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Let s0, s1, s2, . . . be a sequence of rational numbers whose mth 
divided difference δms is integer-valued. We prove that sn is 
a polynomial function in n if |sn| � θn for some positive 

number θ satisfying θ < e
1+

1

2
+···+

1

m − 1.
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1. Introduction

In 1971, Hall and Ruzsa independently discovered an elegant characterization of poly-

nomial functions among congruence-preserving functions.

Theorem (Hall–Ruzsa). Let s : N → Q be a function. Suppose that1
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(i) s is integer-valued,

(ii) s(n + k) ≡ s(n) (mod k) for all n, k ∈ N, and

(iii) |s(n)| � θn for some positive number θ satisfying θ < e − 1.

Then s(n) is a polynomial in n.

In this article we generalize this theorem by using the integrality of higher divided dif-

ferences. The first two hypotheses of the Hall–Ruzsa theorem are equivalent to requiring 

that δ0s := s and δ1s are integer-valued, where

δ1s(n, m) :=
s(n) − s(m)

n − m
(n �= m)

is the first divided difference of s.

Our main result is the following theorem.

Theorem 1. Let s : N → Q be a function. Suppose that

(i) the mth divided difference δms of s is integer-valued, and

(ii) |s(n)| � θn for some positive number θ satisfying

θ < e1+
1
2 +···+ 1

m − 1.

Then s(n) is a polynomial in n.

Recall the mth divided difference of s is the function δms defined by

δms(n0, . . . , nm) :=

m∑

i=0

{ ∏

j �=i

(ni − nj)−1
}

s(ni) (ni distinct).

Divided differences are a classical construction of basic importance in interpolation the-

ory and nonarchimedean analysis (cf. e.g. [7], [9], [2]).

1.1. Outline of the paper

The first part of this paper (§3) consists of a local analysis of δms at nonarchimedean 

places. Our first new result is a formula for the p-adic supremum ‖δms‖p of δms. To state 

our formula, we make use of a (possibly new) elementary arithmetic function. Let τp,m(n)

denote the largest possible p-adic valuation of a product of m distinct positive integers 

which are all less than or equal to n. (We will compute an explicit formula for τp,m in 

Proposition 1.) Let s : N → Qp be a function and set c(n) :=
∑n

k=0

(
n
k

)
(−1)n−ks(k). We 

show that
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‖δms‖p = sup
n≥m

|c(n)|ppτp,m(n). (1)

This formula gives a Mahler-type criterion for the p-integrality of δms. Along the way, 

we prove a generalization of Mahler’s theorem to bounded, not-necessarily-continuous 

functions (Theorem 2).

The second part of this paper (§4) consists of a global calculation involving some 

analytic estimates of certain sums over primes. Our third new result is that

∑

p≤n

τp,m(n) log p = nHm + O(n exp{−α(log n)1/2} log n) (2)

for some positive constant α.

In the third part of this paper (§5) we combine the local and global results — (1)

and (2) — to prove Theorem 1. In fact we will prove a more general version which 

simultaneously generalizes the main result of [4].

The p-integrality of divided differences is a natural condition on functions s : N → Qp

which does not appear to have been given a thorough treatment in the present literature 

on interpolation and p-adic analysis. Therefore it seems worthwhile to us to explore this 

condition somewhat. In the last section (§6), which is independent from the rest of the 

paper, we give two interpretations of this condition.

Notation. A place v of a number field K is an equivalence class of isometric embeddings 

σ : K → Cp with p ∈ MQ = {2, 3, 5, . . . , ∞} where Cp is the metric completion of an 

algebraic closure of the p-adic field Qp (where Q∞ := R). The set of all places of K is 

denoted by MK . The local degree at v is denoted by dv. We write | · |p for the unique 

norm on Cp extending the norm on Qp, normalized by |p|p = 1/p. The norm associated 

to a place v of K extending p ∈ MQ is defined by |x|v := |σ(x)|p for a representative 

embedding σ of v. For nonarchimedean places, the additive v-adic valuation is defined 

by νv := logp | · |−1
v where logp is the base-p logarithm. We write [ · ] for the floor function 

and Hm = 1 + 1
2 + · · · + 1

m for the mth harmonic number. We write ϑ(n) =
∑

p≤n log p

for the Chebyshev function and π(n) for the number of rational primes less than or equal 

to n. We define ∆m := {(n0, . . . , nm) ∈ Nm+1 : ni all distinct}.

2. Background from difference calculus and p-adic analysis

Let m be a non-negative integer. Define

∆m := {(n0, . . . , nm) ∈ Nm+1 : ni all distinct}.

Let s : N → E be a function valued in a Q-algebra E. Recall the mth divided difference 

of s is the function δms : ∆m → E given by



182 A. O’Desky / Journal of Number Theory 234 (2022) 179–199

δms(n0, . . . , nm) :=
m∑

i=0

{ ∏

j �=i

(ni − nj)−1
}

s(ni).

