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HOW REACTION-DIFFUSION PDES APPROXIMATE THE LARGE-POPULATION

LIMIT OF STOCHASTIC PARTICLE MODELS.

S. ISAACSON, J. MA AND K. SPILIOPOULOS

Abstract. Reaction-diffusion PDEs and particle-based stochastic reaction-diffusion (PBSRD) models are
commonly-used approaches for modeling the spatial dynamics of chemical and biological systems. Standard

reaction-diffusion PDE models ignore the underlying stochasticity of spatial transport and reactions, and
are often described as appropriate in regimes where there are large numbers of particles in a system. Recent

studies have proven the rigorous large-population limit of PBSRD models, showing the resulting mean-field

models (MFM) correspond to non-local systems of partial-integro differential equations. In this work we
explore the rigorous relationship between standard reaction-diffusion PDE models and the derived MFM.

We prove that the former can be interpreted as an asymptotic approximation to the later in the limit

that bimolecular reaction kernels are short-range and averaging. As the reactive interaction length scale
approaches zero, we prove the MFMs converge at second order to standard reaction-diffusion PDE models.

In proving this result we also establish local well-posedness of the MFM model in time for general systems,

and global well-posedness for specific reaction systems and kernels. Finally, we illustrate the agreement and
disagreement between the MFM, SM and the underlying particle model for several numerical examples.

1. Introduction

Reaction-diffusion partial differential equations (PDEs) are often used to model the average or large-
population dynamics of systems of reacting and diffusing particles at a macroscopic level. In biological
contexts, such models may describe signaling pathways inside cells, interactions within populations (of cells,
animals or people), or chemical signals within tissues. Standard mass-action-based reaction-diffusion PDE
models (subsequently SM for standard model) in the form of Eq. (2.2) in Section 2, are extensively used
in modeling studies, for example [ECM07, MNKS09, NTS08]. They can be formally obtained from classical
mass-action ODE models for chemical reactions [G00] by adding a diffusion operator (or more generally a
second order elliptic operator) to model spatial transport. However, such a formulation does not capture
the detailed spatial reaction mechanisms described in more microscopic particle-based stochastic reaction-
diffusion (PBSRD) models [TS67, D76a, D76b]. The latter explicitly resolve the diffusion of, and reactions
between, individual molecules, which are often represented as point particles.

Due to their mathematical complexity and high dimensionality, PBSRD models are typically studied
by Monte Carlo simulations approximating the underlying stochastic process of molecules diffusing and
reacting. This is often computationally expensive, particularly in systems with large populations for which
the dynamics are well-approximated as deterministic. In order to deal with this issue, coarse-grained models
were developed in [LLN19, IMS20] by proving the large population mean-field limit of the measure-valued
stochastic process (MVSP) tracing the empirical distribution of the particles. In this limit the empirical
distribution can be rigorously shown to satisfy an evolution equation for which the corresponding limiting
density satisfies a system of partial-integro differential equations (PIDEs), e.q. Eq. (2.1) in Section 2. We
subsequently call these PIDEs the mean-field model (MFM). In contrast to the SM, the nonlocal MFM
retains the detailed spatial reaction mechanisms of the underlying PBSRD model.

The new contributions of this paper are to study the relationship between the formal SM and the coarse-
grained and rigorously derived MFM for PBSRD systems. We show that the SM can be interpreted as
an asymptotic approximation to the more general MFM when the underlying reactive interaction kernels
are averaging and short-range. In particular, we prove that the solution to the MFM converges to the
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solution of the SM for such kernels as the kernel’s width approaches zero. The convergence is proven to
be second order in the approximation parameter that captures the kernel width, see Theorem 3.1. We also
demonstrate by numerical simulations the convergence as the kernel width approaches zero of the MFM to
the SM, show how well the MFM and SM agree with the average concentration fields of PBSRD models,
and demonstrate that when the reactive interaction distance between two particles is not sufficiently ”small”
the SM may provide a poor approximation to either the MFM or mean concentration fields of the PBSRD
models. To illustrate a biologically-relevant case where the MFM is needed, we conclude with a simple
model motivated by our recent study of T-cell receptor signaling [ZI20]. There it is not immediately clear
how to even define an appropriate SM. In contrast, we demonstrate that the (well-defined) MFM correctly
reproduces the qualitative steady-state behavior of the underlying particle model observed in [ZI20].

As our main result is presented for systems with general reaction networks, and relatively notationally
heavy, we now give a brief summary of it in the special case of the multi-particle A + B � C reaction.
We assume all molecules move by Brownian motion in Rd with species-dependent diffusivities, DA, DB and
DC. Assume an A molecule at x and B molecule at y may react with probability per time K̂ε

1(x − y)/γ.
Here γ denotes a large system size parameter, for example Avogadro’s number in Rd [LLN19, IMS20]. ε
denotes the length scale of the kernel, related to our assumption that it has an averaging form, i.e. that
K̂ε

1(x − y) → κ1δ(x − y) as ε → 0. Common choices for K̂ε
1/γ are given in Remark 2.4, and include the

popular Doi model in which the two reactants may react with a fixed probability per time when within
ε [TS67, D76a, D76b]. We denote by m1(z|x, y) the probability density that when an A molecule at x and
a B molecule at y react they produce at C molecule at z. m1 is commonly chosen to place z on the line
connecting x and y, see Assumption 2.8. For the reverse reaction we assume K2(z) = κ2 denotes the constant
probability per time an individual C molecule splits into A and B molecules, with mε

2(x, y|z) denoting the
probability density that a C at z which dissociates produces an A molecule at x and a B molecule at y.
The dependence of mε

2 on ε follows under the assumption of detailed balance for the reversible reaction, see
Assumption 2.10 and Assumption 2.11.

With these choices, the large population limit for the volume reactivity PBSRD model of the particles
diffusing and reacting, a special case of the limit we proved for general systems in [IMS20], shows that the
molar concentration fields for each species converge in a weak sense to the solution of a nonlocal system of
PIDEs. More concretely, denote by A(t) the stochastic process for the number of species A molecules at

time t, and label the position of ith molecule of species A at time t by the stochastic process Q
A(t)
i ⊂ Rd.

The random measure

Aγε (x, t) =
1

γ

A(t)∑
i=1

δ
(
x−QA(t)

i

)
corresponds to the stochastic process for the molar concentration of species A at x at time t. We can
similarly define Bγε (x, t) and Cγε (x, t). The large population (thermodynamic) limit where γ → ∞ and
(Aγε (x, 0), Bγε (x, 0), Cγε (x, 0)) converge to well-defined limiting molar concentration fields gives (in a weak
sense) that

(Aγε (x, t), Bγε (x, t), Cγε (x, t))→ (Aε(x, t), Bε(x, t), Cε(x, t)) ,

which satisfy the MFM

∂tAε(x, t) = D1∆xAε(x, t)−
(∫

Rd
Kε

1(x− y)Bε(y, t) dy

)
Aε(x, t) +

∫
Rd
K2(z)

(∫
Rd
mε

2(x, y|z)dy

)
Cε(z, t) dz

∂tBε(y, t) = D2∆yBε(y, t)−
(∫

Rd
Kε

1(x− y)Aε(x, t) dx

)
Bε(y, t) +

∫
Rd
K2(z)

(∫
Rd
mε

2(x, y|z)dx

)
Cε(z, t) dz

∂tCε(z, t) = D3∆zCε(z, t)−K2(z)Cε(z, t) +

∫
R2d

K1(x, y)m1(z|x, y)Aε(x, t)Bε(y, t) dx dy.

(1.1)

The commonly used SM is a more formally derived system of reaction-diffusion PDEs. Denote by
A(x, t), B(y, t), C(z, t) the molar concentration fields for species A, B, C in the SM, which satisfy

∂tA(x, t) = D1∆xA(x, t)− κ1A(x, t)B(x, t) + κ2C(x, t),

∂tB(y, t) = D2∆yB(y, t)− κ1A(y, t)B(y, t) + κ2C(z, t),
2



∂tC(z, t) = D3∆zC(z, t)− κ2C(z, t) + κ1A(z, t)B(z, t).(1.2)

The main theoretical result of this paper, Theorem 3.1, proves that when the kernels and placement measures
have averaging forms,

(Aε(x, t), Bε(x, t), Cε(x, t)) = (A(x, t), B(x, y), C(x, t)) +O(ε2), ε→ 0.

