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Abstract—To perform chip-level thermal simulation effectively 
for large-scale processors with multicores/manycores, a multi-
block model enabled by proper orthogonal decomposition (POD) 
and domain decomposition is applied. This approach partitions a 
large-scale processor into smaller building blocks, such as cores, 
caches, I/O units, etc. For each building block, a set of temperature 
solution data accounting for parametric variations of interest is 
collected individually from FEniCS, a finite element simulation 
platform, to extract its basis functions (or POD modes). Using 
smaller building blocks, the multi-block approach significantly 
enhances the computational efficiency of POD mode generation to 
construct a POD model for the entire chip. In this work, a set of 
POD modes is trained by the solution data from each of two 
selected building blocks, a core and a level-2 cache, of AMD Athlon 
II X4 610e, a quad-core chip.  A two-block POD thermal model is 
developed for Core 1 and L2 Cache by projecting these two blocks 
to a functional space represented by these 2 sets of POD modes. 
The discontinuous Galerkin method with the penalty number is 
applied to ensure the boundary continuity at the block interface. 
An optimal range of the penalty number for the two-block POD 
thermal model has been observed to provide an accurate 
prediction of the dynamic thermal distribution in Core 1 and L2 
Cache. For the two-block POD model, a least square error below 
3% is achieved with only 3 POD modes in each block. This results 
in a reduction in the numerical degrees of freedom by almost 4 
orders in magnitude and thousands of times faster than FEniCS 
for the thermal simulation. 

Keywords—Multicore CPUs, thermal simulation, proper 
orthogonal decomposition, hot spots, reduced order model.  

I. INTRODUCTION 
Artificial intelligence (AI) and machine learning (ML) have 

been widely used in most of domains of technology [1], [2]. The 
models used in AI and ML are trained by processing millions of 
crawled data giving rise to considerable demand for high-
performance processors [1]  To satisfy the need, more cores are 
integrated on a semiconductor chip, and the density of 
transistors and power dissipation have been increasing 
dramatically in recent years, which has led to high temperature 
and hot-spot generation due to severe joule heating.  High 
temperature and hot spots contribute to not only degradation of 
performance but also deterioration of reliability [3],[4]. To 
reduce temperature and suppress hot spots in high-performance 

processors, the general practice is to apply effective thermal-
aware task scheduling and thermal management, which however 
requires effective and accurate chip-level thermal-simulation 
techniques.  

Several approaches have been developed for the thermal 
simulation of semiconductor chips; each of them offers a 
different level of efficiency and accuracy. Among these 
approaches, direct numerical simulations (DNSs) based on 
either the finite element method (FEM) or finite difference 
method (FDM) provide accurate and detailed thermal analysis 
at the expense of a large number of degrees of freedom (DoF).  
Many open-source or commercial DNS tools are available for 
such applications, for example, FEniCS [5], ANSYS [6], 
COMSOL [7], etc. These DNSs, although offering accurate 
thermal solution with fine resolution, demand extensive 
computational resources and are impractical for chip-level 
thermal simulations.  

To conduct the chip-level thermal simulation efficiently, the 
lumped RC thermal circuit model has been used to predict the 
thermal profile in large-scale semiconductor chips; for example, 
the block model of HotSpot [8]–[10] is one of most popular 
thermal simulators using the compact RC thermal model for 
chip-level thermal simulations. Due to the large RC lumped 
element, the RC thermal circuit model is not able to capture the 
small-size hot spots in semiconductor chips but only offers 
average temperatures for the large RC elements.  With the 
approximation associated with large lumped element, heat flux 
at the element interfaces cannot be estimated accurately. The 
accuracy of the block model of HotSpot has been challenged due 
to the inaccurate thermal prediction for some floorplans, 
compared to DNS [11]. To improve the accuracy of the block 
model of HotSpot, the grid model of HotSpot [12] was 
developed, where smaller elements are allowed to provide a 
more detailed/accurate temperature prediction. However, when 
using very small elements for better accuracy, the grid model of 
HotSpot is equivalent to the FDM and becomes prohibitive for 
chip-level simulation. 