(It is well-known that s can be reconstructed using the values of its divided differences 

by means of Newton’s interpolation formula (cf. (22) or [7], §1).) Recall the nth finite 

difference of s is defined by2

c(n) :=
n∑

k=0

(
n

k

)
(−1)n−ks(k). (3)

Lemma 1. Let s : N → E be a function and let c : N → E be its finite differences. Then 

s is polynomial if and only if c is eventually zero.

Proof. Let S be the forward shift operator on sequences defined by (Ss)(n) := s(n + 1)

for all non-negative integers n. Then for any non-negative integer 
,

{(S − id)ns}(
) =

n∑

k=0

(
n

k

)
(−1)n−ks(
 + k),

and in particular, {(S − id)ns}(0) = c(n). We have that (S − id)(nd) = dnd−1 +O(nd−2), 

and so the restriction of S − id to the space of polynomial sequences is nilpotent. This 

shows that c is eventually zero if s is polynomial.

Conversely, assume that c is eventually zero. It is easy to verify that the inverse 

relation of (3) is given by

s(n) =
n∑

k=0

(
n

k

)
c(k), (4)

and this shows that s is given by a polynomial of degree ≤ N if c(n) = 0 for n > N . �

We recall a classical theorem of Mahler. Let 
(

x
n

)
:= x(x−1)···(x−n+1)

n! ∈ Q[x].

Theorem (Mahler [6]). Let s : N → Cp be a function and let c : N → Cp denote its 

finite differences. Then s extends to a continuous function f : Zp → Cp if and only if 

lim
n→∞

|c(n)|p = 0. Furthermore, if s extends to a continuous function f : Zp → Cp, then 

the ‘Mahler series’

∞∑

n=0

c(n)

(
x

n

)

converges uniformly to f in C(Zp, Cp) and

2 Strictly speaking, this is the sequence obtained by evaluating the finite differences of s at zero.
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sup
x∈Zp

|f(x)|p = sup
n≥0

|c(n)|p.

3. The p-adic size of divided differences

Let p be a fixed prime integer. Let E be a finite extension of Qp and let | · | denote 

the norm on E which extends the usual p-adic norm on Qp. Let s : N → E be a function 

and set c(n) =
∑n

k=0

(
n
k

)
(−1)n−ks(k). The goal of this section is to prove the formula

sup
0≤n0<···<nm

|δms(n0, . . . , nm)| = sup
n≥m

|c(n)|pτp,m(n)

where τp,m(n) is the maximal p-adic valuation of a product of m distinct positive integers 

≤ n, i.e.

τp,m(n) := max
S⊂{1,...,n},

#S=m

νp

( ∏

k∈S

k
)

.

3.1. The Mahler series of a bounded function

Let 
∞(Nm+1) denote the E-Banach space of bounded functions F : Nm+1 → E under 

pointwise addition and scalar multiplication equipped with the norm

‖F‖ := sup
n∈Nm+1

|F (n)|.

This p-adic Banach space contains two important closed subspaces:

C(Nm+1) := {F : Nm+1 → E | F extends to a continuous function Zm+1
p → E}

and3

c0(Nm+1) := {C : Nm+1 → E | C vanishes at infinity}

Let x = (x0, . . . , xm) be indeterminates, j = (j0, . . . , jm) be non-negative integers, and 

define 
(

x
j

)
:=

(
x0

j0

)(
x1

j1

)
· · ·

(
xm

jm

)
∈ Q[x0, . . . , xm]. Mahler’s theorem easily generalizes to 

multivariate functions (cf. [1], Corollaire 1, §2.7) and amounts to the assertion that there 

is a unique isometry

M0 : C(Nm+1)
∼−→ c0(Nm+1)

F 
→ C

3 A function C : Nm+1 → E vanishes at infinity if lim
N→∞

sup
j0+···+jm>N

∣∣C(j)
∣∣ = 0.
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with the property that for all F ∈ C(Nm+1) the infinite series

∑

j∈Nm+1

C(j)

(
x

j

)

converges in C(Nm+1) to F .

We are interested in computing the norm of δms (strictly speaking, δms is not defined 

on all of Nm+1, but this technical issue will be easily resolved later). Mahler’s theorem 

is therefore insufficient for our purposes, since δms is only assumed to be p-integral and 

inhabits neither C(Nm+1) nor c0(Nm+1) in general.

To resolve this problem, we will show that the isometry M0 extends to a self-isometry 

of 
∞(Nm+1). The following notion will be helpful: if F, C : Nm+1 → E are functions, 

not necessarily bounded or continuous, we say that

∑

j∈Nm+1

C(j)

(
x

j

)

is a generalized Mahler series for F if

F (n) =
∑

j∈Nm+1

C(j)

(
n

j

)
(finite sum) (5)

for all n ∈ Nm+1. The values of C are called the Mahler coefficients of F . The following 

theorem generalizes Mahler’s theorem to bounded functions which are not necessarily 

continuous.

Theorem 2. Every function F : Nm+1 → E admits a generalized Mahler series with 

unique Mahler coefficients. Furthermore, the mapping F 
→ C which sends a bounded 

function F to its Mahler coefficients C extends M0 : C(Nm+1) 
∼−→ c0(Nm+1) to a self-

isometry M of 
∞(Nm+1).

