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Abstract:Accurately estimating the extent of damage after an earthquake requires labor-intensive reconnaissance surveys, which may take
months to cover the entire building inventory in an impacted region. This paper provides a data-driven framework to guide a survey team
efficiently through a reconnaissance mission and estimate regionwide damage by inspecting only a fraction of buildings. First, it is shown
that by considering a relatively small set of representative buildings in the training data, the necessity of inspecting the entire building
inventory is diminished, and accurate estimation of the regional damage is made possible within 2 weeks after the earthquake. Second,
to develop a cost-effective solution, the problem of prioritizing buildings and designing efficient inspection routes is formulated as an
orienteering problem. The results of the sparse field observations obtained by the end of each inspection day are used to retrain a Gaussian
process regression model, which is applied to estimate damage for the uninspected buildings. A regional earthquake simulation testbed was
used to validate and evaluate the performance of the proposed method. DOI: 10.1061/(ASCE)EM.1943-7889.0002069. © 2021 American
Society of Civil Engineers.

Introduction

The efforts that go into managing essential tasks in the aftermath
of a severe earthquake have a significant impact on the pace of re-
covery. Accurate estimation of building and infrastructure dam-
age improves the efficiency of these efforts. For example, having
a rapid and reliable postdisaster needs assessment (PDNA) assists
organizations in requesting the appropriate amounts of financial
aid, which helps prevent any recovery delays (Loos et al. 2020).
Furthermore, identifying the damaged buildings in a timely manner
provides valuable information that can be used to determine the
reoccupation risks and required recovery tasks (Ural et al. 2011;
Lenjani et al. 2020b).

Creating a geographical map featuring the damage intensities of
individual buildings has been the emerging focus of various recent
studies. In current practice, the extent of building damage is approxi-
mated with several methods, including vulnerability assessment,
unmanned aerial vehicle (UAV) images, and crowdsourcing from
social media (Wilkinson et al. 2018; Bland and Frost 2013). Vulner-
ability functions commonly are used to provide a probabilistic ap-
proach for damage and loss estimation at a regional level (Xin et al.

2018; Steelman and Hajjar 2009). However, the estimates generally
are aggregated for building groups and are reported at zip code levels
(Lu et al. 2020). In addition, these methods require expert judgment
and recalibration using historical data in order to be adapted to a
specific event (Erdik et al. 2011). With the recent improvements in
vision-based machine learning methods, remote sensing also has
been studied extensively for postearthquake building damage detec-
tion (Kerle et al. 2020; Ji et al. 2020; Naito et al. 2020; Cooner et al.
2016). Although aerial images of the impacted region can be ob-
tained shortly after the earthquake, environmental conditions such
as cloud cover or haze can limit the applicability of these methods.
Even with clear skies, these images can feature only the roof con-
dition of a building, and may not identify internal cracks or non-
structural damage. Therefore, the majority of the remote sensing
studies consider a binary damage–no damage classification (Kerle
et al. 2020).

To obtain a reliable damage assessment, on-ground inspection
teams currently are deployed to the affected region for an accurate
assessment of damage. These teams inspect individual buildings
for damage and failure mechanisms, and report the results in a re-
connaissance survey (Brando et al. 2017; Chiaro et al. 2015). In
addition to damage estimation, valuable lessons can be learned
from investigating the effects of an earthquake on different types
of buildings, because this can help improve the seismic design
codes. Currently, the labor-intensive reconnaissance surveys can
cover only a limited number of buildings during the first few
weeks after the earthquake. Moreover, the selection of buildings
for damage inspection is based on the observable exterior damage.
Not only is this process time-consuming and costly, but locating
the damaged buildings can be a challenge itself, especially in the
aftermath of an earthquake. Consequently, completing all dam-
age inspections in the affected region can take several months
or even years following the seismic event (Loos et al. 2020).
Lenjani et al. (2020a) used fragility functions to estimate the dam-
age state of buildings in order to prioritize the buildings for dam-
age inspections.
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Recently, data-driven methods have been suggested in dif-
ferent areas of earthquake engineering to enhance flexibility and
reduce the computational burden in physics-based simulations
(Xie et al. 2020; Hormozabad and Soto 2021). By treating various
characteristics of the building structure and ground motion as in-
puts (or features), surrogate models are able to emulate the non-
linear response (output or labels) of the model without performing
the expensive time-history analysis (de Lautour and Omenzetter
2009). For a regional postearthquake damage assessment, every
inspected building provides an example of this input–output rela-
tionship and can be used to fit the surrogate model. Importantly, a
relatively small number of collected damage observations can be
used to train a model to predict accurately the damage to the un-
inspected buildings in the affected region (Sheibani and Qu
2020b). Such a data-driven method is adaptable to the impact
of a specific event on the buildings constructed in the considered
region. Furthermore, this approach will yield a high-resolution
damage prediction map for individual buildings in the region,
without relying on historical data or expert judgment, as do the
conventional approximation methods.

