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Abstract

Climate-mediated changes in the spatiotemporal distribution of thermal stress can destabilize
animal populations and promote extinction risk. Using quantile, spectral, and wavelet analyses of
temperature projections from the latest generation of earth system models, we show that
significant regional differences are expected to arise in the way that temperatures will increase
over time. When integrated into empirically-parameterized mathematical models that simulate the
dynamical and cumulative effects of thermal stress on the performance of 38 global ectotherm
species, the projected spatiotemporal changes in temperature fluctuations are expected to give
rise to complex regional changes in population abundance and stability over the course of the 215t
century. However, despite their idiosyncratic effects on stability, projected temperatures
universally increase extinction risk. These results show that population changes under future
climate conditions may be more extensive and complex than the current literature suggests
based on the statistical relationship between biological performance and average temperature.

Introduction

Biodiversity loss has been recognized as one of the top global risks by the World Economic
Forum because it could erode or eliminate key ecosystem functions and services. Climate
change is expected to surpass habitat loss as the leading threat to global biodiversity by the
middle of the 215 century’. Observed changes in the distribution and phenology of species have
already been linked to climate fluctuations in numerous studies?. Although conservation actions
may ameliorate potential biodiversity loss, the success of these efforts depends on our ability to
predict the response of ecological systems to environmental changes.

Most ecological impact studies to date have relied on statistical models such as bioclimate
envelope approaches to determine how climate change will impact ecological populations®-.
Bioclimate envelope models are typically constructed by either mapping the geographical
distribution of species to co-located temperature records via regression techniques or by building
species’ thermal profiles via empirical assessments of their performance across a range of



temperatures (i.e., thermal performance curves or TPCs)*’. These relationships between
organisms and temperature are then used to predict the distribution of species under future
thermal conditions projected under various climate change scenarios.

Despite their power and popularity, statistical approaches based on TPCs have inherent
limitations in accounting for individual differences in age, habitat, and acclimatization history®*.
Statistical approaches also can yield inaccurate predictions because they typically rely on mean
annual conditions and thus ignore the influence of the temporal structure of temperature at finer
scales. This is problematic because the nonlinear relationship between temperature and most
metrics of biological performance essentially guarantees that the average organismal response
will not be equivalent to their response to the average condition®-'3. Specifically, when an
organism is exposed to a sequence of temperatures x, its performance at the average
temperature f(x) will differ from the average of its performance f(x). Temporal variation in

temperature will either magnify (f(x) > f(a?)) or dampen (f(x) < f(a?)) the effects of its mean on

organismal performance depending on the curvature of f (i.e., whether f is accelerating or
decelerating®). In many cases, changes in temperature variability can be as or more important
than changes in the climatological value'*'S. For example, climate-mediated changes in mean
temperature alone were found to promote organismal performance in ectotherms, but accounting
for the temporal variability of temperature dampened this effect and led to most species suffering
a performance loss’®.

Although the temporal structure of temperature can theoretically be incorporated into bioclimate
envelope models by using finer-scale data, accounting for its dynamical effects on organisms is
much more difficult because of the ‘static’ nature of these methods and their general inability to
account for the cumulative effects of previous temperatures on organismal performance.
However, theory has shown that such carry-over effects associated with the temporal structure or
autocorrelation of temperature can interact with the magnitude of temperature variability to
determine ecological persistence. Specifically, temporally autocorrelated variation tends to reduce
extinction risk by decreasing the likelihood of catastrophic conditions under strong variation,
whereas temporally autocorrelated variation tends to promote extinction risk under weak variation
by increasing the likelihood that organisms will experience long stretches of poor conditions™’.
Additionally, analyses of historical observations and projections from previous generation climate
models have found strong temporal trends in the variability and autocorrelation of temperature,
suggesting the potential for a larger impact on ecological populations in the future'®2'. Overall,
these empirical and theoretical results highlight the importance of quantifying changes in the
mean, variability, and autocorrelation of temperature projected under climate change to predict
their joint influence on ecological systems over the course of the 215t century. However,
disparities in the scale of models in climate and ecology have hindered impact studies that
consider the complexity of both underlying systems?223,