This demonstrates that we may interpret the SM as an approximation to the rigorous MFM when reactive
interactions are short-range.

Nonlocal reaction-diffusion PIDE models related to our MFM have been introduced and studied for
a variety of physical applications, including for models of population dynamics, evolutionary dynamics,
and neuronal dynamics [NTY17, CFF19, SVB13, JG89, SSS20, PGB19, GB96]. These works focus on the
effects of different nonlocal reaction kernels, and how the stability of steady states is influenced by the
nonlocal interactions. To our knowledge, there is no rigorous analysis on the closeness between such nonlocal
PIDE models and corresponding local reaction-diffusion models analogous to our SM. Our work is also
distinguished in the generality of the considered chemical reaction systems, the range of spatial reaction rate
kernels, and the variety of reaction product placement measures that are allowed.

As we completed this work, we became aware of the recent preprint [K20]. The authors provide an
intuitive, formal argument for going from the Doi PBSRD model to the SM in the large-population limit
for systems with bimolecular reactions. This involves discretizing the forward equation for the PBSRD
model to a spatially-discrete convergent reaction-diffusion master equation (CRDME) model [I13, IZ18],
assuming that the CRDME’s second moments can be approximated as products of first moments in the
large-population limit, and assuming that interaction length scales are sufficiently small that convolution
sums representing bimolecular interactions between molecules at nearby lattice locations can be approximated
by point interactions. Under these assumptions, a PDE corresponding to the SM for a bimolecular reaction
is obtained when the lattice spacing within an approximating mean-field model for the CRDME is taken to
zero. The present work is distinguished from such studies through our rigorous and direct proof that the
SM is the short (bimolecular) interaction-range limit of the MFM (which was previously proven to be the
rigorous large-population limit of the PBSRD model [LLN19, IMS20]). It is also distinguished in providing
an error bound that demonstrates the rate of convergence of the MFM to the SM as the bimolecular
interaction-distance is decreased.

Finally, we reiterate that in [IMS20] we proved that the MFM is the correct large population (thermo-
dynamic) limit as γ →∞ of a wide-class of particle-based stochastic reaction diffusion models. In contrast,
this paper explores the rigorous relationship between the SM and the MFM as ε is varied as explained
above. The rest of the paper is organized as follows. In Section 2 we introduce the general setup, notation
and our assumptions. In Section 3 we present our main result, Theorem 3.1, on the approximation of the
MFM by the SM as the bimolecular reactive interaction distance ε → 0. In addition, we also present a
number of numerical studies that demonstrate the (rate of) convergence of the MFM to the SM as ε → 0
(when both exist), and illustrate how well the MFM and SM models agree with the underlying PBSRD
model for varying values of ε. Our numerical results first demonstrate in several simple systems the the-
oretical findings that the SM is the short (bimolecular) interaction-range limit of the MFM, see Section
3.2. We then explore several biologically-motivated examples, see Section 3.3, where the MFM correctly
captures essential behavior of the underlying particle-based stochastic system, but the SM sometimes fails
to do so (or it is not immediately clear how to even define the SM). These illustrate the utility in using a
rigorously derived-MFM for both model formulation when the SM is not clear, and as a means of assessing
the accuracy of the SM. Section 4 proves local well-posedness of the MFM and the SM models. Section 5
discusses global well-posedness of the MFM for specific choices of the reaction kernels. Appendices A and B
give proofs of technical results used throughout the paper.

2. General Setup and Main Assumptions

For simplicity, in our rigorous studies we assume that molecules diffuse freely in Rd, with Dj denoting the
diffusion coefficient for species Sj , j = 1, · · · , J . Let L be the number of possible reactions, each labelled by
R1, · · · ,RL. The change in the number of particles induced by the R`th reaction, ` ∈ {1, . . . , L}, is given by
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the chemical equation
J∑
j=1

α`jSj →
J∑
j=1

β`jSj ,

where we assume the stoichiometric coefficients {α`j}Jj=1 and {β`j}Jj=1 are non-negative integers. Let α(`) =

(α`1, α`2, · · · , α`J) and β(`) = (β`1, β`2, · · · , β`J) be multi-index vectors collecting the coefficients of the

`th reaction. We denote the reactant and product orders of the reaction by |α(`)| .=
∑J
i=1 α`i ≤ 2 and

|β(`)| .=
∑J
j=1 β`j ≤ 2, assuming that at most two reactants and two products participate in any reaction.

We therefore implicitly assume all reactions are at most second order.
We introduce two notations to encode reactant and product particle positions, that are subsequently

needed to specify the MFM. Note, these definitions are the same under which we derived the MFM
in [IMS20].

Definition 2.1. For reaction R` we define the reactant position space

X(`) = {x = (x
(1)
1 , · · · , x(1)

α`1
, · · · , x(J)

1 , · · · , x(J)
α`J

) |x(j)
r ∈ Rd, for all 1 ≤ j ≤ J, 1 ≤ r ≤ α`j} =

(
Rd
)|α(`)|

.

Here when α`j = 0 species j is not a reactant for the `th reaction, and hence there will be no indices for

particles of species j within the reactant position space. In the underlying PBSRD model, x ∈ X(`) represents
one possible configuration for the (sampled) positions of individual reactant particles that might undergo an

R` reaction. x
(j)
r then labels the sampled position for the rth reactant particle of species j involved in this

specific instance of the reaction. We let dx =
(∧J

j=1(
∧α`j
r=1 dx

(j)
r )
)

be the corresponding volume form on

X(`).

Definition 2.2. For reaction R` with 1 ≤ ` ≤ L i.e. having at least one product particle we define the
product position space

Y(`) = {y = (y
(1)
1 , · · · , y(1)

β`1
, · · · , y(J)

1 , · · · , y(J)
β`J

) | y(j)
r ∈ Rd, for all 1 ≤ j ≤ J, 1 ≤ r ≤ β`j} =

(
Rd
)|β(`)|

.

Here when β`j = 0 species j is not a product for the `th reaction, and hence there will be no indices for

particles of species j within the product position space. In the underlying PBSRD model, y ∈ Y(`) represents
one possible configuration for the (sampled) positions of individual product particles that might be produced

by an R` reaction. y
(j)
r then labels the sampled position for the rth product particle of species j involved in

this specific instantance of the reaction. Let dy =
(∧J

j=1(
∧β`j
r=1 dy

(j)
r )
)

be the corresponding volume form on

Y(`).

Remark 2.1. In the case of no product for reaction R` with 1 ≤ ` ≤ L, for example, A → ∅, A + B → ∅,
etc, we naturally set the product position space Y(`) defined in Definition 2.2 to be the empty set.

We denote by K`(x) the reaction rate kernel (i.e. probability per time) that reactant particles with
positions x ∈ X(`) undergo reaction R`. m`(y |x) will represent the reaction’s placement measure, giving
the probability density that when the reaction occurs reactants at positions x ∈ X(`) generate products at
positions y ∈ Y(`).

We formulate the dynamics of the MFM in terms of the time evolution of the spatial molar concentration
field for species j at time t, denoted by ρj(x, t), j = 1, 2, · · · , J . As summarized in the introduction, in [IMS20]
we proved the coarse-grained large-population limit of the PBSRD model of particles diffusing and reacting
is given by a coarse-grained system of PIDEs corresponding to our MFM. In contrast to the SM, the latter
accounts for spatially distributed chemical interactions between particles in a manner that is consistent with
the PBSRD model. For a general system of reacting and diffusing particles with the notation defined above,
the derived coarse-grained MFM is given by the coupled system of (non-local) reaction-diffusion PIDEs

∂tρj(x, t) = Dj∆xρj(x, t)−
L∑
`=1

(
1

α(`)!