As a powerful nonparametric method, Gaussian process regres-
sion (GPR) can be used to model the nonlinear relationship be-
tween the building features and damage. A properly trained GPR
model is capable of predicting probabilistic building damage levels
with promising accuracy (Sheibani and Ou 2020a). Results of the
damage predictions for the entire building inventory in the affected
region can be utilized further in the total loss estimation applica-
tions. With the benefit of the developed rapid and inclusive damage
assessment method, an efficient method to implement the practical
damage inspection scenarios was studied in this paper. In most su-
pervised learning applications, training data are selected randomly,
and the cost of data acquisition is either negligible or treated uni-
formly. However, for the regional damage assessment problem, a
careless selection of buildings for inspection and training will lead
to tremendous expense. The assessment of damage intensity for
a building after the earthquake demands a considerable amount
of time and resources. Therefore, an effective strategy is required
to implement the postseismic building damage inspection in prac-
tice. Such an approach should maximize information gain given
the constrained inspection resources (e.g., X crew members in Y
teams working Z h=day). Thus, only the most informative or most
representative buildings should be inspected. At the same time, the
overlap in the information obtained from the survey should be
minimized.

The main contribution of this paper is the development of a
novel inspection scheduling framework for the regional postseismic

building damage inference. The framework integrates, in an inno-
vative way, machine learning for damage inference and route opti-
mization to achieve efficient data acquisition in a postearthquake
reconnaissance survey. This is achieved as follows:
• Machine learning. The pool of available buildings in the seismic-

impacted region is partitioned using the k-means clustering al-
gorithm in the space of the building and earthquake features. The
buildings assigned as the cluster centroids should be represen-
tative of other buildings in their clusters. Therefore, buildings
that represent centroids of larger clusters are assigned higher in-
spection priority (i.e., higher expected reward from the inspec-
tion) because previous studies demonstrated that querying the
labels for larger clusters increases the accuracy of regression al-
gorithms when applied to collected data (Wu 2018).

• Route planning. To reach the desired damage inference accuracy
as soon as possible, the order in which the candidate buildings are
inspected should be determined while accounting for the avail-
able inspection resources (e.g., one team working 10 h=day).
The problem of inspection scheduling, given the priority (i.e., re-
ward) of each building and the available inspection resources, is
formulated as an orienteering problem (OP). To our knowledge,
this is the first application of the OP concerned with efficient
information collection.

• Numerical evaluation. The effectiveness of the proposed frame-
work (Fig. 1) is demonstrated on a simulated earthquake sce-
nario in the San Francisco city area. The experimental results
indicate that, within the same period, the proposed optimization
method improves the accuracy of damage inference by 6%
while reducing the total travel distance of the surveying team
by 38%, compared with the situation in which inspection is con-
ducted by simply prioritizing building with the larger weights
(and without applying route optimization algorithms).
The remainder of this paper is organized as follows. Section

“Regional Building Damage Prediction Model” briefly describes
the theoretical foundations of the GPR, which is used as the sur-
rogate model to infer buildings damage levels. The proposed
inspection scheduling framework and the theory of the OP are
presented in the section “Development of Strategies for Opti-
mized Damage Inspection.” The advantages of using centroids of
k-means clusters in the regional building damage inference prob-
lem is demonstrated on an earthquake testbed in the section “San
Francisco Bay Area Regional Earthquake Simulation Testbed.”
Section “Effect of Representative Sampling on Predictive Perfor-
mance” investigates and compares the inference performance
under different inspection and scheduling approaches, and the
section “Conclusion” draws conclusions.

Fig. 1. Proposed framework for effective postearthquake damage assessment.
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Regional Building Damage Prediction
Model

In the proposed framework, the surrogate model is trained with
a number of input–output examples. The inputs to the model are
structural variables and ground motion intensity measures (IMs).
Because explicit structural models, in particular mass, stiffness,
and damping, are not accessible for real-world buildings without
advanced testing, a set of implicit structural variables, including
the number of stories, structural type, age, and so forth. is adopted.
In addition, the IMs that have been shown to be correlated with the
structural damage, such as spectral intensity, spectral acceleration,
and so forth, are utilized to represent the input loading to the build-
ing. Sheibani and Ou (2020a) showed that an optimal learning can
be performed using a set of six readily obtainable building vari-
ables and six earthquake characteristic features. On the other hand,
various damage indexes such as the residual displacement, observ-
able damage, economic loss, and so forth can be considered as the
output to the model. A GPR model was trained on the sparse input-
output examples to perform damage inferences for the unobserved
buildings in the region.

