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1. Introduction

In 1971, Hall and Ruzsa independently discovered an elegant characterization of poly-
nomial functions among congruence-preserving functions.

Theorem (Hall-Ruzsa). Let s: N — Q be a function. Suppose that'
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(i) s is integer-valued,
(it) s(n+k)=s(n) (mod k) for alln,k € N, and
(#) |s(n)| < 6™ for some positive number 0 satisfying 0 < e — 1.

Then s(n) is a polynomial in n.

In this article we generalize this theorem by using the integrality of higher divided dif-
ferences. The first two hypotheses of the Hall-Ruzsa theorem are equivalent to requiring
that dgs := s and 015 are integer-valued, where

515(n,m) = s(n) — s(m) (n #m)

n—m

is the first divided difference of s.
Our main result is the following theorem.

Theorem 1. Let s: N — Q be a function. Suppose that

(i) the mth divided difference d,,s of s is integer-valued, and
(@) |s(n)] < 0™ for some positive number 0 satisfying

1 1
g <etaet tm 1,
Then s(n) is a polynomial in n.

Recall the mth divided difference of s is the function J,,s defined by

O0m8(Ng, ..y Ny ) := Z { I_I(nz — nj)fl}s(ni) (n; distinct).

i=0  j#i

Divided differences are a classical construction of basic importance in interpolation the-
ory and nonarchimedean analysis (cf. e.g. [7], [9], [2]).

1.1. Outline of the paper

The first part of this paper (§3) consists of a local analysis of d,,s at nonarchimedean
places. Our first new result is a formula for the p-adic supremum ||0,,5|,, of 4, 5. To state
our formula, we make use of a (possibly new) elementary arithmetic function. Let 7, ,,,(n)
denote the largest possible p-adic valuation of a product of m distinct positive integers
which are all less than or equal to n. (We will compute an explicit formula for 7, ,, in
Proposition 1.) Let s: N — Q,, be a function and set ¢(n) := ;' (3)(—=1)"*s(k). We
show that
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||6m8||p = Sgp |C(n)|pp7'pym(’n). (1)

n

This formula gives a Mahler-type criterion for the p-integrality of d,,s. Along the way,
we prove a generalization of Mahler’s theorem to bounded, not-necessarily-continuous
functions (Theorem 2).

The second part of this paper (§4) consists of a global calculation involving some
analytic estimates of certain sums over primes. Our third new result is that

Z Tp,m (1) logp = nH,, + O(nexp{—a(log n)Y/2}logn) (2)

p<n

for some positive constant c.

In the third part of this paper (§5) we combine the local and global results — (1)
and (2) — to prove Theorem 1. In fact we will prove a more general version which
simultaneously generalizes the main result of [4].

The p-integrality of divided differences is a natural condition on functions s: N — Q,,
which does not appear to have been given a thorough treatment in the present literature
on interpolation and p-adic analysis. Therefore it seems worthwhile to us to explore this
condition somewhat. In the last section (§6), which is independent from the rest of the
paper, we give two interpretations of this condition.

Notation. A place v of a number field K is an equivalence class of isometric embeddings
o: K — C, with p € Mg = {2,3,5,...,00} where C, is the metric completion of an
algebraic closure of the p-adic field Q, (where Qo := R). The set of all places of K is
denoted by Mg. The local degree at v is denoted by d,. We write | - |, for the unique
norm on C,, extending the norm on Q,, normalized by |p|, = 1/p. The norm associated
to a place v of K extending p € Mg is defined by |z|, := |o(z)|, for a representative
embedding o of v. For nonarchimedean places, the additive v-adic valuation is defined
by v, :=log, | -|,/* where log, is the base-p logarithm. We write [ -] for the floor function
and H,, =1+ 5 +---+ = for the mth harmonic number. We write 9(n) = > p<nlOgp
for the Chebyshev function and 7(n) for the number of rational primes less than or equal
to n. We define A,,, :== {(ng,...,nm) € N1 :n; all distinct}.

2. Background from difference calculus and p-adic analysis
Let m be a non-negative integer. Define
A= {(no, ..., nm) € N n; all distinet}.

