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CORONAVIRUS

Neighborhood socioeconomic inequality based
on everyday mobility predicts COVID-19 infection
in San Francisco, Seattle, and Wisconsin

Brian L. Levy"z*, Karl Vachuska3, S. V. Subramanian®>%, Robert J. Sampson5

Race and class disparities in COVID-19 cases are well documented, but pathways of possible transmission by
neighborhood inequality are not. This study uses administrative data on COVID-19 cases for roughly 2000 census
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tracts in Wisconsin, Seattle/King County, and San Francisco to analyze how neighborhood socioeconomic
(dis)advantage predicts cumulative caseloads through February 2021. Unlike past research, we measure a neigh-
borhood’s disadvantage level using both its residents’ demographics and the demographics of neighborhoods its
residents visit and are visited by, leveraging daily mobility data from 45 million mobile devices. In all three juris-
dictions, we find sizable disparities in COVID-19 caseloads. Disadvantage in a neighborhood’s mobility network
has greater impact than its residents’ socioeconomic characteristics. We also find disparities by neighborhood
racial/ethnic composition, which can be explained, in part, by residential and mobility-based disadvantage.
Neighborhood conditions measured before a pandemic offer substantial predictive power for subsequent inci-

dence, with mobility-based disadvantage playing an important role.

INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic exposed the depth
of health inequality in the United States, with racial and ethnic mi-
norities and lower-income populations much more likely to con-
tract the disease (I, 2). These patterns are consistent with broader and
long-standing health inequalities in the United States (3). Although
neighborhood conditions are an important driver of health inequal-
ities (4), to date, research has focused mainly on descriptive variations
among larger geographic units, such as county, city, or zip-code
COVID-19 caseloads [e.g., (1, 5, 6)].

In this study, we analyze COVID-19 incidence at the fine-grained
neighborhood level. Research on health disparities and residential
segregation (7) is extensive, motivated, in part, by the enduring fact
of racial segregation in the United States (8). Recent decades also
had increases in income-based segregation, particularly among families
(9, 10). Such patterns of residential segregation correlate with in-
equalities across a range of neighborhood-based resources that af-
fect health, including availability and quality of healthcare services;
exposure to toxins, pollution, or violence; quality of infrastructure;
location of food deserts; and a broad range of factors promoting
upward economic mobility (11-14).

In their everyday lives, however, individuals move through many
neighborhoods as they go about their daily rounds (15). Homophily
in mobility patterns can reinforce the isolation of affluence or dis-
advantage (16). Among the 50 largest U.S. cities, residents of primarily
Black and Hispanic neighborhoods—whether poor or not—are far
less likely to visit either nonpoor or white middle-class neighborhoods
than residents of primarily white neighborhoods (17). Mobility patterns
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also have the potential to form structural connections between
neighborhoods with independent consequences for the well-being
of their residents. One study finds that adjusting for residential dis-
advantage, disadvantage in a neighborhood’s mobility-based net-
work has added value in explaining neighborhood rates of violence;
this indicates three distinct types of socioeconomic (dis)advantage a
neighborhood can experience, or potential triple disadvantage (18).
The first, residential neighborhood disadvantage (RND), is based
on the socioeconomic characteristics of its residents. The other two
are based on the average characteristics of the neighborhoods its
residents tend to visit and receive visits from.

(Dis)advantage in a neighborhood’s mobility network could af-
fect its COVID-19 incidence through individual or institutional
pathways, although analysis of these is beyond the scope of this
study. At the individual level, mobility connections between neigh-
borhoods present the opportunity for pandemic transmission (6, 19).
COVID-19 is transmitted primarily by airborne pathways, and
lockdowns or requests to stay at home are a recognition that by lim-
iting exposure to human contacts induced by travel across geo-
graphic space, the risk of transmission is reduced (20). Mobility
travel declined markedly in 2020 after the pandemic escalated (21).
Given the greater incidence of COVID-19 and reduced capacity for
distancing in economically disadvantaged communities (I, 22),
high rates of mobility between disadvantaged neighborhoods po-
tentially increase transmission risk.

At the institutional level, durable neighborhood ties can influ-
ence public or private investment and the allocation of scarce re-
sources (23-25). For example, early in the pandemic, access to
COVID-19 testing evinced disparities by a zip code’s race and class
(26). Similar disparities exist in zip code vaccination rate (27). So-
cial resources like collective efficacy, which facilitates behavior reg-
ulation and capacity to act toward a shared goal (28), also promote
individual and neighborhood well-being during crisis (29, 30). In
the context of COVID-19, we expect that collective efficacy would
increase enforcement of norms around social distancing, masking,
and virus testing. Residential poverty and instability are negatively
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correlated with collective efficacy (23, 28), and recent analysis
finds that disadvantage in a neighborhood’s mobility network in-
creases interpersonal friction, potentially further reducing collective
efficacy (18).

Here, we take a “triple disadvantage” perspective and hypothe-
size that socioeconomic disadvantage among a neighborhood’s res-
idents, as well as the neighborhoods they visit and are visited by, will
affect COVID-19 infection levels (18). The first of these, RND, is the
domain of traditional neighborhood effects research. The latter two,
which we combine as mobility-based neighborhood disadvantage
(MND), are the subject of nascent scholarship. Because there can be
threshold effects in both neighborhood effects (31, 32) and in dis-
ease spread (33), we expect associations between neighborhood dis-
advantage (ND) and COVID-19 infections to be nonlinear. High
levels of residential or mobility-based advantage may be especially
protective, whereas high disadvantage in one or both contexts may
be especially detrimental.

Data

To analyze neighborhood-level inequality in COVID-19 infection,
we integrate data from three source types: SafeGraph’s “Social Dis-
tance Metrics” Dataset, the 2015-2019 American Community Sur-
vey (ACS), and administrative data on COVID-19 test results for
1977 census tracts in three locations (the state of Wisconsin, Seattle/
King County, and San Francisco). These three jurisdictions are
the only major U.S. geographic locations for which we found well-
documented COVID-19 case data at the neighborhood level. They also
represent qualitatively different contexts in several ways. Wisconsin
displays sizable variation in urban or rural land use and is polit-
ically moderate, although it has relatively low levels of racial and
ethnic diversity compared to other U.S. geographies. San Francisco
and King County have greater levels of racial and ethnic diversity,
and San Francisco is entirely urban, whereas King County is a mix
of urban and suburban. Both are also politically more progressive.
Our analytic sample reflects all tracts with complete data for all vari-
ables. This includes 1390 of 1409 tracts in Wisconsin, all 397 tracts
in King County, and 190 of 197 tracts in San Francisco. Of the ex-
cluded tracts, 20 of 26 have zero or minimal resident population
and cover water or parks. The remaining six excluded tracts lack
sufficient data to calculate all measures of residential neighborhood
conditions, primarily due to low or unique populations.