Gaussian process (GP) models are nonparametric generaliza-
tions of the linear regression that make probabilistic inferences us-
ing Bayesian inference. A GP is a distribution over functions such
that any finite number of points sampled at particular inputs from
each function have a joint Gaussian distribution. This distribution is
characterized by a mean and covariance function. Here, we point
out only the final prediction equations; Williams and Rasmussen
(2006) and Sheibani and Ou (2020b) provided a detailed derivation
of the formulations and the model selection tasks for the regional
damage assessment problem, respectively.

Assuming an m-dimensional training set with n datapoints
fðxi; yiÞji ¼ 1; : : : ; ng, and the set of all inputs X , for any pair
of input vectors x1; x2 ∈ X , we have the output means μðx1Þ
and μðx2Þ, and the covariance Kðx1;x2Þ. Given the observations
yR for a subset R ⊂ X , the conditional probability distribution
of label yx� for any new input x� ∈ X \ R can be computed as
Pðyx� jyRÞ such that

μðx�jRÞ ¼ Σx�RΣ
−1
RRyR ð1Þ

σ2ðx�jRÞ ¼ Kðx�;x�ÞT − Σx�RΣ
−1
RRΣRx� ð2Þ

where ΣRR = covariance matrix for members of R, every entry of
which is calculated as Kð.,.Þ. Although the mean function com-
monly is considered to be zero, the covariance function plays an
intrinsic role in modeling the relations in the obtained experimen-
tal data. In accordance with the results of the model selection
(Sheibani and Ou 2020a), the automatic relevance determination
type of the rational quadratic (RQ) function was chosen for mod-
eling the nonlinear behavior of data. For any two input vectors x1

and x2, the covariance can be computed as

KRQðx1;x2Þ ¼ σ2
fð1þ ðx1 − x2ÞT

M
2α

ðx1 − x2ÞÞ
−α ð3Þ

where σ2
f = signal variance; and M ¼ diagðlÞ−2, where l = vector

containing characteristic length scales, and α > 0 determines the
shape of the function. The mentioned parameters are tuned during
the training procedure with maximum-likelihood estimation (MLE).
The libraries of the GPML toolbox (Rasmussen and Nickisch 2010)
were used for inference purposes in this paper.

Development of Strategies for Optimized Damage
Inspection

As discussed previously, the optimization of inspection surveys has
two objectives: (1) identifying the representative building candi-
dates for inspection, and (2) optimizing the inspection scheduling
and path given the weights of each candidate building. This section
proposes using the k-means clustering method to identify the in-
spection candidates. For the inspection prioritization and determi-
nation of the most efficient route(s), several different scenarios are
discussed, and the OP is formulated.

K-Means Clustering to Determine Weights

The predictive performance of the surrogate model improves with
new datapoints (i.e., input–output examples). In our problem, these
examples are in the form of building damage observations, which
are expensive to make. Therefore, to reduce the data collection
costs, it is beneficial to inspect a wide spectrum of buildings and
reduce the amount of information overlap.

It has been shown that by clustering the input space, a subset of
points can be obtained that is representatives of the data set (Wu
2018; Liu et al. 2020; Dehghani et al. 2020). Because the samples
within a cluster are well correlated and expected to have similar
outputs, the nearest datapoint to the center of the cluster (centroid)
can be considered as the representative of that partition. These cent-
roids are located far from each other in the feature space, and there-
fore we are meeting the diversity criterion in our data collection as
well (Demir et al. 2010). The k-means clustering strategy can be
used to project the input space into a subspace created by k
representative points.

The k-means clustering algorithm is an iterative procedure that
classifies a dataset into k disjoint clusters in which datapoints in each
cluster are more similar to each other than to datapoints in other clus-
ters. The Euclidean distance generally is used to determine the simi-
larities between datapoints. This algorithm consists of two phases in
each iteration. In Phase 1, k samples are chosen as centroids, and in
Phase 2, the remaining samples are associated with the nearest cent-
roid to shape k clusters. The next iteration starts with choosing the
average value of all the points in each cluster as the new center, and
Phase 2 is repeated similarly to the first iteration. This process ter-
minates upon either convergence or reaching the maximum number
of iterations. Further details of this algorithm were given by Nazeer
and Sebastian (2009).

In this paper, the k-means clustering algorithm partitions the in-
put feature space, and the centroids are considered as the most di-
verse and representative cases from the pool of available buildings
in the region. Although k-means is less prone to outliers, we made
sure to disregard clusters with only one member element.

Different Scenarios to Prioritize Inspections

In addition to choosing the most informative buildings for damage
inspection, the order in which the inspections are made has a crucial
impact on time efficiency. The centroids of the clusters that have
larger sizes are representatives of more datapoints, and hence pick-
ing them earlier expedites the rate of reduction of the generalization
error of GPR. The inspection routes should be efficient to enable
more inspections in a limited amount of time (e.g., 10 work h=day).
Therefore, in this paper, the objective is to both select most inform-
ative buildings and design efficient inspection routes for the survey-
ing team.