α`j∑
r=1

∫
x̃∈X(`)

δx(x̃(j)
r )K`(x̃)

(
ΠJ
k=1Πα`k

s=1ρk(x̃(k)
s , t)

)
dx̃

)
.

+
L∑
`=1

 1

α(`)!

β`j∑
r=1

∫
x̃∈X(`)

K`(x̃)

(∫
y∈Y(`)

δx(y(j)
r )m`(y | x̃) dy

)(
ΠJ
k=1Πα`k

s=1ρk(x̃(k)
s , t)

)
dx̃

 ,(2.1)
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where j = 1, . . . , J .

Remark 2.2. In Eq. (2.1) the expressions
∫
δx(x̃

(j)
r ) · · · dx̃(j)

r and
∫
δx(y

(j)
r ) · · · dy(j)

r are used as convenient

and systematic notations to represent replacing x̃
(j)
r and y

(j)
r with x through the formal action of the δ-

function. That is ∫
Rd
δx(x̃(j)

r )f(x̃(j)
r ) dx̃(j)

r
.
= f(x).

In contrast to the MFM, the standard reaction-diffusion PDE model (SM) used for modeling the time
evolution of chemical concentration fields extends spatially-homogeneous law of mass action-based ODE
models by adding Laplacians to model molecular diffusion [ECM07, MNKS09, NTS08]. The SM involves
only local chemical interactions, a major simplification from more-detailed PBSRD models, with reactions
occurring based on a spatially uniform reaction rate constant inherited from the underlying mass-action
ODE model. For reaction R` we denote this constant by κ`. The SM is then the coupled system of PDEs

∂tρj(x, t) = Dj∆xρj(x, t) +
L∑
`=1

κ`(β`j − α`j)
(
ΠJ
k=1ρk(x, t)α`k

)
, j = 1, . . . , J.(2.2)

2.1. Assumptions for MFM. To discuss the connection between the MFM and SM models, we introduce
a reactive interaction scale parameter ε in the following assumptions on the reaction kernels and placement
measures for the MFM. In the remainder, we will exploit that in many applications ε is a small compared
to macroscopic length-scales over which we are interested in the dynamics of the concentration fields.

Assumption 2.3. We assume that for bimolecular reactions the rate kernels K`(x, y), x, y ∈ Rd depend only
on the separation distance, |x− y|, of the two particles. In particular, we shall write K`(x, y) = Kε

` (x, y) =

K̂ε
` (x− y) = K̂ε

` (y − x), where K̂ has domain Rd, to indicate this more explicitly, and to indicate the length

scale over which the reaction can occur. We also assume that ||K̂ε
` (w)||L1 = k` and

∫
Rd K̂

ε
` (w)|w|2 dw = O(ε2)

for all ε. This last assumption is key for determining the rate of convergence of the MFM to the SM we
establish in Theorem 3.1 as ε→ 0. Finally, as ε→ 0 we assume that K̂ε

` (w)→ k`δ(w) in distribution.

Remark 2.4. We previously showed how such ε-scalings arise naturally when calibrating parameters in the
PBSRD model to recover known/measured well-mixed parameters in the fast diffusion limit [IMS20]. For
example, with such calibrations Assumption 2.3 is satisfied for the commonly used Doi kernel

K̂ε
` (w) =

k`
|Bε(0)|

1{|w|≤ε},

where |Bε(0)| is the volume of d-dimensional ball with radius ε. The scaling can also be derived from more
microscopic polymer models of tethered interactions between membrane bound proteins, which give the coarse-
grained Gaussian kernel

K̂ε
` (w) =

k`(√
2πε2

)d e− |w|22ε2 ,

see [ZI20] for details and references.

Both these kernels are examples with a mollification-type scaling that K̂ε
` (w) = 1

εd
K̂1
` (wε ), with ||K̂1

` (w)||L1 =

k` and a finite second moment (i.e. ||K̂1
` (w)|w|2||L1 <∞). We then have that

∫
Rd K̂

ε
` (w)|w|2 dw = o(ε2) as

ε→ 0, and K̂ε
` (w)→ k`δ(w) in distribution as ε→ 0, motivating our choices in Assumption 2.3.

Assumption 2.5. We assume that the unimolecular reaction rate function K`(x), x ∈ Rd, is a constant
i.e. K`(x) = k`. We note that there is no ε dependence in this case.

Assumption 2.6. We assume that for any 1 ≤ ` ≤ L, y ∈ Y(`) and x ∈ X(`), the placement measure
m`(y |x) is a probability measure, i.e.

∫
Y(`) m`(y |x) dy = 1. Notice that in the case of a reaction with no

products, Y(`) = ∅, without loss of generality, let us assume that
∫
Y(`) m`(y |x) dy = 1 still holds.

If R` is a zeroth order reaction (birth reaction) of the form ∅ → Si, the reaction rate function is typically
assumed to be a constant, K` = k`. In [IMS20] (Remark 5.7), we explained how the mean-field large-
population limit holds if we assume that the placement measure m(y), y ∈ Rd for such a birth reaction has

5



compact support. In biological applications such reactions typically occur within a compact region of R3,
for example the interior of a cell, and as such K` and the placement measure should be zero outside of the
region of interest. To avoid having a spatially varying birth rate, in the remainder we exclude zero’th order
birth processes. We note, however, that this choice is made to simplify notation and subsequent calculations;
nothing in our analysis fundamentally precludes the incorporation of zeroth order reactions.

Assumption 2.7. If R` is a first order reaction of the form Si → Sj, we assume that the placement measure
m`(y |x) takes the form

m`(y |x) = δx(y).

This describes that the newly created Sj particle is placed at the position of the reactant Si particle.

Assumption 2.8. If R` is a second order reaction of the form Si +Sk → Sj, we assume that the placement
measure m`(z|x, y) takes the form

m`(z|x, y) =
I∑
i=1

pi × δ (z − (αix+ (1− αi)y)) ,

where I is a fixed finite integer and
∑
i pi = 1. This describes that the creation of particle Sj is always on the

segment connecting the reactant Si and reactant Sk particles, but allows some random choice of position. A
special case would be I = 2, pi = 1

2 , α1 = 0 and α2 = 1, which corresponds to placing the particle randomly
at the position of one of the two reactants. One common choice is taking I = 1, p1 = 1 and choosing α1 to
be the diffusion weighted center of mass [IZ18].

Assumption 2.9. If R` is a second order reaction of the form Si + Sk → Sj + Sr, we assume that the
placement measure m`(z, w |x, y) takes the form

m`(z, w |x, y) = p× δ(x,y) ((z, w)) + (1− p)× δ(x,y) ((w, z)) .

This describes that newly created product Sj and Sr particles are always at the positions of the reactant Si
and Sk particles. p is typically either 0 or 1, depending on the underlying physics of the reaction.

Assumption 2.10. If R` is a first order reaction of the form Si → Sj + Sk, we assume the placement
measure depends on the separation scale parameter ε and is in the form

mε
`(x, y | z) = ρε(|x− y|)

I∑
i=1

pi × δ (z − (αix+ (1− αi)y)) ,

with
∑
i pi = 1. Here we assume the relative separation of the product Sj and Sk particles, |x−y|, is sampled

from the probability density ρε(|x− y|). Their (weighted) center of mass is sampled from the density encoded
by the sum of δ functions. Such forms are common for detailed balance preserving reversible bimolecular
reactions [IZ18], from which ρε obtains the explicit ε dependence.

We further assume some regularity of the separation placement density, ρε(|w|), w ∈ Rd, introduced in
Assumption 2.10:

Assumption 2.11. For Assumption 2.6 to be true, we require ||ρε||L1(Rd) = 1 for all ε. When ρε(|w|) comes
from a reversible bimolecular reaction that satisfies detailed-balance, it will have a similar functional form
to the bimolecular reaction kernel K̂ε

` (w) in Assumption 2.3. For this reason, as ε → 0 we assume that
ρε(|w|)→ δ(w) in distribution and

∫
Rd ρ

ε(|w|)|w|2 dw = O(ε2).