Let s: N — FE be a function valued in a Q-algebra F. Recall the mth divided difference
of s is the function d0,,s: A, — E given by
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(It is well-known that s can be reconstructed using the values of its divided differences
by means of Newton’s interpolation formula (cf. (22) or [7], §1).) Recall the nth finite
difference of s is defined by?

e(n) = ; (1) 0t 3)

Lemma 1. Let s: N — E be a function and let ¢: N — FE be its finite differences. Then
s is polynomial if and only if c is eventually zero.

Proof. Let S be the forward shift operator on sequences defined by (Ss)(n) := s(n + 1)
for all non-negative integers n. Then for any non-negative integer ¢,

{(s—id)"sh() =)
k=

0

(7)-omrste .

and in particular, {(S—id)"s}(0) = ¢(n). We have that (S —id)(n?) = dn¢=1 +0(n?2),
and so the restriction of S — id to the space of polynomial sequences is nilpotent. This
shows that c is eventually zero if s is polynomial.

Conversely, assume that ¢ is eventually zero. It is easy to verify that the inverse
relation of (3) is given by

st =3 (1) et @)

and this shows that s is given by a polynomial of degree < N if ¢(n) =0forn > N. O

We recall a classical theorem of Mahler. Let (%) := “@=Dle=ntl) ¢ g,

T
n n!

Theorem (Mahler [6]). Let s: N — C, be a function and let c: N — C, denote its

finite differences. Then s extends to a continuous function f: Z, — C, if and only if
lim |e(n)|, = 0. Furthermore, if s extends to a continuous function f: Z, — Cp, then
—00

the ‘Mahler series’

n=0

converges uniformly to f in C(Z,,C,) and

2 Strictly speaking, this is the sequence obtained by evaluating the finite differences of s at zero.
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sup | f(z)]p = sup |e(n)]p.
€L, n>0

3. The p-adic size of divided differences

Let p be a fixed prime integer. Let E be a finite extension of Q, and let | - | denote
the norm on F which extends the usual p-adic norm on Q,,. Let s: N — E be a function
and set c(n) = > _o (7)(=1)""*s(k). The goal of this section is to prove the formula

sup  |0ms(no,. .., mm)| = sup |e(n)[p ™
0<ng< - <nm n>m

where 7, ,(n) is the maximal p-adic valuation of a product of m distinct positive integers
<mn, i.e.

Tpm(N) :=  max l/p( H k)
SC;l,...,n}, s

S=m
3.1. The Mahler series of a bounded function

Let ¢>°(N™*+1) denote the E-Banach space of bounded functions F': N™*! — E under
pointwise addition and scalar multiplication equipped with the norm

|F|l:=sup [F(n)].

neNm+1

This p-adic Banach space contains two important closed subspaces:
C(N™Th) .= {F: N™"1  E | F extends to a continuous function Z;"“ — E}
and?®
co(N™T) .= {C: N™! — E | C vanishes at infinity}

Let z = (o, ...,7;) be indeterminates, j = (jo,...,jm) be non-negative integers, and
define (i) = (jg) (;“11) e ("J‘:L’) € Q[xo,...,Tm]. Mahler’s theorem easily generalizes to
multivariate functions (cf. [1], Corollaire 1, §2.7) and amounts to the assertion that there
is a unique isometry

MQI C(Nm+1) l) Co(Nm+1)

F—C

3 A function C: N™¥! — E vanishes at infinity if lim sup |C(j)‘ =0.
N2 ot djn >N
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with the property that for all F' € C(N™*1) the infinite series

> co?)
jENm+1 1
converges in C(N™*1) to F.

We are interested in computing the norm of d,,s (strictly speaking, d,,s is not defined
on all of N1 but this technical issue will be easily resolved later). Mahler’s theorem
is therefore insufficient for our purposes, since d,,s is only assumed to be p-integral and
inhabits neither C(N™%1) nor co(N™*1) in general.

To resolve this problem, we will show that the isometry Mg extends to a self-isometry
of £>°(N™+1), The following notion will be helpful: if F,C: N™*! — E are functions,
not necessarily bounded or continuous, we say that

> ) (f)

jeNm+1

is a generalized Mahler series for F' if

P = 3 c)(!) (nite ) )

j€N7n+1

for all n € N™*+1 The values of C are called the Mahler coefficients of F. The following
theorem generalizes Mahler’s theorem to bounded functions which are not necessarily
continuous.

Theorem 2. Every function F: N™+1 — E admits a generalized Mahler series with
unique Mahler coefficients. Furthermore, the mapping F' — C which sends a bounded

function F to its Mahler coefficients C' extends Mg: C(N™T1) = ¢g(N™F1) to a self-
isometry M of £>°(N™+1).

