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Abstract

Voltammetry is a foundational electrochemical technique that can qualitatively and quantitatively
probe electroactive species in solutions and as such has been used in numerous fields of study.
Recently, automation has been introduced to extend the capabilities of voltammetric analysis
through approaches such as Bayesian parameter estimation and compound identification. However,
opportunities exist to enable more versatile methods across a wider range of solution compositions
and experimental conditions. Here, we present a protocol that uses experimental voltammetry,
physics-driven models, binary hypothesis testing, and Bayesian inference to enable robust labeling
of analytes in multicomponent solutions across multiple techniques. We first describe the
development of this protocol, and we subsequently validate the methodology in a case study
involving five N-functionalized phenothiazine derivatives. In this analysis, the protocol correctly
labeled solutions each containing 10H-phenothiazine and 10-methylphenothiazine from both
cyclic voltammograms and cyclic square wave voltammograms, demonstrating the ability to
identify redox-active constituents of a multicomponent solution. Finally, we identify areas of
further improvement—such as achieving greater detection accuracy—and future applications to
potentially enhance in situ or operando diagnostic workflows.
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1. Introduction

Voltammetry is a foundational technique in electrochemical science that enables both
qualitative and quantitative characterization of electroactive species—such as analytes (i.e., redox-
active compounds)—for a variety of applications.! ! Examples include tracking the transient

811713 and labeling compounds within a sample.'*

behavior of solutions in electrochemical systems
17 When the composition of an analyte solution (i.e., the solvent, supporting salt, and redox-active
species), along with the electrode surface morphology, are known prior to and remain constant
throughout the experiment, established fundamental relationships can often be leveraged to discern
both physical and electrochemical properties in the system of interest,>"-!8 enabling mechanistic
insights into electrochemical and chemical reactions of electroactive compounds.'®?* However, in
cases where the solution composition is unknown or evolves during the experiment, voltammetric
analysis has primarily relied on qualitative visual methods, like peak appearance / disappearance
and location.'*!> Such approaches have practical utility,"*!>!7 but quantitative treatments are
hampered because—unlike other techniques (e.g., nuclear magnetic resonance (NMR), Fourier
transform infrared spectroscopy)—the output signal is not correlated to the molecular structure or
connectivity.?’ Accordingly, additional analyses are typically required to identify constituent
components, resulting in workflows that may be time-consuming and expensive."'3!1:*-2 In many
cases, the standard techniques employed provide incomplete or misleading information, as
necessary preparatory steps modify solution compositions, such as dilution with deuterated
solvents for proton NMR analysis'! or product purification via column chromatography for mass
spectrometry studies.? In addition, it is not trivial to capture transient electrochemical processes

with ex situ measurements.””* Advances in voltammetric methods may enable streamlined

component identification workflows by reducing the materials, equipment, and time intensity of



sample characterization, as these techniques can more readily probe analyte solutions in their
native environment.®*°

To capitalize on the inherent advantages of voltammetry, black-box—that is, physics-
agnostic—classification protocols for voltammetric labeling (i.e., identifying electroactive
compounds from voltammograms) have been reported. These findings suggest that automation can
be leveraged to characterize compounds in solutions by identifying and incorporating features that
are challenging or impossible to ascertain from qualitative inspection.?®3* While the prior
literature shows promise, opportunities exist for further improvement. For example, protocols can
identify compounds less accurately when the training and testing data are obtained under different
supporting salt concentrations,' potentially necessitating a separate training dataset for each
condition tested. Further, other approaches do not evaluate all species combinations in a
multicomponent sample and thus may be less effective when a larger number of possible
compositions is considered.’?>>* For example, Dean et al. labeled a solution containing a mixture
of Cd, Hg, and Pb cations among other single-component samples,** but as the authors only
considered this single combination, it is uncertain whether their protocol would retain accuracy if
all combinations of the metal cations studied (e.g., Cd-Cu-Pb, Hg-Cu-Pb, etc.) were exhaustively
considered. Finally, we note that regressive methods—such as partial least squares—may
simultaneously estimate the concentrations of multiple constituents in a sample, which
theoretically enables them to consider all possible species combinations, but their prediction error
(either systemic or random) leaves ambiguity as to whether a compound is present at low
concentrations or absent.** As such, there is a continued need to advance robust and flexible

methods to identify compounds in solutions.



Existing approaches can be augmented to address these areas by incorporating physics-based
modeling and by evaluating the presence of each compound individually using binary hypothesis
testing®>—i.e., each is present or absent. While the coupled reaction-transport phenomena that
govern voltammetric responses are well-known,>!” these processes are not yet widely considered
in automated voltammetric labeling methodologies, which may partially explain why prior
protocols are challenged when evaluated at different analyte and supporting salt
concentrations.’!*> By incorporating physical phenomena into model formulations,
voltammograms may be accurately simulated across a range of species concentrations using
multiple experimental techniques with a single set of electrochemical and transport descriptors.
Further, the number of possible compositions for a multicomponent solution scales
combinatorically with the total number of species, potentially rendering exhaustive evaluation
infeasible for larger sets. However, labeling scales linearly with the number of components if the
presence of each compound is individually assessed to characterize the overall sample. Thus,
automated labeling protocols may potentially enable analysis of more complex multicomponent
systems.

