
Exploring an Efficient Approach for
Architecture-Level Thermal Simulation of

Multi-core CPUs
Lin Jiang, Anthony Dowling, Yu Liu, Ming-C. Cheng

Department of Electrical & Computer Engineering
Clarkson University

Potsdam, NY, USA 13699
{jiangl2, dowlinah, yuliu, mcheng}@clarkson.edu

Abstract—In this work, an accurate and efficient thermal
simulation approach based on proper orthogonal decomposition
(POD) is applied to predict the temperature profile in an Intel
Xeon E5-2699v3 CPU consisting of 18 cores. Using the POD
method, the thermal problem is projected from a physical domain
onto a functional space represented by a finite set of basis
functions (or POD modes) that need to be trained by a large
amount of thermal data. To generate the static and dynamic
power consumption in space for the Xeon E5-2699v3 CPU as the
heat source for thermal simulations in the training and validation,
the cycle-level system simulator, gem5, and the power simulator,
McPAT, are used. Gem5 is used to simulate the architectural char-
acteristics of the CPU and gather performance counters. These
statistics are gathered using a subset of the widely used SPLASH-
2 benchmark suite as the simulated workload. These performance
statistics contain information regarding architectural events such
as functional unit usage, cache accesses. With the generated
power trace, thermal data is collected using FEniCS, an open-
source platform that supports finite element method (FEM)-based
simulation, subjected to a range of power variations in space and
time. It has been demonstrated that the proposed approach is
able to offer an accurate thermal prediction of the CPU with a
reduction in degrees of freedom (DoF) by more than 5 orders of
magnitude and a speedup of 3 orders of magnitude, compared
to FEM.

Index Terms—Thermal simulation, proper orthogonal decom-
position, data driven learning method, multi-core CPUs.

I. INTRODUCTION

With the rapid miniaturization of integrated circuits (ICs)
in the last several decades, high-performance microprocessors
are becoming more thermally constrained due to the increasing
power density [1], [2]. High temperature and hot spots result-
ing from joule heating seriously degrade the microprocessor
performance and reliability [3]–[6]. To suppress hot spots
and reduce processor temperature, thermal management and
thermal-aware exploration can be implemented to decrease the
possibility of CPU failure and improve processor performance.
To achieve this effectively, accurate and efficient prediction of
the thermal distribution in the processor is needed.

Different approaches have been developed for chip-level
thermal simulation with different levels of accuracy and effi-
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ciency. These include the accurate but time-consuming direct
numerical simulations (DNSs), such as the finite difference or
finite element method (FDM or FEM, respectively), the more
efficient Green’s function method [7], [8], very efficient RC
thermal circuits [9]–[12], data-driven learning algorithms [13],
[14], etc. Each method has its own advantages and disadvan-
tages in terms of complexity, assumptions, approximations,
resolution, efficiency and accuracy.

In this work, we applied a data-driven learning method to
dynamic thermal simulation of a multi-core CPU based on
proper orthogonal decomposition (POD) [15], [16]. This POD
thermal modeling technique offers an accurate and efficient
prediction of the thermal profile in the processor without a
priori assumptions. The POD projects the thermal problem in
a physical domain of the processor onto a functional space, and
its basis functions (or POD modes) for the space are extracted
from thermal data generated by DNS of the CPU. In our study,
the thermal data is collected from FEniCS, an open-source
computing platform for solving partial differential equations
(PDEs) using FEM [17]. To provide the heat sources more
realistically, the power trace, including static and dynamic
power, is generated by gem5 [18] and McPAT [19] with
selected benchmarks. The validation of the POD approach
was conducted using a different power trace than that used
for thermal data collection. The results show that the POD
approach is able to achieve a decrease in numerical degrees
of freedom (DoF) by more than 5 orders of magnitude with a
high accuracy, resulting in a speedup of 3 orders of magnitude,
when compared with an FEM simulator.

II. PROPER ORTHOGONAL DECOMPOSITION FOR
THERMAL SIMULATION

POD is a projection-based reduced order model and able
to represent a complex thermal problem in time and space
with a small number of POD modes [20], [21]. These modes
are extracted via a training process using the thermal solution
data of the physical domain obtained by DNSs with a range
of parametric variations including the boundary conditions
(BCs) and dynamic power trace in our study. After the training
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process, the POD modes are tailored to the range of the BCs
and power variations.