Note however that the proposition does not imply that {
(

x
j

)
}j∈Nm+1 is an orthonor-

mal Banach basis for 
∞(Nm+1), as generalized Mahler series are typically divergent in 


∞(Nm+1).

Proof. We proceed by induction on m. If m = 0 then we take C(n) to be the nth finite 

difference of F given by C(n) :=
∑n

k=0

(
n
k

)
(−1)n−kF (k). The inverse relation is given 

by (4) and uniqueness follows. If F is bounded then C is bounded by the ultrametric 

inequality and vice versa. This mapping restricts to an isometry C(N) 
∼−→ c0(N) by 

Mahler’s theorem (cf. §2). To see that M : F 
→ C is an isometry when F is bounded it 

suffices to observe that the relation (3) and its inverse (4) are both defined over Z and 

to apply the ultrametric inequality.
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Now suppose m is a positive integer. Fix a non-negative integer a and define the 

function Ga by

Ga(n0, . . . , nm−1) := F (n0, . . . , nm−1, a).

By induction, Ga has a generalized Mahler series

∑

j∈Nm

Da(j)

(
x

j

)

for uniquely determined Da : Nm → E. For fixed j ∈ Nm, the function a 
→ Da(j) also 

has a generalized Mahler series 
∑

k≥0 dj(k)
(

y
k

)
. We put these together to get

∑

j∈Nm

∑

k≥0

dj(k)

(
x

j

)(
y

k

)

which is therefore the generalized Mahler series of F , with Mahler coefficients given by 

C(j0, . . . , jm) := d(j0,...,jm−1)(jm). Uniqueness of C follows from uniqueness of dj and 

Da.

If F is bounded then

‖F‖ = sup
n∈Nm+1

|F (n)| = max
n∈Nm+1

|F (n)| = max
a∈N

‖Ga‖

since |E×| ⊂ R>0 is discrete. By induction, and discreteness of |E×| again,

‖F‖ = max
a∈N

‖Ga‖ = max
a∈N

‖Da‖ = max
j∈Nm

max
a∈N

|Da(j)| = max
j∈Nm

max
a∈N

|dj(a)| = ‖C‖ .

This proves that C is bounded if F is bounded; conversely, if C is bounded then F is 

bounded by applying the ultrametric inequality to (5). When F and C are both bounded, 

we see that M : F 
→ C is a self-isometry of 
∞(Nm+1). The restriction of M to C(Nm+1)

is equal to M0 by uniqueness of Mahler coefficients. �

3.2. Proof of supremum formula

Let s : N → E be a function and let m be a non-negative integer. As before, let 

τp,m(n) = max1≤i1<···<im≤n(νp(i1 · · · im)) and c(n) :=
∑n

k=0

(
n
k

)
(−1)n−ks(k).

Theorem 3. We have the equality

‖δms‖ = sup
n≥m

|c(n)|pτp,m(n). (6)

We will show that (6) holds even if both sides are infinite.
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Proof. As δ0s = s and τp,0(n) = 0, the m = 0 case follows from Mahler’s theorem (cf. 

§2). We suppose m ≥ 1. Theorem 2 does not apply directly to δms, as the domain of δms

is ∆m and not all of Nm+1. We can resolve this with a change of variables as follows. 

Let (a0, . . . , am) ∈ Nm+1 and define

nm := am,

nm−1 := am + (am−1 + 1),

...

n0 := am + (am−1 + 1) + · · · + (a0 + 1).

This defines a bijection (a0, . . . , am) ↔ (n0, . . . , nm) from Nm+1 to the subset of ∆m

whose entries are strictly decreasing. Define

F : Nm+1 → E

(a0, . . . , am) 
→ δms(n0, . . . , nm).

Since δms is a symmetric function, all of its values are realized on the subset of ∆m

whose entries are strictly decreasing, so F takes the same values as δms. In particular, 

‖F‖ = ‖δms‖.

We continue letting a ↔ n using the bijection above. To compute the Mahler coeffi-

cients of F we make use of the following formula of Schikhof (cf. [9], Theorem 54.1),

F (a) =
∑

j∈Nm+1

C(j)

(
a

j

)
for all a ∈ Nm+1

where C(j) =
c(j0 + · · · + jm + m)

(jm−1 + 1)(jm−1 + jm−2 + 2) · · · (jm−1 + · · · + j0 + m)
.

By uniqueness of Mahler coefficients, this is the generalized Mahler series for F (Theo-

rem 2).

Set ik := jm−1 + · · · + jm−k + k. Then

‖C‖ = sup
1≤i1<···<im≤�

∣∣∣∣
c(
)

i1i2 · · · im

∣∣∣∣ = sup
m≤�

|c(
)|pτp,m(�)

where τp,m(
) := max1≤i1<···<im≤�(νp(i1) + · · · + νp(im)). Theorem 2 asserts that

‖F‖ = ‖C‖ .

Since ‖F‖ = ‖δms‖ this concludes the proof. �
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Corollary 1. Let s : N → Q be a function. If δm+1s is Z-valued then there is an explicit 

positive integer C such that Cδks is Z-valued for all k ∈ {0, . . . , m}.