Based on these considerations, we propose an efficient heuristic
that meets both objectives. In this method, the informativeness of
the inspected buildings is ensured by selecting candidates from the

© ASCE 04021156-3 J. Eng. Mech.
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centroids of clusters. We also prioritize the centroids of larger clus-
ters in order to increase the rate of convergence. Furthermore, to
optimize the surveying costs and time, we use OP to assign an ef-
ficient route for daily tasks of the inspection team. The proposed
inspection method (S4) and three other scenarios (S1, S2, and S3)
were studied (Table 1). S1–S3 are alternative approaches that can
be pursued to fulfill the datapoint selection parts of the framework
(Fig. 1). For each scenario, a fixed depot location is considered
at which the surveying team starts and ends the daily inspection
routine.

The problem of prioritizing buildings for inspection and deter-
mining the most efficient route(s) in Scenarios S3 and S4 are for-
mulated as the OP, which is concerned with maximizing the reward
collected from visiting nodes given the allowed time constraint. In
the approach taken for S4, the cluster sizes are considered as reward
amounts. These rewards are identical in S3 to allow for the best
route, regardless of the reward amount. The subsequent sections
explain details of the OP.

Orienteering Problem

The OP is a well-studied combinatorial optimization problem. In
this problem, a set of nodes is given, and a score is associated with
each node. The goal of the OP is to determine a time-constrained
path to visit a subset of these nodes such that the total reward col-
lected is maximized. The name of the OP is derived from a sports
game of orienteering (Chao et al. 1996); the problem is also called
the selective traveling salesman problem, the maximum collec-
tion problem, and the bank robber problem (Vansteenwegen et al.
2011). A large variety of practical problems, such as home fuel
delivery (Golden et al. 1987), tourist trips (Yu et al. 2015), and
route design for special events such as wildfires (van der Merwe
et al. 2014) can be modeled as an OP. In this paper, we propose
the first application of the OP in the context of efficient postseismic
reconnaissance surveys, in which the team is supposed to collect as
much information via building inspection in a limited amount
of time.

Problem Formulation
For completeness, we present the mathematical programming for-
mulation of the OP used to design the most efficient routes for the
survey team. We proceed with the so-called two-index formulation,
which is defined on a graph GðV;AÞ, where V denotes a set of k
vertices (i.e., candidate buildings for inspection determined as cent-
roids as part of k-means clustering) and A is a set of arcs; Si is
defined as the weight (or reward) for visiting vertex i ∈ V. The sur-
vey team starts its trip from a depot denoted 0 and returns to the
depot after finishing its daily inspection task. Let rij be a binary
variable, which takes the value of 1 if the arc ði; jÞ is included in
the team’s route, and 0 otherwise. The travel time from node i to
node j is denoted tij, and the total travel time cannot exceed a given
time restriction Tmax. Lastly, ui is an integer variable representing

the position of node i in the path. The math programming formu-
lation (Vansteenwegen et al. 2011)

max
rij∈f0;1g;ui∈Zþ

X

i∈V\f0g

X

j∈V
Sirij ð4Þ

X

j∈V\f0g
r0j ¼

X

i∈V\f0g
ri0 ¼ 1 ð5Þ

X

i∈V
rih ¼

X

j∈V
rhj ≤ 1 ∀ h ∈ V \ f0g ð6Þ

X

i∈V

X

i∈V
tijrij ≤ Tmax ð7Þ

1 ≤ ui ≤ k ∀ i ∈ V ð8Þ

ui − uj þ 1 ≤ ðk − 1Þð1 − rijÞ ∀ i; j ∈ V ð9Þ

seeks to maximize the total collected weights. Eq. (5) ensures that
the route of survey team starts and ends at the depot. Eq. (6) guar-
antees that the route is complete and that each intermediate node in
the route is visited at most once. Eq. (7) ensures that the route must
satisfy a maximum travel duration Tmax. Eqs. (8) and (9) prevent
subtours.