A. Construction of POD Modes

The POD modes are optimized by maximizing the mean
square inner product of the thermal solution data with the
modes over the entire domain [15], [16], subjected to dynamic
parametric variations of BCs and interior power sources. In our
study, the thermal data in space is collected at each simulation
time step in the DNS. This maximization process [15], [16]
leads to an eigenvalue problem described by∫

Ω

R(r⃗, r⃗′)φ⃗(r⃗′)dr⃗′ = λφ⃗(r⃗), (1)

where λ is the eigenvalue corresponding to the POD mode
(i.e., eigenvector φ⃗) and R(r⃗, r⃗′) is a two-point correlation
tensor given as

R(r⃗, r⃗′) = ⟨T (r⃗, t)⊗ T (r⃗′, t)⟩ (2)

with ⊗ as the tensor operator and ⟨⟩ indicates the average over
the number of thermal data sets. With the modes generated
from the training process, including collecting the thermal data
and solving the eigenvalue problem in (1), temperature can
then be represented by

T (r⃗, t) =
M∑
i=1

ai(t)φi(r⃗), (3)

where M is the number of POD modes selected to recon-
struct the temperature solution. If the eigenvalue of the data
decreases rapidly for the higher modes, only a small DoF (or
M ) is needed to reach an accurate thermal prediction.

B. Projection of the Thermal Problem to POD Space

To construct a POD model, the heat transfer equation is
projected onto the POD space using the Galerkin projection∫

Ω

(φi(r⃗)
∂ρCT

∂t
+∇φi · k∇T )dΩ =

∫
Ω

φi(r⃗)Pd(r⃗, t)dΩ

−
∫
S

φi(r⃗)(−k∇T · n⃗)dS,
(4)

where k, ρ and C are the thermal conductivity, density and spe-
cific heat, respectively. Pd(r⃗, t) is the interior power density, S
is the boundary surface and n⃗ is the outward normal vector of
the boundary surface. With the selected POD modes (4) can be
rewritten as an M -dimensional ordinary differential equation
(ODE) for ai(t),

M∑
i=1

ci,j
dai(t)

dt
+

M∑
i=1

gi,jai(t) = Pj , j = 1 to M, (5)

where ci,j and gi,j are the elements of thermal capacitance
matrices and thermal conductance matrices in the POD space,
respectively, and they are defined as

ci,j =

∫
Ω

ρCφiφjdΩ, gi,j =

∫
Ω

k∇φi · ∇φjdΩ. (6)

Pj in (5) is the power source strength for the j-th POD mode
in the POD space and described as

Pj =

∫
Ω

φjPd(r⃗, t)dΩ−
∫
S

φj(r⃗)(−k∇T · n⃗)dS. (7)

Once the power consumption is obtained from gem5 and
McPAT, the interior power source strength in POD space given
in (7) can be pre-evaluated. For the boundary heat source
in (7), the BC of the substrate bottom is modeled by convection
heat transfer with a constant heat transfer coefficient and an
ambient temperature of 45 °C (Tamb). All other boundaries
are adiabatic. The coefficients in (6) can also be pre-evaluated
once the modes are determined. With ai(t) solved from (5)
in POD simulation, the temperature can then be predicted
from (3).

III. EVALUATION METHODOLOGY

The complete workflow of the efficient POD thermal simu-
lation approach at the architecture level for multi-core CPUs
is illustrated in Fig. 1. As shown in Fig. 1, the power
trace is generated using two open-source simulators, gem5
and McPAT, before the FEniCS-FEM thermal simulation to
collect thermal data. Gem5 was selected to perform cycle-
level simulation of an Intel Xeon E5-2699v3 CPU and generate
performance statistics of the CPU [18].

The SPLASH-2 benchmark suite was chosen as the simu-
lated workload for gem5 [22]. SPLASH-2 is an open-source
benchmark suites in C/C++, and it is widely used in the re-
search field of computer architecture [23], [24]. 6 benchmarks
are selected from this suite for POD training and validation.

The statistics traces output by gem5 for both the training and
validation benchmarks are parsed to create XML input files
for McPAT to simulate the power used by the CPU. McPAT
also requires information regarding architectural information,
such as the number of functional units, the size of caches.
With the architectural information and performance statistics,
McPAT calculates the dynamic and static power used by each
component during each time step [19]. These power values
are then parsed to create power trace files.