Our dependent variable is the count of residents in a neighbor-
hood that tested positive for COVID-19 by the end of February 2021.
We focus on cumulative cases through February because this
window of observation captures essentially all of the winter surge in
cases across the United States, while avoiding the period from
March 2021 onward when vaccine access was becoming widely
available, which could fundamentally alter the relationships of in-
terest. Across all tracts in our sample, we observe 661,612 residents
testing positive. Counts and incidence are much higher in Wisconsin.
Mean COVID-19-positive cases per 1000 resident population is
94.5 across all Wisconsin tracts, whereas it is 38.6 and 36.7 across
the San Francisco and King County tracts, respectively. The varia-
tion in COVID-19 incidence is another benefit to studying three
locations, as it allows us to test the significance of ND in contexts of
relatively high and low infection.

Our primary independent variables are measures of RND and
MND. Consistent with past research, RND is the principal factor from
a factor analysis of seven measures of residents’ socioeconomic
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status using nationwide tract-level ACS data. Following Levy et al.
(18), we calculate two measures of MND using a valued digraph of
interneighborhood mobility patterns measured with 2019 SafeGraph
data. Outdegree neighborhood disadvantage (OND) is the weighted
average RND level of the other neighborhoods visited, often many
times, by a neighborhood’s residents. Indegree neighborhood dis-
advantage (IND) is the weighted average RND level of neighbor-
hoods from which a neighborhood receives visits. OND and IND
are very highly correlated, with R ranging from 0.87 to 0.97 over our
three locations. Extending the approach of Levy et al. (18), we thus
average OND and IND for our measure of MND. We measure MND
using 2019 mobility data to avoid endogeneity to the pandemic and
identify more permanent structural connections. Still, MND values
are nearly perfectly correlated between 2019 and 2020—despite siz-
able declines in mobility—further reinforcing the structural nature
of interneighborhood mobility networks (see fig. S1). Measuring
MND before the pandemic allows us to test its predictive capacity as
an “ecometric” (34).

Mean RND in Wisconsin is nearly equivalent to the nationwide
average, whereas mean RND levels are relatively low in San Francisco
and King County. Mean MND in Wisconsin is also similar to the
nation, whereas mean levels are lower in the two western counties.
The absence of disadvantage is a form of privilege, and we look at
both ends of the distribution to detect independent associations of
mobility-based advantage and disadvantage. Table S1 presents sum-
mary statistics for all variables. Materials and Methods provides fur-
ther information about our analytic approach.

To illustrate the nature of spatial inequality in our measures,
Fig. 1 presents maps of the levels of RND and MND along with a
scaled indicator of the incidence of COVID-19 cases per 1000 resi-
dent population in San Francisco. The top quartiles of both RND
and MND are concentrated in the southeastern corner of the city,
which is also where the highest rates of COVID-19 infection are
seen. The lowest rates of COVID-19 infection generally appear in
central San Francisco where the lowest levels of RND and MND
cluster, although low MND is notably more tightly clustered. There
is a general overlap between quartiles for RND and MND—roughly
three-fifths match—but there is variation. For example, the Central
Waterfront/Dogpatch neighborhood in eastern San Francisco is in
the lowest quartile of RND but the second highest quartile of
MND. Consistent with the latter, its COVID-19 infection rate is in
the city’s 60th percentile.

Analysis

We address two research questions in our analysis. First, what is the
relationship between ND and COVID-19 incidence? We estimate a
series of Poisson models with robust errors and controls for rele-
vant observed characteristics (see Materials and Methods). Given
the variation in land use and population characteristics of our three
locations, we conduct separate analyses for each location. To allow
for potential nonlinearity in focal relationships, we operational-
ize both RND and MND using location-specific indicator variables
that identify observations in the lowest and highest quartiles of each
ND measure, with the middle two quartiles serving as the refer-
ence group.

A primary aim of this first analysis is to assess whether RND and
MND add predictive power beyond other theoretically relevant co-
variates. Here, we draw on the methodological concept of “ecometrics,”
which aims to provide reliable, valid, and systematic metrics of a
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Fig. 1. Map of San Francisco neighborhood proportions COVID-19 positive by RND and MND quartiles. Note that COVID-19 cases per 1000 resident population

range from 4.4 to 182.5. Dots are scaled proportionally to a tract’s incidence.

neighborhood’s context that can be regularly updated and used to
monitor the neighborhood’s well-being (34, 35). Accurate monitor-
ing and prediction is especially important in response to a pandemic
or other crisis. Although observational research like ours generally pre-
cludes estimation of a precisely identified causal effect, we do consider
the extent to which estimated associations are robust to unobserved
confounding using the E value sensitivity analysis (36, 37). The myr-
iad macro-level social structures and micro-level interactional pro-
cesses that mediate and are mediated by neighborhood inequalities
can be difficult to capture through an experiment—and experiments
at the neighborhood level are relatively rare. To complement experi-
ments, this paper presents the sort of careful observational research
that is necessary to identify plausible ways in which neighborhoods af-
fect well-being, in this case COVID-19 incidence (23, 38).

Our second research question investigates the extent to which ND
can explain neighborhood-level racial disparities in COVID-19 case
counts. Black and Hispanic Americans are enduring outsized impacts
from COVID-19, and both groups, though especially Black Americans,
have experienced persistent inequity in neighborhoods, housing, and
activity spaces due to racial segregation. We use the approach de-
scribed by Valeri and VanderWeele (39) to investigate whether RND
or MND mediates the relationships between a neighborhood’s per-
centages of Black and Hispanic residents and its COVID-19 cases. We
estimate the total “effect” of neighborhood racial composition as
the difference in adjusted predicted COVID-19 incidence between
neighborhoods with low (5th percentile) and high (95th percentile)
shares of a racial/ethnic group. This estimated total effect is not, of
course, a race effect; rather, it is an estimated impact of the many
long-standing aspects of racism in the U.S. net of other covariates.
Given the lack of overlap in racial demographics between Milwaukee
and the rest of Wisconsin (see Materials and Methods), we estimate
separate models for Milwaukee County and all other Wisconsin
tracts. We consider these models exploratory “mechanism sketch[es]”
(40) of the potential role of ND in racial inequality.

Limitations
We acknowledge two limitations to this study. First, given testing
challenges and asymptomatic cases, observed COVID-19 case counts
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will be undercounts. We expect this to conservatively bias our esti-
mates of hypothesized associations because undercounts are likely
higher among traditionally disadvantaged groups (see also Materials
and Methods). Second, our models control for many important co-
variates, but unobserved confounding remains a potential source of
bias. We use the E value to calculate how robust our estimated rela-
tionships between ND and COVID-19 incidence are to potential
confounders. More generally, observational research is an impor-
tant tool for identifying, analyzing, and intervening to address
neighborhood-based inequalities (23).