Note, with the preceding assumptions the placement measure only depends on ε for dissociation reactions
of the form Si → Sj + Sk.

In what follows we rewrite the MFM to make explicit the ε-dependence giving

∂tρ
ε
j(x, t) = Dj∆xρ

ε
j(x, t)−

L∑
`=1

(
1

α(`)!

α`j∑
r=1

∫
x̃∈X(`)

δx(x̃(j)
r )Kε

` (x̃)
(

ΠJ
k=1Πα`k

s=1ρ
ε
k(x̃(k)

s , t)
)
dx̃

)

+
L∑
`=1

 1

α(`)!

β`j∑
r=1

∫
x̃∈X(`)

Kε
` (x̃)

(∫
y∈Y(`)

δx(y(j)
r )mε

`(y | x̃) dy

)(
ΠJ
k=1Πα`k

s=1ρ
ε
k(x̃(k)

s , t)
)
dx̃

(2.3)

for j = 1, . . . , J .
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3. Main Results

With the preceding assumptions, we now prove the rigorous relationship between the MFM and SM
models as the reactive interaction scale ε → 0. Our main theoretical result is given by Theorem 3.1 on the
approximation of the MFM, Eq. (2.3), by the SM, Eq. (2.2) as ε → 0. In addition, we present a series of
numerical studies in one and two dimensions to demonstrate the relationship between the two models and
the underlying PBSRD model.

Before proceeding with Theorem 3.1, let us briefly discuss the issue of well-posedness of models Eq. (2.1)
(equivalently Eq. (2.3)) and Eq. (2.2). The mild solution to both models is of the form

(3.1) ρ(t) = S(t)ρ(0) +

∫ t

0

S(t− s)N [ρ](s) ds,

where ρ(t) = (ρ1(·, t), ρ2(·, t), · · · , ρJ(·, t))T , S(t) is the semigroup generated by the linear diffusion opera-

tor Diag(D1∆x, D2∆x, · · · , DJ∆x), and N [ρ] = ((N [ρ])1 , (N [ρ])2 , · · · , (N [ρ])J)
T

represents the nonlinear
reaction term.

Depending on the properties of the nonlinear reaction term N [ρ] one obtains local in time well-posedness,
i.e. in some interval [0, T0], or one obtains global in time well-posedness. In Section 4 we discuss local in
time well posedness and regularity for both equations Eq. (2.1) and Eq. (2.2). In Section 5, we discuss under
which additional assumptions on N [ρ] one has global well-posedness. As illustrative examples, in Section 5
we prove that reaction systems with reactions of the type A+B � C +D and A+B � C both satisfy the
requirements for global well-posedness (the latter under specific choices for the placement measure).

3.1. Approximation theorem. Let Cb,unif (Rd) denote the space of bounded and uniformly continuous
functions on Rd, and denote by C`b(Rd) the space of functions with continuous and uniformly bounded
derivatives on Rd through order `. Our main result is the following theorem on the convergence of the MFM
to the SM as ε→ 0.

Theorem 3.1. Let T0 be a time such that the solutions to the SM and MFM are uniformly bounded for
(x, t) ∈ Rd× [0, T0] and ε. Let ρj(x, 0) = ρεj(x, 0) ∈ C1

b (Rd)∩Cb,unif (Rd) for all ε > 0 and j = 1, · · · , J , and
assume that

k` =
(
α(`)!

)
κ`.

Under the assumptions in Section 2.1 we have that the solution to Eq. (2.3) converges uniformly in (x, t) to
the solution to Eq. (2.2) at second order as ε→ 0, i.e.

sup
t∈[0,T0]

max
j=1,··· ,J

||ρj(x, t)− ρεj(x, t)||L∞ = O(ε2).

Remark 3.2. One can find such a T0 in Theorem 3.1 by a contraction mapping approach as in Section 4,
or choose any T0 <∞ for particular reaction systems for which global well-posedness holds with appropriate
uniform estimates. Systems of the form A + B � C + D or A + B � C are shown to have such global
well-posedness estimates in Section 5. More generally, whether T0 can be chosen arbitrarily large will depend
on the global well-posedness of the MFM and the SM for a particular reaction network. As we describe in
Section 5, the construction of such a global well-posedness theory for general reaction systems is a still an
open problem.

Proof. By taking the difference of the mild solution to Eq. (2.3) and Eq. (2.2) for any species j, 1 ≤ j ≤ J ,
we have that

ρj(x, t)− ρεj(x, t) = etDj∆x
(
ρj(x, 0)− ρεj(x, 0)

)
−

L∑
`=1

∫ t

0

e(t−τ)Dj∆x

α`j∑
r=1

[
κ` ×ΠJ

k=1Πα`k
s=1ρk(x, τ)

−
(

1

α(`)!

∫
x̃∈X(`)

δx(x̃(j)
r )Kε

` (x̃)
(

ΠJ
k=1Πα`k

s=1ρ
ε
k(x̃(k)

s , τ)
)
dx̃

)]

+
L∑
`=1

∫ t

0

e(t−τ)Dj∆x

β`j∑
r=1

[
κ` ×ΠJ

k=1Πα`k
s=1ρk(x, τ)
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−
(

1

α(`)!

∫
x̃∈X(`)

Kε
` (x̃)

(∫
y∈Y(`)

δx(y(j)
r )mε

`(y | x̃) dy

)(
ΠJ
k=1Πα`k

s=1ρ
ε
k(x̃(k)

s , τ)
)
dx̃

)]
dτ.(3.2)

Using that ||etDj∆xf ||L∞ ≤ ||f ||L∞ for all t ≥ 0 and f ∈ L∞(Rd), we have that

(3.3) ||ρj(x, t)− ρεj(x, t)||L∞ ≤ ||ρj(x, 0)− ρεj(x, 0)||L∞ +
L∑
`=1

∫ t

0

Λ`,j(τ) + Θ`,j(τ)dτ,

where
(3.4)

Λ`,j(τ) =

α`j∑
r=1

‖
(

1

α(`)!

∫
x̃∈X(`)

δx(x̃(j)
r )Kε

` (x̃)
(

ΠJ
k=1Πα`k

s=1ρ
ε
k(x̃(k)

s , τ)
)
dx̃

)
− κ` ×ΠJ

k=1Πα`k
s=1ρk(x, τ)‖L∞ ,

and

(3.5) Θ`,j(τ) =

β`j∑
r=1

∣∣∣∣∣∣∣∣ ( 1

α(`)!

∫
x̃∈X(`)

Kε
` (x̃)

(∫
y∈Y(`)

δx(y(j)
r )mε

`(y | x̃) dy

)(
ΠJ
k=1Πα`k

s=1ρ
ε
k(x̃(k)

s , τ)
)
dx̃

)
− κ` ×ΠJ

k=1Πα`k
s=1ρk(x, τ)

∣∣∣∣∣∣∣∣
L∞

.

From now on, and also in Lemma A.3 and Lemma A.4, we will use the following notations for generic
constants. Using the assumed uniform boundedness of the MFM and SM solutions, we have

C :=

(
max

`=1,··· ,L
k`

)
max

j=1,··· ,J
{sup
ε>0

sup
τ∈[0,T0]

||ρεj(x, τ)||L∞ ∨ sup
τ∈[0,T0]

||ρj(x, τ)||L∞} <∞.

(Inequality 1) in Theorem 4.4 and Theorem 4.6 then give that

(3.6) max
j=1,··· ,J

{sup
ε>0

sup
τ∈[0,T0]

||ρεj(x, τ)||C1
b (Rd) ∨ sup

τ∈[0,T0]

||ρj(x, τ)||C1
b (Rd)} ≤ C1,

for some constant C1 depending only on C, supj=1,··· ,J ||ρj(x, 0)||C1
b (Rd) and T0. Similarly, (Inequality 2)

in Theorem 4.4 and Theorem 4.6 give

(3.7) max
j=1,··· ,J

{sup
ε>0
||ρεj(x, τ)||C2

b (Rd) ∨ ||ρj(x, τ)||C2
b (Rd)} ≤ C2 +

C3√
τ
.