To enhance the efficiency of chip-level thermal simulations, 
another strategy is to develop a spatial impulse response (or the 
Green’s function)[13]–[15] of the selected chip. The Green’s 
function is usually pre-trained by the thermal solution derived 
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from DNS in response to a unit point heat source at the center of 
the chip. The spatial temperature solution is then obtained by a 
convolution of the pre-trained Green’s function with the power 
profile. However, for the Green’s function method, it is difficult 
to apply boundary conditions (BCs) [13], [14]  or to perform 
transient thermal simulation [13], [15]. In addition, the training 
of the Green’s function using DNS of the entire chip is 
extremely time consuming [13], especially if a high resolution 
is needed to capture the localized hot spots. As the technology 
node is further reduced and more cores are integrated on a chip, 
the computation of the Green’s function is becoming more 
intensive and impractical for developing such a thermal model 
for the entire chip, especially when a high resolution is needed.   

An alternative is to use a reduced-order simulation model 
enabled by a data-driven approach based on proper orthogonal 
decomposition (POD) [16], [17]. This approach projects a 
dynamic thermal problem from the physical domain onto a 
functional space (POD space) described by a finite set of basis 
functions (also called POD modes). To derive an optimal set of 
modes, dynamic thermal data accounting for parametric 
variations of interest, such as variations of heat excitations and 
BCs, are obtained from DNSs to train the POD modes. The POD 
model constructed by these trained robust modes is therefore 
able to respond accurately to the parametric variations within or 
near the training conditions with a very small number of DoF. 
In addition to the high accuracy and efficiency, the POD model 
also offers the temperature profile as detailed as DNS.  

The POD simulation approach has been shown to be 
effective in many areas of research [18]–[27]including thermal 
simulations of integrated circuits and CPUs [20]–[22], [27].  
However, similar to the problem encountered in the pre-training 
of the Green’s function, a long simulation time and massive 
thermal data needed to train the POD modes become prohibitive 
for larger chips with high resolutions. To overcome the 
difficulty, the multi-block POD methodology is proposed for 
large-scale chips, such as multicore/manycore processors. In the 
multi-block POD model, the domain decomposition technique 
is implemented to partition a large semiconductor chip into 
smaller building blocks, such as cores, caches, I/O units, etc. For 
each small block, a set of POD modes and the model parameters 
can be generated more efficiently and stored into a technology 
library. The POD model for the entire chip can then be 
constructed by gluing these POD blocks with the discontinuous 
Galerkin (DG) method [28], [29]. This method is applied to 
stabilize the numerical solution at the interface by enforcing the 
heat flux continuity but allowing a small temperature 
discontinuity (i.e., the weak boundary condition) in an average 
sense at the interface between any 2 neighboring blocks. With 
the multi-block POD model for a large chip partitioned into a 
large number of building blocks, parallel computing can also be 
implemented in POD mode generation and thermal simulation 
to further enhance the computational efficiency. 

Continuing a previous study [27], this work investigates a 
two-block POD model that projects two building blocks (Core 1 
and its adjacent L2 cache) in AMD Athlon II X4 610e [30] to a 
POD space described by the 2-block POD modes. For each 
building block, DNSs are performed in FEniCS [5], an open-
source FEM platform, to collect temperature data for the 
extraction of POD modes. The two-block POD model is 

demonstrated and verified against the DNS, and it has shown 
that the POD results are in very good agreement with the DNS 
with almost 4 orders reduction in the DoF. 

II. THERMAL SIMULATION METHODOLOGY BASED ON POD 

A. Single-block model 
Using the POD method, the physical domain is projected 

onto a mathematical space represented by a finite number of 
POD modes. Temperature in space and time  𝑇(𝑟, 𝑡)	can then be 
represented by a linear combination of the selected POD modes  
𝜑! as 

𝑇(𝑟, 𝑡) = 	+𝑎!(𝑡)
"

!#$

𝜑!(𝑟), (1) 

where 𝜑!  is the i-th POD mode, M is the number of selected 
POD modes which determines the accuracy and efficiency of the 
POD approach and 𝑎!(𝑡) is the time-dependent coefficient of 
the i-th POD mode.  