OP Heuristics
The OP is a notoriously difficult combinatorial optimization prob-
lem, and it cannot be solved optimally for instances involving several
hundred nodes. As a result, many heuristics have been developed to
tackle large instances of the OP, such as evolutionary algorithms
and variable neighborhood search methods (Verbeeck et al. 2014;
Kobeaga et al. 2018; Palomo-Martínez et al. 2017), which typically
provide near-optimal solutions. In our framework, we apply a com-
bination of an insertion heuristic and a 2-opt algorithm for route
construction and improvement. The proposed approach sorts nodes
based on their weight (or reward) and myopically inserts unvisited
nodes with the highest reward until the constraint on the total travel
time Tmax is violated. This initial route then is made more efficient
by applying the 2-opt algorithm, which changes the order of nodes
to avoid having the route cross itself (Engels and Manthey 2009).
Specifically, it makes improvements by exchanging two edges of the
previously constructed tour with two other edges until a local opti-
mum is reached. The OP heuristics are applied daily until enough
buildings have been inspected (i.e., until the GPR model reaches
the desired accuracy). The details of the adopted approach are pre-
sented in Algorithm 1. Insertion algorithms are applied widely due
to their effectiveness on large-scale routing problems (Bertsimas
et al. 2019), and the 2-opt local search heuristic commonly is applied
to improve routes further. Fig. 2 presents an illustrative example of
a route obtained using the insertion algorithm and further improved
using the 2-opt heuristic. After implementing the improvement

Table 1. Different damage inspection scenarios considered

Scenario Objective Description

S1 Shortest time The nearest buildings to the depot from the pool of all buildings are chosen for inspection
S2 Fastest convergence Building candidates are chosen as cluster centroids with the priority given to larger clusters in the

inspection queue
S3 Shortest route Candidate buildings are chosen as cluster centroids with a queue set for the maximum number of

inspections in each day
S4 Fastest convergence with

route optimization
Candidate buildings are chosen as cluster centroids. Maximum number of inspections in each day
is sought with priority given to the centroids of the larger clusters

© ASCE 04021156-4 J. Eng. Mech.
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procedure (Kay 2013), the total travel cost decreased from 108
to 102 km.

Algorithm 1. Insertion and 2-opt heuristic
Data: initial tour P ¼ ∅, travel time tij from node i to j, cumulative
travel time of tour TP, travel time constraint Tmax, k nodes with
descending weights, depot υ and the last node ν in tour P, and
working time ξ
Result: a tour Pmaximizing collected weights given the maximum
allowed travel time Tmax
P←P ∪ fυg;
TP←0;
for i ¼ 1∶N do

if node i is unvisited then
travel time from ν to i: tν;i;
travel time from ν to depot: ti;υ;
If Tp þ tν;i þ ξ þ ti;υ ≤ Tmax then

P←P ∪ fig;
apply 2-opt algorithm and return an improved tour P�;
P←P�;
TP←TP� ;

end if
end if

end for

San Francisco Bay Area Regional Earthquake
Simulation Testbed

The methodologies proposed in this paper were evaluated in a stan-
dard simulation testbed which emulated the regional seismic impact
and structural performance under physical-based modeling. The
detailed description of the earthquake simulation methods and
the data obtained from the simulation are discussed in this section.

A hypothetical earthquake with a rupture along the Hayward
Fault was considered, which produced ground motions with PGAs
as high as 0.64 g in the San Francisco city area. This scenario was
simulated using the open-source modular Regional Workflow for
Hazard And Loss Estimation (rWHALE version 1.1.0) provided

by the Natural Hazards Engineering Research Infrastructure
(NHERI) SimCenter (Lu et al. 2020). Basic information of
20,000 buildings distributed in the San Francisco city area was used
to create multiple degree of freedom (MDOF) finite-element mod-
els for this study. A grid of ground motions was determined in the
region using the SW4 wave propagation method (Rodgers et al.
2019), and the nearest ground motion was assigned to each build-
ing [Fig. 3(a)]. The simulation was developed based on a nonlinear
MDOF model for every building in the region, and different dam-
age indexes were calculated using time-history analysis. Due to the
use of actual building information and the immense consideration
of uncertainty in the rWHALE program, the results of the simula-
tions were considered to be close representations of damage labels
for a real-world earthquake scenario. Details of the data generation
process were given by Lu et al. (2020) and Sheibani and Ou (2020a).
In this paper, a building’s economic loss ratio is considered as the
damage label for inference. The geographical distribution of
the true labels is shown in Fig. 3(b). Because the quantities of this
label are bounded between 0 and 1, labels were transformed with
the inverse cumulative Gaussian function (probit) to satisfy the
Gaussian noise assumption in the GPR formulations, and then
transformed back to the label space for performance assessment.

Results

The results demonstrate the efficient building damage inspection
solution for postseismic building damage inference according to
the two objectives: (1) the representativeness of the inspection can-
didates identified using k-means clustering, and (2) the impact of
inspection scheduling optimization to the the inference efficiency.

