high ND”) versus those with low levels of both RND and MND 
(“low ND”) are robust to potential unobserved confounding. The 
E-value quantifies, on the risk ratio scale, the strength of association 
between unobserved confounder(s) and both COVID-19 incidence 
and the set of ND indicators that would be required to move the rate 
ratio to null (36, 37). We consider both ND measures jointly because 
they often co-occur at the same level, and each is independently 
predictive of COVID-19 incidence.

In Wisconsin, the 23% increase in COVID-19 caseloads associated 
with high ND versus low ND could be explained entirely by an unob-
served confounder(s) associated with COVID-19 incidence and the set 
of ND measures at a risk ratio of 1.76 each (Table 2). Weaker con-
founding would not yield a null rate ratio. Given the wide range of con-
trols included in our model, an unobserved confounder with a risk 
ratio of 1.76 might be unlikely, but it is certainly plausible that an un-
known factor could explain the complete disparity associated with high 
versus low ND. The 95% confidence interval of the rate ratio could be 
moved to include the null with an unobserved confounder associated 
with both dependent and set of ND variables at a risk ratio of 1.45.

Much stronger omitted confounding is needed to explain the 
COVID-19 disparities by ND in the western counties. In San Francisco, 
an unobserved confounder would need to be associated with both 

COVID-19 incidence and the set of ND variables at a risk ratio of 
3.4 each to completely explain the doubling in COVID-19 incidence 
associated with high versus low ND. The lower tail of the rate ratio’s 
95% confidence interval could be moved to include the null by a 
confounder associated with both dependent variable and ND at a 
risk ratio of 2.4 each. In King County, the risk ratio for the association 
between confounder and both COVID-19 incidence and ND required 
to explain the complete disparity in COVID-19 by ND or move its 
confidence interval to include the null is 3.65 and 2.93, respectively. 
In both San Francisco and King County, these are sizable degrees of 
omitted confounding, roughly double or more that of Wisconsin. 
Overall, our results indicate that unobserved confounding would 
have to be moderately strong (Wisconsin) to quite large (Seattle and 
San Francisco) to explain away the associations.

Racial disparities in COVID-19 and ND
Complete results for all mediation models of COVID-19 disparities by 
neighborhood racial/ethnic composition appear in the Supplementary 
Materials. In Wisconsin (excluding Milwaukee), neighborhoods with 
a relatively high share of Black residents were associated with a rough-
ly 18.5% increase in COVID-19–positive risk versus neighborhoods 
with low share of Black residents (P < 0.05; Fig. 4). RND can mediate 
approximately 15.2% of the estimated total effect associated with 
neighborhood racial composition. Estimated total effects within a 
location are generally quite consistent regardless of the mediator. 
For Wisconsin, the second mediation model indicates that MND is 
a somewhat weaker mediator, explaining only 7.8% of the estimated 
total effect associated with share Black. In Milwaukee County, percent 
Black has an estimated null total effect on COVID-19 risk, rendering 
mediation estimates moot.

The two diverse western counties both demonstrate much stronger 
COVID-19 disparities by neighborhood percent Black and greater 
mediation by the ND variables. The estimated total effect associated 

RND: Low

RND: Middle 2 (base)

RND: High

MND: Low

MND: Middle 2 (base)

MND: High

−0.2 0 0.2 0.4 0.6

Wisconsin San Francisco King County

Fig. 2. Parameter estimates for the adjusted association between ND indicators and COVID-19 case count by location. Note that coefficients are estimated in the 
main model for each location: Table 1, model 6 for Wisconsin; table S4, model 5 for San Francisco; and table S5, model 5 for King County. Error bars represent 95% confi-
dence intervals.

D
ow

nloaded from
 https://w

w
w

.science.org on June 29, 2022



Levy et al., Sci. Adv. 8, eabl3825 (2022)     18 February 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

6 of 11

with high versus low percent Black in San Francisco and in King 
County ranges from a 69 to 95% increase in neighborhood popula-
tion risk of contracting COVID-19. In San Francisco, almost three-
fifths of this risk increase can be explained by variation in MND 
levels. RND is still a fairly strong potential mediator, though sub-
stantively much weaker than MND. In King County, RND and MND 

have similar mediation potential for the risk increase associated 
with high share Black, explaining nearly two-fifths of the estimated 
total effect.

The estimated total effect of high versus low percent Hispanic in 
Wisconsin (excluding Milwaukee) is a nearly 10% increase in 
COVID-19–positive risk (P < 0.05; Fig. 5). RND can mediate a small 
portion of this modest increase. Estimated total effects of share 
Hispanic are substantially larger in Milwaukee County, San Francisco, 
and King County—somewhere between a doubling and tripling of 
COVID-19 risk depending on the location. In Milwaukee, roughly 
one-fifth to one-quarter of this increase can be mediated by one of 
the ND measures. In San Francisco, over half of the tripling in 

Table 2. E-value sensitivity analysis for the main model in each 
jurisdiction. Note that adjusted predicted COVID-19 caseloads in 
Wisconsin, San Francisco, and King County are based on estimates from 
Table 1 (model 6), table S4 (model 5), and table S5 (model 5), respectively. 