Physical models and binary hypothesis testing can be readily adopted to identify compounds
with Bayesian inference, which is used to infer the state of a system by recursively combining
previous information of a process with new observations. While prior knowledge can come from
arbitrary sources, Bayesian inference provides a quantitative basis to integrate information from
previous observations, resulting in informed estimations; it is also an apt framework to conduct
binary hypothesis testing.*> With the voltammetric labeling presented in this work, the results for
each compound can be combined to estimate the overall makeup, which, in turn, can be used to

inform subsequent studies that may involve different techniques. Bayesian methods are also a



powerful framework to evaluate physics-informed models across multiple disciplines,®—3®

including electrochemistry;*** for example, researchers have shown that parameters for
electrochemical reactions can be reliably estimated using sensitive voltammetric techniques,
mathematical optimization, and Bayesian inference.** However, to the best of our knowledge,
Bayesian inference has not been used for voltammetric labeling.

As such, this work seeks to develop a simple yet versatile protocol that builds on previous work
by combining experimental voltammetric data, physical modeling, binary hypothesis testing, and
Bayesian inference to simultaneously identify multiple analytes in a solution. This protocol is
validated with a case study involving a set of five phenothiazine derivatives and two voltammetry
techniques: cyclic voltammetry (CV) and cyclic square wave (CSW) voltammetry. Specifically,
we demonstrate that the protocol can differentiate between analytes even when the testing and
training datasets are obtained with different experimental techniques. Consequently, this
methodology may reduce the training data needed to probe samples across different solution
compositions, environmental conditions, and experimental techniques, enabling accelerated in situ
or operando labeling. This protocol can also enable fewer and more targeted follow-up ex situ
techniques that may be integrated with previous estimations through the Bayesian framework,
reducing the time and resources needed to fully characterize more diverse samples. To enable
further development and expansion of this protocol, we provide MATLAB® code on our GitHub
page (https://github.com/afentonjr/BayES-Lab) that constructs a compound library from CSW
voltammograms and, using that library, labels analytes from previously unexamined experimental

data.



2. Methods
2.1 Overview

To accurately label analytes with voltammetry, a library cataloguing compounds must first be
developed and subsequently proven effective in the identification of analytes from previously
unseen experimental data. Accordingly, the experimental acquisition methods and the library
development are respectively detailed in Sections 2.2 and 2.3. Once a high-fidelity library is fully
constructed, it can be fit to new experimental data to label analytes. This labeling process, in turn,
involves two major steps. The first (Section 2.4) is a regressive step that fits catalogued species to
an experimental voltammogram, where all analytes in a library are fit to yield a vector of best-fit
concentrations; each vector entry corresponds to a single catalogued compound. The second step
(Section 2.5) involves using the same experimental dataset to label the multicomponent system
being probed; in this instance, each analyte in the library is evaluated to determine its probability
of being present using binary hypothesis testing and Bayesian inference. To increase accessibility
and degree of implementation, the code used for both library construction and analyte
identification, along with subroutines, are available on GitHub:

https://github.com/afentonjr/BayES-Lab.

2.2 Experimental

All chemicals were used as received, and all experiments were conducted in a glovebox
(MBraun Labmaster, H>O < 5 ppm, Oz < 1 ppm) filled with argon (Airgas, purity of ca. 100 %,
catalog number AR UHP300). The glovebox temperature was measured to be 25.5 °C and 25 °C
on two occasions using a glass thermometer (VWR®, £ 2 °C). All the phenothiazines, the

tetrabutylammonium hexafluorophosphate (TBAPFs, Sigma Aldrich, = 99 %, 86879), and the



dichloromethane (ACROS Organics™, 99.9 %, AC610931000) were opened and stored in the
glovebox. All materials were directly added from their container to a 10 mL volumetric flask with
a plastic spatula to ensure the mass of material in the solution matched the balance reading (Mettler
Toledo, Balance XS64, 61 g capacity with +0.1 mg readability). Every solution studied contained
1 mM of each analyte, along with 0.1 M TBAPFs in dichloromethane. Ferrocene (Sigma Aldrich,
98 %, F408) was used as an internal standard for the reference electrode® at a concentration of ca.
1 mM. The working electrode was a glassy carbon disk electrode (CH Instruments, 3 mm dia.,
CHI104) polished with 0.05 pm alumina powder (Buehler MicroPolish Powder, 4010075) in
deionized water (18.2 MQ cm). The reference electrode was either a Ag/Ag" electrode using a
non-aqueous reference electrode kit (MF-2062) filled with 0.1 M AgPF¢ (Sigma Aldrich, 98 %,
208361) in acetonitrile (Fisher, Certified ACS, A21-1) or, when the first reference electrode was
unavailable, an aqueous Ag/AgCl (3 M NaCl) electrode (BASi, MF-2052) brought into the
glovebox and stored in vial containing propylene carbonate (Gotion, 99.99 %) without any
supporting salt during experiments. The counter electrode, in turn, was a Pt coil electrode (BASi,
99.95 %, MW-1033). When not in use, the Ag/Ag" reference was stored in the glovebox in the
same fill solution, and the Ag/AgCl reference was stored outside the glovebox in a solution of 1
M KCI.

Five phenothiazines (Figure 3)—synthesized and purified as described in the SI by the Odom
Research Group at the University of Kentucky—were catalogued to create the library used for
validating the labeling protocol (Section 3): 10H-phenothiazine (i.e., unsubstituted phenothiazine,
PT), 10-methylphenothiazine (MPT), 10-ethylphenothiazine (EPT), 10-isopropylphenothiazine
(iPrPT), and 10-phenylphenothiazine (PhPT). Two separate solutions, both containing only a

single phenothiazine at a concentration of 1 mM, along with 0.1 M TBAPFg in dichloromethane,



were examined to estimate the electrochemical and transport parameters for the corresponding
analyte in library development. Three solutions each containing a mixture of | mM PT and 1 mM
MPT (also with 0.1 M TBAPFs in dichloromethane) were used to test the identification protocol.

