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Advances in neural architecture search, as well as explainability and interpretability of connection-
ist architectures, have been reported in the recent literature. However, our understanding of how to
design Bayesian Deep Learning (BDL) hyperparameters, specifically, the depth, width and ensem-
ble size, for robust function mapping with uncertainty quantification, is still emerging. This paper
attempts to further our understanding by mapping Bayesian connectionist representations to poly-
nomials of different orders with varying noise types and ratios. We examine the noise-contaminated
polynomials to search for the combination of hyperparameters that can extract the underlying poly-
nomial signals while quantifying uncertainties based on the noise attributes. Specifically, we attempt
to study the question that an appropriate neural architecture and ensemble configuration can be
found to detect a signal of any n-th (where n € N) order polynomial contaminated with noise having
different distributions and signal-to-noise (SNR) ratios and varying noise attributes. Our results
suggest the possible existence of an optimal network depth as well as an optimal number of en-
sembles for prediction skills and uncertainty quantification, respectively. However, optimality is not
discernible for width, even though the performance gain reduces with increasing width at high values
of width. Our experiments and insights can be directional to understand theoretical properties of

BDL representations and to design practical solutions.

I. INTRODUCTION

Neural Networks (NNs) or connectionist representa-
tions were originally inspired by the human brain [1],
while feedforward NNs or MultiLayer Perceptrons
(MLPs) were later shown to act as universal function ap-
proximators [2-4]. However, recent literature points to
the imperfect nature of biological analogies for NNs [5]
and the “unreasonable effectiveness” of deep learning [6],
or deep NN representations. Bayesian methods for uncer-
tainty quantification (UQ) have been suggested for both
shallow [7-10] and deep [11-13] NNs. Despite recent suc-
cesses of connectionist architectures [14, 15|, especially
deep learning NNs [6, 16, 17] including Bayesian Deep
Learning (BDL) [10, 18], major gaps remain in our the-
oretical understanding and in the design of practical so-
lutions. Deep learning representations, in particular, ap-
pear at first glance to defy the principle of Occam’s Razor
or model parsimony, even though Bayesian [10, 11, 19, 20]
or physics-guided [21-23] approaches may be viewed as
constraining the plausible hypotheses space. Given the
simplifying assumptions often made to establish NN (in-
cluding deep learning) theory and the ad hoc nature of
most engineering solutions, a complementary approach
may be rigorous design-of-experiments with simulated

data. Here we design a set of experiments to understand
the function approximation capability of NNs including
deep representations. We map a set of NNs, specifically
(shallow and deep) MLPs, to a set of polynomials con-
taminated with noise. The mapping is explored keeping
in mind that both NNs and polynomials are universal
function approximators (UFAs) in principle. We simulate
data by varying the degree of the polynomials along with
the type of noise and the signal-to-noise ratios (SNR).
The hyperparameters of the NN (i.e., MLP) represen-
tations (i.e., depth and width for the connectionist func-
tion representations and ensemble size for UQ) are exam-
ined to characterize the robustness of the fit in terms of
the ability to recover the original polynomial (measured
through prediction skill on test data) and the noise at-
tributes (measured through distributional distance met-
rics).

Cybenko [24], Funhashi [25] and Hornik et al. [2]
proved that a finite linear sum of continuous sigmoidal
functions could approximate any function to a desired
degree of accuracy, or in other words, that MLPs act as
UFAs. Subsequently, numerous results have shown the
UFA property of NNs for different function classes [3,
4, 26-28]. Mathematically, this universal approximation
property of neural networks can be described as: Given a
continuous target goal function f(x), there exists a out-



put function ¢g(z) in a linear summation form:
g(a) = Xl wo i (Wiix + bj) (1)
1
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and wy ;, wa; are the weights between the first and
the output layers respectively and b; are the bias values
associated with the layer such that |g(z) — f(z)| < e for
all x where € is an arbitrarily small number.

The UFA property of NNs show that, under various
regularity assumptions and given sufficient data, they
can approximate a function f(t) to any desired degree
of accuracy. This implies that for an adequate number
of hidden layers (1) and nodes (ny,), there exists a set of
corresponding weights and biases to achieve function ap-
proximation to any desired level of accuracy. However,
the theory does not prescribe what the [ and n; should
be, thus imposing a significant practical challenge. Also,
the non-unique trained parameters of such NNs are diffi-
cult to interpret or explain. Given the growing complex-
ity of deep learning models and the associated computa-
tional challenges, model parsimony and neural architec-
ture search have become crucial research areas.

