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The El Nino Southern Oscillation (ENSO) is a semi-periodic fluctuation in sea surface temperature 

(SST) over the tropical central and eastern Pacific Ocean that influences interannual variability in 

regional hydrology across the world through long-range dependence or teleconnections1–3. 
Recent research has demonstrated the value of Deep Learning (DL) methods for improving ENSO 

prediction as well as Complex Networks (CN) for understanding teleconnections4. However, gaps 
in predictive understanding of ENSO-driven river flows include the black box nature of DL, the use 

of simple ENSO indices to describe a complex phenomenon and translating DL-based ENSO 

predictions to river flow predictions. Here we show that eXplainable DL (XDL) methods, based on 

saliency maps5, can extract interpretable predictive information contained in global SST and 
discover novel SST information regions and dependence structures relevant for river flows which, 

in tandem with climate network constructions, enable improved predictive understanding. Our 

results reveal additional information content in global SST beyond ENSO indices, develop new 

understanding of how SSTs influence river flows, and generate improved river flow predictions 

with uncertainties. Observations, reanalysis data, and earth system model simulations are used to 

demonstrate the value of the XDL-CN based methods for future interannual and decadal scale 

climate projections. 
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Main text 

The El Nino-Southern Oscillation (ENSO) is a primary mode of interannual weather variability around the 

globe. ENSO modulates flood timings in Africa1, interannual variability of flow in the Ganges, the Amazon, 

and the Congo rivers2,3, and has significant influences on regional climate and hydrologic patterns around 

the globe. A predictive understanding of ENSO is thus of economic and societal importance. However, 

and our ability to predict ENSO with physics-based numerical simulations or data-driven models at 

interannual, decadal, and multidecadal time horizons have remained relatively poor6, which has in turn 

hindered our ability to predict regional patterns of hydrometeorology.  

Some challenges in ENSO forecasting may be traced back to overly reductive models, such as the 

relatively arbitrary rectangular regions that determine ENSO indices. Studies have suggested that ENSO 

is part of a larger system of interrelated SST oscillations which may co-impact regional 

hydrometeorology7. Further, our understanding of physical mechanisms8 along with data-driven methods9 

suggest that the relationships between ENSO and river flows may be highly nonlinear. The resulting 

complexity of the earth system calls for methods that can leverage complete information content from 

global SST data and identify complex geographic dependence structures, which include both proximity-

based dependence and long-range teleconnections. Fig. 1 shows SST anomalies in year 2008 when 

there was a cool year (La Nina phenomenon), while Fig. S2(a) and S2(b) show SST anomalies in a warm 

year (El Nino) and a neutral year, respectively. The relationships between river flows and ENSO indices 

indicate the possibility of significant nonlinear dependency (Table S3 and Fig. S6 and S7).  

Commonly used methods to identify dependencies among climate variables include visual comparison10, 

correlation11, mutual information9, coefficient of determination12, and weights in (sparse) linear 

regression13,14. These methods often require heuristic expertise in selecting features and can be difficult 

to extend to more complex features such as three-dimensional spatiotemporal features. In the recent 

years, deep learning methods have seen preliminary success in climate science, meteorology, and 

hydrology, resulting in improved predictive skills and development of new methods to investigate the 

spatiotemporal dependencies4,15. Furthermore, methods for interpretation and explanation of deep neural 

networks, such as saliency maps, can be adapted to climate problems to analyze relevant (SST) regions 
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resulting in understandable predictive information for regional climate and hydrology. Simonyan et al.5 

initially proposed the saliency map method as a visualization technique to explain the neural network 

function mapping, specifically, the extent to which inputs contribute to network output. Due to their 

effectiveness, explainable deep learning methods have been widely applied to the geosciences and 

especially to understand climate science and translate to impacts, for example, in spatial drought 

prediction16, satellite-based PM2.5 (air pollution) measurements17, crop yields18, species distribution 

models19, analysis of hailstorms20, hydro-climatological process modeling21, precipitation quality control22 

and climate drivers for global temperature23, and to localize pest insects in agricultural application24. Ham 

et al.4 used saliency map to analyze which regions contributed most in predicting the Nino3.4 index using 

their neural network. Similarly, Mahesh et al. 25  applied saliency maps to find the important geographic 

regions for predicting Nino3.4 index.  