  To obtain an optimal set of the POD modes, each POD mode 
is obtained by maximizing the mean square inner product of the 
thermal solution with the modes via the following equation 

〈/∫ 𝑇(𝑟, 𝑡)𝜑𝑑Ω	
& 3'〉
∫ 𝜑'	
& 𝑑Ω

, (2) 

where Ω is the physical domain of the selected structure and the 
brackets 〈	〉  denote the average over the collected thermal 
solution data. For dynamic thermal simulation, the average is 
computed over temporal samples (snapshots) obtained from 
DNSs.  The maximization process in (2) gives rise to a Fredholm 
equation shown below for the POD modes, 

6 𝐑(𝑟, 𝑟()
	

)⃑!
𝜑8⃑ (𝑟()𝑑𝑟⃑( = 	𝜆𝜑8⃑ (𝑟⃑), (3) 

where 𝐑(𝑟⃑, 𝑟() is a two-point correlation tensor expressed as 

𝐑(𝑟, 𝑟⃑() = 	 〈𝑇(𝑟, 𝑡) ⊗ 𝑇(𝑟(, 𝑡)〉. (4) 

With the temperature data  𝑇(𝑟, 𝑡)	of the simulation domain 
collected from DNSs, the method of snapshots [25], [26] is 
applied to solve the eigenvalue problem in (3) for the 
eigenvalues 𝜆! and POD modes 𝜑!.  
 With the generated POD modes, the heat conduction 
equation can be projected onto a POD space represented by the 
POD modes using the Galerkin projection,  

6 >𝜑!(𝑟⃑)
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,
		 (5) 

where 𝑘  is thermal conductivity, 𝜌  is the density, 𝐶  is the 
specific heat, 𝑃+(𝑟⃑, 𝑡) is the power density, 𝑆 is the boundary 



surface of the selected domain and 𝑛8⃑  is the outward normal 
vector of boundary surface.  Substituting (1) into (5), it leads to 
an M-dimensional ordinary differential equation (ODE) for 
𝑎!(𝑡),   

+𝑐!,.
M

j=1

daj
dt

+	+𝑔!,.
M

j=1

aj =𝑃! ,     i = 1  to M, (6) 

where 𝑃! representing the last 2 terms of (5) for the i-th mode is 
the power density dissipated in the POD space and can be pre-
evaluated since the shape of power density is predefined, and 
𝑐!,. and 𝑔!,. are the elements of thermal capacitance and thermal 
conductance matrices in the POD space and defined as 

𝑐!,. =	6𝜌𝐶𝜑8⃑ !𝜑8⃑ .𝑑Ω
	

&
, 𝑔!,. = 6𝑘∇𝜑8⃑ !∇𝜑8⃑ .𝑑Ω.

	

&
	 (7) 

Once 𝑎. is determined from (6), the temperature solution can be 
evaluated from (1). 

As presented above, the POD model development consists 
of thermal data collection from DNS, calculations of POD 
modes and eigenvalues from (3) using the snapshot method, and 
evaluations of model parameters in (7).  This training process 
could be computationally intensive for a large simulation 
domain with a high resolution. To minimize the computational 
resources in the training, the large domain is partitioned into 
smaller building blocks, which is presented next.   

B. Multi-block model 
When placing block together, the last term of (5) needs to be 

reformulated to account for heat flux across the interface 
between adjacent blocks.   The DG method [28], [29] is applied 
to properly enforce the interface thermal continuity, and (5) for 
the multi-block model becomes  
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where  ⟦∗⟧ and {∗}  indicate difference and average across 
interface, respectively, and 𝜇 is the penalty constant defined as 
𝑁0 𝑑𝑟⁄  (𝑑𝑟 is the size of the local element with  Nµ as the penalty 
number). 𝑆 is the interface surface between two adjacent blocks. 
Nµ can be adjusted to balance discontinuities between 
temperature and heat flux at the interface to minimize the least 
square (LS) error and to stabilize the numerical solution.  

 For a two-block POD model including the heat flux 
exchanges via the interface, the matrix equation for both POD 
blocks becomes 

\𝑪$ 𝟎
𝟎 𝑪'

_
𝑑
𝑑𝑡 \

𝑎⃑$(𝑡)
𝑎⃑'(𝑡)

_ + `
𝑮$ + 𝑮$,1",$ 𝑮$,'

𝑮',$ 𝑮' + 𝑮',1$,"
b \𝑎⃑$

(𝑡)
𝑎⃑'(𝑡)

_

= `𝑃
8⃑$
𝑃8⃑'
b , (9)

 

where 𝐵2,3 indicates the interface between 𝑝-th and 𝑞-th blocks. 
𝑪2and 𝑮2 are the thermal capacitance and thermal conductance 
matrices of 𝑝-th blocks and their elements are given by (7).  
Compared to the thermal conductance matrices of single-block 
model, an extra thermal conductance matrix, 𝑮!,#!,#, is included 
for 𝑝-th block to consider the effect of 𝑞-th block with respect 
to temperature and heat flux at the interface 𝐵2,3 and is given as 