Adj. 
predicted 
COVID-19 
caseload 
with 95% 

confidence 
interval

Rate ratio

Estimate 95% confidence interval

Wisconsin

  Low RND, 
low MND

343.1 
[326.3, 
359.8]

  High RND, 
high MND

421.3 
[395.4, 
447.2]

  High-low 
ND rate 
ratio

1.228 1.108 1.348

  E value 1.76 1.45

San Francisco

  Low RND, 
low MND

124.8 
[106.6, 
143.0]

  High RND, 
high MND

248.8 
[218.3, 
279.2]

  High-low 
ND rate 
ratio

1.993 1.516 2.470

  E value 3.40 2.40

King County

  Low RND, 
low MND

127.5 
[115.4, 
139.5]

  High RND, 
high MND

269.6 
[246.1, 
293.2]

  High-low 
ND rate 
ratio

2.116 1.766 2.465

  E value 3.65 2.93
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Fig. 3. Average adjusted predicted COVID-19–positive cases by ND indicators 
from the main model for each location. Note that error bars represent 90, 95, and 
99% confidence intervals. Predictions are based on the main model for each loca-
tion and hold covariates at their observed values.
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neighborhood COVID-19 risk associated with high percent His-
panic can be explained by variation in MND levels. In King County, 
nearly three-fifths of the doubling in neighborhood COVID-19 risk 
related to high versus low share Hispanic can be explained by RND.

DISCUSSION
Our analysis documents sizable neighborhood disparities in 
COVID-19 caseloads that are tied to residents’ mobility patterns by 
neighborhood socioeconomic status. As expected, RND is associated 
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Fig. 4. Mediation of the relationship between tract percent Black and COVID-19 caseload by RND and MND. Note that full results from mediation models appear in the 
Supplementary Materials. Estimated total effects are on the risk ratio scale and based on location-specific 5th and 95th percentiles of tract proportion Black. For Wisconsin 
(excluding Milwaukee), Milwaukee, San Francisco, and King County, those contrasts are 0 versus 0.122, 0.005 versus 0.915, 0 versus 0.179, and 0 versus 0.240, respectively.
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in the Supplementary Materials. Estimated total effects are on the risk ratio scale and based on location-specific 5th and 95th percentiles of tract proportion Hispanic. For 
Wisconsin (excluding Milwaukee), Milwaukee, San Francisco, and King County, those contrasts are 0.004 versus 0.169, 0.007 versus 0.729, 0.042 versus 0.397, and 0.021 
versus 0.268, respectively.
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with significant increases in COVID-19 incidence in separate anal-
yses of three qualitatively different locations: the state of Wisconsin; 
San Francisco, CA; and King County, WA. In line with recently de-
veloped theory about the importance of structural connections be-
tween neighborhoods based on residents’ mobility patterns (18, 23), 
however, we find that ND in a neighborhood’s network of neigh-
borhoods its residents visit and receive visits from is more predictive 
for COVID-19 incidence than its own level of RND. We also note 
evidence that overall affluence in the neighborhood network is es-
pecially protective. Considering both RND and MND, neighborhoods 
that are high on both have appreciably higher levels of COVID-19 
than those that are low on both—sometimes twice as high. We further 
show the ability for ND to mediate sizable disparities in COVID-19 
risk associated with neighborhood racial and ethnic composition. 
We are limited in our ability to draw conclusions about the causal 
pathways between ND and COVID-19 incidence given the observa-
tional nature of our research. We nonetheless addressed potential 
confounding by including a broad range of controls as well as coun-
ty fixed effects in Wisconsin. Especially in San Francisco and King 
County, the results indicate that unobserved confounding would have 
to be quite large to explain away the associations.

Our results have public health and policy implications. Adjust-
ing for many relevant characteristics, we document sizable varia-
tion in COVID-19 risk at the fine-grained neighborhood level for 
three distinct geographic locations. Moreover, RND and MND 
evince strong added value in explaining variation in COVID-19 in-
cidence. Thus, triple ND could serve as a useful ecometric tool 
(34, 35) that can be regularly updated and used to identify neighbor-
hoods at risk of particularly adverse impacts during future pandemics 
or other crises. This previously unidentified form of mobility-based 
neighborhood inequity aligns with a longer history of health dispar-
ities and access to health care resources at the neighborhood level 
(7, 13). Our findings indicate the importance of continued invest-
ment in and partnership with socioeconomically disadvantaged 
communities to facilitate care, as well as provide evidence for plan-
ning efforts to address ongoing inequality during the COVID-19 
pandemic and responses to future pandemics or health events.