RESULTS

ND and COVID-19 incidence

Our baseline model of tract COVID-19 counts in Wisconsin (Table 1,
model 0) adjusts only for residential population and provides a
benchmark against which we can judge the added value of the ND
measures and controls. Our four indicators for RND or MND
(model 1) have explanatory power that is 35 to 45% the size of
all controls combined (model 2), based on all three measures of
fit and predictive power—Bayesian information criterion (BIC),
pseudo-R%, and root mean square error (RMSE). Once we adjust for
controls, the added explanatory value of MND (model 4) is roughly
four to five times that of RND (model 3). The reduction in RMSE
from adding MND to the controls-only model is more than one-
fifth of the reduction in RMSE achieved by adding all controls to the
baseline model. This indicates the substantive importance of MND
in explaining Wisconsin COVID-19 cases. In Wisconsin, the bene-
fits associated with low RND or MND are greater than the potential
harm of high ND. Including both RND and MND (model 5), MND
remains salient. The concentration of mobility-based advantage,
and likely a wealth of correlated resources, is an independent pro-
tective factor against COVID-19 infection.

Unobserved confounding is a concern with these models, partic-
ularly in a geographically diverse location like Wisconsin. To ac-
count for time-invariant county-level characteristics, we add county
fixed effects in model 6. Our main model includes indicator vari-
ables for each of the nine counties with 30 or more tracts in an
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Table 1. Poisson models of cumulative tract COVID-19-positive cases through February 2021 (Wisconsin). Note that controls include tract-level log
population density, age composition (shares 0 to 4, 5 to 17, 18 to 24, and 65+), share living in a household with four or more members, mean household size,
share living in group quarters, shares of workers in four sectors (health services, food preparation/service, personal care, and production), share of workers that
carpool, share of workers that take public transit, share Black, and share Hispanic. County fixed effects (F.E.) are dummy variables separately identifying each
county with at least 30 tracts. Robust SEs are in brackets. N = 1390 for all models. ***P <0.001, **P<0.01, *P<0.05, 'P<0.1.

Model 0 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
RND low —-0.030 —0.074%** -0.024 —0.051* —0.053*
[0.019] [0.022] [0.021] [0.021]
RND high 0.110%** 0.043 0.041 0.047" J
[0.025] [0.028] [0.027] [0.026] [0.026]
MND low —0.143%** —0.144%** —0.136%** —0.136%** —0.1471%**
[0.019] [0.018] [0.019] [0.027] [0.025]
MND high —0.059* —0.040" —0.047* -0.029 —0.002
[0.023] [0.022] [0.021] [0.022] [0.024]
Constant —2.355%%* —2.320%** —2.444%** —2.393*** —2.361%** —2.3471%** —2.186%** —2.194%**
[0.008] [0.012] [0.139] [0.136] [0.136] [0.135] [0.131] [0.131]
Offset: In(pop.) X X X X X X X
Main controls X X X X X
Co X X
Spatial lag RND X
BIC 51,580 47,384 39,668 39,284 38,150 38,063 35,292 35,174
Pseudo-R? 0 0.0819 0.2332 0.2410 0.2629 0.2649 0.3199 0.3225
RMSE 124.1 116.5 106.5 105.8 102.7 102.6 97.9 97.7

attempt to balance concerns with statistical power with those of
county-level confounding; more than half of the 72 counties have
10 or fewer tracts. Results are substantively quite similar using alter-
native strategies—fixed effects for the largest three counties, coun-
ties with 50 or more tracts, or all counties (fig. S2). The significance
and magnitude of the association between low MND and COVID-19
cases are unchanged. In addition, coefficients on low and high RND
emerge as marginally significant, though still smaller in magnitude
than low MND. We also explore whether spatial clustering of simi-
lar neighborhoods and propinquity effects explain the significance
of MND by adding a spatial lag of RND as the average RND of all
adjacent neighborhoods using a queen contiguity matrix (model 7).
Again, the association between MND and COVID-19 is unchanged.

Figure 2 graphs the coefficients on the ND variables and their
95% confidence intervals from our main model for Wisconsin, as
well as the analogous models for San Francisco and King County.
Across all three locations, disparities in COVID-19 cases by MND
are larger than those by RND. In King County, all four indicators
for low and high levels of RND and MND are significant in the ex-
pected direction. Three of the four indicators are significant in
San Francisco. Magnitudes of the associations for each ND indicator
are broadly similar across the jurisdictions with one clear exception.
High MND is strongly associated with increased COVID-19 cases
in San Francisco and King County, whereas it is not significantly
associated with cases in Wisconsin. The cutoffs for classification in
the top quartile of MND in San Francisco and King County (-0.72
and —0.29, respectively) are not far removed from the cutoff for the
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bottom quartile of MND in Wisconsin (—0.33). Thus, the observed
pattern of MND associations across the three locations could reflect
a particular benefit of overall affluence in the neighborhood net-
work regardless of location-specific rank.

Measures of ND also yield appreciable improvement in explanato-
ry power in San Francisco and King County (see the Supplementary
Materials). In San Francisco, improvement in explanatory power
associated with the ND measures alone is roughly 40 to 60% of the
size of improvement with all controls combined. In King County,
the explanatory power gains based on ND measures over baseline
are essentially equivalent to those based on adding all controls. In
both counties, we also find that MND provides greater explanatory
power over a controls-only model than does RND.

Figure 3 plots tract average adjusted predicted COVID-19 case
counts based on values of the ND variables and estimates from our
main models. For each location, the left cluster of plots is based only
on RND values, the middle cluster is based only on MND values,
and the right cluster is based on illustrative combinations of RND
and MND. All covariates not used in a cluster are held at their ob-
served values for predictions. In Wisconsin, looking at variation only
in MND, middle and high MND tracts have predicted COVID-19
case counts that are 11 to 15% larger than low MND tracts, adjust-
ing for all other covariates. Considering the joint impact of RND
and MND, tracts with middle and high levels of ND on both mea-
sures have predicted counts that are 21 and 23% larger, respectively,
than tracts with low ND values. As in Wisconsin, disparities in pre-
dicted counts based on MND in the two western counties are larger
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Fig. 2. Parameter estimates for the adjusted association between ND indicators and COVID-19 case count by location. Note that coefficients are estimated in the
main model for each location: Table 1, model 6 for Wisconsin; table S4, model 5 for San Francisco; and table S5, model 5 for King County. Error bars represent 95% confi-

dence intervals.

than those based on RND. When considering the joint impact of
RND and MND, tracts with high levels on both metrics have predicted
COVID-19 counts that are 99 and 112% larger than the counts of
tracts with low levels of both ND types in San Francisco and King
County, respectively. Whereas low levels of ND were especially pro-
tective in Wisconsin, high levels of ND are particularly detrimental in
San Francisco. Low and high levels of both ND measures are of
roughly similar importance for COVID-19 cases in King County.

We now calculate the E value to consider the extent to which
these rate ratios of adjusted disparities in COVID-19 caseloads be-
tween neighborhoods with high levels of both RND and MND
(“high ND”) versus those with low levels of both RND and MND
(“low ND”) are robust to potential unobserved confounding. The
E-value quantifies, on the risk ratio scale, the strength of association
between unobserved confounder(s) and both COVID-19 incidence
and the set of ND indicators that would be required to move the rate
ratio to null (36, 37). We consider both ND measures jointly because
they often co-occur at the same level, and each is independently
predictive of COVID-19 incidence.