Combined with Eq. (3.6), we have that

(3.8) max
j,k=1,··· ,J

{sup
ε>0
||ρεj(x, τ)ρεk(x, τ)||C2

b (Rd) ∨ ||ρj(x, τ)ρk(x, τ)||C2
b (Rd)} ≤ C2 +

C3√
τ
,

for any fixed τ ∈ (0, T0] and some (other) constants C2 and C3 only depending on C, supj=1,··· ,J ||ρj(x, 0)||C1
b (Rd)

and T0.
Using the estimates from Lemma A.3 and Lemma A.4, Eq. (3.3) becomes

||ρj(x, t)− ρεj(x, t)||L∞ ≤ ||ρj(x, 0)− ρεj(x, 0)||L∞

+
L∑
`=1

∫ t

0

6C

(
max

j=1,··· ,J
||ρj(x, τ)− ρεj(x, τ)||L∞ +

(
C2 +

C3√
τ

)
O(ε2)

)
dτ,

≤ ||ρj(x, 0)− ρεj(x, 0)||L∞ + 6CL
(
C2t+ 2C3

√
t
)
O(ε2)

+ 6CL

∫ t

0

(
max

j=1,··· ,J
||ρj(x, τ)− ρεj(x, τ)||L∞

)
dτ.(3.9)

Applying Gronwall’s Lemma we have

max
j=1,··· ,J

||ρj(x, t)− ρεj(x, t)||L∞ ≤
(

6CL
(
C2t+ 2C3

√
t
)
O(ε2) + max

j=1,··· ,J
||ρj(x, 0)− ρεj(x, 0)||L∞

)
e6CLt

so that

sup
t∈[0,T0]

max
j=1,··· ,J

||ρj(x, t)− ρεj(x, t)||L∞ ≤ 6CL
(
C2T0 + 2C3

√
T0

)
e6CLT0O(ε2).

�
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3.2. Numerical Comparison for Reversible A+B � C Reaction. In order to illustrate Theorem 3.1
and further investigate the connections between the SM and the MFM, we numerically solved the reversible
A + B � C reaction using each of the PBSRD model, the SM, and the MFM. The PDEs and PIDEs for
the SM and MFM were solved in MATLAB with periodic boundary conditions on both the interval [0, L],
and the square [0, L] × [0, L]. The stochastic process associated with the PBSRD model was numerically
solved by discretization to a jump process via the Convergent Reaction Diffusion Master Equation (CRDME)
[I13, IZ18], which was then sampled using the Gibson-Bruck stochastic simulation algorithm [GB200]. Due
to the computational expense of the PBSRD model in the large-population limit, we only solved it for the
one-dimensional problem with periodic boundary conditions on [0, L].

Let us denote by A(x, t), B(y, t), C(z, t) the concentration fields for species A, B, C respectively in the
SM, Eq. (1.2).

Similarly, we denote by Aε(x, t), Bε(y, t), Cε(z, t) the concentration fields for species A, B, C respectively
in the MFM Eq. (2.3), with separation scale parameter ε. The latter then satisfy Eq. (1.1).

In the following we fixed L = 2π, the diffusivity D1 = 1, D2 = 0.5, D3 = 0.1, and assumed a detailed
balanced condition on the reversible reactions, i.e.

(3.10) KdK̂
ε
1(x− y)m1(z|x, y) = K2(z)mε

2(x, y|z),

where Kd = k2/k1 is the equilibrium dissociation constant of the reaction, see [IZ18]. We set κ1 = k1 =

||K̂ε
1||L1(Rd) = 1 and κ2 = k2 = K2(z) = 0.05 for any z ∈ Rd. We consider two reaction kernels: the Doi

kernel

K̂ε
1(w) =

k1

|Bε(0)|
1{|w|≤ε},

where |Bε(0)| is the volume of d-dimensional ball with radius ε, and the Gaussian kernel

K̂ε
1(w) =

k1(√
2πε2

)d e− |w|22ε2 ,

for any w ∈ Rd.
The PDEs and PIDEs were solved using a Fourier collocation method [HGG07] for the spatial discretiza-

tion, with collocation points xi = iL
N , i = 0, · · · , N −1 in 1d and (xi, yj) = ( iLN ,

jL
N ), i, j = 0, · · · , N −1 in 2d.

We chose N = 29 for 1d and N = 28 for 2d. We approximated integral terms in the MFM using the mid-
point quadrature rule centered at collocation points. For the reaction-diffusion equations the diffusion terms
were stiff whereas the reaction terms were non-stiff. We therefore used the Crank-Nicolson Adams-Bashforth
(CNAB) implicit-explicit method (IMEX) to discretize in time the spatially discretized system, with a time
step of ∆t = 1e−3 (for stability and accuracy reasons). As CNAB is a two-step multistep method, to obtain
the numerical solution at time ∆t we applied the one-step IMEX Forward-Backward Euler method with a
time step of (∆t)

2
until time ∆t.

3.2.1. One Dimensional Results. In the one dimensional periodic domain [0, L], we set the initial conditions

for both models to be A(x, 0) = e−10(x−1)2 , B(y, 0) = e−10(y−2)2 and C(z, 0) = 0.
We first examine the relationship between the PBSRD model, the MFM and the SM as shown in

Figs. 1 and 2. It is clear that the molar concentration fields and molar masses in the MFM are a good
approximation of the PBSRD model for γ, the large-population limit scaling parameter in the PBSRD model
[IMS20], sufficiently large. For ε sufficiently small both the SM and MFM are good approximations, while
for ε sufficiently large, only the MFM is a good approximation to the PBSRD model.

We next compared the SM to the MFM with various combinations of reaction kernels and displace-
ment measures. In particular, we investigated the MFM with (1) Gaussian kernel and placement measure
m1(z|x, y) = δ(z−(.5x+.5y)), (2) Gaussian kernel and placement measure m1(z|x, y) = .5δ(z−x)+.5δ(z−y),
(3) Doi kernel and placement measure m1(z|x, y) = .5δ(z−x)+.5δ(z−y). For all these choices of the reaction
kernel and placement measure, the MFM PIDE solution converges to the SM PDE solution at second order
in ε as shown in Fig. 3. This illustrates our rigorous results on the convergence proven in Theorem 3.1.

3.2.2. Two Dimensional Results. We further tested the convergence over a two dimensional periodic domain,
comparing the SM PDE solution to the MFM PIDE solution for a representative Gaussian reaction kernel
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Figure 1. Evolution of the Molar Mass in one dimension estimated by 100 simulations
with γ = 104 and (a) reaction radius ε = 2−7 , (b) reaction radius ε = 2−4 ∗ L.
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Figure 2. Spatial Molar Concentration at Time 1 in one dimension estimated by 100
simulations (a) with reaction radius ε = 2−7 , (b) with reaction radius ε = 2−4 ∗ L.
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Figure 3. One Dimensional Uniform Convergence of the spatial density in the time interval
[0, 1] (a) for species A , (b) for species C.

and placement measure m1(x, y|z) = .5δ(z−x)+.5δ(z−y). Here we fix the initial solutions for both models to

be A(x, 0) = e−12(x1−1)2−8(x2−2)2 , B(x, 0) = e−10(x1−1)2−5(x2−2)2 and C(x, 0) = 0, where x = (x1, x2) ∈ R2.
Uniform second order convergence in space and time is again verified as shown in Fig. 4a. The error

between the two models versus time is illustrated in Fig. 4b. We see that the maximum error over space
increases to a maximum and then decreases as t increases for each value of ε. The smaller ε is, the smaller
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Figure 4. Two Dimensional Reversible Reactions. (a) Convergence of the spatial density
uniformly in space and time interval [0, 1] for species A, B, and C. (b) The error between
the PDE solution and the PIDE solution versus time for species C. (c) Convergence to the
same constant equilibrium denoted as Ceq for the PDE and MFM.
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Figure 5. Two dimensional spatial profile for species C.