We also provide fresh evidence on how neighborhood-based 
disparities in an airborne pandemic arise. In line with recent models 
demonstrating the salience of everyday individual mobility patterns 
for pandemic spread (6), we find that ND in mobility-based con-
nections between neighborhoods is more predictive of a neighbor-
hood’s COVID-19 caseload than its own level of ND. Recent work 
demonstrates a similar pattern for a categorically different public 
health outcome: homicide (18). With growing attention to social 
determinants of health and associated spatial health disparities, 
connections between neighborhoods forged by residents’ mobility 
patterns represent a unique source of inequality.

MATERIALS AND METHODS
We conduct parallel analyses of census tracts, a commonly used defi-
nition of neighborhoods, for Wisconsin, King County in Washington, 
and San Francisco County by merging data from three source types. 
Our dependent variable is the total count of each tract’s residents 
that have tested positive for COVID-19 through 28 February 2021. 
In Wisconsin and King County, all positive diagnostic test results 
confirming the presence of the virus causing COVID-19 are reported 
to the state’s Department of Health (41, 42). Using home address 

data for individuals testing positive, Wisconsin and King County 
then aggregate and report counts of residents testing positive for the 
first time in each census tract. Duplicate positive tests or second 
infections are purged from the total counts in both locations. In 
October 2021, Wisconsin released an updated version of their COVID-19 
database. Unlike the original data that we used in our analysis, 
the updated data count multiple positive tests for the same individual 
as unique positive cases. Despite this fact, our dependent variable from 
the original database is nearly perfectly correlated with the cumulative 
count on 28 February 2021 in the updated database. In San Francisco, 
total tract case counts are based on positive laboratory tests of resi-
dents reported to the county’s Department of Public Health (43). 
The Department conducts additional data verification or interview 
procedures to determine residence of individuals. Case totals represent 
new cases rather than a simple accounting of tests, but it is possible 
that an individual could be infected, recover, and later be reinfected, 
thus appearing twice in the data. This would be quite rare through 
February 2021. In all three jurisdictions, cumulative total cases will 
be undercounts given scarcity of confirmatory tests early in the 
pandemic, reluctance to be tested among some individuals, and the 
presence of asymptomatic cases for which individuals may not get 
tested (44). We do not expect the last of these to cause substantial 
bias in our estimates of relative risk between neighborhoods. To the 
extent that the first two yield bias, we expect that socioeconomically 
disadvantaged neighborhoods would have greater levels of under-
count (45), which could make our estimates of the magnitude of 
hypothesized associations conservative.

Our primary independent variables are RND and MND. We 
measure RND using nationwide data from the 2015–2019 ACS to 
conduct a principal factor analysis of seven neighborhood charac-
teristics: percentages of poverty, unemployment, single-headed 
households, public assistance receipt, adults without a high school 
diploma, adults with a bachelor’s degree or higher, and workers 
who are managers or professionals. The variables load strongly onto 
one factor with high reliability, and nationwide, RND is a continu-
ous variable with a mean of zero and SD of roughly one.

Calculating measures of MND requires not only RND scores of 
visited or visiting neighborhoods but also data on the strength of a 
mobility tie between neighborhoods. We draw our U.S. mobility 
patterns from SafeGraph, a company that aggregates anonymized, 
repeatedly measured location data from a nationally representative 
group of 45 million smartphone devices that is provided by Veraset. 
Researchers have recently used SafeGraph mobility data to study 
segregation in Milwaukee and mobility changes during COVID-19 
(6, 46). For this study, we rely on SafeGraph’s Social Distance Met-
rics Dataset, which provides daily data on how many residents (de-
vices) of each census block group visit every other block group at 
least once in that day. Home location for a device is determined 
by SafeGraph using machine learning as the common nighttime 
(6 p.m. to 7 a.m.) location of the device. A visit is defined as a cluster 
of proximal location pings with duration longer than 1 min. Devices 
can count for up to one visit in each block group in a single day. 
We aggregate visit counts from the block group level to the census 
tract level (block groups nest perfectly). This allows the maximum 
number of daily visits to a tract for any device to be the total number 
of block groups in the tract. We expect any bias introduced by this 
aggregation to be minimal.