For each prepared solution, two voltammetry techniques were conducted—CV and CSW
voltammetry—using either a VMP-3 potentiostat (BioLogic) or a VMP-300 potentiostat
(BioLogic) using EC-Lab® software and processed with Microsoft Excel and MATLAB® R2020a.
Cyclic voltammograms were obtained at 25, 50, 100, 200, 500, and 1000 mV s, with all
voltammograms corrected for resistance-driven potential distortions using the BioLogic protocol
“/R determination with electrochemical impedance spectroscopy” (the “ZIR” protocol).*® For the
“ZIR” protocol, the working electrode potential was set to its open-circuit value. A sinusoidal
potential with a 20 mV amplitude and a 100 kHz frequency was applied, a delay of 10 % of the
period duration was added before the measurement, and the reported resistance was averaged over
four measurements. The resistance was compensated either 100 % or 85 % by the software during
the experiment, with the remaining percentage manually post-corrected; in some cases, the
solution resistance was not fully compensated during acquisition to avoid possible oscillations in
the potentiostat.*® For all voltammetry experiments, the bandwidth was manually adjusted via trial
and error to minimize noise in the current acquisition. The potential bounds varied for each analyte;
the most negative and initial potential was set to be approximately 400-500 mV negative of the
ferrocene redox potential. The most positive (and the turnaround) potential of the voltammetric
experiment, in turn, was set to be between 200-400 mV positive of the redox potential of the
phenothiazine(s) probed. More specifically, the most positive potential was set far enough away
from the phenothiazine redox potential as to minimally influence the voltammogram shape® but

not so far as to access the second electron transfer event of the phenothiazine to a considerable



extent® or to oxidatively decompose the solution or the electrode. Generally, the upper bound was
found via visual inspection using CV at a 50 mV s! scan rate. After each cyclic voltammogram
was obtained, no electrochemical experiments were conducted for either 5 min (50-1000 mV s™)
or 10 min (25 mV s™') before the next to allow the boundary layer to reset.

CSW voltammograms were obtained using the same potential bounds as those in the cyclic
voltammograms. The step height was 10 mV, the pulse height was 50 mV, and the pulse duration
(per half-period) was 100 ms, resulting in an effective scan rate of 50 mV s™. The potential was
held at the initial, most negative (i.e., reductive) potential for 2 s before the initial positive
(oxidizing) sweep, and the reported current for each potential step was calculated by averaging the
raw current over the last 30 % of the step. Six CSW voltammograms were obtained at these same
conditions for each solution tested. The “ZIR” protocol was performed the same way as that with
CV, and each CSW voltammetry experiment was separated by a 5 min wait. Following the initial
suite of CV and CSW voltammetry tests, 1 mM of ferrocene was added, and the experiments were
repeated to calibrate the potential axis to that of a known redox event.* For library development,
two separate solutions of every phenothiazine (five phenothiazines, so 10 solutions in total) were
tested, each containing approximately the same analyte concentration of 1 mM. This procedure
resulted in 12 CSW voltammetry datasets with the same potential waveform and two CV datasets
for all six scan rates for each phenothiazine; only the CSW voltammograms were used to construct
the library. For protocol validation, three solutions of the phenothiazine mixture were examined,
resulting in 18 CSW voltammograms acquired using the same potential waveform and three cyclic

voltammograms at six different scan rates.



2.3 Library development

In this work, library development involves generating a characteristic set of electrochemical
and transport descriptors (vide infra) for each analyte by first acquiring experimental data,
subsequently simulating modeled voltammograms, and then comparing the two using both
weighted least squares regression and Bayesian inference. We note that this approach is not the
only viable method, but it does possess favorable properties as compared to other options. For
example, literature data mining*’ could be used, but the natural language processing necessary to

implement this method is non-trivial.

2.3.1 Experimental data acquisition
We elected to use CSW voltammetry to acquire the data for library construction because it can
be more accurately modeled; its waveform minimizes background electrochemical signals while

204248 offering an advantage over CV.** For this reason, square

amplifying Faradaic processes,
wave (SW) voltammetry—that is, CSW voltammetry without the reverse sweep—has been
employed in many studies involving qualitative analyses.!*!>!” Further, CSW voltammetry can
more readily discern various electron transfer mechanisms (e.g., an electron transfer followed by
the homogeneous degradation of the product™) than SW voltammetry by virtue of the reverse
sweep. We also conduct repeats of experiments for statistical rigor and to calculate the
experimental standard deviation (vide infra). As mentioned in Section 2.2, each analyte studied in
this work was catalogued using data from two solutions; for each, six CSW voltammograms were

acquired using the same potential waveform, resulting in 12 total experimental CSW

voltammograms for each analyte in the library.
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2.3.2 Model development

The theoretical models used in this work are necessary both for parameter extraction and
analyte labeling and as such are discussed here. For each compound in the library, two models
(diffusion rate-limited and kinetic rate-limited one-electron transfers) were simulated using the
one-dimensional transient diffusion equation with an electrochemical reaction on a planar,

impermeable, and ideal (non-fouling) electrode surface. The reaction considered is Equation (1).
R=0+e (1)
In Equation (1), a phenothiazine ( R ) oxidizes to a radical cation ( Q) in a one-electron transfer;

the mass conservation equations are expressed in Equation (2). Note that all values are non-

dimensional unless otherwise noted.

e _ O
or  0&2
- @
%o _ 4 96
or ¢ 8&?

. . . . . . . —1
In Equation (2), lower-case ¢, is the dimensionless concentration of species i (¢, =C,-Cp .,

where upper-case C; is the dimensional concentration and C,, , is the dimensional concentration

of R far from the electrode, both in units of mol m?), z =¢D,, -7

is dimensionless time (D, is
the diffusion coefficient of species i in units of m? s™!, ¢ is dimensional time in units of s, and r,
is the electrode radius in units of m), & =x-7" is the dimensionless length (x is the distance from

the electrode in units of m), and d,, is the ratio of diffusion coefficients D, - D;'.

