Chip-level Thermal Simulation for a Multicore
Processor Using a Multi-Block Model Enabled by
Proper Orthogonal Decomposition

Lin Jiang, Anthony Dowling, Yu Liu, and Ming-C. Cheng
Department of Electrical & Computer Engineering
Clarkson University
Potsdam, NY, USA 13699
{jiangl2, dowlinah, yuliu, mcheng } @clarkson.edu

Abstract—To perform chip-level thermal simulation effectively
for large-scale processors with multicores/manycores, a multi-
block model enabled by proper orthogonal decomposition (POD)
and domain decomposition is applied. This approach partitions a
large-scale processor into smaller building blocks, such as cores,
caches, I/O units, etc. For each building block, a set of temperature
solution data accounting for parametric variations of interest is
collected individually from FEniCS, a finite element simulation
platform, to extract its basis functions (or POD modes). Using
smaller building blocks, the multi-block approach significantly
enhances the computational efficiency of POD mode generation to
construct a POD model for the entire chip. In this work, a set of
POD modes is trained by the solution data from each of two
selected building blocks, a core and a level-2 cache, of AMD Athlon
II X4 610e, a quad-core chip. A two-block POD thermal model is
developed for Core 1 and L2 Cache by projecting these two blocks
to a functional space represented by these 2 sets of POD modes.
The discontinuous Galerkin method with the penalty number is
applied to ensure the boundary continuity at the block interface.
An optimal range of the penalty number for the two-block POD
thermal model has been observed to provide an accurate
prediction of the dynamic thermal distribution in Core 1 and L2
Cache. For the two-block POD model, a least square error below
3% is achieved with only 3 POD modes in each block. This results
in a reduction in the numerical degrees of freedom by almost 4
orders in magnitude and thousands of times faster than FEniCS
for the thermal simulation.

Keywords—Multicore CPUs, thermal simulation, proper
orthogonal decomposition, hot spots, reduced order model.

I. INTRODUCTION

Artificial intelligence (AI) and machine learning (ML) have
been widely used in most of domains of technology [1], [2]. The
models used in Al and ML are trained by processing millions of
crawled data giving rise to considerable demand for high-
performance processors [1] To satisfy the need, more cores are
integrated on a semiconductor chip, and the density of
transistors and power dissipation have been increasing
dramatically in recent years, which has led to high temperature
and hot-spot generation due to severe joule heating. High
temperature and hot spots contribute to not only degradation of
performance but also deterioration of reliability [3],[4]. To
reduce temperature and suppress hot spots in high-performance
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processors, the general practice is to apply effective thermal-
aware task scheduling and thermal management, which however
requires effective and accurate chip-level thermal-simulation
techniques.

Several approaches have been developed for the thermal
simulation of semiconductor chips; each of them offers a
different level of efficiency and accuracy. Among these
approaches, direct numerical simulations (DNSs) based on
either the finite element method (FEM) or finite difference
method (FDM) provide accurate and detailed thermal analysis
at the expense of a large number of degrees of freedom (DoF).
Many open-source or commercial DNS tools are available for
such applications, for example, FEniCS [5], ANSYS [6],
COMSOL [7], etc. These DNSs, although offering accurate
thermal solution with fine resolution, demand extensive
computational resources and are impractical for chip-level
thermal simulations.

To conduct the chip-level thermal simulation efficiently, the
lumped RC thermal circuit model has been used to predict the
thermal profile in large-scale semiconductor chips; for example,
the block model of HotSpot [8]-[10] is one of most popular
thermal simulators using the compact RC thermal model for
chip-level thermal simulations. Due to the large RC lumped
element, the RC thermal circuit model is not able to capture the
small-size hot spots in semiconductor chips but only offers
average temperatures for the large RC elements. With the
approximation associated with large lumped element, heat flux
at the element interfaces cannot be estimated accurately. The
accuracy of the block model of HotSpot has been challenged due
to the inaccurate thermal prediction for some floorplans,
compared to DNS [11]. To improve the accuracy of the block
model of HotSpot, the grid model of HotSpot [12] was
developed, where smaller elements are allowed to provide a
more detailed/accurate temperature prediction. However, when
using very small elements for better accuracy, the grid model of
HotSpot is equivalent to the FDM and becomes prohibitive for
chip-level simulation.