We briefly illustrate the potential for complex interactions between climate-mediated changes in
the mean, variability, and autocorrelation of temperature to influence organismal performance by
simulating the effects of synthetic temperature time series on the population growth rate r
according to a species’ TPC (Fig. 1, see Materials and Methods for modeling details). Predictably,
performance under negligible temperature variation can be inferred directly from the mean of
each species’ TPC (Fig. 1b,c). However, when temporal variation in temperature is included in
the model (i.e., standard deviation; shaded region), time-averaged performance can be
considerably modified'®, even overturning the species performance rankings based solely on
constant temperature conditions (Fig. 1d,e). The temporal structure of temperature as measured
by its autocorrelation also influences population dynamics by controlling the prevalence of long-
term environmental fluctuations (Fig. 1f,g). To determine the impact of such changes over the
course of the 215t century, we analyzed the latest generation of global climate models from the
Coupled Model Intercomparison Project Phase 6 (CMIP6) in order to document spatiotemporal
changes in three key aspects of air temperature (statistical distribution, variance, and temporal



autocorrelation). We analyzed the effects on ecological stability and persistence using simple
strategic mathematical models to examine the hypothesis that even under ideal conditions,
popular statistical methods can yield incorrect predictions about patterns of organismal
performance when dynamical and cumulative temperature effects are ignored.
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Figure 1. Effects of temperature mean, variance, and autocorrelation on organismal performance

a, Source locations of the 38 species whose thermal performance parameters of which were obtained from
the Deutsch et al. (2008) dataset. Cotesia sesamiae is a tropical parasitoid wasp and Hyadaphis
pseudobrassicae a temperate-zone turnip aphid. b, ¢, Thermal performance curves and population
dynamics for C. sesamiae and H. pseudobrassicae under negligible temperature variation. d, e, Larger
temperature variation (standard deviation shaded) alters mean response and may even overturn predictions
of relative performance based on constant temperature conditions. f, The power spectrum of temperature
with weak (R=-0.5) and strong (3=-2) temporal autocorrelation. g, Population dynamics of Hyadaphis
pseudobrassicae under a greater degree of temporal autocorrelation exhibit longer-term fluctuations.



Results

We applied quantile regression to examine changes in the global and regional temperature
distributions at each geographical location between 1850 and 2100 under the worst-case land
use and emissions scenario, SSP5-8.5%* (Fig. 2a). When averaging trends across regions, we
found asymmetrical but uniformly positive trends across all quantiles, indicating that the entire
temperature distribution is shifting upwards, but at rates that vary systematically across the
distribution. In the Northern Hemisphere Extra-tropics (NHEX; 30°N to 90°N), the lowest quantile
of the distribution (t = 2.5%, 0.33 K decade™) is warming at twice the rate of the uppermost
quantile (t = 97.5%, 0.16 K decade™). The Southern Hemisphere Extra-tropics (SHEX; 90°S to
30°8S) exhibit a similar pattern of disproportionate warming for the low quantiles (t = 2.5%, 0.15 K
decade™; T = 97.5%, 0.10 K decade™). Conversely, in the Tropics (TROP; 30°S to 30°N), the
upper quantiles of temperature are warming faster (t = 97.5%, 0.14 K decade™) than the lower
quantiles (t = 2.5%, 0.10 K decade'). The magnitude of trends is greater in NHEX than in other
regions. The more pronounced extra-tropical decrease in the incidence of cold events may
benefit cold-limited species, including nuisance species, however, quantile trends also indicate
increased positive skewness of the NHEX temperature distribution, which has been associated
with declines in long term ecological performance’®. Across all eight CMIP6 models that we
analyzed and in all three latitudinal regions, trends in the tails of the distributions differ from the
trends in the central tendencies, thus highlighting the importance of moving beyond mean
temperature when predicting organismal performance.
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Figure 2. Mean trends in the statistical distribution of daily air temperature between 1850 and 2100.
a, Trends in the percentile values of air temperature (K/decade) indicate asymmetrically warming
temperature distributions in the Northern Hemisphere Extra-tropics (NHEX; 30°N to 90°N), the Tropics
(TROP; 30°S to 30°N), the Southern Hemisphere Extra-tropics (SHEX; 90°S to 30°S), and the full globe
(GLOBAL; 90°S to 90°N). Shaded bounds denote a 90% confidence interval based on eight CMIP6 models.
b, Trends in the variance of daily air temperature (K*/decade) exhibit similarly complex regional patterns.
The concurrent decrease of variability at high latitudes and increase at other latitudes suggests that
temperature variation is becoming more spatially homogeneous in a warming world. Hashed contours
indicate statistically significant inter-model agreement on the sign of the trend at the a = 0.05 significance
level.