In Wisconsin, the 23% increase in COVID-19 caseloads associated
with high ND versus low ND could be explained entirely by an unob-
served confounder(s) associated with COVID-19 incidence and the set
of ND measures at a risk ratio of 1.76 each (Table 2). Weaker con-
founding would not yield a null rate ratio. Given the wide range of con-
trols included in our model, an unobserved confounder with a risk
ratio of 1.76 might be unlikely, but it is certainly plausible that an un-
known factor could explain the complete disparity associated with high
versus low ND. The 95% confidence interval of the rate ratio could be
moved to include the null with an unobserved confounder associated
with both dependent and set of ND variables at a risk ratio of 1.45.

Much stronger omitted confounding is needed to explain the
COVID-19 disparities by ND in the western counties. In San Francisco,
an unobserved confounder would need to be associated with both
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COVID-19 incidence and the set of ND variables at a risk ratio of
3.4 each to completely explain the doubling in COVID-19 incidence
associated with high versus low ND. The lower tail of the rate ratio’s
95% confidence interval could be moved to include the null by a
confounder associated with both dependent variable and ND at a
risk ratio of 2.4 each. In King County, the risk ratio for the association
between confounder and both COVID-19 incidence and ND required
to explain the complete disparity in COVID-19 by ND or move its
confidence interval to include the null is 3.65 and 2.93, respectively.
In both San Francisco and King County, these are sizable degrees of
omitted confounding, roughly double or more that of Wisconsin.
Overall, our results indicate that unobserved confounding would
have to be moderately strong (Wisconsin) to quite large (Seattle and
San Francisco) to explain away the associations.

Racial disparities in COVID-19 and ND
Complete results for all mediation models of COVID-19 disparities by
neighborhood racial/ethnic composition appear in the Supplementary
Materials. In Wisconsin (excluding Milwaukee), neighborhoods with
arelatively high share of Black residents were associated with a rough-
ly 18.5% increase in COVID-19-positive risk versus neighborhoods
with low share of Black residents (P < 0.05; Fig. 4). RND can mediate
approximately 15.2% of the estimated total effect associated with
neighborhood racial composition. Estimated total effects within a
location are generally quite consistent regardless of the mediator.
For Wisconsin, the second mediation model indicates that MND is
a somewhat weaker mediator, explaining only 7.8% of the estimated
total effect associated with share Black. In Milwaukee County, percent
Black has an estimated null total effect on COVID-19 risk, rendering
mediation estimates moot.

The two diverse western counties both demonstrate much stronger
COVID-19 disparities by neighborhood percent Black and greater
mediation by the ND variables. The estimated total effect associated
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Fig. 3. Average adjusted predicted COVID-19-positive cases by ND indicators
from the main model for each location. Note that error bars represent 90, 95, and
99% confidence intervals. Predictions are based on the main model for each loca-
tion and hold covariates at their observed values.

with high versus low percent Black in San Francisco and in King
County ranges from a 69 to 95% increase in neighborhood popula-
tion risk of contracting COVID-19. In San Francisco, almost three-
fifths of this risk increase can be explained by variation in MND
levels. RND is still a fairly strong potential mediator, though sub-
stantively much weaker than MND. In King County, RND and MND
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Table 2. E-value sensitivity analysis for the main model in each
jurisdiction. Note that adjusted predicted COVID-19 caseloads in

Wisconsin, San Francisco, and King County are based on estimates from
Table 1 (model 6), table S4 (model 5), and table S5 (model 5), respectively.

Adj. Rate ratio
predicted
COVID-19
caseload
with 95% Estimate 95% confidence interval
confidence
interval
Wisconsin
Low RND, L
low MND i)
359.8]
High RND, 4213
high MND [395.4,
9 447.2]
High-low
ND rate 1.228 1.108 1.348
ratio
E value 1.76 1.45
San Francisco
Low RND, 12
low MND LG,
143.0]
High RND, 2o
high MND [218.3,
9 279.2]
High-low
ND rate 1.993 1.516 2470
ratio
E value 3.40 2.40
King County
Low RND, U7/
low MND L1154,
139.5]
High RND, 2696
highMnD 12461
9 293.2]
High-low
ND rate 2.116 1.766 2465
ratio
E value 3.65 293

have similar mediation potential for the risk increase associated
with high share Black, explaining nearly two-fifths of the estimated

total effect.

The estimated total effect of high versus low percent Hispanic in
Wisconsin (excluding Milwaukee) is a nearly 10% increase in
COVID-19-positive risk (P < 0.05; Fig. 5). RND can mediate a small
portion of this modest increase. Estimated total effects of share
Hispanic are substantially larger in Milwaukee County, San Francisco,
and King County—somewhere between a doubling and tripling of
COVID-19 risk depending on the location. In Milwaukee, roughly
one-fifth to one-quarter of this increase can be mediated by one of
the ND measures. In San Francisco, over half of the tripling in
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Fig. 4. Mediation of the relationship between tract percent Black and COVID-19 caseload by RND and MND. Note that full results from mediation models appear in the
Supplementary Materials. Estimated total effects are on the risk ratio scale and based on location-specific 5th and 95th percentiles of tract proportion Black. For Wisconsin
(excluding Milwaukee), Milwaukee, San Francisco, and King County, those contrasts are 0 versus 0.122, 0.005 versus 0.915, 0 versus 0.179, and 0 versus 0.240, respectively.
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Fig. 5. Mediation of the relationship between tract percent Hispanic and COVID-19 caseload by RND and MND. Note that full results from mediation models appear
in the Supplementary Materials. Estimated total effects are on the risk ratio scale and based on location-specific 5th and 95th percentiles of tract proportion Hispanic. For
Wisconsin (excluding Milwaukee), Milwaukee, San Francisco, and King County, those contrasts are 0.004 versus 0.169, 0.007 versus 0.729, 0.042 versus 0.397, and 0.021
versus 0.268, respectively.

neighborhood COVID-19 risk associated with high percent His- DISCUSSION

panic can be explained by variation in MND levels. In King County, ~Our analysis documents sizable neighborhood disparities in
nearly three-fifths of the doubling in neighborhood COVID-19 risk ~ COVID-19 caseloads that are tied to residents’ mobility patterns by
related to high versus low share Hispanic can be explained by RND.  neighborhood socioeconomic status. As expected, RND is associated
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with significant increases in COVID-19 incidence in separate anal-
yses of three qualitatively different locations: the state of Wisconsin;
San Francisco, CA; and King County, WA. In line with recently de-
veloped theory about the importance of structural connections be-
tween neighborhoods based on residents’ mobility patterns (18, 23),
however, we find that ND in a neighborhood’s network of neigh-
borhoods its residents visit and receive visits from is more predictive
for COVID-19 incidence than its own level of RND. We also note
evidence that overall affluence in the neighborhood network is es-
pecially protective. Considering both RND and MND, neighborhoods
that are high on both have appreciably higher levels of COVID-19
than those that are low on both—sometimes twice as high. We further
show the ability for ND to mediate sizable disparities in COVID-19
risk associated with neighborhood racial and ethnic composition.
We are limited in our ability to draw conclusions about the causal
pathways between ND and COVID-19 incidence given the observa-
tional nature of our research. We nonetheless addressed potential
confounding by including a broad range of controls as well as coun-
ty fixed effects in Wisconsin. Especially in San Francisco and King
County, the results indicate that unobserved confounding would have
to be quite large to explain away the associations.