Here we address the problem of developing explainable predictive insights relating to the ENSO 

phenomenon. Our approach is based on an eXplainable Deep Learning (XDL) solution 5 that concurrently 

uses convolutional neural networks (CNN) for prediction of river flow time series and saliency maps to 

explain the results by highlighting the relative importance of the spatiotemporal SST data. Our implicit 

hypothesis is that the XDL approach will lead to advances in predictive skills of river flows by considering 

the information content in the entire SST map, which should exceed the information content of ENSO 

indices. Furthermore, the XDL approach may lead to new discoveries of robust SST teleconnections with 

each other and with river flows, which in turn would further explain the gains in predictive skills. We 

develop correlation-based metrics to quantify SST autocorrelations and teleconnections either owing to 

known proximity-based spatial correlations or owing to known long-range spatial dependence. The 

approaches are developed for proxy observations (reanalysis) datasets as well as earth system model 

(ESM) simulated Coupled Modeling Intercomparison Project phase 5 (CMIP5) data, both for assessments 

of historical skills as well as for use in future projections of teleconnections and river flows which 

represent a major gap in current generation earth system models26–28. 
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Results 

We trained a CNN (Fig. S10) to predict monthly Amazon and Congo River flow from monthly SST derived 

from Earth System Models (ESM) and reanalysis data. We compared the skill to that of an ensemble of 

ML models, which predicted river flow using only indices calculated from the Nino 3.4 region (5°S-5°N, 

170°W-120°W). We found that models using the larger SST area (41.5°S-37.5°N, 50.5°E-9.5°W) 

outperformed models using the ENSO indices for prediction of three-month rolling mean river flows (Fig. 

2). The CNN ingesting more SST information also outperformed the historical climatological mean as a 

predictor of Amazon River flow. This suggests the larger SST region was useful for capturing the phase 

and amplitude of annual river flow fluctuations as well as components of interannual variation. Our 

experiments suggest that information with predictive power on the interannual variability of the Amazon 

River flow was either not fully expressed in the ENSO index, or else was not captured by the ensemble of 

ML models (linear regression, lasso regression, ridge regression, elastic net regression, random forest 

regression, and feed forward dense neural network, or DNN, regression). A full comparison of RMSE for 

river flow prediction using indices and larger area SST is presented in Table S2. 

The task of predicting Congo River flow was more challenging, perhaps influenced by the more extensive 

management of the Congo River basin compared to the Amazon River basin. Predictions based on 

historical climatological mean resulted in lower RMSE than any candidate model for the Congo River. 

Deeper analysis of CNN performance and historical average (presented in Tables S4 and S5) suggest 

that the methods compare differently when different aspects of performance (linear/nonlinear correlation, 

seasonal/yearly, extremes, etc.) are examined.  

We used a cyclical saliency map method to identify important spatial areas for the network to make 

predictions of river flows (Fig. 3). From the saliency maps we discover that the predictive power of ESMs 

comes mainly from the ENSO and the Indian Ocean Dipole (IOD) regions, suggesting a strong link 

between these two phenomena and a co-impact on regional hydrology. Fig. 3(a) shows that the dominant 

salient areas for Amazon River flow prediction are in tropical Pacific and Indian Oceans. Fig. 3(c) shows 

similar patterns but with less strong and smaller salient areas for Congo River flow. When using 

reanalysis data (Fig. 3(b) and 3(d)), the saliency maps are much more diffused, suggesting that the CNN 



 5 

model does not pick up any strong relationships between the predictor and predictand. One potential 

reason is that the reanalysis data are interpolated from very sparse observations and thus have 

diminished predictive power. The yearly cyclical saliency maps and seasonal saliency maps are also 

presented in the Fig. S2-S5. Whereas saliency maps can be used to verify the physically reasonable 

relationships that are learned as well as to discover new relationships, our hypothesis can be confirmed 

by examining the degree to which known oceanic regions that correspond to the ENSO region, as well as 

oceanic regions that correlate with the ENSO region, are triggered by the saliency maps as contributors 

to the information content.   