the error between the solutions of the SM and the MFM. The error decreases for large times because
both models converge to the same spatially uniform equilibrium solution (exponentially fast) as t → ∞,
as shown in Figure Fig. 4c. Here the equilibrium constant can be calculated from the corresponding mass
action ODE model for the reaction using conservation laws for the reversible reaction. Let Aeq, Beq, Ceq
denote the equilibrium concentration for species A, B and C respectively in the ODE model. They satisfy
KdCeq = AeqBeq. Let A0, B0, C0 denote the averaged spatial density at t = 0 in the MFM and SM,
and assume these are the initial conditions used in the ODE model. In the ODE model we have that
Aeq +Beq + 2Ceq = A0 +B0 + 2C0 := sum and Beq −Aeq = B0−A0 := diff . Solving these three equations

we obtain the equilibrium concentration Ceq = 1
2 (sum+Kd −

√
(sum+Kd)2 − (sum2 − diff2)).
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We remark that even though the dynamics of the SM and MFM are different, as long as we choose ε
sufficiently small, in particular ε = 2−7L ≈ .8%L, there is no apparent visual difference between the two
models, as illustrated in Fig. 5.

3.3. Examples of disagreement between the PBSRD, MFM and SM models. Our previous exam-
ples illustrated our main result, exploring regimes where the MFM converges to the SM as ε→ 0. This may
suggest that one can always use the SM in applications where a deterministic model is sufficient. We now il-
lustrate two contexts where the SM is problematic as an approximation to average concentration fields in the
PBSRD model, while the MFM captures key aspects of their behavior. In Section 3.3.1 we consider a pattern
formation example, the Baras-Pearson-Mansour (BPM) Model, and show the MFM is able to approximate
the steady state statistics of CRDME simulations of the volume-reactivity PBSRD model. In contrast, the
SM appears to converge to different steady-state statistics. In Section 3.3.2, we study a simplified version
of a model for regulation of T cell signaling from [ZI20]. We demonstrate that the MFM is able to show
the same qualitative switch-like behavior at steady state as CRDME simulations of the volume-reactivity
PBSRD model in [ZI20], whereas it is not immediately clear what an appropriate SM to use for this problem
would be.

3.3.1. Baras-Pearson-Mansour (BPM) Model. We consider a reaction-diffusion system with three species, U,
V and W undergoing the following reactions Eq. (3.13) called the Baras-Pearson-Mansour (BPM) Model [BMP96,
BPM90],

(3.11) U +W
η1→ V +W, 2V

η2
�
η3

W, U
η4
�
η5

∅, V
η6
�
η7

∅.

We use the parameters provided in [KNBGD17] for a reaction-limited system, and fix the spatial domain
as a 32µm × 32µm square with periodic boundary conditions. The diffusivities are DV = DW = DU/10 =
0.01µm2/sec with rate constants η1 = η2 = 2 × 10−4µm2/sec, η3 = 1.0sec−1, η4 = 3.33 × 10−3sec−1,
η5 = 16.7µm−2sec−1, η6 = 3.67 × 10−2sec−1 and η7 = 4.44µm−2sec−1. For the CRDME and MFM, we
consider two bimolecular interaction length scales, ε = 0.05µm and ε = 0.025µm (kept the same in the two
bimolecular reactions of the system). The corresponding particle-level Gaussian kernels’ rates ki (i = 1, 2),
for a reaction-limited system, are calibrated by imposing that

(3.12) ηi =
1

|Ω|

∫
Ω2

ki(√
2πε2

)d e− |x−y|2

2ε2 dx dy,

where Ω denotes the spatial domain. This corresponds to matching the well-mixed reaction-rate constant
in the (formal) infinite diffusivity limit. The product placement rule for the U + W → V + W reaction is
to place V at the position of U. The placement rule for the 2V → W reaction is to place W with equal
probability at the position of the first V or the second V. For the reverse W → 2V reaction one V is placed
at the position of W, while the position of the other is determined so as to ensure detailed balance of the
reversible reaction, see [IZ18].

We denote the spatial-average of the average number density fields for species U, V, W at time t as
nU (t), nV (t), nW (t) respectively. We initiate the system randomly around a point on the limit cycle,
(nU (0), nV (0), nW (0)) = (1686, 534, 56)µm−2. More precisely, we generate the spatially inhomogenous
initial particle number for species s in voxel Vi from a Poisson distribution with mean ns(0)× |Vi| following
[KNBGD17] and use the same initial number density for all the models considered. We use the same Fourier
collocation method as in Section 3.2 to solve for the SM and MFM, choosing a time step of dt = 0.1 sec
and using N = 100 points per coordinate axis. The CRDME is used for simulation of the underlying particle
model, using the same underlying mesh.

Fig. 6 demonstrates that for all the models with ε sufficiently small, the short-time spatially-averaged
average number densities for species U agree as we proved in Theorem 3.1. At intermediate times, the
stochastic reaction mechanism in the particle model facilitates faster relaxation, with smaller reactive length
scales giving faster relaxation for both the CRDME and MFM. This is consistent with the observations in
Figure 5 of [DYK18]. Neither the MFM or the SM give good approximations to the relaxation timescales
in the CRDME simulations, though the disagreement of the SM appears less than the MFM for the two
values of ε shown in the figure. In contrast, for very long times the MFM demonstrates better agreement
with the limiting steady state value from the CRDME simulations for each value of ε, while the SM shows a
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Figure 6. Spatially-averaged average number density of species U versus time (sec) from
SM model, MFM model and CRDME model up to time 20000 sec. The results of the
CRDME are averaged ovder 10 simulations. (b) is a zoomed in version of (a) focusing on
the long-time behavior.

clear discrepancy (see the right panel of Fig. 6). We note that it is an open question to study how the long
time behaviors of the MFM, SM and CRDME relate to each other in complex biochemical systems. We
hope to explore how the bimolecular reaction range and system parameters affect the steady state pattern
formations and macroscopic observables from the three models in future work.

3.3.2. Tethered Surface Receptor Interactions in T Cell Signaling. We now consider a simplified model for
a tethered surface receptor interactions that occur in T cell signaling (T cells play a key role in the adap-
tive immune response). The example illustrates a case where the MFM is well-defined, and captures key
qualitative behavior of the underlying particle model, but it is not immediately clear how to formulate an
appropriate SM (the assumptions of Theorem 3.1 are violated). This demonstrates that while in many
contexts the SM and MFM agree well for physically-appropriate parameters, there are cases where the
MFM itself serves as a useful model for biological systems.

Surface receptors within the cell membrane often have cytosolic tails that contain docking cites for cytosolic
enzymes (i.e. enzymes diffusing within the cell), and regulatory sites that can be modulated by such enzymes.
The length and stiffness properties of these tails then define an effective interaction distance for bimolecular
reactions involving such receptors, called the molecular reach of the reaction [ZI20]. Enzymes attached to
binding sites on tails interact with regulatory sites on nearby tails within the three-dimensional volume
proximal to the cell membrane. In contrast, the receptors to which the tails are attached diffuse within the
two-dimensional membrane surface. We therefore obtain a reaction-diffusion process of particles (receptors)
moving in a two-dimensional domain but reacting through three-dimensional reaction kernels.

In [ZI20], we investigated a tethered signaling reaction in which surface membrane PD-1 proteins could
inhibit activated CD-28 surface receptors, a key component in sustaining T cell signaling responses. We
explored how the size of the molecular reach (i.e. bimolecular interaction distance) and diffusivity of the
receptors could influence the efficacy of CD-28 inhibition by PD-1. Letting CD28 denote the inactivated
(i.e. unphosphorylated) state, and CD28* the activated (i.e. phosphorylated) state, our model had the basic
reactions that

(3.13) CD28
λ−→ CD28*, CD28* + PD-1

K̂ε
2.5D(·) or K̂ε

2D(·)−−−−−−−−−−−−→ CD28 + PD-1.