Proof. The proposition implies that for any k ∈ {0, . . . , m},

‖δks‖ = sup
n≥k

|c(n)|pτp,k(n) = sup
{

|c(k)|pτp,k(k), sup
n≥k+1

|c(n)|pτp,k(n)
}

≤ sup
{

|c(k)||k!|−1, ‖δk+1s‖
}

.

Thus

sup
{

‖δ0s‖ , ‖δ1s‖ , . . . , ‖δms‖
}

≤ sup
{∣∣ c(0)

0!

∣∣,
∣∣ c(1)

1!

∣∣, . . . ,
∣∣ c(m)

m!

∣∣, 1
}

,

and we can take

C =
∏

p prime

sup
{∣∣ c(0)

0!

∣∣
p
,
∣∣ c(1)

1!

∣∣
p
, . . . ,

∣∣ c(m)
m!

∣∣
p
, 1

}
.

Note that only finitely many terms in the product differ from unity. �

4. Asymptotic formulas for certain sums over primes

Let K denote a finite extension of Q. In the previous section we established a local 

estimate for the finite differences c of a function s : N → K with integral mth divided 

difference. Namely, for any nonarchimedean place v of K lying over pv, Theorem 3 shows 

that

δms v-integral =⇒ |c(n)|v ≤ p
−τpv,m(n)
v .

Now suppose that δms is v-integral for all nonarchimedean places v of K. Then

∏

v finite

|c(n)|v ≤
∏

v finite

p
−τpv,m(n)
v = exp

{
−

∑

v finite

τpv,m(n) log pv

}
.

Our goal is to achieve a precise upper bound for 
∏

v finite |c(n)|v, which will be used 

later to obtain a lower bound for 
∏

v infinite |c(n)|v by the product formula. Therefore we 

presently turn to the asymptotic growth of 
∑

p≤n τp,m(n) log p in the limit of large n. 

The goal of this section is to prove that

∑

p≤n

τp,m(n) log p = n
(
1 + 1

2 + · · · + 1
m

)
+ o(n). (7)

The standard bound for the Chebyshev function ϑ(x) = x + O( x
log x ) is not strong 

enough to establish the above asymptotic formula, so we employ the following useful 

estimate due to Rosser–Schoenfeld (cf. [8], (2.29)):
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ϑ(x) = x + O(x exp{−α(log x)1/2}) (8)

for some positive constant α. In fact, this will lead to the improved error term 

O(n exp{−α(log n)1/2} log n) in place of o(n) in (7).

4.1. A formula for τp,m

We begin by deriving an explicit formula for τp,m(n) which will be needed later. Let 

logp denote the base-p logarithm and let [ · ] denote the floor function. Let ap(n) :=

[np−[logp n]] (the top nonzero p-adic digit in the usual base-p expansion of n).

Proposition 1. Let m > 0, n ≥ m be integers and let p be a prime ≥ m. Then

τp,m(n) =

{
m[logp n] if ap(n) ≥ m,

m[logp n] + ap(n) − m if ap(n) < m.
(9)

The formula can fail if p < m, e.g. τp+1,p(p2) = p + 1 whereas (9) gives p + 2.

Proof. Write t := [logp n]. We will construct integers 1 ≤ i1 < · · · < im ≤ n whose 

product realizes the maximum p-adic valuation. If ap(n) ≥ m then set

ik = (ap(n) − m + k)pt, k ∈ {1, . . . , m}.

The p-adic valuation of i1 · · · im is mt and this is maximal since each integer has the 

maximum possible p-adic valuation of any positive integer ≤ n. If ap(n) < m then set

ik =

{
(ap(n) − m + k)pt if k ∈ {m − ap(n) + 1, . . . , m},

pt − (m − ap(n) + 1 − k)pt−1 if k ∈ {1, . . . , m − ap(n)}.

As p ≥ m by hypothesis, m − ap(n) ≤ p − ap(n) ≤ p − 1 and so m − ap(n) + 1 −
k ∈ {1, . . . , p − 1} for any k ∈ {1, . . . , m − ap(n)}. Therefore the p-adic valuation of 

pt − (m − ap(n) + 1 − k)pt−1 is t − 1 for any k ∈ {1, . . . , m − ap(n)}. Putting these 

together obtains

τp,m(n) = tap(n) + (t − 1)(m − ap(n)) = mt + ap(n) − m. �

4.2. Asymptotic formulas for certain sums over primes

First we prove a simple lemma. Let [ · ] : R → Z denote the floor function.

Lemma 2.

∑

p≤n

[logp n] log p = n + O(n exp{−α(log n)1/2})



A. O’Desky / Journal of Number Theory 234 (2022) 179–199 189

for some positive constant α.

Proof. For any prime p in the sum, r := [logp n] must be positive. Then

[logp n] = r ⇐⇒ log n

r + 1
< log p ≤ log n

r
⇐⇒ n

1
r+1 < p ≤ n

1
r

and

0 ≤
∑

p≤n

[logp n] log p =
∞∑

r=1

∑

n
1

r+1 <p≤n
1
r

r log p

≤
∑

√
n<p≤n

log p

= ϑ(n) − ϑ(
√

n).