Complex network theory provides a complementary tool to investigate the short and long-distance 

relationships in earth systems, such as teleconnections associated with the ENSO phenomenon that are 

indicated by our results. We analyzed the correlation structure of global SST data by constructing degree 

maps for reanalysis and ESM SST (Fig. 4). We quantified temporal correlation by calculating Pearson's 

correlation coefficient between every pair of locations in the ocean. The degree of each geographical 

location is the number of edges connected to this location, where an edge exists if the correlation is larger 

than a threshold c1. We also set a second correlation threshold c2 and distance threshold d to define a 

teleconnection. We define that there is a teleconnection between two locations if their distance is larger 

than d km and the correlation is larger than c2. 

We find that ESM SST has high degree values over a large area, indicating that the SST are highly 

correlated through both proximity-based correlations and teleconnections. There are many 

teleconnections between tropical Pacific Ocean, Indian Ocean, and even Atlantic Ocean, and they are 

largely concentrated around the equator (Fig. 4(a)). The teleconnections remain strong when the 

correlation threshold is increased (Fig. 4(c)). This pattern is reflected in the histogram of edges, which 

shows the degree distribution (Fig. 4(e) and 4(g)). There are many edge counts for long distances, which 

demonstrate the multicollinearity between SST regions. In contrast, the histograms of edges for 

reanalysis data (Fig. 4(b) and 4(d)) show fewer long-distance connections for a low correlation threshold, 

and negligible long-distance connections with a high correlation threshold. These results indicate a 

weaker correlation structure in reanalysis SST compared to ESM SST.  
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Histograms of connection distance in each of ESMs indicate qualitative differences in the correlation 

structures of the models (Fig. S8 and S9); some exhibit a single peak corresponding to proximity-based 

correlations (e.g. Fig. S8(a)), while others also exhibit clusters of long-range connections (e.g. Fig. S8(f)). 

Models also vary in the rapidity of decay of proximity-based correlations with increasing distance. These 

attributes of these plots indicate distinct spatiotemporal correlation structures among the climate models. 

 

Conclusion 

ENSO is a complex spatiotemporal process with global impacts on SST and the flows of large rivers 

globally, especially around the tropics and subtropics. In this work we combined ML methods and 

interpretive techniques to obtain gains in predictive power and make new discoveries about dependence 

structures and teleconnections in global SST data. Although researchers often analyze the relationship 

between ENSO indices and the other climate variables, our results indicate that information outside of the 

canonical ENSO region can help to predict regional hydrology better than some reduced representations 

based on hand-selected features. They suggest that additional data and data-driven technologies could 

lead to a better understanding of mechanisms and the flow of causality in earth systems, as well as to 

informed climate adaptation through augmented projections of river flow for future climate scenarios. 

 

Methods 

Datasets 

We obtained monthly sea surface temperature datasets from ESM simulations and reanalysis models. 

The ESM datasets are downloaded from NASA Earth eXchange (NEX, 

https://registry.opendata.aws/nasanex/, last access May 2021). From the full set of Coupled Model 

Intercomparison Project Phase 5 (CMIP5) ESMs by various institutes, we discard those which have some 

months missing, leaving 32 ESMs. The CMIP5 historical forcing experiment spans from January 1950 to 

December 2005, or 672 months in total. This ESM dataset covers the whole globe with a spatial 
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resolution of 1° longitude by 1° latitude (approximate 100km by 100km) with longitudes range from 0.5°E 

to 359.5°E, and latitudes from 87.5°N to 87.5°S. The ESM names are shown in Table S1. 

In addition to ESM simulation datasets, we also use reanalysis datasets which are combinations of 

sparse on-site observation with other sources (such as remote sensing and satellite imaging) to produce 

gridded data. It is common to use reanalysis data as the proxy of true observational data because the 

site-based observational data are very sparse and not gridded. We use three reanalysis datasets in the 

experiment as predictors: Hadley-OI SST dataset29, COBE SST dataset30 and ERSSTV5 dataset31. 