Note however that the proposition does not imply that {(f) }jenm+1 is an orthonor-

mal Banach basis for £°°(N™*1) as generalized Mahler series are typically divergent in
VAS (Nm+1 )

Proof. We proceed by induction on m. If m = 0 then we take C(n) to be the nth finite
difference of F given by C(n) := Y_;'_, (7)(—=1)""*F(k). The inverse relation is given
by (4) and uniqueness follows. If F' is bounded then C' is bounded by the ultrametric
inequality and vice versa. This mapping restricts to an isometry C(N) = co(N) by
Mahler’s theorem (cf. §2). To see that M: F' +— C' is an isometry when F' is bounded it
suffices to observe that the relation (3) and its inverse (4) are both defined over Z and
to apply the ultrametric inequality.
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Now suppose m is a positive integer. Fix a non-negative integer a and define the
function G, by

Go(no, .. ynm—1) := F(no,...,npm—1,a).

By induction, G, has a generalized Mahler series

for uniquely determined D,: N™ — E. For fixed j € N™, the function a — D,(j) also
has a generalized Mahler series ), - d;(k) (¥). We put these together to get

200

which is therefore the generalized Mahler series of F', with Mahler coefficients given by
C(jos -+ dm) = dgjo,... jm—1)(Jm). Uniqueness of C' follows from uniqueness of d; and
D,. B

If F' is bounded then

Fll= s F(n)l= ma F(n)| = max ||G
17l = sup (Pl = mox [F(m)] = max | Col

since |[E*X| C R>Y is discrete. By induction, and discreteness of |E*| again,

|1F|l = maX||G I = max | Dol = max maX|D (4)] = max max |d;(a)| = [|C]|.
a€eN a€N eN™ q JEN™ aeN = =

This proves that C is bounded if F' is bounded; conversely, if C' is bounded then F' is
bounded by applying the ultrametric inequality to (5). When F' and C' are both bounded,
we see that M: F +— C is a self-isometry of £°°(N™*1). The restriction of M to C(N™*1)
is equal to My by uniqueness of Mahler coefficients. 0O

3.2. Proof of supremum formula

Let s: N — E be a function and let m be a non-negative integer. As before, let
Tpm (1) = MaX1 <y <oy, <n (Vp (i1 - i) and e(n) := 300, (1) (=1)"*s(k).

Theorem 3. We have the equality

16,5l = sup [e(n)pm ™). (6)

n>m

We will show that (6) holds even if both sides are infinite.



186 A. O’Desky / Journal of Number Theory 234 (2022) 179-199

Proof. As dps = s and 7,9(n) = 0, the m = 0 case follows from Mahler’s theorem (cf.
§2). We suppose m > 1. Theorem 2 does not apply directly to J,,s, as the domain of §,,s
is A,, and not all of N™*!, We can resolve this with a change of variables as follows.
Let (ag,...,amn) € N™T and define

Nm—1 = Qm + (am—l + 1)7

ng := am + (@m—1+ 1)+ -+ (ag + 1).

This defines a bijection (ag,...,am) < (no,...,Nm) from N™*! to the subset of A,,
whose entries are strictly decreasing. Define

F:N™1 3 B

(agy .-y am) = Ims(no, ..., nm).

Since d,,s is a symmetric function, all of its values are realized on the subset of A,,
whose entries are strictly decreasing, so F' takes the same values as d,,s. In particular,
[N = 1[6ms]l-

We continue letting a <+ n using the bijection above. To compute the Mahler coeffi-
cients of F' we make use of the following formula of Schikhof (cf. [9], Theorem 54.1),

Fla)= ) C(z)(i) for all g € N™+1

jENm+1

c(jo+ -+ jm +m)
(Jm—1 + 1) (m-1+ Jm-2+2) - (Gm-1+ -+ jo+m)

where C(j) =

By uniqueness of Mahler coefficients, this is the generalized Mahler series for F' (Theo-
rem 2).
Set ix := jm_1+ -+ jm—kr + k. Then

= sup [e(£)[prm ("
m<t

ICl| = sup
1<i1 << <

() ’

iig i
where 7, p, (£) = maxi<i, <...<i,, <e(Vp(t1) + - - + Vp(im)). Theorem 2 asserts that
1E] = llCTl-

Since ||F|| = ||0ms]|| this concludes the proof. O
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Corollary 1. Let s: N — Q be a function. If 0,415 is Z-valued then there is an explicit
positive integer C such that Cdys is Z-valued for all k € {0,...,m}.