The last term is n + O(n exp{−α(log n)1/2}) by (8). �

Let Hm = 1 + 1
2 + · · · + 1

m be the mth harmonic number.

Theorem 4.

∑

p≤n

τp,m(n) log p = nHm + O(n exp{−α(log n)1/2} log n)

for some positive constant α.

Proof. This is clear if m is zero so we suppose m is positive. The explicit formula in 

Proposition 1 suggests that we separate τp,m(n) into a logarithmic term and a ‘remainder 

term’. The asymptotic contribution to 
∑

p≤n τp,m(n) log p from the logarithmic term is 

established by Lemma 2:

∑

p≤n

m[logp n] log p = mn + O(n exp{−α(log n)1/2}). (10)

The asymptotic contribution to the sum from the remainder m[logp n] − τp,m(n) is sig-

nificantly more difficult to establish. We will show that for some positive constant α,

∑

p≤n

(
m[logp n] − τp,m(n)

)
log p = (m − Hm)n + O(n exp{−α(log n)1/2} log n). (11)

Taking the difference of (10) and (11) immediately proves the result so we now es-

tablish (11). Let a ∈ {1, 2, . . . , m − 1} and n ∈ {m, m + 1, . . .}. For a prime p, let 

ap(n) = [np−[logp n]] (the top nonzero p-adic digit in the base-p expansion of n). We 

separate primes according to the value of ap(n). Define the set
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Pa,n := {p prime : a = ap(n), m ≤ p ≤ n}.

Consider the sum

γ(n) :=
∑

p : m≤p≤n,
ap(n)<m

(m − ap(n)) log p =
m−1∑

a=1

∑

p∈Pa,n

(m − a) log p.

Note that

τp,m(n) ≤ max
1≤i1≤···≤im≤n

(νp(i1) + · · · + νp(im)) = m max
1≤i≤n

νp(i) = m[logp n],

and so 
∑

p<m

(
m[logp n] − τp,m(n)

)
log p = O(log n). Then by Proposition 1,

∑

p≤n

(
m[logp n] − τp,m(n)

)
log p

= O(log n) +
∑

m≤p≤n
ap(n)<m

(m − ap(n)) log p = γ(n) + O(log n). (12)

We will show that

γ(n) = (m − Hm)n + O(n exp{−α(log n)1/2} log n)

which will prove (11) in view of (12).

We claim that a prime p is in Pa,n if and only if p ≥ m and a = [np−t] for some 

t ∈ {1, 2, . . . , [log2 n]}. Indeed, if p ∈ Pa,n then a = [np−t] where t = [logp n] ∈
{1, 2, . . . , [log2 n]}. Conversely, if a = [np−t] for some t ∈ {1, 2, . . . , [log2 n]}, then a ≥ 1

implies that pt ≤ n and p ≥ m > a implies that n < pt+1. Therefore t = [logp n] and 

a = ap(n). This proves the claim. It follows that

γ(n) =

m−1∑

a=1

(m − a)

[log2 n]∑

t=1

∑

p : p≥m,
a=[np−t]

log p.

Now observe that

a = [np−t] ⇐⇒ a ≤ np−t < a + 1

⇐⇒ an−1 ≤ p−t < (a + 1)n−1

⇐⇒ (n(a + 1)−1)
1
t < p ≤ (na−1)

1
t

and thus
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γ(n) =

m−1∑

a=1

(m − a)

[log2 n]∑

t=1

∑

p : p≥m,

(n(a+1)−1)1/t<p≤(na−1)1/t

log p

= O(1) +

[log2 n]∑

t=1

m−1∑

a=1

(m − a)
(
ϑ({na−1}

1
t ) − ϑ({n(a + 1)−1}

1
t )

)

where ϑ(x) =
∑

p≤n log p. Let γt(n) denote the inner sum of the last expression for 

1 ≤ t ≤ [log2 n] so that γ(n) = O(1) +
∑[log2 n]

t=1 γt(n). Then

γt(n) = mϑ({ n
1 }1/t) − ϑ({ n

1 }1/t) − ϑ({ n
2 }1/t) − · · · − ϑ({ n

m}1/t).

By (8) there is a positive constant α such that

ϑ({ n
a }1/t) = (n

a )1/t + O(n1/t exp{−α(log n)1/2}).

Therefore

γ1(n) = (m − Hm)n + O(n exp{−α(log n)1/2}).

Since n1/t = O(n exp{−α(log n)1/2}) for t ≥ 2, we get that

γ(n) = γ1(n) + O(n exp{−α(log n)1/2} log n)

= (m − Hm)n + O(n exp{−α(log n)1/2} log n). �

Remark. The proof shows that any improved bound ϑ(x) − x = O(f(x)) would lead to 

an improved bound of the form nHm−∑
p≤n τp,m(n) log p = O(f(n) log n). In particular, 

if the Riemann hypothesis is true then for any ε > 0,

∑

p≤n

τp,m(n) log p = nHm + O(n1/2+ε log n).

5. Proof of Theorem 1

In this section we combine the local and global calculations from §3 and §4 to prove 

the main theorem of the paper. It is easy to work with a general number field in place 

of Q, and we choose to do so for the sake of generality. Let K be a finite extension of Q

of degree d. Let MK denote the set of places of K. For any place v ∈ MK let dv denote 

the local degree at v.