The merged Hadley-OI SST dataset (https://climatedataguide.ucar.edu/climate-data/merged-hadley-

noaaoi-sea-surface-temperature-sea-ice-concentration-hurrell-et-al-2008) is a combination of two 

reanalysis datasets: HadISST132 and NOAA OI.v233. The HadISST1 dataset is derived gridded, bias-

adjusted in situ observations, and the NOAA OI.v2 dataset combines in situ and satellite-derived SST 

data. The resulting Hadley-NOAA-OI dataset contains monthly mean sea surface temperature from year 

1870 to 2020 with a spatial resolution of 1° longitude by 1° latitude. 

The COBE SST dataset (https://climatedataguide.ucar.edu/climate-data/sst-data-cobe-centennial-situ-

observation-based-estimates) are centennial in situ observation-based estimation that combines SSTs 

from International Comprehensive Ocean-Atmosphere Data Set (ICOADS)34 release 2.0, the Japanese 

Kobe collection and reports from ships and buoys. ICOADS is the most comprehensive archive of global 

marine surface climate observations available, but the data coverage is sparse and neither gridded nor 

corrected. These datasets were gridded using optimal interpolation. The resulting COBE dataset contains 

monthly mean sea surface temperature from 1891 to 2020 with a spatial resolution of 1° longitude by 1° 

latitude. 

The NOAA extended reconstruction SSTs version 5 (ERSSTV5) dataset 

(https://climatedataguide.ucar.edu/climate-data/sst-data-noaa-extended-reconstruction-ssts-version-5-

ersstv5) is based on statistical interpolation of the ICOADS release 3.0 data and Argo 

(https://argo.ucsd.edu/) float data. The resulting ERSSTV5 dataset contains monthly mean sea surface 

temperature from year 1854 to 2019 with a spatial resolution of 2° longitude by 2° latitude. 
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These datasets have different time spans and spatial resolutions. We performed preprocessing to align 

the coordinates, interpolate to the same spatial resolution, and select the common time span. Missing 

values are filled with 0. After preprocessing, the resulting reanalysis input has 3 channels corresponding 

to the 3 reanalysis datasets described above with a spatial resolution of 1° longitude by 1° latitude. We 

extract the region with latitude from 37.5°N to 42.5°S, and longitude from 50.5°E to 0.5°W, roughly 

covering most of low latitude Pacific Ocean and Indian Ocean. The resulting input image size is 80×300 

height by width. 

The river flow dataset was obtained from UCAR (A. Dai 2017) and can be downloaded from UCAR 

Research Data Archive website (https://rda.ucar.edu/datasets/ds551.0/index.html, last accessed January 

2021). The dataset contains monthly runoff (m3/month) for many rivers in the world. The record for 

Amazon River was observed in the downstream Amazon River at a station in Obidos, Brazil from 

December 1927 to October 2018, totally 1091 months available. The record for Congo River was 

measured at a station in Kinshasa, Congo from January 1903 to January 2011, totally 1296 months. We 

calculated moving mean river flow using a moving window of length 3 months and used it as the 

smoothed river flow for the third month. 

For both predictor (SST) and predictand (river flow) our monthly data span from January 1950 to 

December 2005. Of this totally 672 months, we use the first 600 months as our training data, the following 

36 months as our validation data to select best parameters for the model, and the last 36 months 

(January 2003 to December 2005) as the test data. 

Neural Network Model 

The CNN used in this paper consists of 4 convolutional layers and 3 fully connected layers. The number 

of output channels for each convolutional layer is 32, 32, 64 and 64, respectively. They all have stride 1. 

The filter sizes in the first three layers are 3×3, and for the fourth layer, it is 1×1. All convolutional layers 

are followed by a ReLU activation and a 2D max pooling layer with size 2×2 and stride 2×2. For the fully 

connected layers, the number of output feature for each layer is 128, 64 and 1, respectively. The input 

image size is 80×300×C with different number of channels C. For all ESMs as input, C=32. For all 

reanalysis input, C=3. For mean ESMs or mean reanalysis as input, C=1. The network output is a scalar. 
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We set the training batch size as 64 and use Adam optimizer with initial learning rate 5×10-5 and weight 

decay 1×10-4.We use squared loss function and the network tries to minimize the loss function: 

!
"∑ (#($# , &) − )#)$"

#%! , where T is the number of training samples, $# ∊ +&×(×) 	is the t-th input with width 

W, height H and number of channels C, yt is the t-th ground truth target, w={w1,…,wL} is the set of weights 

from all layers. The network output #($# , &) = #*(#*+!(…#!($# , &!))), where #,(. , &,) is the mapping 

function for the l-th layer in the neural network. 