Proof. The proposition implies that for any k € {0,...,m},

6] = sup elm) |57 = sup {|e(W)lp™+ ¥, sup_[e(rn) 577"}

n>k+1
<sup {Je(R)[|K! 7 [[0kras] }-
Thus
sup { 6osl, [01sll - .., [6msl } < sup {| 2|, |42, |22, 1},
and we can take
H sup{|°(0) |C(1) ,...,|c§$) !p,l}.

p prime

Note that only finitely many terms in the product differ from unity. 0O
4. Asymptotic formulas for certain sums over primes

Let K denote a finite extension of Q. In the previous section we established a local
estimate for the finite differences ¢ of a function s: N — K with integral mth divided
difference. Namely, for any nonarchimedean place v of K lying over p,,, Theorem 3 shows
that

Tpy,m ()

dms v-integral = |c(n)], < py

Now suppose that §,,s is v-integral for all nonarchimedean places v of K. Then

I el < ] p;mm:exp{_ > rpv,mm)logpv}.

v finite v finite v finite

Our goal is to achieve a precise upper bound for [], g0 [¢(n)]s, Which will be used
later to obtain a lower bound for [ [, ; fnite 1¢(12)|v by the product formula. Therefore we
presently turn to the asymptotic growth of > _ 7, m(n)logp in the limit of large n.
The goal of this section is to prove that

S rpm(m)logp=n(l+1 4+ L) +o(n). (7)

p<n

The standard bound for the Chebyshev function ¥(z) = 2 + O(3
enough to establish the above asymptotic formula, so we employ the following useful
estimate due to Rosser—Schoenfeld (cf. [8], (2.29)):

) is not strong
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I(w) =z + O(x exp{—a(log z)'/?}) (8)

for some positive constant «. In fact, this will lead to the improved error term
O(nexp{—a(logn)'/?} logn) in place of o(n) in (7).

4.1. A formula for 7 m

We begin by deriving an explicit formula for 7, ,,(n) which will be needed later. Let
log,, denote the base-p logarithm and let [-] denote the floor function. Let a,(n) :=
[np_[logp "}] (the top nonzero p-adic digit in the usual base-p expansion of n).

Proposition 1. Let m > 0, n > m be integers and let p be a prime > m. Then

Tpn(n) = {m[logp ! if ap(n) = m,
" mllog, n] + ap(n) —m  if ap(n) < m.

The formula can fail if p < m, e.g. 7p11,(p?) = p + 1 whereas (9) gives p + 2.

Proof. Write t := [logp n]. We will construct integers 1 < i; < --+ < 4, < n whose
product realizes the maximum p-adic valuation. If a,(n) > m then set

ir = (ap(n) —m+k)p', ke{l,...,m}.

The p-adic valuation of ¢; ---i,, is mt and this is maximal since each integer has the
maximum possible p-adic valuation of any positive integer < n. If a,(n) < m then set

; :{(ap(n)—m—i—k)pt ifke{m—ay(n)+1,...,m},
pl—(m—ay(n)+1—-Fk)p'=t ifke{l,...,m—ay(n)}.

As p > m by hypothesis, m — ap(n) < p—ap(n) < p—1and so m — ap(n) +1 —
ke {l,...,p—1} for any k € {1,...,m — a,(n)}. Therefore the p-adic valuation of
pl— (m—ap(n) +1—k)p~tist—1 for any k € {1,...,m — a,(n)}. Putting these
together obtains

Tpm(n) =tap(n) + (t — 1)(m — ap(n)) =mt +ap(n) —m. O

4.2. Asymptotic formulas for certain sums over primes

First we prove a simple lemma. Let [-]: R — Z denote the floor function.

Lemma 2.

Z[logp n]logp = n + O(nexp{—a(logn)'/?})

p<n
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for some positive constant a.