Our results have public health and policy implications. Adjust-
ing for many relevant characteristics, we document sizable varia-
tion in COVID-19 risk at the fine-grained neighborhood level for
three distinct geographic locations. Moreover, RND and MND
evince strong added value in explaining variation in COVID-19 in-
cidence. Thus, triple ND could serve as a useful ecometric tool
(34, 35) that can be regularly updated and used to identify neighbor-
hoods at risk of particularly adverse impacts during future pandemics
or other crises. This previously unidentified form of mobility-based
neighborhood inequity aligns with a longer history of health dispar-
ities and access to health care resources at the neighborhood level
(7, 13). Our findings indicate the importance of continued invest-
ment in and partnership with socioeconomically disadvantaged
communities to facilitate care, as well as provide evidence for plan-
ning efforts to address ongoing inequality during the COVID-19
pandemic and responses to future pandemics or health events.

We also provide fresh evidence on how neighborhood-based
disparities in an airborne pandemic arise. In line with recent models
demonstrating the salience of everyday individual mobility patterns
for pandemic spread (6), we find that ND in mobility-based con-
nections between neighborhoods is more predictive of a neighbor-
hood’s COVID-19 caseload than its own level of ND. Recent work
demonstrates a similar pattern for a categorically different public
health outcome: homicide (18). With growing attention to social
determinants of health and associated spatial health disparities,
connections between neighborhoods forged by residents” mobility
patterns represent a unique source of inequality.

MATERIALS AND METHODS

We conduct parallel analyses of census tracts, a commonly used defi-
nition of neighborhoods, for Wisconsin, King County in Washington,
and San Francisco County by merging data from three source types.
Our dependent variable is the total count of each tract’s residents
that have tested positive for COVID-19 through 28 February 2021.
In Wisconsin and King County, all positive diagnostic test results
confirming the presence of the virus causing COVID-19 are reported
to the state’s Department of Health (41, 42). Using home address
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data for individuals testing positive, Wisconsin and King County
then aggregate and report counts of residents testing positive for the
first time in each census tract. Duplicate positive tests or second
infections are purged from the total counts in both locations. In
October 2021, Wisconsin released an updated version of their COVID-19
database. Unlike the original data that we used in our analysis,
the updated data count multiple positive tests for the same individual
as unique positive cases. Despite this fact, our dependent variable from
the original database is nearly perfectly correlated with the cumulative
count on 28 February 2021 in the updated database. In San Francisco,
total tract case counts are based on positive laboratory tests of resi-
dents reported to the county’s Department of Public Health (43).
The Department conducts additional data verification or interview
procedures to determine residence of individuals. Case totals represent
new cases rather than a simple accounting of tests, but it is possible
that an individual could be infected, recover, and later be reinfected,
thus appearing twice in the data. This would be quite rare through
February 2021. In all three jurisdictions, cumulative total cases will
be undercounts given scarcity of confirmatory tests early in the
pandemic, reluctance to be tested among some individuals, and the
presence of asymptomatic cases for which individuals may not get
tested (44). We do not expect the last of these to cause substantial
bias in our estimates of relative risk between neighborhoods. To the
extent that the first two yield bias, we expect that socioeconomically
disadvantaged neighborhoods would have greater levels of under-
count (45), which could make our estimates of the magnitude of
hypothesized associations conservative.

Our primary independent variables are RND and MND. We
measure RND using nationwide data from the 2015-2019 ACS to
conduct a principal factor analysis of seven neighborhood charac-
teristics: percentages of poverty, unemployment, single-headed
households, public assistance receipt, adults without a high school
diploma, adults with a bachelor’s degree or higher, and workers
who are managers or professionals. The variables load strongly onto
one factor with high reliability, and nationwide, RND is a continu-
ous variable with a mean of zero and SD of roughly one.

Calculating measures of MND requires not only RND scores of
visited or visiting neighborhoods but also data on the strength of a
mobility tie between neighborhoods. We draw our U.S. mobility
patterns from SafeGraph, a company that aggregates anonymized,
repeatedly measured location data from a nationally representative
group of 45 million smartphone devices that is provided by Veraset.
Researchers have recently used SafeGraph mobility data to study
segregation in Milwaukee and mobility changes during COVID-19
(6, 46). For this study, we rely on SafeGraph’s Social Distance Met-
rics Dataset, which provides daily data on how many residents (de-
vices) of each census block group visit every other block group at
least once in that day. Home location for a device is determined
by SafeGraph using machine learning as the common nighttime
(6 p.m. to 7 a.m.) location of the device. A visit is defined as a cluster
of proximal location pings with duration longer than 1 min. Devices
can count for up to one visit in each block group in a single day.
We aggregate visit counts from the block group level to the census
tract level (block groups nest perfectly). This allows the maximum
number of daily visits to a tract for any device to be the total number
of block groups in the tract. We expect any bias introduced by this
aggregation to be minimal.

We begin by constructing a nationwide mobility network as a
valued digraph comprising a set of nodes (census tracts), N = {nl,
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n2, ..., nN}; a set of edges, E = {el, €2, ..., eE}; and a set of values,
V={v1,v2,...,vV} (47). Values V(n;) represent the extent of mobility
of residents of tract i to tract j over all days (a) in the sample. We
approximate V(n;;) as the total number of day-visitors to tract j who
reside in tract i for the time period analyzed. In mathematical terms

D
V(”ij): Z taij (1)
a=1

where #,;; is the number of visitors to j that reside in i on day a, and
D is the number of days of data in the analysis. To remove cross-
country tourist visits, which likely have much less, if any, effect on a
neighborhood’s capacity to achieve its sociopolitical goals, we re-
strict all n;; edges to occur between tracts within the same commut-
ing zone (CZ) or, for counties on the border between CZs, between
tracts in its CZ or contiguous counties. We use all 365 days in 2019
for our mobility data to develop measures of MND that are proxi-
mal to the pandemic but not affected by the marked shifts in mobility
patterns during 2020. In other words, this network reflects the more
stable, structural ties between neighborhoods that can prove crucial
for their vitality.

We use the valued adjacency matrix in Eq. 1 to calculate the
weighted average disadvantage level of extra-local neighborhoods
to which any neighborhood #; is structurally connected through its
residents’ intra-CZ mobility patterns, or OND

X Ving) A
OND = J;<7V(”i)_v(”ii) RNDJ>,1 #j

2)

Here, V(n;) represents total number of visits from tract i, V(n;;) rep-
resents visits within tract i (loops), and RND; represents the resi-
dential disadvantage score of the visited neighborhood.