Trends in the variability of temperature between 1850 and 2100 are predicted to exhibit similarly
complex regional patterns (Fig. 2b). Variance is generally increasing across temperate and
tropical land areas below 45°N, with regional exceptions including Asia. The strongest increases
in variance are in the northern midlatitudes, including northern Africa, southern Europe, the
Middle East, and the western United States. Variance is decreasing most rapidly in the high
northern latitudes, especially in Canada and Russia?®. The concurrent decrease of variability at



high latitudes and its increase at other latitudes suggests that temperature variation, like mean
temperature, is becoming more spatially homogeneous in a warming world. These findings are
generally consistent with studies of the previous generation of climate models, which suggested
increasing temperature variability in tropical countries?” and decreasing variability in the northern
mid- to high- latitudes?®. Trends at the regional level are congruent with quantile trends (Fig. 2a),
which indicate a widening temperature distribution (increasing variance) in TROP, and a
narrowing temperature distribution (decreasing variance) in NHEX and SHEX, as well as large
scale changes in physical climate processes 2/-2°. The effects of these trends in temperature
variation on ecological systems will depend on the geographical location and physiological
properties of each species, with increasing variability either promoting or reducing performance
based on its position relative to the inflection point of an organism’s TPC'°.
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Figure 3. Increasing temporal autocorrelation in daily air temperature between 1850 and 2100.

a, Spatiotemporal trends in temporal autocorrelation suggest changes in the chronological sequence of
temperature conditions, with increasing temporal autocorrelation (decreasing spectral exponent) at 80.04%
of global land locations, excluding Antarctica. Hashed contours indicate statistically significant inter-model
agreement on the sign of the trend at the a = 0.05 significance level. b-e, Regional analysis indicates
statistically significant increasing trends in temporal autocorrelation in NHEX and TROP and a statistically
significant decreasing trend in temporal autocorrelation in SHEX. While sea environments generally exhibit a
greater degree of temporal autocorrelation than land, in NHEX autocorrelation is increasing at a greater rate
at land locations as to overturn this relationship by the end of the 215t century.

To better understand these spatiotemporal patterns, we used time-frequency decomposition via
wavelet transform to resolve changes in the variability or power of temperature at annual
timescales (2 day—2 year) and inter-to multiannual timescales (2—30 year; Extended Data Fig.
1). We found countervailing trends in scale-specific variability in the mid to high-northern
latitudes. The magnitude of short-term variability is decreasing, while the magnitude of long-term
variability is increasing. Arctic amplification, which is detectable in both observational data and
climate simulations, has previously been suggested at the main driver of decreasing sub-
seasonal variability at these latitudes?®. Meanwhile at the mid latitudes, variation at both annual
and multiannual time scales is increasing, consistent with increasing variance at all periodicities.
These scale-dependent changes in the temporal trends of temperature fluctuations could have
important ecological implications. For instance, temperature fluctuations whose time scales are
smaller than the generation time of organisms can have much greater impact on performance
than larger-scale temperature fluctuations®.

We computed the spectral exponent of the temperature time series at each geographical location
to quantify spatiotemporal trends, with more negative exponents indicating greater temporal
autocorrelation over a range of lags from 2 days to 10 years (Fig. 3a). We found increasing
temporal autocorrelation (decreasing spectral exponent) at a majority of land locations (80%),
excluding Antarctica, and sea locations (60%). Autocorrelation is increasing most rapidly in



equatorial land areas including the Amazon and the Southeast Asian islands with high inter-
model agreement on the sign of the trend. Notable exceptions to the increasing trend in
autocorrelation include Greenland, Western Africa, Western Europe, and parts of Central Asia.
Generally, agreement between models is higher at mid-latitudes than in the polar zones or the
tropics, where climate model bias and spread have historically persisted®'. Regional analysis
indicates statistically significant increasing trends in temporal autocorrelation in NHEX (-1.12e3
decade™, p-value=0.010), TROP (-1.14e decade, p-value=0.001), and globally (-0.54e
decade™, p-value=0.005), and a statistically significant decreasing trend in temporal
autocorrelation in SHEX (0.53e decade™, p-value=0.009; Extended Data Fig. 2; Extended Data
Table 1). The direction and significance of these trends are consistent across land and sea
environments, although the spectral exponent is more negative for sea than land, likely due to the
buffering effects of the ocean. In NHEX and TROP autocorrelation is increasing at a greater rate
in land locations than sea locations while in SHEX autocorrelation is decreasing at similar rates
between land and sea (Extended Data Table 2). A greater degree of temporal autocorrelation is
associated with more gradual changes of state, and, even absent any changes in variance,
results in longer durations spent under extreme conditions. A greater clustering of similar
temperatures has been suggested to increase exposure to heat waves and cold snaps while
decreasing the incidence of protective temporal refugia®.