Lemma 3. Let s : N → K be a function and let S ⊂ MK be a finite set containing the 

archimedean places. Suppose that
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(i) δms is S-integer-valued,4 and

(ii) for each v in S there is a positive number ρv such that |c(n)|v � ρn
v .

If

∏

v∈S

ρdv
v < ed

(
1+

1
2 +···+ 1

m

)
(13)

then s(n) is a polynomial in n.

Proof. By Lemma 1 the conclusion is equivalent to c being eventually zero, so for the 

sake of contradiction suppose that c has infinitely many nonzero terms.

Let v be a place of K not in S, pv the rational prime v lies over, σv a representative 

embedding for v, and dv the local degree at v. By Theorem 3, |c(n)|v = |σvc(n)|pv
≤

p
−τpv,m(n)
v for n ≥ m, and so

∏

v /∈S

|c(n)|dv
v ≤

∏

v /∈S

p
−dvτpv,m(n)
v . (14)

Note that both sides amount to finite products (τpv,m(n) = 0 if pv > n).

Recall that the sum of local degrees at all places lying over a given prime is the global 

degree, and also that τp,m(n) = O(log n). Then

∑

v /∈S

dvτpv,m(n) log pv =
∑

pv≤n

dvτpv,m(n) log pv −
∑

v∈S

dvτpv,m(n) log pv

= d
∑

p≤n

τp,m(n) log p + O(log n).

Then with the help of Theorem 4 we see that

∑

v /∈S

dvτpv,m(n) log pv = dnHm + o(n).

Putting this together with (14) obtains

lim sup
n→∞

∏

v /∈S

|c(n)|dv/n
v ≤ e−dHm .

Let ni be chosen so that c(ni) �= 0 for all non-negative integers i. With the help of 

the product formula, 
∏

v∈MK
|c(ni)|dv

v = 1, we obtain

∏

v∈S

ρ−dv
v ≤ lim inf

i→∞

∏

v∈S

|c(ni)|−dv/ni
v = lim sup

i→∞

∏

v /∈S

|c(ni)|dv/ni
v ≤ e−dHm .

4 i.e., δms(n) is v-integral for all n ∈ ∆m and v /∈ S.
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This contradicts (13) and concludes the proof. �

Now we will prove a generalization of Theorem 1. In addition to the integrality of 

higher divided differences we will simultaneously consider p-adic analytic interpolation, 

i.e. the existence of a power series f(x) ∈ Cp�x� which converges for all x ∈ D<R
p :=

{x ∈ Cp : |x|p < R} such that R > 1 and f(n) = σvs(n) for all n ≥ 0, where σv is a 

representative embedding for v.

Theorem 5. Let s : N → K be a function, let S ⊂ MK be a finite set containing the 

archimedean places M∞
K , and let T ⊂ MK be a finite set disjoint from S. Suppose that

(i) δms is (S ∪ T )-integer-valued,

(ii) for each v in S there is a positive number θv such that |s(n)|v � θn
v , and

(iii) for each v in T there is a positive number Rv > 1 such that σvs extends to a p-adic 

analytic function D<Rv
pv

→ Cpv
.

If

∏

v∈M∞

K

(1 + θv)dv

∏

v∈S\M∞

K

max{1, θv}dv

∏

v∈T

(p
1

pv−1

v Rv)−dv < ed
(
1+

1
2 +···+ 1

m

)
(15)

then s(n) is a polynomial in n.

Proof of Theorem 5. By Lemma 3 we see that s is polynomial if for each v ∈ S ∪T there 

are positive constants Dv and ρv such that

|c(n)|v ≤ Dvρn
v for all n ≥ 0 (16)

and

∏

v∈S∪T

ρdv
v < edHm . (17)

We can construct the Dv and ρv as follows. First suppose that v is a nonarchimedean 

place in S. As |s(n)|v � θn
v by hypothesis, there is a positive constant Dv such that

|c(n)|v ≤ max
0≤k≤n

|s(k)|v ≤ max
0≤k≤n

Dvθk
v =

{
Dv if θv < 1,

Dvθn
v if θv ≥ 1.

In either case we can take ρv = max{1, θv}. Now suppose v is a archimedean place in S. 

We have that

|c(n)|v ≤
∑

0≤k≤n

(
n

k

)
|s(k)|v.
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Therefore for some positive constant Dv we have that |c(n)|v ≤ Dv(1 + θv)n, so we can 

take ρv = 1 + θv. Then (16) is satisfied for every v in S.

Now we consider the places v in T . By hypothesis, for any place v in T there exists a 

power series fv(x) ∈ Cp�x� converging on D<Rv
pv

such that σvs(n) = fv(n) for all n ≥ 0. 