Effect of Representative Sampling on Predictive
Performance

As mentioned in the section “Development of Strategies for Opti-
mized Damage Inspection,” the hypothesis is that the improvement
in predictive performance should increase if informative and di-
verse datapoints are selected for training. To validate the contribu-
tion of representative sampling on damage inference accuracy, the
predictive performance with k-clustered sampling was compared
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Fig. 2. Illustrative example of vehicle routing derived with insertion algorithm and route improvement using 2-opt algorithm: (a) route based on the
insertion algorithm; and (b) route improvement using 2-opt heuristic. (Map data © 2020 Google.)
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with a random sampling approach. It was assumed that the budget
was available for a maximum of 300 building damage inspections,
and the cost of inspecting each building was treated as uniform at
this point. Therefore, the pool of all buildings was partitioned into
300 clusters, and the centroid of each cluster was used as the rep-
resentative for that cluster. The predictive performance was evalu-
ated using the relative difference (RD) error as

RDðμx� ; yx� Þ ¼
����
2ðμx� − yx� Þ
jμx� j þ jyx� j

���� ð10Þ

Using this formula, RD is always between 0 and 2.
Fig. 4 shows the result of the comparison averaged over 100

realizations. A higher percentage of the testing points was predicted
within the error margins specified when sampling was based on
clustering. The difference was more pronounced when the error

margin was at a lower level. For example, Fig. 4(a) indicates that
to achieve predictions with RD < 0.1 for about 56% of datapoints,
150 training points are required when sampling is based on cluster-
ing, whereas this number should be increased to 300 points when
sampling is performed randomly. Therefore, using clustering to
choose candidate buildings for damage inspection reduces the total
number of inspections required.

Moreover, it is critical to observe the effectiveness of adding the
representative of a cluster to the training set on the prediction ac-
curacy of the points within the same cluster. Therefore, we ranked
clusters from large to small and grouped them into 10 groups. To
refer to these cluster groups more easily, each group was named
using the convention CX, where X is an integer from 1 to 10. There-
fore, Group C1 contained the 30 largest clusters, whereas C10
included the smallest clusters in the data. To display the predic-
tion accuracy of the group members before and after their
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Fig. 4. Comparison of the prediction accuracy for random selection of training data and clustering selection, considering different training set sizes:
(a) RD < 0.1; and (b) RD < 0.2.

Fig. 3. Distribution of data on San Francisco map: (a) ground motion locations and their corresponding PGA; and (b) calculated economic loss ratio
for each building.
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representatives were inspected, the set of 30 centroids in each group
was inspected and the prediction accuracy of the members of the
group was evaulated. It also is advantageous to see the improve-
ments in prediction accuracy of the members in other groups.
Therefore, all combinations were evaluated (Fig. 5). The maximum
improvement in accuracy for the members of a group is obtained
when their representatives were inspected exclusively. The im-
provements are less significant for the members of other groups.
However, the members of other groups benefit significantly more
when representatives of larger clusters are inspected. To evaluate
the results more quantitatively, the percentage of all datapoints
for which the accuracy moved into the error margin when the rep-
resentatives of each group were inspected is shown in Fig. 6. The
total number of members within each group relative to the total
number of datapoints also displayed in Fig. 6. Inspecting the rep-
resentatives of larger clusters influence the prediction accuracy of
more datapoints. For example, inspecting the 30 representatives of
C1 moved the prediction accuracy of about 60% of all datapoints to
the error margin, whereas this percentage was below 5% for C10.

Therefore, it can be stated that starting with larger clusters in the
damage inspection scenarios significantly can increase the rate of

improvement in the generalization error and reduce the time re-
quired to reach higher prediction accuracy. These observations
demonstrate that (1) using the k-means clustering sampling, one
can identify a representative datapoint for each cluster by selecting
the cluster centroid; and (2) it is advantageous to start the inspection
procedure from the representatives (training points) of larger clus-
ters to cover a larger number of electors (testing points) during the
first days of inspection.

Comparison of Inference Efficiency under Different
Inspection Scheduling Scenarios

To fulfill the second objective in developing a practical postseismic
inspection practice, the impact of the inspections scheduling and
route optimization on the reconnaissance efficiency and costs was
evaluated. According to ATC-38, a building inspection takes about 2
person-h (ATC 2000). Thus, to compare the required time for each
approach, the effective work hours spent by a team of four inspec-
tors was calculated at 0.5 h=building. A maximum of 10 h=day of
work budget for the inspection team was considered, which in-
cluded the travel times to and from the depot. As an approximation,
the travel path between two nodes was considered to be equal to the
great circle distance between the geographical locations of the build-
ings, which was obtained using Haversine formula. Three different
average travel speeds (10, 25, and 40 km=h) were considered to
account for different difficulties in the aftermath of the earthquake,
such as probable road and bridge closures. Before reaching any
conclusion from results, it should be noted that there are two in-
dependent variables that can vary the outcome of the inference:
the random initial seed selected for k-means clustering, and the de-
pot position assumed for route planning. To illustrate the detailed
dynamics due to each inspection scheduling method, as well as the
deterministic patterns emerged from the two random factors, the
inspection scheduling performance was investigated using a single
realization first, and then a statistical summary of a batch Monte
Carlo realization.