𝑮2,1%,& =	

⎣
⎢
⎢
⎡
𝑔2,1%,&,$,$ 𝑔2,1%,&,$,' ⋯ 𝑔2,1%,&,$,"%
𝑔2,1%,&,',$ 𝑔2,1%,&,',' ⋯ 𝑔2,1%,&,',"%

⋮ ⋮ ⋱ ⋮
𝑔2,1%,&,"%,$ 𝑔2,1%,&,"%,' ⋯ 𝑔2,1%,&,"%,"%⎦

⎥
⎥
⎤
, (10) 

where 𝑀2 is the number of selected POD mode of 𝑝 −th block, 
and the element of 𝑮!,#!,# is given by 

𝑔2,1%,&,!,. =	−𝑘6 >
1
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1
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In the matrix equation (9), the 𝑝-th block is coupled with its 
adjacent 𝑞 -th block via 𝑮2,3 . If 𝑝 -th block is not directly 
adjacent with 𝑞-th block, 𝑮2,3 = 𝟎. Otherwise, it is given as  

𝑮2,3 =	

⎣
⎢
⎢
⎡
𝑔2,3,$,$ 𝑔2,3,$,' ⋯ 𝑔2,3,$,"%
𝑔2,3,',$ 𝑔2,3,',' ⋯ 𝑔2,3,',"%
⋮ ⋮ ⋱ ⋮

𝑔2,3,"&,$ 𝑔2,3,"&,' ⋯ 𝑔2,3,"&,"%⎦
⎥
⎥
⎤
, (12) 

where 𝑀3  is the number of selected modes of 𝑞-th block and 
𝑔!,$,%,& is given by 

𝑔2,3,!,. =	−𝑘6 >−
1
2𝜑3,. ∙ ∇𝜑2,! +

1
2𝜑2,! ∙ ∇𝜑3,.G 𝑑𝑆

	

,
−

𝑘6𝜇𝜑2,!𝜑3,.𝑑𝑆.
	

,
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III. CHIP-LEVEL THERMAL SIMULATION USING MULTI-BLOCK 
POD MODEL  

The AMD ATHLON II X4 610e processor is selected in this 
investigation, which consists of four cores, two L2 caches, one 
northbridge, three I/O units and one DDR3 module, as shown in 
Fig. 1. The dimension of the quad-core chip is 14mm × 12mm 
× 242µm (length×width×thickness) and the material property 
is listed in Table I. In the single-block model, the thermal 
simulation is performed via DNSs over the entire chip to collect 
temperature data and it is, as discussed above, computationally 
intensive for a large chip with a high resolution. In the multi-



block model, the temperature data is, however, independently 
collected for each building block in the entire domain. The 
dynamic power map is applied to the top layer (named the device 
layer hereafter) of the chip with the device layer thickness of 
55.8 µm. For data collection of each building block, the thermal 
simulation is performed over the simulation domain that consists 
of the green blocks and the building block shown  in Fig. 1. The 
simulation domain for data collection of each embedded 
building block is shown in Fig. 2. In such a setting, solution data 
collected from each building block is able to account for the 
variation of the block BCs induced by the power excitations 
outside the block.  

TABLE I.  TEMPERATURE INDEPENDENT MATERIAL PROPERTY. 

Specific heat, C Density, 𝝆 Thermal 
conductivity, k 

751.1 (J/(kg∙K)) 2330 (kg/m3) 100 (W/(m∙K)) 

 

All outer surfaces of the simulation domain for data 
collection are assumed adiabatic except for the bottom where the 
convection BC is implemented with a constant heat transfer 
coefficient and an ambient temperature 𝑇456 of 45℃.  The outer 
boundary surface of the simulation domain is 3 mm from the 
building block. The dynamic power density in each building 
block is randomly generated in time; in each time step, it 
represents an averaged power density over 48k CPU cycles at 
3.5 GHz with a total power approximately equal to 8.9 W for L2 
cache and 16 W for Core 1. In the surrounding of each building 
block, the dynamic power density is generated with a different 
random sequence, which offers the variation of the interface flux 
on each side of the building and allows the POD modes to adapt 
the realistic BC variation to construct a more effective POD 
model. 

In this work, collection of thermal data in the CPU domain 
for training POD modes and calculations of POD model 
coefficients in (10)-(13) are carried out in FEniCS-FEM. The 
solution of the ODE matrix equation in (9) and post-processing 
calculations for the predicted temperature in (1) are performed 
in C++ using solvers in the PETSc library. 