Without loss of generality, we may assume that fv converges on a disk of radius strictly 

larger than Rv for all v ∈ T since the inequality (15) remains valid even if Rv is replaced 

with a sufficiently close but smaller quantity; thus, there is an ε > 0 such that for all 

v in T , fv converges on an open disk of radius Rv + ε. With the help of a theorem of 

Iwasawa (cf. [5], Theorem 3), we see that

lim
n→∞

|c(n)|vr−n = 0 (18)

for any real number r such that

p
−1

pv−1

v (Rv + ε)−1 < r. (19)

Then (18) implies that |c(n)|1/n
v > r for only finitely many n, and thus

lim sup
n→∞

|c(n)|1/n
v ≤ r.

This shows that for every v ∈ T there are positive constants Dv, ρv satisfying (16), 

and additionally that ρv ≤ r. As r was arbitrary subject to (19), we may suppose 

r ≤ p
−1

pv−1

v R−1
v . Therefore the constants Dv, ρv may be chosen to satisfy (16) as well as 

the inequality

∏

v∈T

ρdv
v ≤

∏

v∈T

(p
1

pv−1

v Rv)−dv . (20)

Putting (20) together with the constructed ρv for v in S shows that

∏

v∈S∪T

ρdv
v ≤

∏

v∈M∞

K

(1 + θv)dv

∏

v∈S\M∞

K

max{1, θv}dv

∏

v∈T

(p
1

pv−1

v Rv)−dv .

This inequality shows that (15) implies (17) and concludes the proof. �

Corollary 2. Let s : N → K be a function. Suppose that

(i) δms takes values in the ring of integers of K, and

(ii) for each v ∈ M∞
K there is a positive number θv such that |s(n)|v � θn

v .

If

∏

v∈M∞

K

(1 + θv)dv < ed
(
1+

1
2 +···+ 1

m

)
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then s(n) is a polynomial in n.

Proof of Corollary 2. Take S = M∞
K and T = ∅ in Theorem 5. �

Proof of Theorem 1. Take K = Q in Corollary 2. �

Remark. It is well-known that a power series a0 + a1x + a2x2 + · · · is the expansion of 

a rational function if and only if there exists a positive integer N such that

c(n) := det(an+i+j)N
i,j=0 (21)

is zero for all sufficiently large n. Theorem 5 may be applied to the sequence s whose finite 

differences are given by (21) to obtain a generalization of Theorems 2 and 3 of [3]. We 

have not emphasized this application however as hypotheses (i) and (iii) of Theorem 5

do not appear to be natural conditions on power series.

6. Integrality of divided differences

In this section we give two interpretations of the integrality of higher divided differ-

ences. Our first interpretation generalizes the observation that the first divided difference 

δ1s of a function s : N → Q is integer-valued if and only if s preserves all congruences. 

Roughly speaking, our first interpretation says that a function whose mth divided differ-

ence is integral is locally approximated to mth order by polynomials. Here ‘locally’ refers 

to the topology on N inherited from its inclusion into the ring of adeles. In this topology, 

the open neighborhoods are infinite arithmetic progressions and small neighborhoods are 

infinite arithmetic progressions with highly divisible periods.

If U ⊂ N is a subset, g : U → Q is any function, and ε is an integer, we write

g(n) = O(ε)

to mean g(n) ∈ εZ for all n ∈ U . For example, g = O(1) if and only if g is integer-valued.

Proposition 2. Suppose s : N → Q is a function whose mth divided difference is integer-

valued. Let U = n0 + Nε ⊂ N be any infinite arithmetic progression. Then there is a 

polynomial f(x) ∈ Q[x] of degree less than m such that

s|U (n) = f |U (n) + O(εm).

Furthermore, the denominators of the coefficients of f(x) are divisors of

C =
∏

p prime

sup
{∣∣ c(0)

0!

∣∣
p
,
∣∣ c(1)

1!

∣∣
p
, . . . ,

∣∣ c(m−1)
(m−1)!

∣∣
p
, 1

}

where c(n) :=
∑n

k=0

(
n
k

)
(−1)n−ks(k), and
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gcd(f(n) : n ∈ U) = gcd(εkk! · δks(n0, n1, . . . , nk) : 0 ≤ k < m).

Proof. We make use of a classical interpolation formula due to Newton (cf. e.g. [7], §1). 

Let {n0, n1, . . .} ⊂ Q be an infinite subset and let s : {n0, n1, . . .} → Q be a function. 

Then for all n ∈ {n0, n1, . . .},

s(n) = s(n0) +

∞∑

k=1

δks(n0, n1, . . . , nk)

k−1∏

j=0

(n − nj) (finite sum). (22)

Set nk := n0 + kε for k ∈ N. From (22) we obtain that

s(n) = f(n) +

∞∑

k=m

δks(n0, n1, . . . , nk)

k−1∏

j=0

(n − nj) for all n ∈ U (23)

where f(x) := s(n0) +
∑m−1

k=1 δks(n0, n1, . . . , nk) 
∏k−1

j=0 (x − nj) ∈ Q[x].