Saliency Map and Cyclical Saliency Map (Cyclic-SM) 

The saliency map for a CNN is the derivative of the network output y with respective to the input $: 1 =
-.
-/ =

-0(/,3)
-/ , where S is the same size as the input5. The magnitude of elements Sijk in S reflects how 

important the corresponding input pixel Xijk (where i,j,k is the index of the width, height and channel of X) 

is to the output prediction. For climate variables viewed as images in different time frame, they usually 

exhibit some (irregular) periodicity in the time. We can utilize this property to enhance the saliency map by 

superimposing individual saliency maps to form a conglomerate saliency map. Specifically, we define the 

Cyclic-SM with a cycle M as: 15 = !
67!∑ 1#789 = !

67!∑
-.!"#$
-/!"#$

6
8%:

6
8%: , where 2 = 3"+#9 4	is the number of 

individual saliency maps in the cycle. 

The averaging nature of the Cyclic-SM makes it more robust to gradient fluctuation and noise compared 

to an ordinary saliency map. In addition, Cyclic-SMs are meaningful in climate context. For example, for 

monthly data, M=12 corresponds to a natural month cycle (January, February, … , December). And we 

further define seasonal and yearly Cyclic-SM as the sum of saliency maps of the corresponding months. 

We can calculate different Cyclic-SMs with different cycles depending on the specific purpose and climate 

data used. For example, we can get daily, monthly, seasonal, annual or other Cyclic-SMs to analyze the 

dependencies between climate variables in different time scales. 

Data availability 

All data used are publicly available. 

Code availability 
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Codes are available online at https://github.com/yuminliu/SaliencyMap (currently private). 
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Figure 1. Global sea surface temperature fluctuations including the El Nino Southern Oscillation 

impact interannual variability in the flow of large rivers such as Amazon and Congo. a, Regions for 
calculating ENSO indices (Nino 1+2, Nino 3, Nino 3.4 and Nino 4) and Indian Ocean dipole mode index 
(DMI), and two hydrological regions (Amazon river basin and Congo river basin). The colors shown on the 
ocean is the annual SST anomaly in year 2008. b, Time series of standardized annual river flow in m3/s 
for Amazon (green) and Congo (lime) and monthly Oceanic Nino Index (ONI) in the Nino 3.4 region at the 
same time-period. The ONI data are from United States Climate Prediction Center (NOAA 2021). Warm 
(red) and cold (blue) periods show months that are higher than +0.5°C or lower than -0.5°C threshold for 
minimum of five consecutive months. A warm/cold year is a year when warm/cold anomaly months 
dominate, and a neutral year is a year that is neither a warm nor a cold year. For Amazon, the river flow 
decreases during the warm period and increases during the cold period. However, the relations between 
Congo River flow and ONI are more complicated and not obvious. 
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Figure 2. Predictions of the interannual variability of the Amazon and Congo rivers based on 

observed and model-simulated sea surface temperatures compared with climatology. River flow 
ground truth observations (black) and predictions using different predictors from January 2003 to 
December 2005 for Amazon (a) and Congo (b) river. The predictors are mean Nino 3.4 calculated from 
32 ESMs (ESM Mean Nino 3.4), Nino 3.4 calculated from each of 32 ESMs (ESM Nino 3.4), Nino 3.4 
index from NOAA (Nino 3.4), Nino 3.4 calculated from 3 reanalysis (Reanalysis Mean Nino3.4), Nino 
3.4 calculated from each of 3 Reanalysis (Reanalysis Nino 3.4), SST from 32 ESMs (ESM SST, light 
purple) and SST from 3 reanalysis (Reanalysis SST, gray). The brown line is the historical average 
prediction result. For models using ENSO index as predictor, we applied six models (linear regression, 
ridge regression, elastic net regression, random forest regression and DNN regression) and use their 
ensemble as the final prediction. The shaded areas are 1 standard deviation for ensemble methods 
and historical averaging. 
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c 
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Figure 3. Explainable deep learning showing saliency maps for predictive understanding with 