Proof. For any prime p in the sum, r := [logp n] must be positive. Then
logn logn 1 1
log,n]|=r < —— <logp< —— <= n™+1 <p<n-r
P r+1 T
and

(oo}
OSZ[logpn]logp:Z Z rlogp
r=1 1

p<n

1
r

Tt <p<n
< ) logp
Vn<p<n

=J(n) —I(V/n).
The last term is n + O(nexp{—a(logn)'/?}) by (8). O
Let H,,, =1+ % + -+ % be the mth harmonic number.

Theorem 4.

Z Tp.m(n) logp = nH,, + O(nexp{—a(logn)'/?}logn)

p<n

for some positive constant a.

Proof. This is clear if m is zero so we suppose m is positive. The explicit formula in
Proposition 1 suggests that we separate 7, ,,,(n) into a logarithmic term and a ‘remainder
term’. The asymptotic contribution to Zpgn Tp,m(n)logp from the logarithmic term is
established by Lemma 2:

Zm[logp n]logp = mn + O(nexp{—a(logn)'/?}). (10)

p<n

The asymptotic contribution to the sum from the remainder m[log, n] — 7, ., (n) is sig-
nificantly more difficult to establish. We will show that for some positive constant «,

Z (m[log, n] — Tp.m(n)) logp = (m — Hy)n + O(nexp{—a(log n)/2}logn).  (11)

p<n

Taking the difference of (10) and (11) immediately proves the result so we now es-
tablish (11). Let a € {1,2,...,m — 1} and n € {m,m + 1,...}. For a prime p, let
ap(n) = [np’“ogz’ "]] (the top nonzero p-adic digit in the base-p expansion of n). We
separate primes according to the value of a,(n). Define the set
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P, :={p prime : a = ap(n), m <p <n}.

Consider the sum

)= > (m—ayn logp—z > (m—a)logp.

p: m<p<n, a=1 p€Pun
ap(n)<m
Note that
< ) v )
Tpm(n) < | max _ (vp(in) o 1p(im)) = m max v(i) = milog, nl,

and so > ., (m[log, n] — 7p.m(n)) log p = O(logn). Then by Proposition 1,

Z (m[logp n] — Tp,m (n)) logp

p<n

=0(logn) + Y (m—ay(n))logp =~(n) + O(logn). (12)

m<p<n
ap(n)<m

We will show that
v(n) = (m — Hy)n + O(nexp{—a(log n)1/2} logn)

which will prove (11) in view of (12).

We claim that a prime p is in P, ,, if and only if p > m and a = [np~f] for some
t € {1,2,...,[logyn]}. Indeed, if p € P,, then a = [np~'] where t = [log,n] €
{1,2,...,[logy n]}. Conversely, if a = [np~!] for some ¢ € {1,2,...,[logyn]}, then a > 1
implies that p' < n and p > m > a implies that n < p'*'. Therefore ¢ = [log,n] and
a = ap(n). This proves the claim. It follows that

m—1 [logy m
S0 Y
a=1 t=1 p:p>m,

a=[np~"]
Now observe that

a=[np7' <= a<npt<a+l1

= an'<pt<(a+)nt

=

= (n(a+1)7)t <p<(na)

and thus
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m—1 (logy n]
SED SHEED DR
a=1 t=1 p:p>m,

(n(a+1)"1)i<p<(na= 1)1/

logy n] m—1

£33 - a) (O 1) = 9({n(a+1)1}7))

where J(z) = > _, logp. Let v:(n) denote the inner sum of the last expression for
1<t < [logyn] so that v(n) = O(1) + 382", (n). Then

Ye(n) = mI({£30) =02} = 0({5}Y) = = I{ 3.

By (8) there is a positive constant « such that

{2 = ()Y + 0! exp{—a(logn)'/?}).
Therefore

71(n) = (m — Hy)n + O(nexp{—a(logn)'/*}).
Since n'/t = O(nexp{—a(logn)'/?}) for t > 2, we get that

7(n) = m(n) + O(nexp{—a(logn)'/*} log n)
= (m — Hp)n + O(nexp{—a(logn)*/?}logn). O

Remark. The proof shows that any improved bound ¥(z) — z = O(f(x)) would lead to
an improved bound of the form nHm, —3° ., 7p,m(n)logp = O(f(n)log n). In particular,

if the Riemann hypothesis is true then for any € > 0,

Z’Tpm Ylogp =nH,, + O(n 1/2"’510gn).

p<n

5. Proof of Theorem 1

In this section we combine the local and global calculations from §3 and §4 to prove
the main theorem of the paper. It is easy to work with a general number field in place
of Q, and we choose to do so for the sake of generality. Let K be a finite extension of Q
of degree d. Let Mk denote the set of places of K. For any place v € Mg let d,, denote
the local degree at v.