The possible existence of an optimal depth in NNs has
been explored in NN hyperparameter search. This body
of literature [29-31] shows the existence of certain deep
ReLU networks that cannot be realized form shallow net-
works. Zhou et al. [32] on the other hand, explores how
width affects the expressiveness of neural networks and
shows the existence of classes of wide networks which can-
not be realized by any narrow network whose depth is no
more than a polynomial bound. Poggio et al. [33] pro-
vide theorems and examples of a class of compositional
functions for which there is a gap between approximation
in shallow and deep networks.

Theoretical papers on ANNs including MLPs and DL,
have focused on performance guarantees often based on
simplified assumptions [28-31]. However, what has re-
ceived limited attention in the literature is the influence
of hyperparameter selection on robust out-of-sample gen-
eralization and uncertainty characterization. One of the
key challenges in the analysis of generalization bounds
in deep neural networks is that it may vary depending
on the data distribution on which networks is trained.
Therefore, such an exploration requires extensive empir-
ical analysis. It is however, not practically possible to
experiment on all possible distributions that may exist.
Therefore, the analysis needs to be restricted to certain
family of distributions. Itay et al. [34] provides a the-
oritical and empirical analysis to provide several new
depth-based separation results on natural radial non-
linear functions such as balls and ellipses. However, their
empirical analysis is restricted to just two depth values.

Recent attempts at UQ on NNs rely on what have been
called Bayesian approaches [35] and have taken the form
of so-called BDL [11, 20, 36]. One way of incorporating
Bayesian inferencing in neural networks relies on ensem-
bles developed through random selection of nodes via a

where o(x)

“dropout” strategy (MC-dropout based networks) [11].
The complexity of conventional neural network represen-
tations for point predictions, along with the heuristic na-
ture of BDL for uncertainty quantification, implies that
any specific DL (or BDL) based function approximation
need to be carefully examined by the ability to delineate
and distinguish between what may be viewed as the sig-
nal (with repeatable or generalizable patterns that may
be deterministic) versus noise (which is not repeatable,
indeed it is usually modeled as a stochastic process).

In this paper, we examine the ability of MC-dropout
based neural networks to distinguish between signal and
noise in polynomials of different orders contaminated
with different levels and types of uncorrelated random
samples. Our underlying hypothesis is that the DL-based
point prediction can capture the underlying order of the
polynomial while the BDL-based uncertainty quantifica-
tion can delineate and capture the statistical attributes
of the noise. A second associated hypothesis - based on
the UFA properties of both NNs and polynomials - is
that the behavior exhibited by polynomials contaminated
with noise can be expressed through NNs (specifically,
MLPs) with different hyperparameters. The simulation-
based experimental design examine the hypotheses via
metrics for skills in prediction and UQ.

II. EXPERIMENTAL DESIGN

In this section, we discuss the overview of the experi-
ments performed to explore the performance of BDL in
terms of modeling the underlying polynomial and ap-
proximating noise attributes from data sets of noise-
contaminated polynomials.

A. Polynomial Dataset

We consider polynomials of different orders and coeffi-
cients and add different types of noises with varied SNR
with an understanding that polynomials are Universal
Function Approximators (UFAs) themselves [37]. We
use 3 types of noises: (a) Gaussian, (b) Exponential, ad
(c¢) Rayleigh with SNR ranging from 10 to 30. Mathe-
matically, this polynomial dataset (P) can be represented
as follows in Eq. (3):

pP= p(l’, n) + €D(t,r) where, p(CE, n) = E?:Oaixi (3)

where €p snry represents the noise from distribution

t with SNR level r. Table I shows the details of various
attributes of attributed dataset.

B. Neural Network Design

To understand how different levels of abstraction in
neural networks affect their representation power, we
vary the following attributes in our experiments: (a)



TABLE I. Polynomial dataset description

Attribute Types
Poly. Order (n) 2,3,4,5,7,10
Noise Types () Gaussian®, Exponential®, Rayleigh®
SNR Levels (r) 10, 20 30

o= (z—)%/(207)

& flaypo) =
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c f(.’)? O' %671‘ 24(202)

number of hidden layers; (b) nodes in each layer; and
(¢) number of ensembles.

We follow a bottom-up approach for designing the net-
work configuration for our experiments. That is, we start
with a 1-layer neural network with six neurons and grad-
ually increase the width and depth of the network and
each time we initialize the network with random weights.
Consider width w € N, depth d € N and number of
ensembles m € N, we represent G(w, d, m) for a feedfor-
ward neural network with d-layers each having w-neurons
and the network having m-ensembles. Table II shows the
the considered set of values of different hyperparamters.
We analyze the behaviour of G(w,d, m) on our synthet-
ically generated noisy-polynomial data. This is done by
training each candidate network G(w,d, m) on polyno-
mial data with different order and noise levels. Details
regarding these polynomial orders and noise types are
given in Table I. This experiment is repeated until all
possible hyperparamter combinations have been trained
on all synthetically generated data.