These coupled dimensionless differential equations are subject to the boundary and initial
conditions expressed in Equations (3) - (6) for a single electron transfer. Equations (5) and (6)

are mutually exclusive and should not be simultaneously used; Equation (5) is used for a diffusion
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rate-limited one-electron transfer, while Equation (6) is used for an kinetic rate-limited one-

electron transfer.'”

(&> o, 1)=cp(,7=0)=1

_ 0 3)
c, (& >mo,7)=c,(£,7=0)=0
S g, %2 =0 @
0g é=0 o =0
cx(£=0,7)=¢c,(£=0,7) exp(%;r)j (5)
| _ _ —aFp(0))_ . _ (1-a)Fn()

In Equations (3)-(6), 7 = E — E, is the overpotential in units of V ( £ is the applied potential and
E, is the formal potential of the redox couple, both in units of V vs. a reference redox event), R,

is the universal gas constant (8.314 J mol™! K''), T is the absolute temperature in units of K (set

to 298.15 K based on the measured glovebox temperatures), I is the Faraday constant (96485 C

mol™), K, =k,r,-D;' is the dimensionless heterogeneous rate constant (&, is the dimensional

analog in units of m s™), and « is the transfer coefficient (dimensionless). Equation (3) assumes
that only species R is present before the experiment and far away from the working electrode at
all times, while Equation (4) relates the flux of both species at the electrode surface. Equation (5)
relates the surface concentration of the species via the Nernst equation (diffusion rate-limited
electron transfer), while Equation (6) relates the surface flux of O to the surface concentrations
via the Butler-Volmer relation (kinetic rate-limited electron transfer).

These voltammograms were numerically simulated; details on the implementation scheme are

in the SI (Section S.2.4) based on an established framework.!® Briefly, each voltammogram was
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simulated with a discretization of 20000 steps in potential per unit volt (i.e., 5 x 10 V per step)
using either MATLAB® R2020a on an Intel® Core™ i7-7500U CPU @ 2.70 GHz 2.90 GHz laptop
computer or MATLAB® (either R2019b or R2020a) on the MIT Supercloud supercomputing
resource;’! the former computing resource took ca. 8 s to simulate each voltammogram. Note that,
as the simulation time scales approximately linearly with total number of discretization steps, the

speed can be increased by introducing coarser discretization albeit at the expense of accuracy.

2.3.3 Fitting procedure

The experimental and simulated voltammograms generated according to the procedures
outlined in Sections 2.3.1 and 2.3.2 are then compared to perform parameter estimation. These
were fit by simultaneously adjusting the values of all the electrochemical and transport descriptors.

Specifically, E,, D,,and D, (for the diffusion rate-limited electron transfer mechanism) or E,

D,, D,, k,, and a (for kinetic rate-limited electron transfers) were introduced to the simulator

as adjustable parameters—whose values were bounded based on either convention or observations
from experimental data—to find which parameter set, designated as the vector @, maximized the
model likelihood. The likelihood function (Equation (7)) is assumed to be a product of the
probability distribution functions (PDFs) of the error at each overpotential, which are assumed to
be normal and independent of each other (i.e., the errors are random and not systemic nor reliant

on errors at other overpotentials).

2
1 (Iexp,j—]m,j(ﬂ,-ae))
I ;1 = - '
f( exp? m(n,ﬁ),a) 1:1[0. /272- xp 20']2 (7)

J
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In Equation (7), 1 (Iexp;lm (7],0),0-) is the PDF of the experimentally measured current 7,
(treated as a random variable) parameterized by the modeled current I, and the experimental

standard deviation ¢ (all in units of A); as such, 1 (I A, (7],0),0‘) is equivalent to the PDF of

exp’
the error (i.e., the difference between experimental and modeled currents). I, is a deterministic
function of the overpotential vectorz and parameter vector @ ; note that difference currents are

often used in the place of absolute currents for CSW voltammetry.>?® ¢, in turn, was either
calculated between the 12 CSW voltammograms (for library construction) or estimated (for
analyte identification). Bolded terms are vector quantities containing all N data points in the

voltammogram, and the index j refers to the j™ entry of each vector. As a result, maximizing

Equation (7) is equivalent to minimizing the sum of the magnitude of the exponential arguments

by adjusting 0 for either electron transfer model; namely,
A N 2 A
0 =argmax f =arg minZ(([exp, =1, (n j,6))0;1) , where @ is the optimal set of parameters.
% g Jj=1

The most likely electron transfer mechanism was then chosen using binary hypothesis testing and
Bayesian inference (vide infra); this mechanism was then catalogued as a descriptor for the analyte
being assessed. Optimal parameters corresponding to the selected electron transfer mechanism
were subsequently recorded as the remaining descriptors, all of which are reported in the SI (Table
S3). We note that the reported optimal parameter set may be nonunique,®? but degenerate sets
describe similar voltammetric curves, meaning the uniqueness of the parameters is not expected
to impact the ability of the protocol to differentiate between analytes. The construction of each
library entry (i.e., individual analytes) was performed on the MIT Supercloud supercomputing
resource’!’ using 80 or 100 cores, taking 7-10 days to complete. We note that less intensive
computational resources (e.g., the local computing resource listed above) may be able to output

14



sufficient—although perhaps not as accurate—descriptors in a shorter time frame (ca. 1 h) by
using a coarser time mesh and fewer initial guesses. We do not anticipate the predictive power of
the library to be adversely affected by such a change provided the same mesh is used throughout

the entire process.