To enhance the efficiency of chip-level thermal simulations,
another strategy is to develop a spatial impulse response (or the
Green’s function)[13]-[15] of the selected chip. The Green’s
function is usually pre-trained by the thermal solution derived
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from DNS in response to a unit point heat source at the center of
the chip. The spatial temperature solution is then obtained by a
convolution of the pre-trained Green’s function with the power
profile. However, for the Green’s function method, it is difficult
to apply boundary conditions (BCs) [13], [14] or to perform
transient thermal simulation [13], [15]. In addition, the training
of the Green’s function using DNS of the entire chip is
extremely time consuming [13], especially if a high resolution
is needed to capture the localized hot spots. As the technology
node is further reduced and more cores are integrated on a chip,
the computation of the Green’s function is becoming more
intensive and impractical for developing such a thermal model
for the entire chip, especially when a high resolution is needed.

An alternative is to use a reduced-order simulation model
enabled by a data-driven approach based on proper orthogonal
decomposition (POD) [16], [17]. This approach projects a
dynamic thermal problem from the physical domain onto a
functional space (POD space) described by a finite set of basis
functions (also called POD modes). To derive an optimal set of
modes, dynamic thermal data accounting for parametric
variations of interest, such as variations of heat excitations and
BCs, are obtained from DNSs to train the POD modes. The POD
model constructed by these trained robust modes is therefore
able to respond accurately to the parametric variations within or
near the training conditions with a very small number of DoF.
In addition to the high accuracy and efficiency, the POD model
also offers the temperature profile as detailed as DNS.

The POD simulation approach has been shown to be
effective in many areas of research [18]-[27]including thermal
simulations of integrated circuits and CPUs [20]-{22], [27].
However, similar to the problem encountered in the pre-training
of the Green’s function, a long simulation time and massive
thermal data needed to train the POD modes become prohibitive
for larger chips with high resolutions. To overcome the
difficulty, the multi-block POD methodology is proposed for
large-scale chips, such as multicore/manycore processors. In the
multi-block POD model, the domain decomposition technique
is implemented to partition a large semiconductor chip into
smaller building blocks, such as cores, caches, I/O units, etc. For
each small block, a set of POD modes and the model parameters
can be generated more efficiently and stored into a technology
library. The POD model for the entire chip can then be
constructed by gluing these POD blocks with the discontinuous
Galerkin (DG) method [28], [29]. This method is applied to
stabilize the numerical solution at the interface by enforcing the
heat flux continuity but allowing a small temperature
discontinuity (i.e., the weak boundary condition) in an average
sense at the interface between any 2 neighboring blocks. With
the multi-block POD model for a large chip partitioned into a
large number of building blocks, parallel computing can also be
implemented in POD mode generation and thermal simulation
to further enhance the computational efficiency.

Continuing a previous study [27], this work investigates a
two-block POD model that projects two building blocks (Core 1
and its adjacent L2 cache) in AMD Athlon II X4 610e [30] to a
POD space described by the 2-block POD modes. For each
building block, DNSs are performed in FEniCS [5], an open-
source FEM platform, to collect temperature data for the
extraction of POD modes. The two-block POD model is

demonstrated and verified against the DNS, and it has shown
that the POD results are in very good agreement with the DNS
with almost 4 orders reduction in the DoF.

II. THERMAL SIMULATION METHODOLOGY BASED ON POD

A. Single-block model

Using the POD method, the physical domain is projected
onto a mathematical space represented by a finite number of
POD modes. Temperature in space and time T (7, t) can then be
represented by a linear combination of the selected POD modes

@; as

M
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where ¢@; is the i-th POD mode, M is the number of selected
POD modes which determines the accuracy and efficiency of the
POD approach and a;(t) is the time-dependent coefficient of
the i-th POD mode.

To obtain an optimal set of the POD modes, each POD mode
is obtained by maximizing the mean square inner product of the
thermal solution with the modes via the following equation
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where () is the physical domain of the selected structure and the
brackets () denote the average over the collected thermal
solution data. For dynamic thermal simulation, the average is
computed over temporal samples (snapshots) obtained from
DNSs. The maximization process in (2) gives rise to a Fredholm
equation shown below for the POD modes,

ﬁ RG,7) G = 15, 3)

where R(7,7") is a two-point correlation tensor expressed as
R@, 7)) = (T(F,t) @ TG, b)). (4)

With the temperature data T (7,t) of the simulation domain
collected from DNSs, the method of snapshots [25], [26] is
applied to solve the eigenvalue problem in (3) for the
eigenvalues 4; and POD modes ¢;.