We begin by constructing a nationwide mobility network as a 
valued digraph comprising a set of nodes (census tracts), N = {n1, 
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n2, …, nN}; a set of edges, E = {e1, e2, …, eE}; and a set of values, 
V = {v1, v2, …, vV} (47). Values V(nij) represent the extent of mobility 
of residents of tract i to tract j over all days (a) in the sample. We 
approximate V(nij) as the total number of day-visitors to tract j who 
reside in tract i for the time period analyzed. In mathematical terms

	​ V(​n​ ij​​ ) = ​ ∑ 
a=1

​ 
D

  ​​ ​t​ aij​​​	 (1)

where taij is the number of visitors to j that reside in i on day a, and 
D is the number of days of data in the analysis. To remove cross-
country tourist visits, which likely have much less, if any, effect on a 
neighborhood’s capacity to achieve its sociopolitical goals, we re-
strict all nij edges to occur between tracts within the same commut-
ing zone (CZ) or, for counties on the border between CZs, between 
tracts in its CZ or contiguous counties. We use all 365 days in 2019 
for our mobility data to develop measures of MND that are proxi-
mal to the pandemic but not affected by the marked shifts in mobility 
patterns during 2020. In other words, this network reflects the more 
stable, structural ties between neighborhoods that can prove crucial 
for their vitality.

We use the valued adjacency matrix in Eq. 1 to calculate the 
weighted average disadvantage level of extra-local neighborhoods 
to which any neighborhood ni is structurally connected through its 
residents’ intra-CZ mobility patterns, or OND

	​​ OND  = ​  ∑ 
j=1

​ 
N

 ​​​(​​ ​ 
V(​n​ ij​​) ─ V(​n​ i​​ ) − V(​n​ ii​​)

 ​ * ​RND​ j​​​)​​, i  ≠  j​​	 (2)

Here, V(ni) represents total number of visits from tract i, V(nii) rep-
resents visits within tract i (loops), and RNDj represents the resi-
dential disadvantage score of the visited neighborhood.

Next, we calculate the weighted average disadvantage level of 
extra-local neighborhoods to which any neighborhood ni is structur-
ally connected through the intra-CZ visits it receives from residents 
of other neighborhoods, or IND. Neighborhoods vary in popula-
tion size and visit rates; we adjust for these aspects in our calcula-
tions, as shown in Eq. 3, where Pj is the population of sending 
neighborhood nj

	​ IND  = ​  
​∑ j=1​ N  ​​ ​RND​ j​​ * V(​n​ ji​​ ) * ​P​ j​​  ─────────────  

​∑ j=1​ N  ​​V(​n​ ji​​ ) * ​P​ j​​
  ​, i  ≠  j​	 (3)

As our overall measure of MND, we then average OND and IND.
As a check on potential bias introduced by aggregation from 

block groups to tracts, we also calculate block group IND, OND, 
and MND scores using nonaggregated SafeGraph data (i.e., at the 
block group level), coupled with RND scores at the census block 
group level. We then calculate alternative specifications of tract-level 
MND as the population-weighted average MND scores of all block 
groups in a tract. The correlation of MND calculated in this alterna-
tive manner with MND calculated as we specify above is 0.988. This 
very strong correlation indicates that any bias from aggregation would 
be negligible.

Our control variables for this study use the 2015–2019 ACS and 
are informed by both theoretical expectations and recent research. 
We use an offset of log total neighborhood residential population, 
and we include controls for neighborhood log population density, 

age composition (shares of residents that are ages 0 to 4, 5 to 17, 18 
to 24, and 65+), share living in a household with four or more mem-
bers, mean household size, share living in group quarters, shares of 
workers in each of four sectors (health services, food preparation or 
service, personal care, and production), share of workers that car-
pool, share of workers that take public transit, share Black, and 
share Hispanic. We access all ACS data from Social Explorer.

Statistical analysis
Separately for Wisconsin, San Francisco, and King County, we ana-
lyze the relationships of RND and MND with neighborhood total 
COVID-19 case counts using a series of Poisson models with robust 
errors. Our main model is

​ln(​​ i​​ ) = ​​ 0​​ + ​​ 1​​ ​RND​ low​​ + ​​ 2​​ ​RND​ high​​ + ​​ 3​​ ​MND​ low​​ +  
 ​​ 4​​ ​MND​ high​​ + ​​ x​​ ​x​ i​​ + ln​(​​ ​pop​ i​​​)​​​	 (4)

We predict COVID-19 case counts () in neighborhood i using 
indicator variables for location-specific low and high quartiles of 
tract RND as well as low and high quartiles of tract MND. We also 
include our vector of control variables (xi) as well as an offset for log 
residential population. In Wisconsin, our main model also includes 
parameters for indicator variables identifying each county with 30 
or more tracts (ii). Before our main model, we also estimate a se-
quence of nested models to assess the relative predictive power of 
our measures of ND as well as compare the predictive power of our 
ND measures with our controls.

We use the E value sensitivity analysis (36,  37) for our main 
model in each jurisdiction to gauge how robust our estimated rela-
tionships between ND and COVID-19 incidence are to potential 
unobserved confounding. The E value identifies the strength of as-
sociation between an unobserved confounder, or set of confound-
ers, and both treatment and outcome that would be required to 
completely explain the estimated treatment-outcome relationship. 
E values are directly calculable for rate ratios. We use the rate ratio 
for average adjusted predicted COVID-19 caseloads in high ND 
(both RND and MND) versus low ND (both RND and MND) 
neighborhoods, which is taken directly from estimates in the right 
cluster for each jurisdiction in Fig. 3.