Lemma 3. Let s: N — K be a function and let S C My be a finite set containing the
archimedean places. Suppose that
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i) Oms is S-integer-valued,* and
(4) g :

(el
v

(ii) for each v in S there is a positive number p, such that |c(n)|, < p
If

Hpgv < ed(1+%+"'+%) (13)

veES

then s(n) is a polynomial in n.

Proof. By Lemma 1 the conclusion is equivalent to ¢ being eventually zero, so for the
sake of contradiction suppose that ¢ has infinitely many nonzero terms.
Let v be a place of K not in S, p, the rational prime v lies over, o, a representative
embedding for v, and d, the local degree at v. By Theorem 3, |c(n)], = |oyc(n)|p, <
_Tpru,m(n)
Dy for n > m, and so

H |C( H —dyTp,, m(n) (14)

vgS vgS

Note that both sides amount to finite products (7,,.m(n) = 0 if p, > n).
Recall that the sum of local degrees at all places lying over a given prime is the global
degree, and also that 7, ,,,(n) = O(logn). Then

Zd Tp,,m (1) 10g Py = Z dyTp, m(n)log py, — Zd Tpo,m (1) 10g Dy

vgS pu<n veS
:dZTpm )logp + O(logn).
p<n

Then with the help of Theorem 4 we see that

> duTp, m(n)logp, = dnHy, + o(n).
vgS

Putting this together with (14) obtains

hmsupH\ Y do/n < e dHm,

n—00 v ¢S

Let n; be chosen so that ¢(n;) # 0 for all non-negative integers ¢. With the help of
the product formula, [, ¢/, le(n;)|& = 1, we obtain

Hpv “<hm1an|cm d/"’—hmsupH|c |/ < gmdHm
veES vES e vgS

4 e, dms(n) is v-integral for all n € A, and v ¢ S.
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This contradicts (13) and concludes the proof. O

Now we will prove a generalization of Theorem 1. In addition to the integrality of
higher divided differences we will simultaneously consider p-adic analytic interpolation,
i.e. the existence of a power series f(z) € Cp[z] which converges for all z € D5 :=
{z € Cp, : |z|, < R} such that R > 1 and f(n) = o,s(n) for all n > 0, where o, is a
representative embedding for v.

Theorem 5. Let s: N — K be a function, let S C Mg be a finite set containing the
archimedean places M2, and let T C My be a finite set disjoint from S. Suppose that

(7) Oms is (S UT)-integer-valued,
(#) for each v in S there is a positive number 0, such that |s(n)|, < 07, and
(éit) for each v in T there is a positive number R, > 1 such that o,s extends to a p-adic
analytic function ID)p<vR“ — Cyp,.

If

1 1 1
H (1+6,)% H max{1, 6, }¢ H(p{i’”’le)_dv < edlHg+t5) (15)

veEMEge veS\MgE veT
then s(n) is a polynomial in n.

Proof of Theorem 5. By Lemma 3 we see that s is polynomial if for each v € SUT there
are positive constants D, and p, such that

le(n)|y < Dypy  foralln >0 (16)
and
H plv < edHm, (17)
veSUT

We can construct the D, and p, as follows. First suppose that v is a nonarchimedean
place in S. As |s(n)|, < 07 by hypothesis, there is a positive constant D, such that

le(n)], < max |s(k)|, < max D,0% =

D, if 0, <1,
T 0<k<n 0<k<n

D" if 0, > 1.

In either case we can take p, = max{1,6,}. Now suppose v is a archimedean place in S.
We have that

OIS SEWITCE

0<k<n
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Therefore for some positive constant D, we have that |¢(n)|, < Dy(1+6,)", so we can
take p, =14 0,. Then (16) is satisfied for every v in S.