With the generated POD modes, the heat conduction
equation can be projected onto a POD space represented by the
POD modes using the Galerkin projection,
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where k is thermal conductivity, p is the density, C is the
specific heat, P, (7, t) is the power density, S is the boundary



surface of the selected domain and 7 is the outward normal
vector of boundary surface. Substituting (1) into (5), it leads to
an M-dimensional ordinary differential equation (ODE) for

a;(t),

M
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where P; representing the last 2 terms of (5) for the i-th mode is
the power density dissipated in the POD space and can be pre-
evaluated since the shape of power density is predefined, and
¢;j and g; ; are the elements of thermal capacitance and thermal
conductance matrices in the POD space and defined as

Q Q

Once q; is determined from (6), the temperature solution can be

evaluated from (1).

As presented above, the POD model development consists
of thermal data collection from DNS, calculations of POD
modes and eigenvalues from (3) using the snapshot method, and
evaluations of model parameters in (7). This #raining process
could be computationally intensive for a large simulation
domain with a high resolution. To minimize the computational
resources in the training, the large domain is partitioned into
smaller building blocks, which is presented next.

B. Multi-block model

When placing block together, the last term of (5) needs to be
reformulated to account for heat flux across the interface
between adjacent blocks. The DG method [28], [29] is applied
to properly enforce the interface thermal continuity, and (5) for
the multi-block model becomes
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where [+] and {*} indicate difference and average across
interface, respectively, and u is the penalty constant defined as
N, /dr (dr is the size of the local element with N, as the penalty
number). S is the interface surface between two adjacent blocks.
Ny can be adjusted to balance discontinuities between
temperature and heat flux at the interface to minimize the least
square (LS) error and to stabilize the numerical solution.

For a two-block POD model including the heat flux
exchanges via the interface, the matrix equation for both POD
blocks becomes

¢, 0 ] i [al (t)] + G, + 61,31,2 Gio [al (®)
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where B), ; indicates the interface between p-th and g-th blocks.
Cpand G, are the thermal capacitance and thermal conductance
matrices of p-th blocks and their elements are given by (7).
Compared to the thermal conductance matrices of single-block
model, an extra thermal conductance matrix, G, 5, , is included
for p-th block to consider the effect of g-th block with respect
to temperature and heat flux at the interface By, ; and is given as

9p.Bpq.1.1 9p.Bpq.1.2 9p.Bpq.1.Mp
c | IpBpg21r YpBpg2z2 9p.Bpq.2.Mp (10)
P.Bpq — : : : ’
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where M,, is the number of selected POD mode of p —th block,
and the element of G, 5, is given by

1 1 N
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In the matrix equation (9), the p-th block is coupled with its
adjacent g -th block via G, . If p-th block is not directly
adjacent with g-th block, G,, ; = 0. Otherwise, it is given as

Ipa11  YIpa1z2 Ip.a,1,Mp
G = Ipa21  Ipa22 Yp.q.2.my (12)
p.a : : : )
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where M, is the number of selected modes of g-th block and
9p.q,j 1S given by

1 1
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kf,ugop,igoq,de. (13)
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III. CHIP-LEVEL THERMAL SIMULATION USING MULTI-BLOCK
POD MODEL

The AMD ATHLON II X4 610e processor is selected in this
investigation, which consists of four cores, two L2 caches, one
northbridge, three I/O units and one DDR3 module, as shown in
Fig. 1. The dimension of the quad-core chip is 14mm X 12mm
X 242pm (lengthxwidthXthickness) and the material property
is listed in Table I. In the single-block model, the thermal
simulation is performed via DNSs over the entire chip to collect
temperature data and it is, as discussed above, computationally
intensive for a large chip with a high resolution. In the multi-



block model, the temperature data is, however, independently
collected for each building block in the entire domain. The
dynamic power map is applied to the top layer (named the device
layer hereafter) of the chip with the device layer thickness of
55.8 um. For data collection of each building block, the thermal
simulation is performed over the simulation domain that consists
of the green blocks and the building block shown in Fig. 1. The
simulation domain for data collection of each embedded
building block is shown in Fig. 2. In such a setting, solution data
collected from each building block is able to account for the
variation of the block BCs induced by the power excitations
outside the block.

TABLE L. TEMPERATURE INDEPENDENT MATERIAL PROPERTY.
. . Thermal

Specific heat, C Density, p conductivity, k

751.1 (J/(kg'K)) 2330 (kg/m®) 100 (W/(m'K))

All outer surfaces of the simulation domain for data
collection are assumed adiabatic except for the bottom where the
convection BC is implemented with a constant heat transfer
coefficient and an ambient temperature T,,,;, of 45°C. The outer
boundary surface of the simulation domain is 3 mm from the
building block. The dynamic power density in each building
block is randomly generated in time; in each time step, it
represents an averaged power density over 48k CPU cycles at
3.5 GHz with a total power approximately equal to 8.9 W for L2
cache and 16 W for Core 1. In the surrounding of each building
block, the dynamic power density is generated with a different
random sequence, which offers the variation of the interface flux
on each side of the building and allows the POD modes to adapt
the realistic BC variation to construct a more effective POD
model.