In the northern latitudes, variance and autocorrelation exhibit opposite temporal trends. The
decreasing variance may be attributed to a decrease in high frequency variability and more rapid
warming of the lower than upper quantiles of the temperature distribution. Studies of reanalysis
data and observations have also implicated decreasing cold-season sub-seasonal variability and
rapidly warming cold days in decreasing temperature variability in mid to high northern
latitudes?%-242°, Meanwhile, temporal autocorrelation in NHEX is increasing, a finding which has
also been detected in the previous generation of climate models?°, weather station
observations®3, and monthly reanalysis data'®. As a result, variation at 2-day to 10-year
periodicities is decreasing while temperature fluctuations are becoming more persistent,
suggesting the increased probability of a series of homogeneous conditions. In contrast to the
mid to high northern latitudes, variance and temporal autocorrelation show similar trends at most
latitudes, that is, both variance and autocorrelation are increasing.

To better understand the independent and joint biological effects of these projected trends in the
mean, variance, and autocorrelation of temperature on ecological systems, we used empirical
thermal performance information from invertebrate ectotherms compiled by Deutsch et al. (2008).
We extracted temperature time series from the eight CMIP6 climate models at geographical point
locations corresponding to the source sites of the 38 species. A dynamical population simulation
using species-specific temperature-dependent growth rates yielded time series of population
abundance for the historical period (1950-2000) and the latter half of the 215t century (2050-
2100). Using the eight climate simulations as replicates, we compared the historical and future
periods to detect statistically significant temperature-driven changes in population abundance,
stability (mean/standard deviation of abundance), and persistence (proportion of simulations
where a species had a strictly positive final abundance).

Under the business-as-usual emission scenario (SSP5-8.5), population abundance increased for
the plurality of species (18 of 38) and decreased for 10 species (Extended Data Table 3).
Population abundance increased significantly for all TROP species (5 of 5) and for the majority (5
of 8) of SHEX species. In NHEX, outcomes were mixed with approximately equal proportions of
species experiencing an increase in abundance, a decrease in abundance, and no significant
change. NHEX population abundance followed latitudinal patterns, generally decreasing between
30°N and 45°N, and increasing above of 45°N. Under business-as-usual temperature changes,
population stability increased for the plurality of species (16 of 38) and decreased for 10 species
(Fig. 4a). Population stability increased or underwent no significant change for TROP species,
while in the mid-latitudes (NHEX and SHEX), changes in stability were mixed. Additional analyses
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showed that the trends in stability were mainly due to the emergence of two distinct dynamical
regimes under climate change, with species either moving to a low-mean/low-variance mode or a
high-mean/high-variance mode, particularly in the extra-tropics (Extended Data Fig. 4-5). These
results were robust to un-normalized growth rates and equilibrium densities (Extended Data Fig.
2-3).
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Figure 4. Temperature has idiosyncratic effects on stability but increases extinction risk globally.

a, Source locations of the terrestrial ectothermic invertebrate species, numbered 1 (southern-most latitude)
to 38 (northern-most latitude). Species are color-coded according to latitudinal region (SHEX; 90°S to 23°S;
orange, TROP; 23°S to 23°N; red, NHEX; 23°N to 90°N; green) b, Percent changes in population stability
(mean-+standard deviation) between a historical reference period (1950-2000) and a future period (2050-
2100) under multiple aspects of temperature change indicate greater risk to temperate than tropical species.
Under a business-as-usual scenario, stability underwent a statistically significant increase for the plurality
(16 of 38) of species and a statistically significant decrease for 10 species. ¢, Persistence probability
underwent a quasi-universal decrease globally between the historical period (1950-2000) and a
future period (2050-2100) under business-as-usual changes in temperature.



Many SHEX and NHEX species suffered performance losses (negative growth rates) during
summers in their respective hemispheres, as they are generally less tolerant of hot temperatures
than tropical species. For some temperate species, longer growing seasons and warmer winter
temperatures offset the negative effect of the warmest part of the year, while others will suffer an
overall performance loss®. This is consistent with the suggestion that increases in summer heat
stress would reduce overall fitness and increase fitness variation for many mid-latitude species®®.
Our results suggest that temperate species may be at greater risk than tropical species as a
result of warm days, even when annual mean temperature remains below the thermal optimum.
The results contrast with those of a previous studies, which suggested based on hourly
temperature records and monthly temperature anomalies that warming in the tropics would be
more deleterious than warming in the mid-latitudes*36. Our results are more consistent with
studies that predict a greater risk of performance loss for temperate species when accounting for
climate-mediated changes in the mean and the variance of temperature’®.