Our mediation analyses use the approach described in depth by 
Valeri and VanderWeele (39). This method extends the Baron and 
Kenny (48) framework to Poisson regression and allows for treatment-
mediator interaction effects on outcome. Despite using language 
like treatment, outcome, and direct or indirect effect for conve-
nience, we consider these mediation models mechanism sketches. 
The approach can incorporate, at most, one treatment variable and 
one mediator variable per model. Thus, for each location, we esti-
mate four models representing all combinations of the neighbor-
hood race (share Black and share Hispanic) and disadvantage (RND 
and MND) variables. Our mediation models make two important 
departures from the main models. First, given the low level of over-
lap in racial demographics between Milwaukee County and the 
rest of Wisconsin, we separately analyze mediation for Milwaukee. 
Mean tract proportion Black is over 12 times as high in Milwaukee 
County, and more than two-thirds of all Black Wisconsin residents 
live in the county. Hispanic residents are somewhat more evenly 
distributed, but mean tract proportion Hispanic is still nearly three 
times as high in Milwaukee County. Second, race and ND have fair-
ly strong correlations across the jurisdictions, and our indicator 
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variables for ND quartiles suppress a nontrivial portion of the vari-
ables’ variations. To better assess the full mediation potential of 
RND and MND, we use their continuous specifications in these 
analyses. Our general mediation models take the following form

​ln {E(Y∣A  =  a, M  =  m, C  =  c)} = ​​ 0​​ + ​​ 1​​ a + ​​ 2​​ m +  
 ​​ 3​​ am + ​​ c​​ c ​	 (5)

Equation 5 is our outcome model where Y is COVID-19 case 
count, A is the neighborhood share Black (Hispanic) “treatment” 
variable, M is potential ND mediator, and C is a vector of controls, 
which includes log residential population and the neighborhood ra-
cial composition variable not being used as treatment. We then fit 
the linear model below for the mediator

	​ E(M∣A  =  a, C  =  c ) = ​​ 0​​ + ​​ 1​​ a + ​​ c​​ c​	 (6)

Analyzing mediation in this framework with Poisson models 
requires specifying two values (a, a*) for treatment to generate a pre-
dicted difference in COVID-19 counts. We use the location-specific 
5th and 95th percentiles of neighborhood racial composition for this 
contrast. The natural direct effect (NDE) is on the risk ratio scale and 
calculated as

	​​ NDE  =  exp​[​​ln​{​​ ​ 
E​(​​ ​Y​ ​aM​ ​a​​ *​​​​​∣c​)​​

 ─ 
E​(​​ ​Y​ ​a​​ *​​M​ ​a​​ *​​​​​∣c​)​​

 ​​}​​​]​​​​	 (7)

The natural indirect effect (NIE) is also on the risk ratio scale 
and calculated as

	​​ NIE  =  exp​[​​ln​{​​ ​ 
E​(​​ ​Y​ ​aM​ a​​​​∣c​)​​

 ─ 
E​(​​ ​Y​ ​aM​ ​a​​ *​​​​​∣c)

 ​​}​​​]​​​​	 (8)

The total effect of the treatment is then the product of NDE and NIE. We 
bootstrap 95% confidence intervals using 1000 replications for NDE, 
NIE, and total effect (TE) as recommended by Valeri and VanderWeele 
(39). The estimated proportion of the total effect mediated is

	​ PM  = ​  NDE * (NIE − 1)  ─  NDE * NIE − 1  ​​	 (9)

The key assumption for valid estimates in both our main and 
mediation models is no unobserved confounding. In the mediation 
models, this implies no unobserved confounding in three relation-
ships: treatment to outcome, treatment to mediator, and mediator 
to outcome. We attempt to address this by including a range of the-
oretically relevant controls, as well as various county fixed effects 
strategies in Wisconsin. Although it is not possible to fully discount 
unobserved confounding, observational analyses are important in 
this context for several reasons. Among the most important is that 
governmental resources to combat the pandemic and its effects are 
often allocated spatially. Documenting low-level spatial inequalities 
can aid in targeting these efforts. Moreover, to the extent that mea-
sures of ND add value in explaining place-based disparities in 
COVID-19 caseloads, accounting for them will prove a useful addi-
tion for predictive models of pandemic spread that assist in combat-
ing the pandemic—even if ND is not the direct or distal cause of 
variation in COVID-19 caseloads. The results from our models of 
two large counties and one medium-sized state suggest that ND 
does add predictive value.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abl3825

REFERENCES AND NOTES
	 1.	 S. Anand, M. Montez-Rath, J. Han, J. Bozeman, R. Kerschmann, P. Beyer, J. Parsonnet, 

G. M. Chertow, Prevalence of SARS-CoV-2 antibodies in a large nationwide sample 
of patients on dialysis in the USA: A cross-sectional study. Lancet 396, 1335–1344 (2020).