 
Fig. 1. Floorplan of the AMD ATHLON II X4 610e CPU and schematic of the 
simulation domains for the building blocks.  

A. Temperature data collection  
In this work, L2 Cache and Core 1 of the quad-core chip are 

selected as Block 1 and Block 2, respectively, as shown in Fig. 
1 and 2. The dynamic thermal simulation is performed for each 
of Block 1 and Block 2 in FEniCS-FEM independently to collect 
dynamic temperature data of each building block to generate its 
eigenvalues and POD modes. The eigenvalue represents the 
mean squared temperature variation captured by the 
corresponding POD mode, and therefore its spectrum reveals the 
information on the number of POD modes needed to offer 
accurate temperature solution. The eigenvalue spectrums of two 
building blocks are shown in Fig. 3.  For both Block 1 and Block 
2, a reduction in the eigenvalue by two orders of magnitude is 
observed from the first to the second mode and a decrease by 
four orders from the first to the third mode. Based on the rapid 
reduction in the eigenvalue for the first few modes, it is expected 
that the two-block POD model with a small number of modes is 
able to offer an accurate prediction of dynamic temperature 
solution. However, the expectation can be achieved only if the 
quality of the data collected from the DNSs is reasonably good.  

 

Fig. 2. Temperature contours (relative to the ambient temperature 45 °C) in the 
simulation domain. 

 

Fig. 3. Eigenvalue spectrum of the thermal data collected from the selected 
building blocks. 



B. Verification of the multi-block model   
To demonstrate the validity of the two-block POD model, 

thermal simulation based on (9) for the domain consisting of 
Core 1 (Block 2) and its adjacent L2 Cache (Block 1), shown in 
Fig. 1, is performed. The dynamic power density applied to each 
of the 2 blocks is generated using a random sequence different 
from those used in the POD mode training. The adiabatic BCs 
are applied to all surfaces except for the bottom of the chip 
where a constant heat transfer coefficient is implemented with 
an ambient of 45oC.  Thermal simulation is also performed via 
FEniCS-FEM with identical settings including heat sources and 
BCs to validate the accuracy of the two-block POD model. In 
this demonstration, a same number of POD modes is used in 
both blocks. 

The LS error estimated from the equation below for the two-
block POD model is a function of the number of POD modes.  

𝑒𝑟𝑟7, = t
∑ ∫ 𝑒!'(𝑟)𝑑Ω

	
&

8'
!#$

∑ ∫ (𝑇!(𝑟) − 𝑇456)'𝑑Ω
	
&

8'
!#$

, (14) 

where the index i denotes the time step (snapshot), and 𝑇!(𝑟) and 
𝑒!(𝑟⃑) are the temperature solution from FEniCS-FEM and the 
temperature difference between FEniCS-FEM and the POD 
model, respectively.  For the two-block POD model, the DG 
method with an adjustable penalty number 𝑁0 [28], [29] is used 
to enforce the thermal continuity across the interface between 
Core 1 and L2 Cache. The effect of penalty number on the LS 
error is shown in Fig. 4 for the two-block POD model. It is 
observed that, when using 2 or more modes in the POD model, 
the LS error reaches a minimum value with Nµ near 7. The LS 
error vs. the number of modes with Nµ = 7 is thus plotted in Fig. 
5. It is interesting to observe in Figs. 4 and 5 that the 2-block 
POD model with 3 modes actually offers a better accuracy than 
that with 4 – 7 modes. With Nµ = 7, an LS error as small as 2.9% 
can be reached and it fluctuates around 3% - 3.1% beyond 3 
modes.  Based on Fig. 4 when using the 3-mode POD model, the 
penalty number should be within 4 ≤ 	𝑁0 	≤ 10 to reach an LS 
error below 3%.  

 The POD simulation demonstrated above reveals a 4-order 
reduction in the numerical DoF, compared to FEniCS-FEM, 
which results in a significant saving in computing time.  The 
POD simulation includes solving the ODE in (6) and the post 
processing calculation using (1) to recover the temperature 
solution. The computational time of thermal simulation for the 
selected two blocks using FEniCS-FEM and the two-block POD 
model is shown in Table Ⅱ, where Post1 and Post2 denote the 
post-processing calculations of temperature in the entire domain 
and device layer, respectively. As shown in Table Ⅱ, thermal 
simulation based on the two-block POD model with 3 modes is 
1959 times faster than FEniCS-FEM. Practically, only the 
temperature in the device layer is required, which would offer a 
speedup of 3918 times, compared to FEniCS-FEM.  