Next, we calculate the weighted average disadvantage level of
extra-local neighborhoods to which any neighborhood #; is structur-
ally connected through the intra-CZ visits it receives from residents
of other neighborhoods, or IND. Neighborhoods vary in popula-
tion size and visit rates; we adjust for these aspects in our calcula-
tions, as shown in Eq. 3, where P; is the population of sending
neighborhood #;

2}11 RND;* V(n;;) *P;

IND = S
ijl V(nji) *P;

i Fj 3)

As our overall measure of MND, we then average OND and IND.

As a check on potential bias introduced by aggregation from
block groups to tracts, we also calculate block group IND, OND,
and MND scores using nonaggregated SafeGraph data (i.e., at the
block group level), coupled with RND scores at the census block
group level. We then calculate alternative specifications of tract-level
MND as the population-weighted average MND scores of all block
groups in a tract. The correlation of MND calculated in this alterna-
tive manner with MND calculated as we specify above is 0.988. This
very strong correlation indicates that any bias from aggregation would
be negligible.

Our control variables for this study use the 2015-2019 ACS and
are informed by both theoretical expectations and recent research.
We use an offset of log total neighborhood residential population,
and we include controls for neighborhood log population density,
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age composition (shares of residents that are ages 0 to 4, 5 to 17, 18
to 24, and 65+), share living in a household with four or more mem-
bers, mean household size, share living in group quarters, shares of
workers in each of four sectors (health services, food preparation or
service, personal care, and production), share of workers that car-
pool, share of workers that take public transit, share Black, and
share Hispanic. We access all ACS data from Social Explorer.

Statistical analysis

Separately for Wisconsin, San Francisco, and King County, we ana-
lyze the relationships of RND and MND with neighborhood total
COVID-19 case counts using a series of Poisson models with robust
errors. Our main model is

In(u;)= Bo + B1 RNDioy + B2 RNDpigh + B3 MNDoy +
B4 MNDygh + By X; + In(pop) (4)

We predict COVID-19 case counts (i) in neighborhood i using
indicator variables for location-specific low and high quartiles of
tract RND as well as low and high quartiles of tract MND. We also
include our vector of control variables (x;) as well as an offset for log
residential population. In Wisconsin, our main model also includes
parameters for indicator variables identifying each county with 30
or more tracts (B;5;). Before our main model, we also estimate a se-
quence of nested models to assess the relative predictive power of
our measures of ND as well as compare the predictive power of our
ND measures with our controls.

We use the E value sensitivity analysis (36, 37) for our main
model in each jurisdiction to gauge how robust our estimated rela-
tionships between ND and COVID-19 incidence are to potential
unobserved confounding. The E value identifies the strength of as-
sociation between an unobserved confounder, or set of confound-
ers, and both treatment and outcome that would be required to
completely explain the estimated treatment-outcome relationship.
E values are directly calculable for rate ratios. We use the rate ratio
for average adjusted predicted COVID-19 caseloads in high ND
(both RND and MND) versus low ND (both RND and MND)
neighborhoods, which is taken directly from estimates in the right
cluster for each jurisdiction in Fig. 3.

Our mediation analyses use the approach described in depth by
Valeri and VanderWeele (39). This method extends the Baron and
Kenny (48) framework to Poisson regression and allows for treatment-
mediator interaction effects on outcome. Despite using language
like treatment, outcome, and direct or indirect effect for conve-
nience, we consider these mediation models mechanism sketches.
The approach can incorporate, at most, one treatment variable and
one mediator variable per model. Thus, for each location, we esti-
mate four models representing all combinations of the neighbor-
hood race (share Black and share Hispanic) and disadvantage (RND
and MND) variables. Our mediation models make two important
departures from the main models. First, given the low level of over-
lap in racial demographics between Milwaukee County and the
rest of Wisconsin, we separately analyze mediation for Milwaukee.
Mean tract proportion Black is over 12 times as high in Milwaukee
County, and more than two-thirds of all Black Wisconsin residents
live in the county. Hispanic residents are somewhat more evenly
distributed, but mean tract proportion Hispanic is still nearly three
times as high in Milwaukee County. Second, race and ND have fair-
ly strong correlations across the jurisdictions, and our indicator
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variables for ND quartiles suppress a nontrivial portion of the vari-
ables” variations. To better assess the full mediation potential of
RND and MND, we use their continuous specifications in these
analyses. Our general mediation models take the following form

In{E(Y|A = a,M = m,C = ¢)} =09+ 0,a+0,m+
O3am + 0.¢ (5)
Equation 5 is our outcome model where Y is COVID-19 case
count, A is the neighborhood share Black (Hispanic) “treatment”
variable, M is potential ND mediator, and C is a vector of controls,
which includes log residential population and the neighborhood ra-
cial composition variable not being used as treatment. We then fit
the linear model below for the mediator
EMI|A = a,C = ¢)=Bo+PBra+Bcc (6)
Analyzing mediation in this framework with Poisson models
requires specifying two values (a, a*) for treatment to generate a pre-
dicted difference in COVID-19 counts. We use the location-specific
5th and 95th percentiles of neighborhood racial composition for this
contrast. The natural direct effect (NDE) is on the risk ratio scale and
calculated as

[ E( YaM,l“ | C)

o{ Freeta | ?

The natural indirect effect (NIE) is also on the risk ratio scale
and calculated as

NDE = exp

| a9
| E( YuM,l' | C)

The total effect of the treatment is then the product of NDE and NIE. We
bootstrap 95% confidence intervals using 1000 replications for NDE,
NIE, and total effect (TE) as recommended by Valeri and VanderWeele
(39). The estimated proportion of the total effect mediated is

NIE = exp (8)

NDE*(NIE - 1)
PM = NDE*NIE -1 ©)

The key assumption for valid estimates in both our main and
mediation models is no unobserved confounding. In the mediation
models, this implies no unobserved confounding in three relation-
ships: treatment to outcome, treatment to mediator, and mediator
to outcome. We attempt to address this by including a range of the-
oretically relevant controls, as well as various county fixed effects
strategies in Wisconsin. Although it is not possible to fully discount
unobserved confounding, observational analyses are important in
this context for several reasons. Among the most important is that
governmental resources to combat the pandemic and its effects are
often allocated spatially. Documenting low-level spatial inequalities
can aid in targeting these efforts. Moreover, to the extent that mea-
sures of ND add value in explaining place-based disparities in
COVID-19 caseloads, accounting for them will prove a useful addi-
tion for predictive models of pandemic spread that assist in combat-
ing the pandemic—even if ND is not the direct or distal cause of
variation in COVID-19 caseloads. The results from our models of
two large counties and one medium-sized state suggest that ND
does add predictive value.
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Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abl3825

REFERENCES AND NOTES
1. S.Anand, M. Montez-Rath, J. Han, J. Bozeman, R. Kerschmann, P. Beyer, J. Parsonnet,
G. M. Chertow, Prevalence of SARS-CoV-2 antibodies in a large nationwide sample
of patients on dialysis in the USA: A cross-sectional study. Lancet 396, 1335-1344 (2020).