With the generated power trace, FEniCS-FEM is used to
perform thermal simulation for data collection to generate
POD modes as shown in Fig. 1. The trained POD modes
then contain essential thermal information for the selected
CPU subjected to a range of BCs and variations of the
dynamic power trace via the training/data-collection process.

Fig. 1. Workflow of the POD thermal simulation approach for multi-core
CPUs at the architecture level.
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To validate the POD model, a separate thermal simulation for
the selected CPU is performed using a different power trace.
The POD results are then compared against the FEniCS-FEM
simulation with consistent numerical settings and power trace.

IV. IMPLEMENTING THE POD APPROACH FOR THERMAL
SIMULATION OF THE MULTI-CORE CPU

A. Data Collection from FEM Simulation

FEniCS-FEM is used to perform thermal simulation for
the multi-core CPU, Intel Xeon E5-2699v3, whose floorplan
is shown in Fig. 2 [25] to collect the temperature data for
generation of the POD modes. The geometry of the multi-
core CPU consists of a device layer and a substrate layer.
The active areas and interconnects of the functional units
are located in the device layer where power consumption
occurs, and joule heating is generated. The generated heat in
the CPU is mainly dissipated through the substrate via the
heat spreader and heat sink. The BC of the substrate bottom
is modeled by convection heat transfer with a constant heat
transfer coefficient. This is modeled by a thermal resistance
calculated from the chip dimension and material properties.
All other surfaces are assumed adiabatic. The power density
trace generated using gem5 and McPAT is uniform within
each functional unit, and the dynamic power for each unit is
averaged over 10k CPU cycles at 2.3 GHz. The data collection
was carried in FEM simulations with meshes,500× 347× 8.

Using the collected temperature data, a set of POD modes
and their eigenvalues were generated by solving the eigenvalue
problem in (1) using the method of snapshots [20], [26]. These
modes thus contain essential thermal information offered by
the BCs and power trace used in the data collection in DNS.
Each eigenvalue represents the mean squared temperature vari-
ations captured by each mode and thus reveals the significance
of the mode.

The eigenvalue spectrum of the collected thermal data is
illustrated in Fig. 3 for the first 25 modes. The eigenvalue
decreases significantly in the first several modes and shows a
slower decreasing rate in the high modes. The eigenvalue drops
more than two orders of magnitude from the first to the second
mode. A reduction by over three orders and nearly four orders
of magnitude from the first to the third and fourth modes,
respectively, is observed. It is therefore expected that POD

Fig. 2. Floorplan of the Intel Xeon E5-2699v3 CPU [25]. A and B indicate
the plotting paths for the demonstration.

Fig. 3. Eigenvalue spectrum of the temperature data obtained from FEniCS-
FEM simulation for the first 25 modes.

model for the multi-core CPU is able to offer a reasonably
accurate thermal prediction with 3 or 4 modes.

B. Temperature Prediction for the Multi-core CPU from POD
Thermal Simulation

To demonstrate the proposed POD approach, the model is
used to perform thermal simulation of the selected multi-core
CPU with identical BCs and a different power trace gener-
ated using a different assignment of benchmarks. The POD
simulation result is compared against the FEniCS-FEM result
to validate its accuracy because FEniCS-FEM was used to
collect thermal data for the POD mode training. Computational
efficiency of the developed POD model is also compared to
the FEniCS-FEM in this work.

A comparison of the temperature evolution between POD
model and FEM simulations at the location (28 mm, 4.4 mm)
is given in Fig. 4. The POD model with 3 or more POD
modes is able to accurately predict temperature evolution. It is
however interesting to observe a larger discrepancy between
these 2 approaches with 3 modes for 0.2 ms < t < 0.35 ms
and the deviation is effectively suppressed with more modes.

To illustrate the POD model accuracy in the entire CPU,
temperature profiles at 2.6 ms along Paths A and B are shown
in Figs. 5 and 6, respectively. It can be seen that the tempera-
ture in the cores is higher than other components of the multi-
core CPU due to the cores used by the running of benchmarks.
In general, temporal and spatial thermal solutions derived from
POD model, as presented in Figs. 4 - 6, indicate that the POD
approach with 3 or more modes offers an accurate thermal
prediction. Our study shows that a larger POD error is usually
observed near locations in close proximity to very high thermal
gradients due to less accurate numerical solution data used
to train the POD modes. Use of smaller grids in the DNS
simulation in general offers a better data quality and thus
improves the effectiveness of the POD modes. This however
significantly increases the computational cost for generating
the POD modes and calculating the POD model parameters.