2.4 Library-data fitting

Once a library is constructed, it can be applied to new experimental data—specifically, 18
CSW voltammograms and 18 cyclic voltammograms (as mentioned in Section 2.2)—to estimate
how much of each species is present and, ultimately, to label analytes in solutions. To achieve this,
the information from the library is first combined with the same input waveform used to acquire
the new experimental dataset to simulate a concentration-normalized current for each analyte
(Figure 1). These normalized simulated voltammograms are then regressed to the experimental
data by adjusting the concentration weights to maximize the likelihood function (Equation (7)),
which is equivalent to the boxed optimization in Figure 1b. This fitting procedure yields a vector
of best-fit concentrations for all the library constituents, where each vector entry estimates the
concentration of the corresponding compound. However, this vector can include analytes that are
not actually present in the sample due, in part, to random errors whose effects are challenging to
physically quantify (e.g., random heterogeneities generated from electrode polishing).
Consequently, it is necessary to evaluate the inclusion of every analyte by assigning to each a

probability of existence.
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Figure 1. Procedure used to estimate the concentration of each catalogued library compound in an
experimental dataset using CSW voltammetry as an example technique. (a) An example two-

analyte library is used to simulate the concentration-normalized difference current (A@,; i = 4,B)

using the catalogued list of descriptors (6;) and the same input waveform used to acquire the

experimental dataset. (b) The resulting concentration-normalized difference current is compared

with the experimental data (AZ,,,) using weighted linear least squares fitting to estimate the

and C

concentrations, C, B best ?

best in the sample. The concentration-normalized difference current

is linearly proportional to the bulk concentration, enabling rapid optimization.
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2.5 Analyte identification

Once the simulated voltammograms are fit to experimental data, candidate analytes are culled

by evaluating models for two hypotheses (//, and H,): the null hypothesis, in which all analytes
except the one of interest are included (“exclusion”, H,), and the alternative hypothesis, where all
library entries—including the analyte of interest—are considered (“inclusion”, H,). We note that

this framework is also used to estimate the electron transfer mechanism of an analyte during library

development (Section 2.3); there, H, and H, respectively represent a diffusion and kinetic rate-

limited electron transfer (or vice versa). The probabilities for these hypotheses are calculated using
Bayesian inference; the hypothesis with a probability of greater than 50 % is the accepted state
based on the Maximum a Posteriori probability (MAP) rule.®> This process is detailed in
Equations (8) and (9) (for further details, see Equations S1-S4).

_ (O, |H)PH)

PUHL10,,)=F 2 D

(8)

In Equation (8) (Bayes’ Rule), P is a discrete probability, f represents a PDF, H, is the i ™
hypothesis, and O, is an observation. P (Hi) is the prior probability (i.e., the probability that
H, is true before the observation was made)—assumed to be equal for all hypotheses (50 %) in
this work—P(Hl. | Oobs) is the posterior probability (the probability that [, is true given the

observation), and f (O, | H,) is the likelihood PDF of observing O,, given that H, is true.

f (ODbS) is the PDF of O, occurring across all hypotheses considered. We note that

M
f(O,.)= Z SO, H)P(H,), where g is a counter for M total hypotheses.
q=1
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In the context of this work, P(H i) is the probability that hypothesis i (either the presence of

a single analyte or an electron transfer model) is true before evaluating experimental data,

f(0,, | H,) is a continuous PDF that evaluates for both the goodness of fit and the number of

model parameters to prevent overfitting, and P(H N Oobs) is the probability of hypothesis i being

true after considering the experimental data.>*
In analyte identification, there is also a possibility that the measured currents arise from

background non-faradaic processes independent of the presence of any redox-active compounds.

As such, the probability of a peak resulting from background noise (expressed as ), ;,,0,,s ) MUst
also be evaluated to yield the final probability (Equation (9)).
R’(Hl | Oobs) = P(Hl | Oobs) x (1 - Pbackground) (9)

In Equation (9), P,(H,|O,,,)is the final probability reported for a given analyte. Note that this

formula assumes that P(H,|0,,.) and P, , are independent of each other. This assumption is

ackgroun
reasonable, as faradaic events are expected to influence background processes to a negligible
extent. However, there theoretically may be instances where the presence of an analyte
significantly impacts the behavior of the background current; such dependencies are not captured
in scans of an electrolyte solution (only supporting salt and solvent) and thus are not captured by
Equation (9). In this work, the probability that an identified peak resulted from background
processes was nearly zero (all the probabilities were zero within the working precision of
MATLAB® R2020a). Nevertheless, this feature may become important in future scenarios, such
as samples containing analytes at uM or nM concentrations.

The probability for each analyte is evaluated individually via binary hypothesis testing

according to Equations (8) and (9). Analytes with probabilities greater than 50 % are assumed to
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be present—in line with the MAP rule—and vice versa; the workflow for this process is illustrated

in Figure 2.
H, : Allanalytes except X
Flnd Cbe.\'t,m;X
Data
—Best Fit
Is analyte .
X present? Compare using P(Y10
Compare two |\ #, :Everythingincluding X Bayes’ Rule ( | om-)
models Use C,,,
A Data
—Best Fit

Repeat for all analytes Y, Z, etc.

Figure 2. Schematic of procedure to assign probabilities for all analytes in the library one at a time

via binary hypothesis testing. X is the analyte of interest; H, and H, refer to null (exclusion)

and alternative (inclusion) hypotheses, respectively; and O, is the experimental observation (i.e.,

the experimental voltammogram).