In this work, collection of thermal data in the CPU domain
for training POD modes and calculations of POD model
coefficients in (10)-(13) are carried out in FEniCS-FEM. The
solution of the ODE matrix equation in (9) and post-processing
calculations for the predicted temperature in (1) are performed
in C++ using solvers in the PETSc library.

Fig. 1. Floorplan of the AMD ATHLON II X4 610e CPU and schematic of the
simulation domains for the building blocks.

A. Temperature data collection

In this work, L2 Cache and Core 1 of the quad-core chip are
selected as Block 1 and Block 2, respectively, as shown in Fig.
1 and 2. The dynamic thermal simulation is performed for each
of Block 1 and Block 2 in FEniCS-FEM independently to collect
dynamic temperature data of each building block to generate its
eigenvalues and POD modes. The eigenvalue represents the
mean squared temperature variation captured by the
corresponding POD mode, and therefore its spectrum reveals the
information on the number of POD modes needed to offer
accurate temperature solution. The eigenvalue spectrums of two
building blocks are shown in Fig. 3. For both Block 1 and Block
2, a reduction in the eigenvalue by two orders of magnitude is
observed from the first to the second mode and a decrease by
four orders from the first to the third mode. Based on the rapid
reduction in the eigenvalue for the first few modes, it is expected
that the two-block POD model with a small number of modes is
able to offer an accurate prediction of dynamic temperature
solution. However, the expectation can be achieved only if the
quality of the data collected from the DNSs is reasonably good.

Block 2

Fig. 2. Temperature contours (relative to the ambient temperature 45 °C) in the
simulation domain.

——Block] |
——Block2

Eigenvalue

0 5 10 15 20 25
Eigenvalue Number

Fig. 3. Eigenvalue spectrum of the thermal data collected from the selected
building blocks.



B. Verification of the multi-block model

To demonstrate the validity of the two-block POD model,
thermal simulation based on (9) for the domain consisting of
Core 1 (Block 2) and its adjacent L2 Cache (Block 1), shown in
Fig. 1, is performed. The dynamic power density applied to each
of the 2 blocks is generated using a random sequence different
from those used in the POD mode training. The adiabatic BCs
are applied to all surfaces except for the bottom of the chip
where a constant heat transfer coefficient is implemented with
an ambient of 45°C. Thermal simulation is also performed via
FEniCS-FEM with identical settings including heat sources and
BCs to validate the accuracy of the two-block POD model. In
this demonstration, a same number of POD modes is used in
both blocks.

The LS error estimated from the equation below for the two-
block POD model is a function of the number of POD modes.

Y[ e2(F)dO

i=1Jq "1

errLs = — )
J SN S (Ti(F) = Tamp)2dQ

(14)

where the index i denotes the time step (snapshot), and T;(+) and
e;(7) are the temperature solution from FEniCS-FEM and the
temperature difference between FEniCS-FEM and the POD
model, respectively. For the two-block POD model, the DG
method with an adjustable penalty number N,, [28], [29] is used
to enforce the thermal continuity across the interface between
Core 1 and L2 Cache. The effect of penalty number on the LS
error is shown in Fig. 4 for the two-block POD model. It is
observed that, when using 2 or more modes in the POD model,
the LS error reaches a minimum value with N, near 7. The LS
error vs. the number of modes with NV, = 7 is thus plotted in Fig.
5. It is interesting to observe in Figs. 4 and 5 that the 2-block
POD model with 3 modes actually offers a better accuracy than
that with 4 — 7 modes. With N, =7, an LS error as small as 2.9%
can be reached and it fluctuates around 3% - 3.1% beyond 3
modes. Based on Fig. 4 when using the 3-mode POD model, the
penalty number should be within 4 < N,, < 10 to reach an LS
error below 3%.

The POD simulation demonstrated above reveals a 4-order
reduction in the numerical DoF, compared to FEniCS-FEM,
which results in a significant saving in computing time. The
POD simulation includes solving the ODE in (6) and the post
processing calculation using (1) to recover the temperature
solution. The computational time of thermal simulation for the
selected two blocks using FEniCS-FEM and the two-block POD
model is shown in Table II, where Postl and Post2 denote the
post-processing calculations of temperature in the entire domain
and device layer, respectively. As shown in Table II, thermal
simulation based on the two-block POD model with 3 modes is
1959 times faster than FEniCS-FEM. Practically, only the
temperature in the device layer is required, which would offer a
speedup of 3918 times, compared to FEniCS-FEM.