Our simulations indicated mean warming as the dominant driver of ecological impacts. Changes
in temporal autocorrelation alone (mean temperature and variance held at historical levels) had
no significant effects on population abundance and a significant destabilizing effect on just 3
NHEX species. Changes in temporal autocorrelation and variance (mean temperature held at
historical levels) led to a decrease in population abundance in 2 NHEX species and a decrease in
population stability in 5 NHEX species. These results suggest that NHEX species are more
vulnerable to negative effects of changes in temperature variability than TROP or SHEX species.
Finally, changes in mean and temporal autocorrelation (variance held at historical levels) led to
increased population abundance in 19 global species and increased stability in 19 global species,
versus 18 and 16 under business-as-usual projected changes in all three aspects of temperature.
Thus, projected changes in temperature variability have a weak moderating effect on the positive
effects of mean warming on population abundance and stability.

To determine how these complex changes in population abundance and stability translate to
persistence, we quantified extinction risk as the proportion of the eight CMIP6 models for which
population abundance declined below an arbitrarily small threshold of 1e-9 at any point during the
50-year simulation (Fig. 4b). In our simulations, extinction risk increased between historical and
future simulations for 25 species, did not change for 13 species, and decreased for 0 species
under business-as-usual emission scenario. We found statistically significant increases in
extinction risk globally (Mann-Whitney U = 376, n1 = n2 = 38, p-value = 6e-5) and in NHEX
(Mann-Whitney U = 150.5, n1 = n2 = 25, p-value=5e-4). These findings suggest that temperature
changes have an overall negative effect on persistence, despite a largely positive or neutral
impact on population abundance and idiosyncratic impacts on stability. Hence, although variability
among climate models produces a wide range of changes in stability across species and
geographical locations, uncertainty at the climate level yields consistent biological impacts in the
form of a systematically higher extinction risk (Extended Data Fig. 6).

Discussion

Our demonstration of increased extinction risk under climate change is based on combining fine-
scale temperature projections from the latest generation of Earth System Models with strategic
dynamical models of population growth. Unfortunately, using more tactical dynamical models
would require extensive species-, age-, and life-stage specific information about the effects of
temperature fluctuations on population growth rates that is simply not available at the relevant
scales. Tactical models would also need to consider thermoregulation®’, microclimate issues®,
acclimatization/adaptation®, partitioning of activity periods®®, and other mechanisms by which
ectotherms could avoid extinction. Additionally, at a 1° spatial resolution, the climate data used in
this study are much coarser than the microclimates experienced by individual organisms. Hence,
our results should be viewed as a qualitative baseline prediction of how the spatiotemporal



distribution of extinction risk is likely to shift due to climate change rather than a quantitative
forecast of when each species is likely to be extirpated from each geographical location.

Despite the inherent limitations of TPCs, the lack of obvious alternatives calls for strategies to
make these approaches more robust to real-world conditions®, which is what we achieved by
integrating more realistic, fine-scaled temperature variation into our predictive models than
previous studies. Although bioclimate envelope approaches have been criticized for not
accounting for important ecological factors such as species interactions and dispersal when
attempting to predict the ecological effects of climate change*®*3, we have shown that even
under ideal conditions when the influence of such factors can be assumed to be negligeable,
statistical frameworks that ignore the dynamical consequences of temperature variation are likely
to yield inaccurate predictions about the impact of climate change on organisms. By their
qualitative differences from previous results considering changes in mean temperature*, our
results thus quantify how “black box” models using mean temperature can fail under
nonstationary variation.

By bringing together climate data and a minimal, strategic, dynamical model from ecology we
demonstrated a strong and systematic amplification of extinction risk in ectotherms due to
projected changes in fine-grained temperature variability. Furthermore, our finding of greater risk
to sub-tropical than tropical species highlights the importance of accounting for the dynamical
effects of projected changes in the mean as well as variance of temperature over the course of
the 215t century to accurately predict the response of ecological systems around the globe.

Methods

CMIP6 simulations

We obtained CMIP6 climate simulations for the historical forcing period (1850-2014) and future
emissions scenario SSP5-8.5 (2015-2100) via the CMIP6 data portal (https://esgf-
node.lInl.gov/search/cmip6/). Eight models from CMIP6 (AWI-CM-1-1-MR, BCC-CSM2-MR,
CESM2, EC-Earth3, INM-CM5-0, MPI-ESM1-2-HR, MRI-ESM2-0, and NorESM2-MM) were
selected based on availability of daily air temperature at surface (“tas”) at a 100 km nominal
resolution at the time of download. While “tas” at sub-daily frequencies is available for some
models, daily data was selected to maximize the ensemble size. We resampled all datasets to a
common 1° by 1° grid spanning -90° to 90° latitude and 0° to 360° longitude, and to a standard
calendar without leap years. Spatial regions were defined based on latitude as Northern
Hemisphere Extra-tropics, 90°S to 30°S; Tropics, 30°S to 30°N; and Southern Hemisphere Extra-
tropics, 30°N to 90°N.