Within the workflow depicted in Figure 2, the first model ( /) represents the exclusion of the

analyte in question. In it, CSW voltammograms for every catalogued analyte except the species of

interest are fit to a single experimental dataset. The second model ( H,) represents the inclusion of
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the analyte in question. In it, every analyte is considered; the resulting fit has already been
evaluated when finding the vector of best-fit concentrations (Figure 1). These two models are then
compared, and the probability of existence is determined using Equations (8) and (9). This
procedure is repeated for every analyte under consideration, and the resulting probabilities can
then be assessed to determine which analytes are present. The process outlined in Sections 2.4 and
2.5 take ca. 1 min to complete using two cores in MATLAB® R2020a with the local computational
resource previously mentioned. This process is considerably faster than library construction
because only a single set of voltammograms is simulated to fit models and data using the linear
relationship between concentration and current observed in this work (Section 2.4). In comparison,
library development requires many sets of voltammograms to be simulated because of the highly

non-linear relationship between the current and relevant electrochemical parameters (Section 2.3).

3. Results and Discussion
3.1 Case study description
This protocol was validated with a case study involving phenothiazines, a class of redox-active

organic compounds used for overcharge protection in Li-ion batteries?>%3

and, more recently, as
analytes for the positive half-cell in redox flow batteries.>>* For this study, five different N-
functionalized phenothiazine derivatives (PT, MPT, EPT, iPrPT, and PhPT), whose structures are
depicted in Figure 3, were synthesized. Importantly, these compounds are stable in their neutral
and singly-charged forms on the CV time scale (ca. 1 min).>> We restrict ourselves to a single core
for simplicity; different molecular classes are anticipated to be more easily differentiable based on

variations in exhibited properties. We also anticipate that for more extensive applications (e.g.,

samples without entirely deterministic preparation), additional consideration will be needed to
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create a manageable library that is not too large by vetting candidate compounds using intuition
(e.g., excluding infeasible or unlikely species) and using a priori observation, such as eliminating
a compound from contention if no voltammetric peak is recorded at its predicted redox potential.
We also note that judicious library selection is important, as the output probabilities for each

species are dependent on the compounds present in the library.

A L

Phenothiazine Phenyl PT
(PT) (PhPT)
| Y
<OSINCSS
s S
Methyl PT Isopropyl PT
(MPT) (iPrPT)

Figure 3. Structures and abbreviations of phenothiazines used as analytes in this study. Dashed,

dotted, or dash-dotted lines indicate the line style used to plot data pertaining to each phenothiazine.

First, the phenothiazine library was constructed according to the procedure in Section 2.3; the
generation process and library contents are described in detail within the SI (see Section S.2). This
library was then applied to three identical solutions of known composition (containing 1 mM PT,

1 mM MPT, and 0.1 M TBAPFs, all in dichloromethane) probed using both CSW voltammetry
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and CV. Dichloromethane, used previously for electroanalytical studies,? is a non-nucleophilic
solvent and is naturally anhydrous, creating favorable conditions for phenothiazine stability.>
Additionally, we assumed that, under dilute conditions, the dissolved phenothiazines do not
interact with each other during the electrochemical experiments, and thus, the voltammetric
response was a superposition of the two individual species,’ as illustrated in Figure S3.

Note that the methodology outlined in Figure 2 allows for the identification of all 32 possible
analyte combinations by evaluating each phenothiazine individually; as such, a successful case
study will demonstrate that this protocol can deconvolute voltammograms comprised of multiple
analytes while exhaustively considering all possible combinations. We note that while the
experimenter knew the composition of the solution (ground truth), the protocol had no knowledge
of the sample makeup prior to evaluating the experimental dataset; the routine was only offered
the phenothiazine library, experimental data, and additional parameters not linked to analyte

identities, such as working electrode radius, voltammetric waveform parameters, etc.

3.2 Protocol validation

After its construction, we used the phenothiazine library to simulate concentration-normalized
voltammograms for each derivative, shown for CSW voltammograms in Figure 4a. These were
fit to the experimental data to yield a vector of concentrations that best fit the data. Figure 4b
illustrates the data for a representative experimental trial (one of 18 CSW voltammetry trials), the

corresponding best-fit voltammogram, and the resulting concentration estimates.
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Figure 4. Generation and fitting of concentration-normalized CSW voltammograms to a single
experimental dataset. (a) Concentration-normalized CSW voltammograms of the phenothiazines,
extracted from the library used in this study. Anodic / oxidative currents (denoted by the subscript
a ) are positive in sign, cathodic / reductive (denoted by the subscript ¢ ) are negative in sign, and
the initial potential sweep is from negative to positive potentials. This convention holds for all
voltammograms depicted in this work. (b) Contribution of each phenothiazine to the best total fit
of the experimental data and the corresponding best-fit concentrations (listed in the same order
and color scheme as the legend). Note that difference currents are often reported in the place of

absolute currents for CSW voltammetry.>2°

The vector of best-fit concentrations ( C,,, ) in Figure 4b contained the estimated

concentrations of each analyte in solution for a single trial. Across six CSW voltammetry and three
CV trials from a single solution (nine total trials), the concentration estimated for unsubstituted PT
had a 9.52 % error (Equation S13) with a standard deviation of 7.6x10”mM (Equation S14),

and the concentration of MPT had a 8.06 % error with a standard deviation of 1.8x10™' mM—
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further details and discussion are found in the SI (Section S.3). We also note that the estimated
concentrations of EPT and iPrPT were greater than zero, even though neither were present in
reality. Specifically, in Figure 4b, the overall best fit was achieved by including EPT and iPrPT
at estimated concentrations of 0.042 mM and 0.004 mM, respectively. However, in all nine cases,
the second inferential step successfully excluded compounds not actually present from
consideration (vide infra).