Here CD28 activation (phosphorylation) follows a first order reaction with rate λ. Inactivation (dephospho-
rylation) of CD28* is controlled by PD-1, and modeled by a second order tethered reaction with bimolecular
reaction kernel Eq. (3.14). It depends on the molecular reach ε derived from a polymer model for the
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cytoplasmic tail of the protein [ZI20]. The bimolecular reaction kernel is given by

(3.14) K̂ε
2.5D(x) = k2.5D ×

(
1

2πε2

)3/2

exp

(
−|x|

2

2ε2

)
.

Notice that Eq. (3.14) is a 3D Gaussian kernel, but the molecules will be restricted to diffuse within the two-
dimensional membrane surface. We therefore label it the 2.5D reactive kernel. To understand how having a
three-dimensional interaction for particles moving in two-dimensions changes the reaction efficiacy, in [ZI20]
we compared it with a purely 2D bimolecular reaction kernel. The latter is given by the 2D Gaussian kernel

(3.15) K̂ε
2D(x) = k2D ×

(
1

2πε2

)
exp

(
−|x|

2

2ε2

)
.

We now use our MFM to study the influence of the molecular reach ε and diffusivity, denoted by D, on
CD28 phosphorylation in a simplified version of the preceding model. Let us denote A(x, t) as the number
density of CD28 at position x at time t, and B(x, t) as the number density of CD28* at position x at time
t. For illustrative purposes, we use simplified parameters, and assume there is only one (stationary) PD-1
protein in the system. Assume the spatial domain is a [0, 50nm] × [0, 50nm] square patch of membrane,
with periodic boundary conditions. The one PD-1 molecule is placed at the center of the domain, (25, 25),
so that the number density of the PD-1 molecule is given by the constant field δ(25,25)(x). The MFM for
this system is then

(3.16)

∂

∂t
A(x, t) = D∆xA(x, t)− λA(x, t) + K̂ε(x− (25, 25))B(x, t),

∂

∂t
B(x, t) = D∆xB(x, t) + λA(x, t)− K̂ε(x− (25, 25))B(x, t),

where K̂ε is K̂ε
2.5D in the physiological case and K̂ε

2D in the idealized case of purely two-dimensional bi-
molecular interactions.

1 2 3 4 5 6
Molecular Reach  (nm)

0

0.1

0.2

0.3

0.4

0.5

C
D

28
/(C

D
28

+C
D

28
* )

D = 1e+5nm2/sec, 2.5D Kernel
D = 1e+5nm2/sec, 2D Kernel
D = 1e-5nm2/sec, 2.5D Kernel
D = 1e-5nm2/sec, 2D Kernel

Figure 7. Steady-state fraction of CD28 that is inactivated versus molecular reach ε for
different choices of bimolecular reaction kernel and diffusivity. Different diffusivities are
labeled by different line styles: D = 105nm2/sec is a solid line and D = 10−5nm2/sec is
a dotted line. Different reactive kernels are labeled by different markers: the 2D kernel is
labeled by star markers and the 2.5D kernel is labeled by circle markers.

In the following numerical experiments we fix λ = 1 sec−1, k2.5D = k2D = 2500nm2/sec and the initial
density as constant, A(x, 0) = 10−4 nm−2, B(x, 0) = 0nm−2. We use the same numerical methods as
Section 3.2 for solving the MFM, choosing a time step of dt = 0.001 sec and the number of spatial points
per axis to be N = 100. We study the influence of molecular reach ε on the steady-state fraction of CD28
in the inactivated state, illustrating the potency of PD-1. In Fig. 7 we show how this fraction is modulated
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for each reaction kernel in both the reaction-limited case (i.e. fast diffusion D = 105 nm2/sec, solid curve)
and the diffusion-limited case (i.e. slow diffusion D = 10−5 nm2/sec, dotted line). We see that in the case
of the (unphysical) 2D kernel (star markers), in both the diffusion-limited and reaction-limited regimes the
inactivated fraction is non-decreasing with respect to the reach ε. In contrast, for the physiological 2.5D
kernel (circle markers), the inactivated fraction decreases in the reaction-limited regime, but increases in
the diffusion-limited regime, as the reach ε is increased. This behavior qualitatively reproduces what we
observed for a CRDME-based particle model where both CD28 and PD-1 could diffuse in [ZI20], illustrating
how the reach and diffusivity of a receptor can combine to modulate its regulatory efficacy.

While the MFM for the physiological 2.5D model follows from the underlying particle model of [ZI20],
it is not immediately clear what a corresponding SM should be. One could try to just write down such
a model, but it would need to capture the qualitative dependency illustrated in Fig. 7, which arises from
the explicit length scale over which spatial interactions can occur in the particle model. If one instead
tries to derive the SM as the ε → 0 limit of the MFM, it is also unclear what this limit should be in
the 2.5D case, where the bimolecular reaction kernel does not satisfy the assumptions of Theorem 3.1. In
particular, the kernel approaches a three-dimensional delta function, but is being used as a coefficient within
a two-dimensional model. In contrast, the MFM is relatively immediate to write down, and as we have
demonstrated reproduces the qualitative dependence of the fraction of inactivated receptor on the molecular
reach ε.

4. Local Well-posedness and Regularity Analysis

Local existence and uniqueness can be derived from the classical contraction mapping argument, see for
example [SU17]. For completeness, we present the details for the Mean Field Model (MFM) in this section.
We define X = [Cb,unif (Rd)]J to be the J-vector space of uniformly bounded and uniformly continuous
functions on Rd, equipped with the norm

||ρ||X = sup
j=1,··· ,J

sup
x∈Rd

|ρj(x)|,

where ρ = (ρ1, ρ2, · · · , ρJ)T and each ρj ∈ Cb,unif (Rd), j = 1, · · · , J .
Applying the variation of constants formula to the MFM Eq. (2.1) we have

(4.1) ρ(t) = S(t)ρ(0) +

∫ t

0

S(t− s)N2[ρ](s) ds,

where ρ(t) = (ρ1(·, t), ρ2(·, t), · · · , ρJ(·, t))T , S(t) is the heat semigroup generated by the linear diffusion
operator Diag(D1∆x, D2∆x, · · · , DJ∆x), and N2[ρ] = ((N2[ρ])1, (N2[ρ])2, · · · , (N2[ρ])J)T represents the
nonlinear reaction term with

(N2[ρ])j(x, t) = −
L∑
`=1

(
1

α(`)!

α`j∑
r=1

∫
x̃∈X(`)

δx(x̃(j)
r )K`(x̃)

(
ΠJ
k=1Πα`k

s=1ρk(x̃(k)
s , t)

)
dx̃

)

+
L∑
`=1

 1

α(`)!

β`j∑
r=1

∫
x̃∈X(`)

K`(x̃)

(∫
y∈Y(`)

δx(y(j)
r )m`(y | x̃) dy

)(
ΠJ
k=1Πα`k

s=1ρk(x̃(k)
s , t)

)
dx̃

 ,(4.2)

for any j = 1, · · · , J .

Remark 4.1. S(t) is a C0-semigroup on X and ||S(t)ρ||X ≤ ||ρ||X for all t ≥ 0 and ρ ∈ X . Furthermore,
if all the diffusion coefficients are strictly positive, as we will subsequently assume, then S(t) is an analytic
semigroup on X.

Fix C1 > 0, T0 sufficiently small, and define the Banach space Y = C([0, T0],X) equipped with the norm

||ρ||Y = sup
t∈[0,T0]

||ρ(t)||X.

Let

M = {ρ ∈ Y : ||ρ(·)− S(·)ρ0||Y ≤ C1},(4.3)

adapted with the same norm
||ρ||M = ||ρ||Y.
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Note that by the contraction property of heat semigroup, we would have C2 := supρ∈M ||ρ||M ≤ C1 + C0,
where C0 := ‖ρ0‖M .