TABLE II. Network Configurations

Parameter Types
Depth 1,2,3,4,..,15
Width 6, 8, 10 16, 20, 30, ..., 1000

No. of Ensembles 1, 5, 10, 20, 30, ...,40

C. Evaluation

This section discusses different criteria used for evalu-
ating the degree of approximation and robustness of the
trained networks.

L2-norm: We use L2-norm to evaluate the differences
between values predicted by each of the models and the
actual values. L2-norm represents the square root of the
second sample moment of the differences between pre-
dicted values and observed values. For the predicted-
vector ¢ and actual output-vector y, L2-norm is com-
puted as follows in Eq. (4):

19 = yll2 = (ZL119 - yl?) (4)

Bhattacharyya distance: Bhattacharyya distance is
one way of measuring the similarity between two prob-
ability distributions. In our case, we use Bhattacharyya
distance to measure the similarity between the noise dis-
tribution (p;) present in the data and the residual (p2)
obtained form the prediction. Bhattacharyya distance
(BD) is calculated as follows in Eq. (5):

1 1 (o} ok
p2 pl
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where pa = § — y and p1 = ep(,,) represents the noise
from distribution ¢ and SNR-level r.

While L2-norm gives an estimation of how close the
predictions are to the actual values, Bhattacharyya dis-
tance between the residual and noise, on the other hand,
gives an estimate of how much signal has been retained
and what amount of bias has been induced on the net-
work due to the added noise.

BD(pl,m) =
(5)

IIT. RESULTS AND ANALYSIS

This section discusses the affect of varying the network
size, the function complexity, and the amount of noise
added to the training data on performance criteria
including L2-norm and Bhattacharyya distance.

Figure 2 (A-C) shows the test-set error (LI-norm) as
the number of hidden units (width w) is varied from 6
to 140, and the depth (d) of the network from 1 to 15.
We observe better performance in networks with larger
width.

Increasing Width: We increase the range of width
(w) to 1000 to investigate the existence of ”optimality”
(used loosely in this research) in terms of width. Fig-
ure 2 (D) shows the test loss LI-norm on polynomial
with degree 3 and right-side for degree 5. Both the poly-
nomials are contaminated with Gaussian noise having
SNR = 20. As we move in the direction of increasing
width (red arrow), we notice constant decrements in test
loss values. Also, notice the saturation of test loss on
networks when increasing the width. We note the high
level of test-set loss in case of 1-layer network. A possible
explanation is that a single-layer is probably too small to
accurately characterize the target function.

Increasing Depth: For each value of width, we train
networks increase with depth values ranging from 1 to
15 to also assess the impact of depth parameter. From
the right heatmap in Figure 2 (E), as we move in the
direction of increasing width (blue arrow), we observe
decreasing values of test loss followed by a steady
increase in test loss indicating deteriorating performance
while incrementing after a certain depth-value in the
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FIG. 1. Experiment pipeline showing various steps involved to understand relationship between hyper-parameters and model
performance for various network configurations.
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FIG. 2. Top row: Test Loss (LI-norm) with increasing polynomial degree on Gaussian noise with SNR = 20. Bottom row:
Test Loss (LI-norm) on networks with width (w) ranging from 6 to 1000.

feedforward neural network. of-distribution data points of the polynomial with degree
7 on exponential noise with SNR = 10. If we consider

the plot in Figure 3 (A), it can be observed that there is

a constant downward slope in the landscape as width in-

A. Loss Landscapes creases (yellow arrow). On the other hand, when we con-

sider models with higher depth, we first observe a steep
downward slope followed by an upward slope leading to

Figure 3 (A, B) shows the discussed loss landscapes of a valley-like structure. A corresponding one-to-one sce-

Ll-norm (A) and Bhattacharya norm (B) criteria on out-
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FIG. 3. A, B: Test Loss (L1-norm) and Bhattacharya distance criterion landscapes on polynomial with degree 7 on exponential
noise with SNR = 10. C: Test Loss (L1-norm) criterion landscape and individual loss breakdown along width on 5" degree

polynomial data with exponential noise and SNR = 10.

nario is observed in landscapes based on Bhattacharya
distance criterion. The only difference is that the sur-
face becomes upside down compared to the curvature
observed in the case of Ll-loss. Figure 3 (C) shows a
surface breakdown of the L1-loss values along with the
depth values, which allows for a more apparent obser-
vation of decreasing L-1 test values of candidates with
higher width values.