Once the best-fit vector of concentrations was estimated for a single dataset (Figure 4b), the
probability of each phenothiazine being present was calculated according to the procedure outlined
in Figure 2. For each phenothiazine studied, two models were examined: one considering every

phenothiazine except the one currently being examined (representing exclusion— /|, ), and

another considering all five phenothiazines in the library (representing inclusion of the interrogated

phenothiazine— /). The results from this analysis are depicted in Figure 5.
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Figure 5. Graphical illustration of the best fits used in the labeling workflow when (a) PT, (b)

MPT, (c) EPT, (d) iPrPT, and (e) PhPT are excluded from consideration ( /4, dashed lines) and
when all phenothiazines are considered in the library ( H,, black line). Part (f) shows the 2-norm

of the errors when each phenothiazine is excluded from consideration. Note that in parts (c)-(e),

the dashed and solid lines are both present but are nearly or fully overlapping.

In Figure 5, the exclusion model fit ( /4, dashed lines) estimates whether an analyte of interest
is present. If its fit is poorer than the inclusion model ( /,, black line), then the species is likely to

be present because its inclusion is necessary to better fit the experimental data, and vice versa.
From this, our preliminary conclusion—which will be evaluated more rigorously—is the protocol

should label PT and MPT as present and EPT, iPrPT, and PhPT as absent. Figure 5f depicts the
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2-norm error (Equation (10)) when phenothiazines are excluded from consideration to quantify

the illustrations in Figures Sa-e.

2-norm error (A) :\/i(lexp,j -1, )2 (10)

Jj=1
The 2-norm error will also show that the protocol avoids overfitting by selecting models with fewer
parameters (in this case, the exclusion model) if the error does not significantly increase compared
to the inclusion model. Quantitative metrics on this balance between model simplicity and error
are further discussed in the SI (Section S.1).

To substantiate these preliminary conclusions, the probabilities of each phenothiazine being
present were calculated using Equations (8) and (9). To demonstrate the repeatability and the
adaptability of this protocol across different techniques, this procedure was applied to 18 CSW
voltammetry datasets (all acquired with the same input waveform) and nine CV datasets (three at
25 mV s, three at 50 mV s, and three at 100 mV s™) across three solutions that were
independently prepared. The probabilities were estimated for all 27 datasets, with the results
depicted in Figure 6. To illustrate the worst-case scenario, the smallest probabilities for the sets

of PT and MPT are reported, while the largest are reported for EPT, iPrPT, and PhPT.
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Figure 6. Bar graph depicting the probability of each phenothiazine residing in the solution being
examined, in agreement with the phenothiazines known a priori to be present. To illustrate the
worst-case scenario, the lowest probabilities for PT and MPT are plotted for both CSW
voltammetry (written as “CSWV” in the figure) and CV data. Similarly, for EPT, iPrPT, and PhPT,
the largest probabilities are plotted for both techniques. The reported value is the smaller of the
two plotted probabilities for PT and MPT, and conversely, the larger of the two plotted

probabilities for EPT, iPrPT, and PhPT.

Higher probabilities indicate that the phenothiazine of interest is more likely to be present,

whereas the opposite is truth for lower probabilities. As expected from inspection of Figure 5, this
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methodology found that for all 27 data sets considered, both PT and MPT were in solution while
the other phenothiazines were not. Further, the accuracy and precision of the final concentration
estimates (i.e., after culling the library) decreased and increased, respectively. Across the same
nine trials previously mentioned, PT exhibited an error of 11.86 % (2.34 % increase) with a
standard deviation of 4.3x10”°mM (3.3x107> mM decrease), while MPT exhibited an error of
10.27 % (2.21 % increase) with a standard deviation of 1.6x10”" mM (2.6x10” mM decrease).
As such, the protocol both determines the identities and estimates the concentrations of the

phenothiazines in the probed samples.

3.3 Discussion

This case study demonstrates that our methodology can identify multiple analytes and their
estimated concentrations in solution using different voltammetric techniques. However, based on
the relative positions of the phenothiazines in potential space, the observant experimentalist may
conclude that PT is in solution via visual inspection, as its redox potential is ca. 100 mV more
negative than those of the other phenothiazines. Thus, it may not be surprising that the protocol
correctly identifies PT. However, the protocol can also differentiate between MPT and iPrPT, a
distinction more challenging to achieve visually, as their redox potentials are much more similar
(Table S3).

Although the protocol was successful in this case study, additional findings point to limitations
and areas for improvement. We note that the protocol did not correctly label voltammograms at
faster CV scan rates (200-1000 mV s™'), misidentifying MPT and iPrPT (results illustrated by
Figure S6 in the SI). This misidentification may arise from multiple factors. First, as already noted,

the redox potentials of iPrPT and MPT are similar (ca. 30 mV separation), potentially frustrating
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differentiation using voltammetry and necessitating the use of other techniques that can capitalize
on contrasting compound properties. For example, the 'H NMR spectrum of iPrPT exhibits a
multiplet at ca. 4.25 ppm, which is not present in the analogous spectrum for MPT (see Figures
S10 and S12 for further details). Further, kinetic limitations manifest themselves to a greater extent
at faster CV scan rates via increased peak-to-peak separation. If an analyte (e.g., iPrPT in this
study) is predicted to undergo an electron transfer with infinitely fast kinetics, as the diffusion rate-
limited model in this work assumes, the simulated peak-to-peak separation will be independent of
scan rate; however, this separation will increase for analytes predicted to undergo a kinetically
rate-limited electron transfer (as is the case with MPT). Consequently, the modeled peak potentials
for iPrPT will not change while those for MPT will, creating a greater opportunity for the protocol
to confuse iPrPT and MPT. Relatedly, ohmic-induced potential losses distort voltammograms
acquired at high scan rates in a similar fashion to that of kinetically rate-limited electron transfers,
and as such, ohmic-driven distortions can be misinterpreted as kinetic limitations if appropriate
care is not taken. Finally, increased experimental noise and contribution from background charging
currents®®%’ (see Figure S7) can further convolute the signal and thus analysis. Although data
quality appears to impact the ability of the protocol to correctly identify analytes, quantitative
metrics of sufficient data quality for accurate labeling were not identified in this study and are
expected to be challenging to formulate; they are likely dependent on multiple factors, such as the
similarity of the compounds in the library and the type of potentiostat used. Overall, this
misidentification demonstrates that the experimental conditions and the validity of the physical
models used must be carefully considered.