Overall, the deviation of the POD approach from the
FEniCS-FEM reduces as more modes are included in the POD
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Fig. 4. Temperature evolution derived from
POD model compared to FEniCS-FEM at
(28 mm, 4.4 mm).

Fig. 5. The temperature distribution derived from
POD model along Path A at 2.6 ms, compared
to FEniCS-FEM.

Fig. 6. The temperature distribution derived from
POD model along Path B at 2.6 ms, compared
to FEniCS-FEM.

simulation. This is achieved by the optimization process [15]
that minimizes the least square (LS) error over the entire
spatial and temporal domain. The LS error is given as

errls =

√√√√ ∑Nt

i=1

∫
Ω
e2i (r⃗)dΩ∑Nt

i=1

∫
Ω
(Ti(r⃗)− Tamb)2dΩ

, (8)

where Ti(r⃗) and ei(r⃗) are the temperature solution given by
FEM and the temperature difference between the FEM and
the POD model at i-th time step, respectively, and Nt is the
total number of time steps.

As shown in Table I, with 3 or more POD modes for the
POD model an LS error near or below 3% can be reached,
which offers a reduction in numerical DoF by more than 5
orders of magnitude (500 × 347 × 8 vs. 3), compared to the
FEniCS-FEM simulation. Even using 7 modes with an LS
error of 2.7%, the DoF reduction is still more than 5 orders
of magnitude. When using more than 7 modes, the LS error
will just reduce to a value slightly below 2.7% and become
invariant with fluctuations.

TABLE I
LEAST SQUARE ERROR OF THE POD MODEL AGAINST FENICS-FEM.

Number of Modes 1 3 5 7
LS Error (%) of POD model 5.3 3.1 2.9 2.7

The demonstration of the POD modeling technique clearly
illustrates the accuracy and efficiency for large-scale thermal
simulation of the multi-core CPU. The efficiency enabled by
a more-than 5 order reduction in DoF amounts to a significant
saving in computational time. Comparison of computational
times of FEniCS-FEM and POD model for simulation of the
selected 18-core processor are shown in Table II. These times
are collected on a Dell Precision Tower T7910, with dual Intel
Xeon E5-2697A v4 CPUs, 512G memory, and Ubuntu 20.04
as its OS. It should be noted that the POD computational
time listed in the Table II includes the time for solving ai(t)
in (5) and the post processing time to recover temperatures in
all 18 cores (instead of the entire chip) using (3). Actually,
only temperature in some locations of interest is needed,
which significantly reduces computing time and memory space

needed in the post process. If the locations of higher power
sources in the power trace are known, only temperature near
those higher power sources are needed, which will further
reduce the computing time and memory.

It can be seen in Tables I and II that the POD model
with 3 modes, which offers an LS error near 3.1%, is 2056
times faster than the FEniCS-FEM. Even when 7 modes are
used leading to an error near 2.7%, there is still a 1187
times of speedup. It is worth noting that the resolution of the
POD solution is determined by its modes whose resolution is
equivalent to the FEM used for their training.

TABLE II
COMPUTATIONAL TIMES OF FENICS-FEM AND POD MODEL.

Simulators FEniCS-FEM Number of modes in POD model
3 5 7

Time(s) 1686.7 0.82 1.14 1.42

V. CONCLUSION

A projection-based data-driven learning algorithm based
on POD has been constructed for an 18-core CPU (Intel
Xeon E5-2699v3) and used to investigate the dynamic thermal
distribution in the processor. The FEniCS-FEM simulation was
performed to collect thermal data for training the POD modes.
The FEniCS-FEM was also used to validate the effective-
ness of the proposed POD approach in terms of efficiency
and accuracy. To apply more realistic static and dynamic
power consumption in the selected processor, the SPLASH-
2 benchmark suite was used to generate computing workload.
The power trace including static and dynamic power, used
as the heat source in FEM and POD simulations of the
Xeon E5-2699v3 CPU was then obtained from the cycle-level
system simulator, gem5, and the power simulator, McPAT, as
described in Sec. III, based on the realistic workload.

It has been demonstrated that the developed POD model is
able to provide an accurate prediction using a very small DoF.
Compared to the FEniCS-FEM simulation, the POD approach
offers a reduction in numerical DoF by more than 5 orders
of magnitude. As a result, the POD model is able to achieve
an LS error near 3% with 3 orders of magnitude speedup
compared to the FEniCS-FEM simulation.
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