Statistical analyses of climate data

Quantile regression

Trends in the percentile values global and regional temperature distributions were computed via
quantile regression. Quantile regression can comprehensively model heterogenous conditional
distributions, where the relationship between the quantiles of the dependent variable and the
independent variable is different from the relationship between the mean of the dependent
variable and the independent variable. We applied quantile regression to analyze trends with
respect to time at various percentile values (P25, P10, P20, P30, P4o, Pso, Peo, P70, Pso, Poo, Po7.5).
Analyses were performed using the R package quantreg, with alpha = 0.1 and the default
Barrodale and Roberts method to return confidence intervals for the estimated parameters. To
obtain the ensemble mean trends, we calculated the mean slope, upper bound, and lower bound
across the eight climate models at each geographical location, then computed spatial averages
for the full globe and three latitudinal regions.




Variance

Trends in the magnitude of temporal variation of air temperature were examined at each
geographical location using a moving window approach. The temperature time series were
divided into 10-year windows starting in years 1855 through 2085 so as not to combine historical
and future simulations (pre- and post- 2015-01-01), and the variance of daily air temperature was
calculated for each window. Windows were selected with no overlap to avoid statistical issues
due to non-independence of estimates taken from partially overlapping time windows?°.

Scale-specific variability

Scale-specific variability was quantified using time-frequency decomposition. At each
geographical location, a wavelet transform was applied to multi-model mean temperature using
the R package biwavelet*. From the resulting wavelet coefficient heatmap with time on the x-
axis, period (scale) on the y-axis, and power on the z-axis, scale-averaged wavelet power was
computed at annual (3 day-2 year), inter- to multiannual (2-30 year) periodicities. Scale-averaged
power was regressed against time using Generalized Least Squares regression for the period
1850-2100 at each geographic location. To determine the robustness of results to the choice of
period for scale averaging, we also performed analysis of trends separately at interannual (2-7
year) and multiannual (7-30 year) scales and found qualitatively similar results.

Temporal autocorrelation

The temporal autocorrelation of air temperature was quantified by calculating the spectral
exponent at each geographical location?. First, temperature was detrended by fitting a piecewise
linear regression against time with Python package pwlf at each geographical location and
extracting the residuals. The detrended temperature was divided into 10-year windows starting in
years 1855 through 2085. Fourier transforms of each time series were computed via fast Fourier
transform using the Python package NumPy. Periodograms were prepared with frequency on the
x-axis and power spectral density on the y-axis. The spectral exponent, 3, was calculated as the
slope of the regression line relating log transformed power to log transformed frequency.
expresses the relative contributions of frequencies to the power spectrum. In the case of equal
contribution from all frequencies, p = 0. Greater contribution from low frequencies than high
frequencies results in a more negative value of 3, and indicates greater temporal autocorrelation
in the time domain.

Analysis of decadal trends

For each climate model, Generalized Least Squares (GLS) regression was used to detect
statistically significant trends (p-value < 0.05) in variance and temporal autocorrelation with
respect to time in the presence of potentially autocorrelated residuals. To measure inter-model
agreement, we calculated the multi-model mean trend at each geographic location then assessed
the proportion of models that agree with the sign of the multi-model mean trend. Inter-model
agreement was considered as statistically significant at the a = 0.1 level based on a binomial test.
A one-way analysis of covariance (ANCOVA) was used to analyze the relationship between
temporal autocorrelation and time while accounting for potential differences between land and
sea environments. Statistically significant main effects and interactions were reported for p-value
< 0.05.