To increase prediction accuracy, experiments should seek to acquire high-quality (i.e., high

signal-noise) data, and the limitations of first-principle models should be actively considered. The
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results from this study indicate that cyclic voltammograms should be acquired at a scan rate of ca.
100 mV s or slower. CSW voltammetry, in turn, did not exhibit analogous limitations, and its
threshold waveform inputs are not presently known. Moreover, despite the advantages physical
models impart, the experimental conditions of the system being probed as compared to the training
set must be evaluated; if there are significant deviations, modified or more detailed physical
models may be needed. For example, at faster CV scan rates, double-layer capacitance can
appreciably affect the observed current and thus may need to be considered in the physical model,’
while such effects may not significantly impact CSW voltammetry.?’ More generally, it may not
be possible to identify analytes with similar redox potentials using data from a single
voltammogram; to this end, complimentary techniques (e.g., UV-Vis spectroscopy, NMR, or
additional sensitive voltammetric techniques*®>®) could be integrated with the Bayesian workflow
to increase labeling accuracy in these instances. Such expanded frameworks will be contemplated

in due course.

4. Conclusions

In this work, a protocol combining voltammetry experiments and simulations, binary
hypothesis testing, and Bayesian inference has been developed to improve the ability to accurately
identify analytes in solutions compared to only experiment alone, using experiment combined with
simulation, and using black-box (physics-agnostic) machine learning methods. The procedure was
outlined and applied to a test case involving five phenothiazines probed with two voltammetry
techniques; there, solutions containing PT and MPT were correctly labeled across various
techniques (CV and CSW voltammetry). These results demonstrate that a voltammetric labeling

protocol can characterize a multi-analyte solution using different techniques, demonstrating a
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degree of versatility not yet observed in existing voltammetric identification protocols. Future
work will aim to improve the detection accuracy of this methodology by integrating the results of
additional techniques in an automated fashion.

Overall, this protocol serves as a first step in extending the limits of electrochemical analysis
via integration of probabilistic principles with high-quality experimental data (potentially in situ
or operando) and simulations. While the compositions of the solutions examined in this study were
known and unchanging, our protocol may ultimately examine more complex and dynamic systems.
If validation on these transient systems are promising, this protocol can be used in relevant fields
that would benefit from enhanced in situ voltammetric labeling; examples include identifying
electroactive decay products of degraded analytes during organic redox flow battery operation®’

and labeling potentially complex liquid product mixtures arising from carbon dioxide reduction,®

both almost in real-time.
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6. Glossary

Latin variables

C

best

o

best,no X

i,best
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background
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q
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TN

Vector of concentrations (mol m—)
Vector of best-fit concentrations (mol m~)

Vector of best-fit concentrations, excluding species X (mol m™)
Best-fit concentration for species i (mol m™)

Concentration of species i (mol m™)

Concentration of species i in the bulk (mol m)

Dimensionless concentration of species i

Diffusion coefficient of species i (m?s™!)

Ratio of diffusion coefficients D, - D;'

Applied electrode potential (V vs. reference redox event)
Formal redox potential for a species of interest (V vs. reference redox event)

Faraday constant (96485 C mol ')
Continuous probability distribution function, or abbreviation for likelihood
function

Vector of experimental currents (A)*

j ™" data point of the experimental current vector (A)
Current of species i (A)

Vector of modeled currents (A)

j ' data point of the experimental current vector (A)
Indexing counter

Indexing counter

Dimensionless heterogeneous rate constant
Heterogeneous rate constant (m s )

Number of data points in a voltammogram

Discrete probability mass function

Probability that the current signal arises from non-faradaic processes

The probability a compound is present in solution when considering background
processes
Indexing counter

Universal gas constant (8.314 J mol™! K™!)

Working electrode radius (m)

Temperature (K)
Time (s)
Axial distance from the planar electrode surface (m)
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Greek variables

D T I IR

~.

N 9 QU O

?,
?.

@;
o

Dimensionless charge transfer coefficient

Vector of overpotentials (V)

Scalar overpotential (V)

Overpotential at the j ™ data point (V)

Generic vector of electrochemical and transport parameters or concentrations
(multiple units)

Vector of electrochemical and transport parameters for species i (multiple units)
Vector of optimal electrochemical and transport parameters or concentrations
(multiple units)

Dimensionless position

Vector of the standard deviations for the experimental current (A)

Standard deviation of the experimental current at the j ™ data point (A)
Dimensionless time

Anodic concentration-normalized difference current (A m® mol™)

Cathodic concentration-normalized difference current (A m* mol™)

Vector of concentration-normalized difference currents for species i (A m® mol™')
Matrix of concentration-normalized difference currents for all species (A m* mol™)

*Note that the inclusion of “ A before any form of the current or concentration normalized current indicates a
difference current or the normalized analog (A or A m? mol™).

Latin symbols

bs

N~K® QOOK mOow A

Toy analyte used to demonstrate the protocol methodology
An anodic (oxidative) process

Toy analyte used to demonstrate the protocol methodology
A cathodic (reductive) process

i " hypothesis

Total number of hypotheses

Oxidized form of a redox couple

An observation

Reduced form of a redox couple

A generic analyte

A generic analyte

A generic analyte
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