	 2.	 D. B. G. Tai, A. Shah, C. A. Doubeni, I. G. Sia, M. L. Wieland, The disproportionate impact 
of COVID-19 on racial and ethnic minorities in the United States. Clin. Infect. Dis. 72, 
703–706 (2021).

	 3.	 B. G. Link, J. Phelan, Social conditions as fundamental causes of disease. J. Health Soc. 
Behav. 35, 80 (1995).

	 4.	 I. Kawachi, L. F. Berkman, Neighborhoods and Health (Oxford Univ. Press, 2003).
	 5.	 D. Carrión, E. Colicino, N. F. Pedretti, K. B. Arfer, J. Rush, N. Defelice, A. C. Just, 

Neighborhood-level disparities and subway utilization during the COVID-19 pandemic 
in New York City. Nat. Commun. 12, 3692 (2021).

	 6.	 S. Chang, E. Pierson, P. W. Koh, J. Gerardin, B. Redbird, D. Grusky, J. Leskovec, Mobility 
network models of COVID-19 explain inequities and inform reopening. Nature 589, 
82–87 (2021).

	 7.	 D. R. Williams, C. Collins, Racial residential segregation: A fundamental cause of racial 
disparities in health. Public Health Rep. 116, 404–416 (2001).

	 8.	 D. S. Massey, N. A. Denton, American Apartheid: Segregation and the Making of the 
Underclass (Harvard Univ. Press, 1993).

	 9.	 P. A. Jargowsky, Take the money and run: Economic segregation in U.S. metropolitan 
areas. Am. Sociol. Rev. 61, 984–998 (1996).

	 10.	 S. F. Reardon, K. Bischoff, A. Owens, J. B. Townsend, Has income segregation really 
increased? Bias and bias correction in sample-based segregation estimates. Demography 
55, 2129–2160 (2018).

	 11.	 R. Manduca, R. J. Sampson, Punishing and toxic neighborhood environments 
independently predict the intergenerational social mobility of black and white children. 
Proc. Natl. Acad. Sci. U.S.A. 116, 7772–7777 (2019).

	 12.	 B. Woo, N. Kravitz-Wirtz, V. Sass, K. Crowder, S. Teixeira, D. T. Takeuchi, Residential 
segregation and racial/ethnic disparities in ambient air pollution. Race Soc. Probl. 11, 
60–67 (2019).

	 13.	 J. C. Phelan, B. G. Link, Is racism a fundamental cause of inequalities in health? Annu. Rev. 
Sociol. 41, 311–330 (2015).

	 14.	 R. Chetty, J. N. Friedman, N. Hendren, M. R. Jones, S. R. Porter, “The opportunity atlas: 
Mapping the childhood roots of social mobility” (Working Paper 25147, 2018); www.nber.
org/papers/w25147.

	 15.	 C. R. Browning, B. Soller, Moving beyond neighborhood: Activity spaces and ecological 
networks as contexts for youth development. Cityscape 16, 165–196 (2014).

	 16.	 L. J. Krivo, H. M. Washington, R. D. Peterson, C. R. Browning, C. A. Calder, M.-P. Kwan, 
Social isolation of disadvantage and advantage: The reproduction of inequality in urban 
space. Soc. Forces 92, 141–164 (2013).

	 17.	 Q. Wang, N. E. Phillips, M. L. Small, R. J. Sampson, Urban mobility and neighborhood 
isolation in America's 50 largest cities. Proc. Natl. Acad. Sci. U.S.A. 115, 7735–7740 (2018).

	 18.	 B. L. Levy, N. E. Phillips, R. J. Sampson, Triple disadvantage: Neighborhood networks 
of everyday urban mobility and violence in U.S. cities. Am. Soc. Rev. 85, 925–956 (2020).

	 19.	 B. Hong, B. J. Bonczak, A. Gupta, L. E. Thorpe, C. E. Kontokosta, Exposure density 
and neighborhood disparities in COVID-19 infection risk. Proc. Natl. Acad. Sci. U.S.A. 118, 
e2021258118 (2021).

	 20.	 S. Pei, S. Kandula, J. Shaman, Differential effects of intervention timing on COVID-19 
spread in the United States. Sci. Adv. 6, eabd6370 (2020).

	 21.	 F. Borgonovi, E. Andrieu, Bowling together by bowling alone: Social capital and 
COVID-19. Soc. Sci. Med. 265, 113501 (2020).