2. D.B.G.Tai, A. Shah, C. A. Doubeni, I. G. Sia, M. L. Wieland, The disproportionate impact
of COVID-19 on racial and ethnic minorities in the United States. Clin. Infect. Dis. 72,
703-706 (2021).

3. B.G.Link, J. Phelan, Social conditions as fundamental causes of disease. J. Health Soc.
Behav. 35,80 (1995).

4. |.Kawachi, L. F. Berkman, Neighborhoods and Health (Oxford Univ. Press, 2003).

5. D.Carrién, E. Colicino, N. F. Pedretti, K. B. Arfer, J. Rush, N. Defelice, A. C. Just,
Neighborhood-level disparities and subway utilization during the COVID-19 pandemic
in New York City. Nat. Commun. 12,3692 (2021).

6. S.Chang, E. Pierson, P. W. Koh, J. Gerardin, B. Redbird, D. Grusky, J. Leskovec, Mobility
network models of COVID-19 explain inequities and inform reopening. Nature 589,
82-87 (2021).

7. D.R. Williams, C. Collins, Racial residential segregation: A fundamental cause of racial
disparities in health. Public Health Rep. 116, 404-416 (2001).

8. D.S.Massey, N. A. Denton, American Apartheid: Segregation and the Making of the
Underclass (Harvard Univ. Press, 1993).

9. P.A.Jargowsky, Take the money and run: Economic segregation in U.S. metropolitan
areas. Am. Sociol. Rev. 61, 984-998 (1996).

10. S.F.Reardon, K. Bischoff, A. Owens, J. B. Townsend, Has income segregation really
increased? Bias and bias correction in sample-based segregation estimates. Demography
55,2129-2160 (2018).

11. R.Manduca, R. J. Sampson, Punishing and toxic neighborhood environments
independently predict the intergenerational social mobility of black and white children.
Proc. Natl. Acad. Sci. U.S.A. 116, 7772-7777 (2019).

12. B.Woo, N. Kravitz-Wirtz, V. Sass, K. Crowder, S. Teixeira, D. T. Takeuchi, Residential
segregation and racial/ethnic disparities in ambient air pollution. Race Soc. Probl. 11,
60-67 (2019).

13. J.C.Phelan, B. G. Link, Is racism a fundamental cause of inequalities in health? Annu. Rev.
Sociol. 41,311-330 (2015).

14. R.Chetty, J. N. Friedman, N. Hendren, M. R. Jones, S. R. Porter, “The opportunity atlas:

Mapping the childhood roots of social mobility” (Working Paper 25147, 2018); www.nber.

org/papers/w25147.

15. C.R.Browning, B. Soller, Moving beyond neighborhood: Activity spaces and ecological
networks as contexts for youth development. Cityscape 16, 165-196 (2014).

16. L.J.Krivo, H. M. Washington, R. D. Peterson, C. R. Browning, C. A. Calder, M.-P. Kwan,
Social isolation of disadvantage and advantage: The reproduction of inequality in urban
space. Soc. Forces 92, 141-164 (2013).

17. Q.Wang, N. E. Phillips, M. L. Small, R. J. Sampson, Urban mobility and neighborhood
isolation in America's 50 largest cities. Proc. Natl. Acad. Sci. U.S.A. 115, 7735-7740 (2018).

18. B.L.Levy, N.E. Phillips, R.J. Sampson, Triple disadvantage: Neighborhood networks
of everyday urban mobility and violence in U.S. cities. Am. Soc. Rev. 85, 925-956 (2020).

19. B.Hong, B.J. Bonczak, A. Gupta, L. E. Thorpe, C. E. Kontokosta, Exposure density
and neighborhood disparities in COVID-19 infection risk. Proc. Natl. Acad. Sci. U.S.A. 118,
2021258118 (2021).

20. S.Pei, S. Kandula, J. Shaman, Differential effects of intervention timing on COVID-19
spread in the United States. Sci. Adv. 6, eabd6370 (2020).

21. F.Borgonovi, E. Andrieu, Bowling together by bowling alone: Social capital and
COVID-19. Soc. Sci. Med. 265, 113501 (2020).

22. J.Jay, J.Bor, E. O.Nsoesie, S. K. Lipson, D. K. Jones, S. Galea, J. Raifman, Neighbourhood
income and physical distancing during the COVID-19 pandemic in the United States. Nat.
Hum. Behav. 4, 1294-1302 (2020).

23. R.J.Sampson, Great American City: Chicago and the Enduring Neighborhood Effect
(The University of Chicago Press, 2012).

24. N.P.Marwell, E. A. Marantz, D. Baldassarri, The microrelations of urban governance:
Dynamics of patronage and partnership. Am. J. Sociol. 125, 1559-1601 (2020).

25. H. Molotch, The city as a growth machine: Toward a political economy of place. Am.

J. Sociol. 82, 309-332 (1976).

26. W.Lieberman-Cribbin, S. Tuminello, R. M. Flores, E. Taioli, Disparities in COVID-19 testing
and positivity in New York city. Am. J. Prev. Med. 59, 326-332 (2020).

27. A.Sacarny, J. R. Daw, Inequities in COVID-19 vaccination rates in the 9 largest US cities.
JAMA Health Forum 2, e212415 (2021).

28. R.J.Sampson, S. W. Raudenbush, F. Earls, Neighborhoods and violent crime: A multilevel
study of collective efficacy. Science 277, 918-924 (1997).

100f 11

20T ‘67 dunf uo S10°00ULI0S" MMM //:sd1IY WOy pApEO[uUMO(]


https://science.org/doi/10.1126/sciadv.abl3825
https://science.org/doi/10.1126/sciadv.abl3825
http://www.nber.org/papers/w25147
http://www.nber.org/papers/w25147

SCIENCE ADVANCES | RESEARCH ARTICLE

29. C.S.Fullerton, H. B. H. Mash, L. Wang, J. C. Morganstein, R. J. Ursano, Posttraumatic stress
disorder and mental distress following the 2004 and 2005 Florida Hurricanes. Disaster
Med. Public Health Prep. 13, 44-52 (2019).

30. K.A.Cagney, D. Sterrett, J. Benz, T. Tompson, Social resources and community resilience
in the wake of Superstorm Sandy. PLOS ONE 11, e0160824 (2016).

31. J.Crane, The epidemic theory of ghettos and neighborhood effects on dropping out
and teenage childbearing. Am. J. Sociol. 96, 1226-1259 (1991).

32. B.L.Levy, Heterogeneous impacts of concentrated poverty during adolescence
on college outcomes. Soc. Forces 98, 147-182 (2019).