Now we consider the places v in T. By hypothesis, for any place v in T there exists a
power series f,(z) € Cp[x] converging on D55+ such that o,s(n) = f,(n) for all n > 0.
Without loss of generality, we may assume that f, converges on a disk of radius strictly
larger than R, for all v € T since the inequality (15) remains valid even if R, is replaced
with a sufficiently close but smaller quantity; thus, there is an € > 0 such that for all
vin T, f, converges on an open disk of radius R, + . With the help of a theorem of
Iwasawa (cf. [5], Theorem 3), we see that

lim |e(n)|,r™" =0 (18)

n—oo

for any real number r such that

P T (R, +e) ' <. (19)
Then (18) implies that |c(n)|y V" s for only finitely many n, and thus

lim sup |e¢(n)[2/™ < r.

n—oo

This shows that for every v € T there are positive constants D, p, satisfying (16),
and additionally that p, < r. As r was arbitrary subject to (19), we may suppose

-1
r < pb* " R;l. Therefore the constants D,, p, may be chosen to satisfy (16) as well as
the inequality

[T o < I s ‘1R (20)

veT veT

Putting (20) together with the constructed p, for v in S shows that

I »< I a+o0* I max{l,ev}dvﬂ(pﬁl%v)_d”

veSUT veEMF? veS\Mg2 veT

This inequality shows that (15) implies (17) and concludes the proof. 0O

Corollary 2. Let s: N — K be a function. Suppose that

(i) Oms takes values in the ring of integers of K, and
(i) for each v € MP there is a positive number 6, such that |s(n)|, < 0.

If

H (1+9U>dv <€d(1+%+'--+%)

veEMg?
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then s(n) is a polynomial in n.
Proof of Corollary 2. Take S = Mz? and T'= @& in Theorem 5. O
Proof of Theorem 1. Take K = Q in Corollary 2. 0O

Remark. It is well-known that a power series ag + a2 + asx? + - - - is the expansion of
a rational function if and only if there exists a positive integer N such that

() := det(ansis)) g (21)

is zero for all sufficiently large n. Theorem 5 may be applied to the sequence s whose finite
differences are given by (21) to obtain a generalization of Theorems 2 and 3 of [3]. We
have not emphasized this application however as hypotheses (i) and (iii) of Theorem 5
do not appear to be natural conditions on power series.

6. Integrality of divided differences

In this section we give two interpretations of the integrality of higher divided differ-
ences. Our first interpretation generalizes the observation that the first divided difference
015 of a function s: N — Q is integer-valued if and only if s preserves all congruences.
Roughly speaking, our first interpretation says that a function whose mth divided differ-
ence is integral is locally approximated to mth order by polynomials. Here ‘locally’ refers
to the topology on N inherited from its inclusion into the ring of adeles. In this topology,
the open neighborhoods are infinite arithmetic progressions and small neighborhoods are
infinite arithmetic progressions with highly divisible periods.

If U C N is a subset, g: U — Q is any function, and ¢ is an integer, we write

to mean g(n) € eZ for all n € U. For example, g = O(1) if and only if g is integer-valued.

Proposition 2. Suppose s: N — Q is a function whose mth divided difference is integer-
valued. Let U = ng + Ne C N be any infinite arithmetic progression. Then there is a
polynomial f(x) € Qx| of degree less than m such that

slu(n) = flu(n) + O(e™).

Furthermore, the denominators of the coefficients of f(x) are divisors of

C= I sw I, [5Gl 1

p prime

where c(n) ==Y _, (1) (=1)""*s(k), and
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ged(f(n) :n € U) = ged (k! - Sps(ng,ny,...,ng) : 0 < k < m).

Proof. We make use of a classical interpolation formula due to Newton (cf. e.g. [7], §1).

Let {ng,n1,...} C Q be an infinite subset and let s: {ng,n1,...} — Q be a function.
Then for all n € {ng,n1,...},

0 k—1
s(n) = s(no) + Z dks(no,na, ..., ng) H(n —n;) (finite sum). (22)
k=1 =0

Set ny :=ng + ke for k € N. From (22) we obtain that

9] k—1
s(n) = f(n) + Z Ors(ng,ni,...,ng) H(n —n;) forallnelU (23)
k=m 7=0

where f(z) := s(ng) + ka:_ll 0rs(no, M1, ..., ng) Hf;é (x —nj) € Q[z].

We claim that for any integer £ > m and a,ag,a1,... € U,
k—1
ors(ag,ay,...,ax) H(a —a;)
j=0

is integral and divisible by €™. We proceed by induction on k. The case k = m is true
by assumption. Suppose k > m. By the recursive formula for divided differences (cf. 7],

§1),
Ors(ag,...,ar) = (a1 — ao)_l(dk,ls(c?o, ai,...,ar) — O0g—18(ag, ai,...,ax))

(the ~ indicates an omission). Then

k—1
drs(ag,ay,...,ax) H(a —a;) =
7=0
(%){5k—15(@,01,...,ak) H (afaj)}

JE{Lk—1}

—(aa;%o){fsk—ls(ao,cﬁ,n-,ak) H (a—aj)}.