Modeling temperature impacts on ecology

Thermal tolerance data

We obtained experimentally derived thermal tolerance parameters for a set of terrestrial
ectotherms (n = 38) published by Deutsch et al. (2008) and used them to predict physiological
response to CMIP6 simulated temperature. The critical thermal maximum (CTmax), optimum
temperature (Topt), and sigma (o) were used to estimate the thermal performance curve for each
species based on its intrinsic rate of growth. Specifically, we used a numerical scheme whereby
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the rise in performance up to Topt was modeled as Gaussian and the decline beyond Topt was
quadratic*4®

2
exp [— (ﬂ) ] for T < Topt

20p

P(T) = [1]

2
1- (&) for T > T,y

Topt_CTmax

This allowed negative growth rates to arise at high temperatures but growth rates were bound at
zero at low temperatures. Because P(T) is capped at 1 under this numerical scheme, P(T)
represents the relative fithess of each species based on its normalized maximum growth rate.
However, scaling this relative or normalized maximum growth rate by a factor of 0.1 or 10.0 had
very little quantitative and no qualitative impact on our results (Extended Data Fig. 3).

Isolation of temperature aspects

To isolate projected changes in mean temperature and variability, we transformed the future
(2050-2100) time series to the historical (1950-2000) mean and/or standard deviation via z-score
normalization. Working in 10 year moving windows between 2050 and 2100, each series x; with
mean m+ and standard deviation s7 was transformed to series y; with mean m2 and standard
deviation sz:

yi=my+ (x; — m1)z—i [2]

According to the scenario, m2 and s2 were alternatively defined as [1] business-as-usual mean
and standard deviation (“Mean, variance, and autocorrelation”), [2] business-as-usual mean and
historical standard deviation (“Mean and autocorrelation”), [3] historical mean and business-as-
usual standard deviation (“Variance and autocorrelation”), and [4] historical mean and standard
deviation (“Autocorrelation”). Business-as-usual statistics refer to the properties of series x; and
confer no change to that aspect of the time series.

Population dynamical modeling

To model the effects of temperature change on the stability and persistence of global ectotherm
populations, temperature dependence was integrated in the growth rate term of a population
dynamical model*®. Basic population growth models fall into two categories: exponential and
logistic. Both types of models are built as deterministic differential equations and are strategic in
that they are designed to reveal general explanations for limited aspects of a system. The r — a
logistic growth model incorporates a linear decrease in per capita growth rate as the population
abundance increases, with the change in population calculated as

T =N —an) [3]
with population size N, time t, temperature-dependent growth rate r;, and density dependent
crowding effect a. We extracted times series of daily temperature at the source locations for each
species from the ensemble of eight climate simulations. Daily intrinsic growth rates were
computed from temperature using Egn. 1, incorporated into the r — a logistic growth model
depicted in Egn. 3, and the model was then numerically solved using the explicit Runge-Kutta
method of order 5(4) implemented in the Python SciPy package in order to obtain daily population
densities. Rather than delineating active periods, which may shift under climate change, we
considered the full year to account for potential changes in fithess due to shifts in activity.
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The sensitivity of the results to strong (@ = 1) and weak (a¢ = 0.1) self-regulation was examined
and found to be extremely limited (Extended Data Fig. 2). We also assessed the sensitivity of our
results to absolute rather than relative or normalized growth rates by scaling r; by a factor of 0.1
or 10 in our simulations. Scaling r; in this manner had very little quantitative and no qualitive
impact on our results. This suggests that the effects of temperature fluctuations on changes in the
spatiotemporal distribution of population size, stability, and extinction were not contingent upon
the use of relative fitness (i.e., normalized growth rate) versus absolute fithess (i.e., growth rate
scaled by a factor of 0.1 or 10).

Analysis of population changes

To quantify temperature-driven changes in ecological stability and persistence probability, we
compared population sizes and dynamics between a historical period (1950-2000) and a future
period (2050-2100). Here, we defined latitudinal regions according to traditional delineations in
ecology: Northern Hemisphere Extra-tropics, 60°S to 23°S; Tropics, 23°S to 23°N; and Southern
Hemisphere Extra-tropics, 23°N to 60°N.

Population abundance was computed as the mean population size (N) for a time period.
Population stability was computed as the inverse of the coefficient of variation, or mean
population divided by population standard deviation. Percent changes in population size and
stability were computed for each of the climate models as (future — historical) /historical x 100%
and plotted without outliers in Fig. 4. Statistically significant changes in population abundance and
stability between the historical and future periods were identified via the Mann-Whitney U-test
with the eight models as replicates.

Extinction probability was quantified as the proportion of ensemble simulations for which the
population declined to zero during a 50-year simulation. Changes in persistence probability were
calculated as the difference between future and historical persistence probability. Statistically
significant changes in persistence probability were identified on a regional basis via the Mann-
Whitney U-test.