Performance Evaluation of Single Inspection Scheduling
Realizations
To illustrate the improvements of the inference performance to the
scheduling dynamics, a single realization was considered. The de-
pot location was assumed to be the same across four scenarios, and
an average travel speed of 10 km=h was considered.

The sample paths from the proposed four scheduling scenarios
are depicted in Fig. 7. To reiterate, the objectives were the overall
shortest time for S1, prioritizing larger clusters for S2, inspecting as
many representatives as possible in each day for S3, and gathering
the most reward in each day by solving the OP for S4. Although
several days were needed to complete the damage inspection for all
candidate buildings, Fig. 7 demonstrates only the paths of the first
4 days for better clarity. The objectives heavily impacted the in-
spection paths recommended for the surveying team. The paths rec-
ommended for S1 were based solely on the proximity of buildings
to the depot location, and hence, the travel distances were insignifi-
cant. The routes suggested for S3 carefully implemented the trav-
eling salesman heuristics and provided optimum paths that visited
as many candidates as possible in each day, regardless of the node
weights. Paths recommended for S2 and S4 prioritized the nodes
based on their weights. However, because no path optimization
method was performed in S2, routes crossed themselves and sub-
optimal traveling behavior was proposed for the team. With the
implementation of the OP in S4, routes were planned carefully
to prioritize nodes with higher weights while reducing traveling
times in order to allow the team to visit as many nodes as possible.
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Fig. 5. Improvement in prediction accuracy of different cluster groups
after the representatives of each group are inspected.
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bers in each group. Error bars show the first and third quartiles.
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The two important factors in the damage estimation process are
prediction accuracy and the required time to achieve the desired level
of accuracy. Therefore, Table 2 compares the sample inspection
scenarios based on these factors. Considering 5 workdays=week,
after the first two crucial weeks following the occurrence of the
earthquake, by pursuing the S4 scenario, the GPR algorithm pre-
dicted the damage labels of 77.4% of the buildings with RD < 0.2.

Compared with the S2 scenario, the surveying in S4 required sig-
nificantly less travel in the region yet was able to inspect more
buildings.

Statistical Inference Summary to Evaluate Different
Inspection Scenarios
To investigate the deterministic pattern of the four inspection sce-
narios which are independent of the depot location or clustering
seeds, 100 Monte Carlo realizations were performed for each sce-
nario with different initial seeds for the k-means clustering (except
for S1) and also with a random location for the depot. However, in
the four scenarios, the initial seed and depot location for each reali-
zation are kept the same. The first three quartiles of daily improve-
ments in the performance of GPR are shown in Fig. 8 for the first
3 weeks of work. The highest rate of daily improvement in predic-
tive performance was for the S4 inspection scenario. For example,
considering the case of 10 km=h average travel speed [Fig. 8(a)],
after only 5 days of inspection the labels were predicted with
RD < 0.2 for 71% of the datapoints with Scenario S4, whereas this

S1

total travel: 1.9 km total travel: 1.7 km total travel: 2 km total travel: 1.8 km

S2

total travel: 42.2 km total travel: 40.5 km total travel: 51.9 km total travel: 52.5 km

S3

total travel: 18 km total travel: 19 km total travel: 21.1 km total travel: 16.1 km

depot
candidates
current inspection
inspected

Day 1

S4

total travel: 24.9 km

Day 2

total travel: 27.7 km

Day 3

total travel: 27 km

Day 4

total travel: 29.6 km

Fig. 7. Sample inspection paths taken by the team during the first 4 days for different inspection scenarios. In figures illustrating Scenarios S2, S3,
and S4, the marker sizes illustrate the relative cluster sizes.

Table 2. Details of inspection surveys after first 2 weeks following
earthquake occurrence

Scenario

Number of
inspections
performed

Percentage of
predictions with

RD < 0.20
Total distance
traveled (km)

Total travel
time (min)

S1 190 29.7 17.3 104
S2 93 73.3 483.0 2,897
S3 162 67.7 170.4 1,022
S4 135 77.4 297.4 1,784
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percentage was 65% and 55% with Scenarios S2 and S3, respec-
tively. At 25 km=h average speed, about 9 days was required to
bring the accuracy to 80% with S4, whereas 11 and 15 days were
required for S2 and S3, respectively. Although the overall perfor-
mance increased for S2, S3, and S4 at 40 km=h, the differences
between the scenarios remained almost the same. Furthermore, the
predictive performance never reached acceptable levels when repre-
sentative points were not chosen for inspection in the S1 inspection
scenario.