33. M. Hartfield, S. Alizon, Introducing the outbreak threshold in epidemiology. PLOS Pathog.
9,e1003277 (2013).

34. S.W.Raudenbush, R.J. Sampson, 1. Ecometrics: Toward a science of assessing ecological
settings, with application to the systematic social observation of neighborhoods. Soc.
Methodol. 29, 1-41 (1999).

35. D.T.O'Brien, R.J. Sampson, C. Winship, Ecometrics in the age of big data. Soc. Methodol.
45,101-147 (2015).

36. M.B. Mathur, P. Ding, C. A. Riddell, T. J. VanderWeele, Web Site and R package for
computing e-values. Epidemiology 29, e45-e47 (2018).

37. T.J.VanderWeele, P. Ding, Sensitivity analysis in observational research: Introducing
the E-value. Ann. Intern. Med. 167, 268-274 (2017).

38. R.J.Sampson, Moving to inequality: Neighborhood effects and experiments meet social
structure. Am. J. Sociol. 114, 189-231 (2008).

39. L.Valeri, T.J. VanderWeele, Mediation analysis allowing for exposure-mediator
interactions and causal interpretation: Theoretical assumptions and implementation
with SAS and SPSS macros. Psychol. Methods 18, 137-150 (2013).

40. S.L.Morgan, C. Winship, Counterfactuals and Causal Inference: Methods and Principles for
Social Research (Cambridge Univ. Press, ed. 2, 2014).

41. Wisconsin Department of Health Services, “COVID-19 historical data by census tract”;
https://data.dhsgis.wi.gov/datasets/covid-19-historical-data-by-census-tract/explore)
[accessed 7 March 2021].

42. Public Health—Seattle & King County, “Daily COVID-19 outbreak summary”; https://
kingcounty.gov/depts/health/covid-19/data/daily-summary.aspx.

43. San Francisco Department of Public Health—Population Health Division, “COVID-19
cases and deaths summarized by geography”; https://data.sfgov.org/COVID-19/
COVID-19-Cases-and-Deaths-Summarized-by-Geography/tpyr-dvnc.

Levy et al., Sci. Adv. 8, eabl3825 (2022) 18 February 2022

44. F.P.Havers, C.Reed, T.Lim, J. M. Montgomery, J. D. Klena, A. J. Hall, A. M. Fry,

D. L. Cannon, C.-F. Chiang, A. Gibbons, |. Krapiunaya, M. Morales-Betoulle, K. Roguski,
M. A. U. Rasheed, B. Freeman, S. Lester, L. Mills, D. S. Carroll, S. M. Owen, J. A. Johnson,
V. Semenova, C. Blackmore, D. Blog, S. J. Chai, A. Dunn, J. Hand, S. Jain, S. Lindquist,
R. Lynfield, S. Pritchard, T. Sokol, L. Sosa, G. Turabelidze, S. M. Watkins, J. Wiesman,

R. W. Williams, S. Yendell, J. Schiffer, N. J. Thornburg, Seroprevalence of antibodies

to SARS-CoV-2 in 10 sites in the United States, March 23-May 12, 2020. JAMA Internal
Med. 180, 1576 (2020).

45. L.Rubin-Miller, C. Alban, S. Artiga, S. Sullivan, “COVID-19 racial disparities in testing,
infection, hospitalization, and death: Analysis of epic patient data” (Kaiser Family
Foundation, 2020); www.kff.org/report-section/covid-19-racial-disparities-in-testing-
infection-hospitalization-and-death-analysis-of-epic-patient-data-issue-brief/.

46. T.Prestby, J. App, Y.Kang, S. Gao, Understanding neighborhood isolation through spatial
interaction network analysis using location big data. Environ. Planning A Eco. Space 52,
1027-1031 (2020).

47. S.Wasserman, K. Faust, Social Network Analysis: Methods and Applications (Cambridge
Univ. Press, 1994), pp. xxxi, 825.

48. R.M.Baron, D. A. Kenny, The moderator-mediator variable distinction in social
psychological research: Conceptual, strategic, and statistical considerations. J. Pers. Soc.
Psychol. 51,1173-1182 (1986).

Acknowledgments: We thank two anonymous reviewers and the Associate Editor for their
helpful feedback on the earlier version of this manuscript. Funding: For financial support, we
thank National Science Foundation grant SES-1735505. Author contributions: Conceptualization:
B.LL,RJS., KV, and S.V.S. Methodology: B.LL., KV, SV.S, and R.J.S. Formal analysis: B.L.L. and

K.V. Data curation: K.V. and B.L.L. Visualization: B.L.L. and K.V. Supervision: B.L.L. and R.J.S. Writing—
original draft: B.LL, RJ.S., K., and S.V.S. Competing interests: The authors declare that they have
no competing interests. Data and materials availability: All data needed to evaluate the
conclusions in the paper are present in the paper and/or the Supplementary Materials. A
replication package is available on Dataverse at https://doi.org/10.13021/0rc2020/C9ECFO.

Submitted 9 July 2021
Accepted 23 December 2021
Published 18 February 2022
10.1126/sciadv.abl3825

110f 11

20T ‘67 dunf uo S10°00ULI0S" MMM //:sd1IY WOy pApEO[uUMO(]


https://data.dhsgis.wi.gov/datasets/covid-19-historical-data-by-census-tract/explore
https://kingcounty.gov/depts/health/covid-19/data/daily-summary.aspx
https://kingcounty.gov/depts/health/covid-19/data/daily-summary.aspx
https://data.sfgov.org/COVID-19/COVID-19-Cases-and-Deaths-Summarized-by-Geography/tpyr-dvnc
https://data.sfgov.org/COVID-19/COVID-19-Cases-and-Deaths-Summarized-by-Geography/tpyr-dvnc
http://www.kff.org/report-section/covid-19-racial-disparities-in-testing-infection-hospitalization-and-death-analysis-of-epic-patient-data-issue-brief/
http://www.kff.org/report-section/covid-19-racial-disparities-in-testing-infection-hospitalization-and-death-analysis-of-epic-patient-data-issue-brief/
https://doi.org/10.13021/orc2020/C9ECFO

Science Advances

Neighborhood socioeconomic inequality based on everyday mobility predicts
COVID-19 infection in San Francisco, Seattle, and Wisconsin
Brian L. LevyKarl VachuskaS. V. SubramanianRobert J. Sampson

Sci. Adv., 8 (7), eabl3825. « DOI: 10.1126/sciadv.abl3825

View the article online

https://www.science.org/doi/10.1126/sciadv.abl3825
Permissions

https://www.science.org/help/reprints-and-permissions

Use of this article is subject to the Terms of service

Science Advances (ISSN ) is published by the American Association for the Advancement of Science. 1200 New York Avenue NW,
Washington, DC 20005. The title Science Advances is a registered trademark of AAAS.

Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim
to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).

20T ‘67 dunf uo S10°00ULI0S" MMM //:sd1IY WOy pApEO[uUMO(]


https://www.science.org/about/terms-service