the network model representations. (a,b), Saliency Map for Amazon river flow prediction using 
ESMs (a) and reanalysis (b) SST, respectively. (c,d), Saliency Map for Congo river flow prediction 
using ESMs (c) and reanalysis (d) SST, respectively. When using ESM SST as predictor, the salient 
areas mainly lie in the tropical Pacific and Indian Ocean, but they are much more diffused when using 
reanalysis SST. 
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Figure 4. Teleconnections in space and time based on reanalysis and model-simulated link 

strengths and degree maps used to construct and interpret complex networks in climate. a,c, 
Degree map and teleconnections for mean ESM SSTs. (a), correlation threshold equal to 0.5 and 0.9 
for degree and teleconnection. c, correlation threshold equal to 0.9 and 0.9 for degree and 
teleconnection. b,d, Degree map and teleconnections for mean Reanalysis SSTs. b, correlation 
threshold equal to 0.5 and 0.5 for degree and teleconnection. d, correlation threshold equal to 0.9 and 
0.9 for degree and teleconnection. We show teleconnections with distance larger than 19000km and 
15000km for ESM and Reanalysis SST, respectively. e,g, the histogram of edges using correlation 
threshold 0.5 and 0.9 for mean ESM SST. f,h, the histogram of edges using correlation threshold 0.5 
and 0.9 for mean Reanalysis SST. 
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Figure S1. Illustration of SST anomaly in a warm (El Nino) year (a, year 2002) and a neural year 
(b, year 2003). In a, although the SST anomaly around the Nino regions are positive (warm), there are 
large part of ocean with negative SST anomaly. 
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Figure S2. Yearly cyclical saliency maps for predicting Amazon river flow using ESM (a,c,e) and 
reanalysis (b,d,f) SST. The yearly cyclical saliency maps are calculated as the mean of saliency maps of 
the 12 months in the corresponding year. 
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Figure S3. Seasonal cyclical saliency maps for predicting Amazon river flow using ESM (a,c,e,g) 
and reanalysis (b,d,f,h) SST. The seasonal cyclical saliency maps are calculated as the mean of 
saliency maps for different seasons (e.g., December, January and February for Spring; March, April and 
May for Summer, etc). 
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Figure S4. Yearly cyclical saliency maps for predicting Congo river flow using ESM (a,c,e) and 
reanalysis (b,d,f) SST. The yearly cyclical saliency maps are calculated as the mean of saliency maps of 
the 12 months in the corresponding year. 
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Figure S5. Seasonal cyclical saliency maps for predicting Congo river flow using ESM (a,c,e,g) 
and reanalysis (b,d,f,h) SST. The seasonal cyclical saliency maps are calculated as the mean of 
saliency maps for different seasons (e.g., December, January and February for Spring; March, April and 
May for Summer, etc). 
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Figure S6. Correlation between Amazon river flow and ESM (a,c) and reanalysis SST (b,d). a,b, 
(linear) Pearson correlation. c,d, (nonlinear) Mutual information. The correlation is calculated between 
SST time series at each location with river flow time series. The time period is 672 months (from 
January 1950 to December 2005). We standardize the data for each natural month before calculating 
correlation. 
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Figure S7. Correlation between Congo river flow and ESM (a,c) and reanalysis SST (b,d). a,b, 
(linear) Pearson correlation. c,d, (nonlinear) Mutual information. The correlation is calculated between 
SST time series at each location with river flow time series. The time period is 672 months (from 
January 1950 to December 2005). We standardize the data for each natural month before calculating 
correlation. 
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Figure S8. Histogram for distance with correlation above 0.5 for each ESM. We decide that there is a 
connection between two locations with some distance if the Pearson correlation between the SST time 
series at these locations is equal or larger than 0.5. The time period for SST is 672 month (from January 
1950 to December 2005). We standardize the data for each natural months before calculating correlation. 
All locations lie in the area with latitude 9.5N to 9.5S and longitude 50.5E to 349.5E. 
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Figure S9. Histogram for distance with correlation above 0.5 for each ESM (continued). We decide 
that there is a connection between two locations with some distance if the Pearson correlation between 
the SST time series at these locations is equal or larger than0.5. The time period for SST is 672 month 
(from January 1950 to December 2005). We standardize the data for each natural months before 
calculating correlation. All locations lie in the area with latitude 9.5N to 9.5S and longitude 50.5E to 
349.5E. 
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Figure S10. Architecture of CNN model used in this paper. a, network architecture. There are 4 
convolutional layers (conv1 - conv4) and 3 fully connected layers (fc1,2 and output). Each convolutional 
layer is followed by a ReLU activation (ReLU(x)=max(0,x)) and a max pooling layer. The image input size 
is 80×300×C with C = 1, 3 or 32 depending on the datasets. For the convulutional layers, the filter sizes 
are all 3×3 with stride 1 and padding 1; and the number of filter channel is 32, 32, 64 and 64, respectively. 
The pooling layers are 2D max pooling layers with size 2×2 and will reduce the feature maps to half size. 
The outputs of the fully connected layers are 1D vectors with length 128, 64 and 1, respectively. b, 
forward pass to input climate variable SST as X and get prediction y. c, backward pass to calculate 
gradient of prediction y with respective to input X to get saliency maps.  
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Table S1. Earth system models used in the experiment. 