To compare the overall distance traveled by the inspection team,
the cumulative distances traveled for every scenario is shown in
Fig. 9. As in Fig. 8, the results are shown for the first 3 weeks of
inspection. Scenarios S2 and S4 in this figure demonstrate the con-
siderable reduction in travel distance by solving the OP for the in-
spection route optimization. The surveying team in S4 was able to
inspect more buildings in a limited time, yet traveled almost 35%
less than that in S2 at 10 km=h. The savings in total travel distance
was about 51% and 56% at 25 and 40 km=h, respectively, in S4
compared with S2.

The efficiency of the inspection scenarios also can be compared
by computing the ratio of the inspection hours and travel hours.
Fig. 10 shows the individual amounts of time that the team spent
traveling versus the effective inspection hours. As expected, in the

S1 scenario, the team spent the least amount of time on travel,
which makes this scenario efficient from this point of view. How-
ever, inspections made in this scenario did not improve the predic-
tive performance of the GPR algorithm (Figs. 8 and 9). The team
also spent relatively short amounts of time traveling in the S3 sce-
nario, in which the objective was the minimum travel distance re-
gardless of the cluster sizes. Although the ratio of traveling hours
was reduced, because the rate of improvement in the predictive per-
formance was not optimal, inspections made with the S3 scenario
were not favorable for rapid damage assessment purposes. Compar-
ing S2 and S4 demonstrates the improvement in the ratio of inspec-
tion hours to travel hours. At the 10 km=h speed, at the end of the
third week, the team had spent almost 51% of their time traveling
between buildings with S2, whereas this percentage decreased to
32% with S4.

Finally, it is beneficial to see the improvement in the predictive
performance of the GPR for the members of each cluster after their
representative is inspected. For better visualization, all 300 clusters
were divided into 10 groups based on their sizes, and the daily ac-
curacy of prediction for their members was evaluated using the RD
criterion. Fig. 11 shows the percentage of members of each cluster
group that were predicted with RD < 0.2 before and after the rep-
resentatives of the clusters were inspected. Fig. 11 considered only

5 10 15
Inspection time (day)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f p
re

di
ct

ed
 la

be
ls

w
ith

 R
D

 0
.2

5 10 15
Inspection time (day)

5 10 15
Inspection time (day)

S1 S2 S3 S4

(a) (b) (c)

Fig. 8. Daily improvement in predictive performance for different inspection scenarios. Error bars show the first and third quartiles. Inspected time
(day): (a) travel speed ¼ 10 km=h; (b) travel speed ¼ 25 km=h; and (c) travel speed ¼ 40 km=h.
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the 10 km=h average speed, and the results were averaged over 100
realizations. The prediction accuracy lines have sharp transitions at
the time when the representatives are inspected. It can be inferred
that using the S4 method, except for the two largest cluster groups
for which the performance of S2 was comparable, all other cluster
groups reached high predictive performance in a shorter period
[Figs. 11(a and c)]. Because all cluster groups had the same priority
in the inspection queue, Fig. 11(b) shows a rather uniform distri-
bution for the average day in which the representative of each group
was inspected. Due to this fact, the predictive performance stays at
lower levels during the first days of the inspection scenario.

Discussion

Considering all aspects of comparison between different scenarios, it
is clear that the proposed method significantly improves the damage
assessment efficiency by leveraging the OP to plan the team’s daily
tasks. This scenario can be used to guide the reconnaissance survey-
ing teams systematically and rapidly provide a region-wide damage
estimation after seismic events. Not only does it reduce the inspec-
tion costs and time, but the availability of the PDNAwithin a shorter
time expedites the recovery efforts. Finally, although the method
was validated on a simulated earthquake testbed, it is applicable
to a real postearthquake damage inspection scenario. However, other

constraints also should be studied for a real scenario, such as road
closures, multiple inspection teams working concurrently, un-
availability of building data in some regions, and so forth.

Conclusion

An efficient data-based framework for inferring structural damage
after earthquakes is proposed. In the proposed method, the inven-
tory of basic building information, available ground motion char-
acteristics at buildings’ sites, and sparse field observations after
the event are used to train a regional building damage inference
model. Gaussian process regression was selected to provide a high-
performance emulation with small training sets. It was shown that
the proposed inspection scheduling approach efficiently guides
the surveying team in their daily tasks by recommending the most
informative buildings for inspection and designing efficient inspec-
tion routes. In a comparison with other approaches, it was con-
cluded that, without careful planning, it takes significantly longer
for the prediction accuracy of the surrogate model to reach accept-
able levels. In fact, if a surveying team inspects buildings at ran-
dom, which usually is the case in practice, the model can predict
accurately the damage for about 30% of buildings based on 2 weeks
of inspections, whereas this percentage can reach about 77% if the
proposed framework is followed.
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Fig. 10. Cumulative weekly work hours for different inspection scenarios: (a) travel speed ¼ 10 km=h; (b) travel speed ¼ 25 km=h; and (c) travel
speed ¼ 40 km=h.
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