Based on the results presented in Fig. 4, the optimal penalty
number is Ny = 7, and thus the detailed comparison of the
dynamic thermal distributions obtained from FEniCS-FEM and
the two-block POD model is given below with Nu = 7. As
expected according to the eigenvalue spectrum shown in Fig. 3

and the LS error in Fig. 5, the temperature evolution predicted
by the two-block POD model with just 3 POD modes is in very
good agreement with that obtained from FEniCS-FEM over the
entire simulation time. The temperature evolution in time at the
center of L2 Cache is given in Fig. 6. Similarly, the dynamic
temperature at the center of Core 1 is illustrated in Fig. 7, where
the temperature solutions obtained from the two-block POD
model with 3 or 5 POD modes and FEniCS-FEM almost overlap
each other.

TABLEL CONSUMPTIONAL TIME OF THERMAL SIMULATION FOR THE
MULTI-BLOCK POD AND FENICS-FEM METHODS.
Number 1 2 3 4 5
Two-block of modes
PO]V)V ‘;‘m(;’:l ® ODE | 0.023 | 0.019 | 0.017 | 0.019 | 0.019
Postl 0.015 | 0.025 | 0.041 | 0.053 | 0.071
Post2 0.004 | 0.007 | 0.012 | 0.015 | 0.019
FEniCS (s) 113.623
' ‘ ' 7
16 ,
o
14 ¢ %
Dimsresmeys NE
_______ . 4y
2 010 Ry wl
= B Jl’ ]
ot g - = 5 modes x o]
g 4 modes i
; - - 3 modes I’,j/
S 6 - - 2 modes sy
= - - 1 mode Foull
s
! 7/
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Fig. 4. LS error influenced by the penalty number.
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3t . y i
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Fig. 5. LS error of the two-block POD model over the entire simulation time
and domain.
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Fig. 6. Temperature evolution in time at the center of L2 Cache. In the POD
model, N, = 7.

The temperature distribution at # = 6.6 ms from L2 Cache to
Core 1 along the centers of these 2 blocks across the interface is
illustrated in Fig. 8. The temperature profile provided by the
two-block POD model with 3 POD modes agrees very well with
the temperature profile from FEniCS-FEM, which is consistent
with the information indicated by the eigenvalue spectrum in
Fig. 3 and the LS error in Fig. 5. Compared with the FEniCS-
FEM results in the centers of L2 Cache and Core 1,
approximately 2.6% and 1.0% (or 0.09 °C and 0.14 °C)
differences, respectively, are achieved when using the two-block
POD model with 3 POD modes.
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Fig. 7. Temperature evolution in time at the center of Core 1. In the POD model,
N,=1.
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Fig. 8. Temperature distribution at 6.6ms from L2 Cache to Core | along the
centers of these 2 blocks. In the POD model, N, = 7.

IV. CONCLUSION

A multi-block thermal simulation methodology enabled by
the data-driven POD model and domain decomposition has been
investigated. The approach has been applied to develop a two-
block POD model for thermal simulation of 2 selected blocks,
including Core 1 and L2 Cache, from a quad-core chip, AMD
ATHLON II X4 610e. This study has shown that an appropriate
penalty number N, is needed in the 2-block POD model to
minimize the interface discontinuity for an optimal prediction of
the dynamic thermal distribution in the 2-block domain. It is
found that an LS error below 3% can be achieved for the 2-block
POD model with 3 modes in each block if 4 < N, < 10. This
results in a reduction in the numerical DoF by nearly 4 orders of
magnitude and leads to nearly 2000 times or 4000 times of
speedup for a thermal prediction of the entire 2-block domain or
the device layer, respectively, compared to FEniCS-FEM.

This work initiates the development of a multi-block POD
thermal simulation methodology at the chip level for an entire
CPU or GPU. Such a multi-block concept offers a very efficient
approach to generation of the POD modes and calculations the
POD model parameters to construct a POD model for very large
chips like multicore CPUs or many-core GPUs, especially when
a higher resolution is needed. All CPUs and GPUs are designed
and constructed based on building blocks, such as cores, caches,
I/O units, memory modules, etc., in the selected AMD
ATHLON processor. When developing a multi-block POD
model, a useful practice would be using these standard building
blocks to partition the entire processor into a multi-block
domain. For a semiconductor chip consisting of a large number
of POD blocks, parallel computing can also be applied to further
improve the POD simulation efficiency.
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