	 22.	 J. Jay, J. Bor, E. O. Nsoesie, S. K. Lipson, D. K. Jones, S. Galea, J. Raifman, Neighbourhood 
income and physical distancing during the COVID-19 pandemic in the United States. Nat. 
Hum. Behav. 4, 1294–1302 (2020).

	 23.	 R. J. Sampson, Great American City: Chicago and the Enduring Neighborhood Effect  
(The University of Chicago Press, 2012).

	 24.	 N. P. Marwell, E. A. Marantz, D. Baldassarri, The microrelations of urban governance: 
Dynamics of patronage and partnership. Am. J. Sociol. 125, 1559–1601 (2020).

	 25.	 H. Molotch, The city as a growth machine: Toward a political economy of place. Am. 
J. Sociol. 82, 309–332 (1976).

	 26.	 W. Lieberman-Cribbin, S. Tuminello, R. M. Flores, E. Taioli, Disparities in COVID-19 testing 
and positivity in New York city. Am. J. Prev. Med. 59, 326–332 (2020).

	 27.	 A. Sacarny, J. R. Daw, Inequities in COVID-19 vaccination rates in the 9 largest US cities. 
JAMA Health Forum 2, e212415 (2021).

	 28.	 R. J. Sampson, S. W. Raudenbush, F. Earls, Neighborhoods and violent crime: A multilevel 
study of collective efficacy. Science 277, 918–924 (1997).

D
ow

nloaded from
 https://w

w
w

.science.org on June 29, 2022

https://science.org/doi/10.1126/sciadv.abl3825
https://science.org/doi/10.1126/sciadv.abl3825
http://www.nber.org/papers/w25147
http://www.nber.org/papers/w25147


Levy et al., Sci. Adv. 8, eabl3825 (2022)     18 February 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

11 of 11

	 29.	 C. S. Fullerton, H. B. H. Mash, L. Wang, J. C. Morganstein, R. J. Ursano, Posttraumatic stress 
disorder and mental distress following the 2004 and 2005 Florida Hurricanes. Disaster 
Med. Public Health Prep. 13, 44–52 (2019).

	 30.	 K. A. Cagney, D. Sterrett, J. Benz, T. Tompson, Social resources and community resilience 
in the wake of Superstorm Sandy. PLOS ONE 11, e0160824 (2016).

	 31.	 J. Crane, The epidemic theory of ghettos and neighborhood effects on dropping out 
and teenage childbearing. Am. J. Sociol. 96, 1226–1259 (1991).

	 32.	 B. L. Levy, Heterogeneous impacts of concentrated poverty during adolescence 
on college outcomes. Soc. Forces 98, 147–182 (2019).

	 33.	 M. Hartfield, S. Alizon, Introducing the outbreak threshold in epidemiology. PLOS Pathog. 
9, e1003277 (2013).

	 34.	 S. W. Raudenbush, R. J. Sampson, 1. Ecometrics: Toward a science of assessing ecological 
settings, with application to the systematic social observation of neighborhoods. Soc. 
Methodol. 29, 1–41 (1999).

	 35.	 D. T. O’Brien, R. J. Sampson, C. Winship, Ecometrics in the age of big data. Soc. Methodol. 
45, 101–147 (2015).

	 36.	 M. B. Mathur, P. Ding, C. A. Riddell, T. J. VanderWeele, Web Site and R package for 
computing e-values. Epidemiology 29, e45–e47 (2018).

	 37.	 T. J. VanderWeele, P. Ding, Sensitivity analysis in observational research: Introducing 
the E-value. Ann. Intern. Med. 167, 268–274 (2017).

	 38.	 R. J. Sampson, Moving to inequality: Neighborhood effects and experiments meet social 
structure. Am. J. Sociol. 114, 189–231 (2008).

	 39.	 L. Valeri, T. J. VanderWeele, Mediation analysis allowing for exposure–mediator 
interactions and causal interpretation: Theoretical assumptions and implementation 
with SAS and SPSS macros. Psychol. Methods 18, 137–150 (2013).

	 40.	 S. L. Morgan, C. Winship, Counterfactuals and Causal Inference: Methods and Principles for 
Social Research (Cambridge Univ. Press, ed. 2, 2014).

	 41.	 Wisconsin Department of Health Services, “COVID-19 historical data by census tract”; 
https://data.dhsgis.wi.gov/datasets/covid-19-historical-data-by-census-tract/explore) 
[accessed 7 March 2021].

	 42.	 Public Health—Seattle & King County, “Daily COVID-19 outbreak summary”; https://
kingcounty.gov/depts/health/covid-19/data/daily-summary.aspx.

	 43.	 San Francisco Department of Public Health—Population Health Division, “COVID-19 
cases and deaths summarized by geography”; https://data.sfgov.org/COVID-19/
COVID-19-Cases-and-Deaths-Summarized-by-Geography/tpyr-dvnc.