Based on the results presented in Fig. 4, the optimal penalty 
number is Nµ = 7, and thus the detailed comparison of the 
dynamic thermal distributions obtained from FEniCS-FEM and 
the two-block POD model is given below with Nµ = 7.  As 
expected according to the eigenvalue spectrum shown in Fig. 3 

and the LS error in Fig. 5, the temperature evolution predicted 
by the two-block POD model with just 3 POD modes is in very 
good agreement with that obtained from FEniCS-FEM over the 
entire simulation time. The temperature evolution in time at the 
center of  L2 Cache is given in Fig. 6. Similarly, the dynamic 
temperature at the center of Core 1 is illustrated in Fig. 7, where 
the temperature solutions obtained from the two-block POD 
model with 3 or 5 POD modes and FEniCS-FEM almost overlap 
each other. 

TABLE II.  CONSUMPTIONAL TIME OF THERMAL SIMULATION FOR THE 
MULTI-BLOCK POD AND FENICS-FEM METHODS. 

Two-block 
POD model (s) 

Number 
of modes 1 2 3 4 5 

ODE 0.023 0.019 0.017 0.019 0.019 
Post1 0.015 0.025 0.041 0.053 0.071 
Post2 0.004 0.007 0.012 0.015 0.019 

FEniCS (s) 113.623 
 

 

Fig. 4. LS error influenced by the penalty number. 

 
Fig. 5.  LS error of the two-block POD model over the entire simulation time 
and domain.   



 
Fig. 6. Temperature evolution in time at the center of L2 Cache. In the POD 
model, Nµ = 7. 

The temperature distribution at t = 6.6 ms from L2 Cache to 
Core 1 along the centers of these 2 blocks across the interface is 
illustrated in Fig. 8. The temperature profile provided by the 
two-block POD model with 3 POD modes agrees very well with 
the temperature profile from FEniCS-FEM, which is consistent 
with the information indicated by the eigenvalue spectrum in 
Fig. 3 and the LS error in Fig. 5. Compared with the FEniCS-
FEM results in the centers of L2 Cache and Core 1, 
approximately 2.6% and 1.0% (or 0.09 °C and 0.14 °C) 
differences, respectively, are achieved when using the two-block 
POD model with 3 POD modes.   

 
Fig. 7. Temperature evolution in time at the center of Core 1. In the POD model, 
Nµ = 7. 

 
Fig. 8. Temperature distribution at 6.6ms from L2 Cache to Core 1 along the 
centers of these 2 blocks. In the POD model, Nμ = 7. 

IV. CONCLUSION 
A multi-block thermal simulation methodology enabled by 

the data-driven POD model and domain decomposition has been 
investigated. The approach has been applied to develop a two-
block POD  model for thermal simulation of 2 selected blocks, 
including Core 1 and L2 Cache, from a quad-core chip, AMD 
ATHLON II X4 610e. This study has shown that an appropriate 
penalty number Nμ is needed in the 2-block POD model to 
minimize the interface discontinuity for an optimal prediction of 
the dynamic thermal distribution in the 2-block domain. It is 
found that an LS error below 3% can be achieved for the 2-block 
POD model with 3 modes in each block if 4 ≤ 	𝑁0 	≤ 10.  This 
results in a reduction in the numerical DoF by nearly 4 orders of 
magnitude and leads to nearly 2000 times or 4000 times of 
speedup for a thermal prediction of the entire 2-block domain or 
the device layer, respectively, compared to FEniCS-FEM. 

This work initiates the development of a multi-block POD 
thermal simulation methodology at the chip level for an entire 
CPU or GPU. Such a multi-block concept offers a very efficient 
approach to generation of the POD modes and calculations the 
POD model parameters to construct a POD model for very large 
chips like multicore CPUs or many-core GPUs, especially when 
a higher resolution is needed.  All CPUs and GPUs are designed 
and constructed based on building blocks, such as cores, caches, 
I/O units, memory modules, etc., in the selected AMD 
ATHLON processor. When developing a multi-block POD 
model, a useful practice would be using these standard building 
blocks to partition the entire processor into a multi-block 
domain. For a semiconductor chip consisting of a large number 
of POD blocks, parallel computing can also be applied to further 
improve the POD simulation efficiency. 
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