Index  Name  Index  Name  Index  Name  Index  Name 
0  access1-0  8  cesm1-cam5  16  giss-e2-r  24  miroc-esm 
1  access1-3  9  cmcc-cm  17  hadcm3  25  miroc4h 
2  bcc-csm1-1-m  10  cnrm-cm5  18  hadgem2-ao  26  miroc5 
3  bcc-csm1-1  11  csiro-mk3-6-0  19  inmcm4  27  mpi-esm-lr 
4  bnu-esm  12  fgoals-g2  20  ipsl-cm5a-lr  28  mpi-esm-mr 
5  canesm2  13  fio-esm  21  ipsl-cm5a-mr  29  mri-cgcm3 
6  ccsm4  14  giss-e2-h-cc  22  ipsl-cm5b-lr  30  noresm1-m 
7  cesm1-bgc  15  giss-e2-r-cc  23  miroc-esm-chem  31  noresm1-me 

 

 
Table S2. RMSE for predicting Amazon and Congo river flow using index and larger area SST. 
Numbers with red bold and bold font indicate the best and second-best results; and numbers with ∗  
indicate best results when using indices as predictors. 

Method Linear, lasso, ridge, elastic net, random forest and DNN regression Historical 
average CNN 

Predictor type Nino 3.4 index (C-dimensional time series, C=1, 3 or 32) Climatological SST (2-dimensional 
images) 

Predictor source ESM mean ESM HadISST1 Reanalysis 
mean Reanalysis Historical mean ESM Reanalysis 

Amazon 

Linear 1.051 0.508 0.925* 0.919* 0.925* 

0.294 0.265 0.313 

Ridge 1.047 0.499 0.925* 0.920 0.925* 
Lasso 1.050 0.576 0.925* 0.919* 0.925* 

Elastic net 1.028 0.469* 0.925* 0.922 0.925* 
Random forest 1.216 0.518 0.958 1.002 0.943 

DNN 1.002* 0.516 0.954 0.929 0.954 
Ensemble 1.049 0.461 0.931 0.925 0.928 

Congo 

Linear 1.012* 0.802 0.996* 0.976* 0.987 

0.476 0.598 0.485 

Ridge 1.012* 0.784 0.996* 0.977 0.985* 
Lasso 1.022 0.848 0.996* 0.976* 1.000 

Elastic net 1.022 0.799 0.996* 0.976* 0.993 
Random forest 1.240 0.804 1.074 1.089 1.108 

DNN 1.025 0.711* 1.000 0.980 0.980 
Ensemble 1.043 0.750 1.005 0.992 0.999 

 

 
Table S3. Correlation between Nino indices and river flows. 