We claim that for any integer k ≥ m and a, a0, a1, . . . ∈ U ,

δks(a0, a1, . . . , ak)

k−1∏

j=0

(a − aj)

is integral and divisible by εm. We proceed by induction on k. The case k = m is true 

by assumption. Suppose k > m. By the recursive formula for divided differences (cf. [7], 

§1),

δks(a0, . . . , ak) = (a1 − a0)−1(δk−1s(â0, a1, . . . , ak) − δk−1s(a0, â1, . . . , ak))

(the ̂· indicates an omission). Then

δks(a0, a1, . . . , ak)

k−1∏

j=0

(a − aj) =

( a−a0

a1−a0
)
{

δk−1s(â0, a1, . . . , ak)
∏

j∈{1,...,k−1}
(a − aj)

}

− ( a−a1

a1−a0
)
{

δk−1s(a0, â1, . . . , ak)
∏

j∈{0,2,...,k−1}
(a − aj)

}
.

By the inductive hypothesis, and the fact that δk−1s is a symmetric function, each of the 

two terms in {·}-brackets is integral and divisible by εm. The remaining two factors are 

integers, and we have proven the claim. It follows from (23) that s(n) − f(n) is integral 

and divisible by εm for any n ∈ U .
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The explicit bound on the denominators of f follows from Corollary 1. For the last 

claim, it is well-known that the binomial polynomials {
(

y
j

)
}j≥0 form an orthonormal 

Banach basis of C(N, Qp) for all p. Observe that

f(x) = f̃(y) = s(n0) +
m−1∑

k=1

εkk! · δks(n0, n1, . . . , nk)

(
y

j

)
where y :=

x − n0

ε
.

Therefore

gcd(f(n) : n ∈ U) = gcd(f̃(n) : n ∈ N)

= gcd(εkk! · δks(n0, n1, . . . , nk) : 0 ≤ k < m). �

Integrality of δ1s implies that for all primes p and integers m, n ∈ N,

|s(m) − s(n)|p ≤ |m − n|p.

In other words, δ1s is Z-valued if and only if s is Lipschitz continuous with Lipschitz 

constant 1 for every p-adic metric on N. Our second interpretation of the integrality of 

higher divided differences generalizes this observation.

Proposition 3. Let s : N → Qp be a function and let m be a positive integer. Suppose that 

‖δms‖p ≤ 1. Then s extends to an element f of Cm−1(Zp, Qp) and f (m−1) is Lipschitz 

continuous with Lipschitz constant |(m − 1)!|p.

Here we mean strict differentiability (cf. [9], §29).

Proof. For m = 1 this was already explained just before the proposition. Assume m ≥ 2. 

By the recursive formula for divided differences (cf. [7], §1),

|δm−1s(a0, . . . , am−1) − δm−1s(a1, . . . , am)| ≤ |a0 − am|

for all (a0, . . . , am) ∈ ∆m. Thus,

|δm−1s(ai; aij) − δm−1s(aj ; aij)| ≤ |ai − aj | (24)

where 0 ≤ i < j ≤ m and aij := (a0, . . . , âi, . . . , âj , . . . , am) ∈ ∆m−2 (the ̂· indicates an 

omission).

We equip Zm
p with the metric given by

d(x, y) := max
1≤i≤m

|xi − yi|p.

We will show that δm−1s is Lipschitz continuous for this metric on the dense subset 

∆m−1 ⊂ Zm
p . By a limiting argument, it suffices to show the Lipschitz condition for 
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δm−1s on elements x = (x1, . . . , xm) and y = (y1, . . . , ym) in ∆m−1 such that x ∩ y = ∅. 

Define z0 := x, zm := y, and

zi := (x1, x2, . . . , xm−i, ym−i+1, . . . , ym) ∈ Zm
p for 0 < i < m.

Then d(zi, zi+1) = |xm−i − ym−i|p for 0 ≤ i < m. Since zi and zi+1 differ by only one 

coordinate and x ∩ y = ∅, we may apply (24). We conclude that

|δm−1s(zi) − δm−1s(zi+1)|p ≤ |xm−i − ym−i|p = d(zi, zi+1)

for 0 ≤ i < m. Using δm−1s(z0) − δm−1s(zm) =
∑m−1

i=0 (δm−1s(zi) − δm−1s(zi+1)) shows 

that

|δm−1s(x) − δm−1s(y)|p ≤ max
0≤i<m

|δm−1s(zi) − δm−1s(zi+1)|p

≤ max
0≤i<m

|xm−i − ym−i|p

= d(x, y).

We have shown that δm−1s is Lipschitz continuous on a dense subset of Zm
p , so there is 

a unique Lipschitz continuous extension δ̃m−1s : Zm
p → Cp of δm−1s. Therefore s extends 

to a (m − 1)-times strictly differentiable function f : Zp → Qp satisfying

f (m−1)(a) = (m − 1)! · δ̃m−1s(xa)

where xa := (a, a, . . . , a) (cf. [9], §29). By Lipschitz continuity of δ̃m−1s we get that

|f (m−1)(a) − f (m−1)(b)| ≤ |(m − 1)!|pd(xa, yb) = |(m − 1)!|p|a − b|p. �

Corollary. Let s : N → Q be a function and suppose that δm+1s is Z-valued for a non-

negative integer m. Then for every prime p, the function s extends to an m-times strictly 

differentiable function fp : Zp → Qp such that f
(m)
p is Lipschitz continuous with Lipschitz 

constant |m!|p.
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