Based on the results obtained, it can be inferred that
there exists no optimality in terms of width in neural
network on both L-1 loss and Bhattacharya distance cri-
terion. Since, an increment in performance for the task
of polynomial approximation is observed on models with
higher width, therefore, a higher width is favourable.
However, we do see that both Ll-loss values and Bhat-
tacharya distance criterion values starts saturating, we
can consider it a performance gain vs model complex-
ity tradeoff along the width. Therefore, on the basis of
a fixed upper-threshold of model complexity or compu-

tational overheads, considering a model with maximum
permissible width value is expected to perform better
than models with lower width values given other hyper-
parameters are fixed.

While the analysis of candidates along increasing
depth showed an increase followed by decrease in
performance values in both the criterions indicating the
existence of an optimal value of depth located in the
region of changing slope direction. However, this depth
value is not universal across all the width values, which
means that the exact value of the optimal depth depends
on the value of width chosen. Mathematically, we can
say that, for a given width w’'3 depth d’ such that d’ is
optimal for all possible G(d,w’,m),d > 1



B. Effect of Ensembles

Using the Monte-Carlo dropout method as a Bayesian
approximation [11], we consider our analysis on the third
parameter, that is, the number of ensembles. By allowing
dropouts in the test time, we conduct multiple inferences
and consider the average of all the obtained models as
the final output. Furthermore, the dropout strategy en-
sures that each time a different model is obtained with
high probability, which helps in bringing diversity and
thus reducing variance in the final model output. Math-
ematically, this can be shown as:

S (i) )
where g, y and f; represents the final model out-
put, the ground truth and the i*" ensemble member
respectively. The breakdown of (y — §)? in two parts
shows why ensembles work better than a single model.
The first term is the actual error whereas second term
represents the disagreement between ensembles.

In comparison to the Mean-squared-error (MSE) for a
single model, ensembles introduces another term (MSE
between ensembles and the model output) as shown in
Equation 7 which contributes in reducing the overall
MSE of the model [38].

Depth 2 network; Degree 7 Polynomial

o 200 400 600 800 1000
Width of network

FIG. 4. Bhattacharya criterion values of different ensemble
sozes with increasing network width on 7 degree polynomial
and Gaussian noise with SINR = 20.

Figure 4 shows the Bhattacharya criterion values of
models with different number of ensembles. A sudden
increase in performance is observed as we go from a
single model to an ensemble. But the performance gain
on further increasing the ensembles size is observed to
decrease. The reason for this observation is that the
chances of finding uncorrelated models as we increase
the number of ensembles decreases. If a particular
ensemble size already incorporates the top-performing

models then further adding other members will not offer
any benefit to the ensemble. From Figure 4, it can
be seen that in many networks, the highest ensemble
size is not the best performer. Therefore, an optimal
ensemble size may exist beyond which an improvement
in performance isn’t expected as the ensemble will not
able to be harness their contribution effectively.

IV. CONCLUSION AND DISCUSSION

We observed interesting relations between the choice
of BDL hyperparameters and corresponding skill metrics
for predictions with uncertainty. While directly relevant
for the approximation of noisy polynomials, the insights
may be directional to explore BDL-based robust function
approximation in wider settings.

The surface curvature obtained in our results showed
that as depth increases past an optimal point, generaliza-
tion performance tends to decrease. This experimental
determination of the existence of an optimal depth value
in polynomial function approximation tasks can allow for
reduced number of trials needed to find the best BDL
model in practical settings.

The observation of a continuously decreasing but posi-
tive performance gain with increasing width in our results
indicated that an optimal width may not exist. However,
the gain in generalization performance beyond a certain
high value of width were observed to grow less statisti-
cally significant. These set of results suggest that the
width may be chosen based on a threshold related to
model complexity (e.g., a modified information criteria
where model complexity and performance gain on out-
of-sample data may need to be balanced) or based on
the available computational resources.

We observed, through distributional distance metrics,
that an optimal is suggested for ensemble sizes in a
dropout-based BDL. In other words, the best approxi-
mations to the noise statistics (used to contaminate the
underlying polynomials) were obtained for certain opti-
mal ensemble sizes. These set of insights may be useful
in the practical design and implementation of BDLs.

Our results point to the existence of an optimal depth
and an optimal ensemble size but no optimal width for
BDL representations. The empirical insights presented
here may benefit from a closer relation to existing and
potentially new learning theory in these areas. Future ex-
periments on simulated data need to examine a broader
set of simulations, including different types of (poten-
tially nonlinear) signals as well as (potentially correlated)
noise processes, in both time and space. Practical BDL
guidelines must be developed across multiple science, en-
gineering, and business domains, by considering use cases
based on both realistic simulations as well as on real data.
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