7€{0,2,....,k—1}

By the inductive hypothesis, and the fact that §;_1s is a symmetric function, each of the
two terms in {-}-brackets is integral and divisible by ™. The remaining two factors are
integers, and we have proven the claim. It follows from (23) that s(n) — f(n) is integral
and divisible by €™ for any n € U.
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The explicit bound on the denominators of f follows from Corollary 1. For the last
claim, it is well-known that the binomial polynomials {(?) }j>o0 form an orthonormal
Banach basis of C(N,Q,) for all p. Observe that

m—1
f(x) = f(y) = s(no) + Z ¥kl drs(no,na, ..., nk) (?) where y := T~

3
k=1

Therefore

ged(f(n) :neU) =ged(f(n):neN)
= ged(ePk! - Ops(no, na,y. .., me) 0 <k <m). O
Integrality of ;s implies that for all primes p and integers m,n € N,
[s(m) = s(n)]p < [m —nlp.

In other words, d1s is Z-valued if and only if s is Lipschitz continuous with Lipschitz
constant 1 for every p-adic metric on N. Our second interpretation of the integrality of
higher divided differences generalizes this observation.

Proposition 3. Let s: N — Q,, be a function and let m be a positive integer. Suppose that
[0msll, < 1. Then s extends to an element f of C™YZp,Q,p) and fI™=Y is Lipschitz
continuous with Lipschitz constant |(m — 1)!|,.

Here we mean strict differentiability (cf. [9], §29).

Proof. For m = 1 this was already explained just before the proposition. Assume m > 2.
By the recursive formula for divided differences (cf. [7], §1),

[0m—18(ag, ... am—-1) — Om—18(a1,...,am)| < |ao — am|

for all (ag,...,am) € A,,. Thus,
|0m—15(ai; aij) — dm—18(a;; ai;)| < la; — a; (24)

where 0 < ¢ < j <m and a;; := (ag,...,Gi,...,qj,...,am) € Ay_o (the ™ indicates an
omission).
We equip Z;" with the metric given by

d(z,y) = max |a; —yilp.

We will show that §,,_1s is Lipschitz continuous for this metric on the dense subset
Ap—1 C Zy'. By a limiting argument, it suffices to show the Lipschitz condition for
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dm—18 on elements © = (21, ...,2y) and y = (y1,...,Ym) in Ay such that xNy = .
Define 20 := z, 2™ :=y, and

2= (21,2, Ty Ym—it 15 - Ym) € L' for 0 < i <m.

Then d(z%,2"™) = |Zp—i — Ym—ilp for 0 < i < m. Since z* and 2! differ by only one
coordinate and x Ny = &, we may apply (24). We conclude that

[Om—15(2") — 5m—15(zi+1)|p < |Tm—i = Ym—ilp = d(z', =)

for 0 < i < m. Using 0,,-15(2°) — §pn_18(2™) = Zggl(5m,1s(zi) — 6m_15(2"T1)) shows
that

|Om—18(2) = Om-15(y)[p < onax 0m-15(2") = Sm-15(z""1)],

< - .
_oglfznmm i~ Ym z|p

= d(x,y).

We have shown that d,,—1s is Lipschitz continuous on a dense subset of Z}, so there is

a unique Lipschitz continuous extension d,,_15: Zy — Cy of Om—15. Therefore s extends
to a (m — 1)-times strictly differentiable function f: Z, — Q, satisfying

—~—

Fm=V(a) = (m — 1) 6p_15(zq)

—_~—

where x, := (a,a,...,a) (cf. [9], §29). By Lipschitz continuity of d,,_1s we get that
F D a) = fO I O)] < |(m = D)l pd(@a, ys) = [(m = 1)![pla = bl,. O

Corollary. Let s: N — Q be a function and suppose that 0,415 is Z-valued for a non-
negative integer m. Then for every prime p, the function s extends to an m-times strictly
differentiable function f,: Z, — Q, such that fém) is Lipschitz continuous with Lipschitz
constant |m!|,.
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