Data availability

The CMIP6 simulation data used in this paper is available via the data portal https://esgf-
node.lIinl.gov/search/cmip6/. The ecology data is available for download at
https://doi.org/10.1073/pnas.0709472105. Code to generate the results described above will be
made available on GitHub following publication.
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Extended Data
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Extended Data Fig 1. Temperature variation at multiple timescales contributes to trends in overall
variance.

a-b Trends in the power of variation at annual (3-days to 2-years) (a), inter- to multi-annual (2-30 years) (b)
timescales between 1850 and 2100 suggest changes in the overall frequency spectrum of temperature
variation. Countervailing trends are found in the Arctic, where the power of short fluctuations is decreasing
and the power of persistent, low-frequency fluctuations is increasing.
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Extended Data Fig 2. Temperature-driven effects on population stability and extinction risk are robust

to the degree of population self-regulation.

Results exhibited limited sensitivity to strong (a« = 1; Fig. 4) and weak (a = 0.1; above) self-regulation in the
form of crowding effects. Latitudinal patterns and effect sizes were consistent for changes in population

stability, a, and extinction probability, b.
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Extended Data Fig 3. Scaling of the intrinsic growth rate has moderate effects on temperature-driven
impacts on population stability and extinction risk.

Results exhibited limited sensitivity to the choice of smaller (scaling factor = 0.1; a,b) and larger (scaling factor
= 10.0; e,f) intrinsic growth rates. Although larger growth rates were more strongly associated with deceased
stability and increased extinction risk than smaller growth rates, the latitudinal patterns and effect sizes were
consistent with the changes in population stability, ¢, and extinction probability, d, observed under normalized
growth rates.
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Extended Data Fig 4. Drivers of changes in stability (analysis includes both pre- and post-extinction
period).
Kernel density plots illustrate the relationships between population mean and population standard deviation
in the historical period and the future climate change period. The grey 1:1 line divides the more stable
regime (high-mean/low-variance; below line), and the less stable regime (low-mean/high-variance; above
line). Bimodal distributions emerge in the extra-tropics, with some species at low abundance and standard
deviation, and a larger cluster of species at high abundance and standard deviation. In the tropics, the
emergence of two regimes is associated with significant increases in the distributions of both population
abundance and standard deviation via the Kolmogorov-Smirnov test.
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Extended Data Fig 5. Drivers of changes in stability (analysis only includes pre-extinction period).
Although narrower distributions result for mean and standard deviation when only pre-extinction dynamics
are analyzed, changes in the general patterns of stability regimes are consistent. Statistically significant
changes in population abundance persist in all three regions; changes in population standard deviation
become (remain) non-significant for NHEX and TROP (SHEX).
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Extended Data Fig 6. Increased stability is negatively related to extinction probability.

Regression relationships in our simulations are presented a, when considering only the pre-extinction time
period and b, when taking into account the full 50-year periods. Regardless of largely positive (b) or mixed (a)
changes in stability, there is generally a weak but significant negative relationship between stability and
extinction probability globally (p-value < 0.05).
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Extended Data Table 1. Multimodel mean trends and in the spectral exponent of air temperature and
statistical significance. Trends were estimated via Generalized Least Squares regression.

N -

Slope Slope Slope
(E-3) value (E-3) value (E-3) value

GLOBAL -0.54 -1.29 0.005 -0.88 -1.28 0.008 -0.47 -1.30 0.002
NHEX -1.12 -1.28 0.012 -1.67 -1.27 0.007 -0.88 -1.28 0.012
TROP -1.14 -1.41 0.001 -1.42 -1.38 0.002 -1.04 -1.42 <0.001
SHEX 0.533 -1.19 0.009 0.412 -1.16 0.010 0.499 -1.19 0.025
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Extended Data Table 2. Analysis of covariance (ANCOVA) was used to detect statistically significant
effects of environment category (land and sea) on the relationship between spectral exponent and time.
Nonsignificant interactions (SHEX) indicate similar regression relationships between spectral exponent and
time in both environments. Significant interaction (GLOBAL, NHEX TROP; bolded) indicates a dissimilar
regression relationship in sea and land environments. Autocorrelation is increasing at a greater rate with
respect to time at NHEX terrestrial locations than NHEX marine locations.

46)
GLOBAL 97.6 <0.001 402 <0.001 7.15 0.010

NHEX 62.2 <0.001 12.6 <0.001 4.77 0.034
TROP 218 <0.001 642 <0.001 4.90 0.032
SHEX 25.7 <0.001 429 <0.001 0.114 0.730
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Extended Data Table 3. Number of species that experience a statistically significant increase (1), a
statistically significant decrease (| ), and no significant change (—) in population abundance under each of the
four climate scenarios. Significant inter-model agreement on the direction and significance of change at the
alpha=0.1 level.
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