Index ESM mean HadISST1 Reanalysis mean 

Amazon Pearson correlation -0.0561 -0.191 -0.146 
Mutual information 0.049 0.077 0.077 

Congo Pearson correlation -0.195 -0.024 -0.091 
Mutual information 0.058 0.008 0.097 
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Table S4. Different metrics for three prediction results for Amazon river. For Pearson, Spearman 
and Kendall’s Tau correlation, the values in the parenthesis is the correlation and p-value, respectively. 
For the seasonal RMSE, the values in the parenthesis is RMSE for spring (DJF), summer (MAM), autumn 
(JJA) and winter (SON), respectively. For the yearly RMSE, the values in the parenthesis is RMSE for the 
year 2003, 2004 and 2005, respectively. For the extreme RMSE, the values in the parenthesis is RMSE 
for predictions whose absolution values are within and outside 2 standard deviations, respectively. For 
above/below RMSE, the values in the parenthesis is RMSE for predictions whose values are above and 
below the mean (0), respectively. For ENSO RMSE, the values in the parenthesis is RMSE for warm, cool 
and neutral months, respectively. 
                                    
Metric 
Method 

Historical average ESM+CNN Reanalysis+CNN 

Pearson correlation (0.9637, 4.426e-21) (0.967, 9.217e-22) (0.9451, 4.397e-18) 
Spearman correlation (0.9504, 8.029e-19) (0.9681, 5.171e-22) (0.9284, 3.475e-16) 
Kendall’s tau correlation (0.8402, 2.067e-12) (0.8635, 1.265e-13) (0.7778, 2.485e-11) 
Mutual information 1.2425 1.2292 1.1371 

Seasonal RMSE (0.1695, 0.2220, 0.2407, 
0.4576) 

(0.2830, 0.2167, 0.1109, 
0.3759) 

(0.1941, 0.1722, 0.2789, 
0.4956) 

Yearly RMSE (0.1728, 0.2338, 0.4177) (0.2904, 0.2362, 0.2652) (0.2382, 0.1717, 0.4548) 
Extreme RMSE (0.2622, 0.3145) (0.2773, 0.2545) (0.3339, 0.2998) 

Above/below RMSE (0.2815, 0.3057) (0.2058, 0.3083) (0.2961, 0.3281) 
ENSO RMSE (0.2040, 0.5991, 0.2868) (0.2794, 0.2333, 0.2611) (0.1820, 0.6420, 0.3136) 

MAE 0.2215 0.2078 0.2382 
Nash–Sutcliffe coefficient 0.9053 0.9231 0.893 

 

 
Table S5. Different metrics for three prediction results for Congo river. 
                                    
Metric 
Method 

Historical average ESM+CNN Reanalysis+CNN 

Pearson correlation (0.909, 1.792e-14) (0.8726, 4.051e-12) (0.8994, 9.031e-14) 
Spearman correlation (0.8544, 3.397e-11) (0.8682, 6.962e-12) (0.86, 1.826e-11) 
Kendall’s tau correlation (0.6866, 9.2312e-09) (0.6921, 2.873e-09) (0.673, 7.683e-09) 
Mutual information 0.7301 0.5913 0.7445 

Seasonal RMSE (0.4908, 0.4468, 0.5885, 
0.3440) 

(0.9007, 0.4162, 0.3427, 
0.5716) 

(0.5257, 0.4639, 0.5788, 
0.3400) 

Yearly RMSE (0.4866, 0.5178, 0.4171) (0.8148, 0.4889, 0.4105) (0.5434, 0.4873, 0.4172) 
Extreme RMSE (0.4122, 0.4874) (0.4217, 0.6528) (0.4417, 0.4971) 

Above/below RMSE (0.4612, 0.4858) (0.8170, 0.4494) (0.4985, 0.4758) 
ENSO RMSE (0.6421, 0.3819, 0.3943) (0.7951, 0.5438, 0.4976) (0.6423, 0.2926, 0.4176) 

MAE 0.3879 0.4765 0.3895 
Nash–Sutcliffe coefficient 0.7783 0.65 0.7691 

 

 

 

 

 

 

 

 

 

 