	 44.	 F. P. Havers, C. Reed, T. Lim, J. M. Montgomery, J. D. Klena, A. J. Hall, A. M. Fry, 
D. L. Cannon, C.-F. Chiang, A. Gibbons, I. Krapiunaya, M. Morales-Betoulle, K. Roguski, 
M. A. U. Rasheed, B. Freeman, S. Lester, L. Mills, D. S. Carroll, S. M. Owen, J. A. Johnson, 
V. Semenova, C. Blackmore, D. Blog, S. J. Chai, A. Dunn, J. Hand, S. Jain, S. Lindquist, 
R. Lynfield, S. Pritchard, T. Sokol, L. Sosa, G. Turabelidze, S. M. Watkins, J. Wiesman, 
R. W. Williams, S. Yendell, J. Schiffer, N. J. Thornburg, Seroprevalence of antibodies 
to SARS-CoV-2 in 10 sites in the United States, March 23–May 12, 2020. JAMA Internal 
Med. 180, 1576 (2020).

	 45.	 L. Rubin-Miller, C. Alban, S. Artiga, S. Sullivan, “COVID-19 racial disparities in testing, 
infection, hospitalization, and death: Analysis of epic patient data” (Kaiser Family 
Foundation, 2020); www.kff.org/report-section/covid-19-racial-disparities-in-testing-
infection-hospitalization-and-death-analysis-of-epic-patient-data-issue-brief/.

	 46.	 T. Prestby, J. App, Y. Kang, S. Gao, Understanding neighborhood isolation through spatial 
interaction network analysis using location big data. Environ. Planning A Eco. Space 52, 
1027–1031 (2020).

	 47.	 S. Wasserman, K. Faust, Social Network Analysis: Methods and Applications (Cambridge 
Univ. Press, 1994), pp. xxxi, 825.

	 48.	 R. M. Baron, D. A. Kenny, The moderator–mediator variable distinction in social 
psychological research: Conceptual, strategic, and statistical considerations. J. Pers. Soc. 
Psychol. 51, 1173–1182 (1986).

Acknowledgments: We thank two anonymous reviewers and the Associate Editor for their 
helpful feedback on the earlier version of this manuscript. Funding: For financial support, we 
thank National Science Foundation grant SES-1735505. Author contributions: Conceptualization: 
B.L.L., R.J.S., K.V., and S.V.S. Methodology: B.L.L., K.V., S.V.S., and R.J.S. Formal analysis: B.L.L. and 
K.V. Data curation: K.V. and B.L.L. Visualization: B.L.L. and K.V. Supervision: B.L.L. and R.J.S. Writing—
original draft: B.L.L., R.J.S., K.V., and S.V.S. Competing interests: The authors declare that they have 
no competing interests. Data and materials availability: All data needed to evaluate the 
conclusions in the paper are present in the paper and/or the Supplementary Materials. A 
replication package is available on Dataverse at https://doi.org/10.13021/orc2020/C9ECFO.

Submitted 9 July 2021
Accepted 23 December 2021
Published 18 February 2022
10.1126/sciadv.abl3825

D
ow

nloaded from
 https://w

w
w

.science.org on June 29, 2022

https://data.dhsgis.wi.gov/datasets/covid-19-historical-data-by-census-tract/explore
https://kingcounty.gov/depts/health/covid-19/data/daily-summary.aspx
https://kingcounty.gov/depts/health/covid-19/data/daily-summary.aspx
https://data.sfgov.org/COVID-19/COVID-19-Cases-and-Deaths-Summarized-by-Geography/tpyr-dvnc
https://data.sfgov.org/COVID-19/COVID-19-Cases-and-Deaths-Summarized-by-Geography/tpyr-dvnc
http://www.kff.org/report-section/covid-19-racial-disparities-in-testing-infection-hospitalization-and-death-analysis-of-epic-patient-data-issue-brief/
http://www.kff.org/report-section/covid-19-racial-disparities-in-testing-infection-hospitalization-and-death-analysis-of-epic-patient-data-issue-brief/
https://doi.org/10.13021/orc2020/C9ECFO


Use of this article is subject to the Terms of service

Science Advances (ISSN ) is published by the American Association for the Advancement of Science. 1200 New York Avenue NW,
Washington, DC 20005. The title Science Advances is a registered trademark of AAAS.
Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim
to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).

Neighborhood socioeconomic inequality based on everyday mobility predicts
COVID-19 infection in San Francisco, Seattle, and Wisconsin
Brian L. LevyKarl VachuskaS. V. SubramanianRobert J. Sampson

Sci. Adv., 8 (7), eabl3825. • DOI: 10.1126/sciadv.abl3825

View the article online
https://www.science.org/doi/10.1126/sciadv.abl3825
Permissions
https://www.science.org/help/reprints-and-permissions

D
ow

nloaded from
 https://w

w
w

.science.org on June 29, 2022

https://www.science.org/about/terms-service