We first show N2[ρ] is a smooth and locally Lipschitz function w.r.t. ρ.

Lemma 4.2. Assume the reaction kernels and placement measures are of the form given in Section 2.1,
with the assumed allowable types of first and second order reactions. For any ρ, ρ̃ ∈ M we have that the
following hold:

(P1) [Boundedness]:

||N2[ρ]||M ≤ 3
(
C2

2 ∨ 1
)( L∑

`=1

k`

)
(P2) [Locally Lipschitz]:

||N2[ρ]−N2[ρ̃]||M ≤ 3 (C2 ∨ 1)

(
L∑
`=1

k`

)
||ρ− ρ̃||M ,

where the constants k` are defined in Assumption 2.3 and Assumption 2.5.

Proof. Proof of (P1): We have the following two estimates for the components of N2[ρ].∣∣∣∣∣ 1

α(`)!

α`j∑
r=1

∫
x̃∈X(`)

δx(x̃(j)
r )K`(x̃)

(
ΠJ
k=1Πα`k

s=1ρk(x̃(k)
s , t)

)
dx̃

∣∣∣∣∣
≤
∣∣∣∣∫
x̃∈X(`)

δx(x̃
(j)
1 )K`(x̃)

(
ΠJ
k=1Πα`k

s=1ρk(x̃(k)
s , t)

)
dx̃

∣∣∣∣
≤
∣∣∣∣∫
x̃∈X(`)

δx(x̃
(j)
1 )K`(x̃) dx̃

∣∣∣∣× ||ρ|||α(`)|
M ≤ k`

(
C2

2 ∨ 1
)
,

and ∣∣∣∣∣∣ 1

α(`)!

β`j∑
r=1

∫
x̃∈X(`)

K`(x̃)

(∫
y∈Y(`)

δx(y(j)
r )m`(y | x̃) dy

)(
ΠJ
k=1Πα`k

s=1ρk(x̃(k)
s , t)

)
dx̃

∣∣∣∣∣∣
≤ 1

α(`)!
β`j ||ρ|||α

(`)|
M ×

∣∣∣∣∫
x̃∈X(`)

K`(x̃)

(∫
y∈Y(`)

δx(y
(j)
1 )m`(y | x̃) dy

)
dx̃

∣∣∣∣
≤ 2k`

(
C2

2 ∨ 1
)
.

Then

||N2[ρ]||M ≤ 3
(
C2

2 ∨ 1
)( L∑

`=1

k`

)
.

Proof of (P2) For first and second order reactions we have

|ΠJ
k=1Πα`k

s=1ρk(x(k)
s , t)−ΠJ

k=1Πα`k
s=1ρ̃k(x(k)

s , t)| ≤ (2||ρ||M ∨ 1) ||ρ− ρ̃||M .

This implies the following two estimates for the components of N2[ρ]−N2[ρ̃],∣∣∣∣∣ 1

α(`)!

α`j∑
r=1

∫
x̃∈X(`)

δx(x̃(j)
r )K`(x̃)

(
ΠJ
k=1Πα`k

s=1ρk(x̃(k)
s , t)−ΠJ

k=1Πα`k
s=1ρ̃k(x(k)

s , t)
)
dx̃

∣∣∣∣∣
≤
∣∣∣∣∫
x̃∈X(`)

δx(x̃
(j)
1 )K`(x̃)

(
ΠJ
k=1Πα`k

s=1ρk(x̃(k)
s , t)−ΠJ

k=1Πα`k
s=1ρ̃k(x(k)

s , t)
)
dx̃

∣∣∣∣
≤
∣∣∣∣∫
x̃∈X(`)

δx(x̃
(j)
1 )K`(x̃) dx̃

∣∣∣∣× (2||ρ||M ∨ 1) ||ρ− ρ̃||M ≤ k` (2C2 ∨ 1) ||ρ− ρ̃||M ,

and∣∣∣∣∣∣ 1

α(`)!

β`j∑
r=1

∫
x̃∈X(`)

K`(x̃)

(∫
y∈Y(`)

δx(y(j)
r )m`(y | x̃) dy

)(
ΠJ
k=1Πα`k

s=1ρk(x̃(k)
s , t)−ΠJ

k=1Πα`k
s=1ρ̃k(x(k)

s , t)
)
dx̃

∣∣∣∣∣∣
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≤ 1

α(`)!
β`j (2||ρ||M ∨ 1) ||ρ− ρ̃||M ×

∣∣∣∣∫
x̃∈X(`)

K`(x̃)

(∫
y∈Y(`)

δx(y
(j)
1 )m`(y | x̃) dy

)
dx̃

∣∣∣∣
≤ 2k` (2C2 ∨ 1) ||ρ− ρ̃||M .

Therefore,as claimed, we obtain that

||N2[ρ]−N2[ρ̃]||M ≤ 3

 ∑
k=1,··· ,L

k`

 (2C2 ∨ 1) ||ρ− ρ̃||M .

�

Making use of the boundedness and locally Lipschitz properties of N2[ · ] from Lemma 4.2, we obtain

Theorem 4.3. Assume the conditions of Lemma 4.2. For all C0 > 0, there exists a T0 > 0 such that for
ρ0 ∈ X, with ||ρ0||X ≤ C0, there exists a unique mild solution ρ ∈ C([0, T0],X) to Eq. (2.1) with ρ(0) = ρ0.

Proof. Let F [ρ] be the righthand side of the variation of constant formula Eq. (3.1). We’ll show in the
following that F maps M to M and is a contraction mapping in M using the contraction property of heat
semigroup and the properties of the reaction operator in Lemma 4.2.

(1) F maps M to M follows from

||F [ρ]− S(t)ρ0||M = sup
t∈[0,T0]

||F [ρ](t)− S(t)ρ0||X = sup
t∈[0,T0]

‖
∫ t

0

S(t− s)N2[ρ](s) ds‖X

≤ sup
t∈[0,T0]

∫ t

0

||S(t− s)N2[ρ](s)||X ds ≤ sup
t∈[0,T0]

∫ t

0

||N2[ρ](s)||X ds

≤ T0

(
3
(
C2

2 ∨ 1
)( L∑

`=1

κ`

))
≤ C1,

as long as T0 ≤ C1

3(C2
2∨1)(

∑L
`=1 κ`)

.

(2) F is a contraction mapping in M follows from

||F [ρ]− F [ρ̃]||M = sup
t∈[0,T0]

||F [ρ](t)− F [ρ̃]||X ≤ sup
t∈[0,T0]

∫ t

0

||S(t− s)(N2[ρ](s)−N2[ρ̃](s))||X ds

≤ sup
t∈[0,T0]

∫ t

0

||N2[ρ](s)−N2[ρ̃](s)||X ds ≤ sup
t∈[0,T0]

∫ t

0

||N2[ρ]−N2[ρ̃]||M ds

≤ T0

(
3 (2C2 ∨ 1)

(
L∑
`=1

κ`

))
||ρ(s)− ρ̃(s)||M ≤

1

2
||ρ(s)− ρ̃(s)||M ,

as long as T0 ≤ 1

6(2C2∨1)(
∑L
`=1 κ`)

.

Therefore, by the contraction mapping theorem there exists a unique mild solution ρ ∈ C([0, T0],X) to
Eq. (2.1) satisfying Eq. (3.1). �

Theorem 4.4. Under the conditions of Theorem 4.3, the mild solution ρj(x, t) ∈ C([0, T0], Cb,unif (Rd)) ∩
C1((0, T0], C2(Rd)) is a classical solution to Eq. (2.1). Furthermore, if ρj(x, 0) ∈ C1

b (Rd), for all j = 1, · · · , J ,
then ρj(x, t) ∈ C2

b (Rd) for any t ∈ (0, T0].

Proof. Since ρ ∈ C([0, T0],X) as we showed in Theorem 4.3, classical results for nonhomogenous Cauchy
problems give that ρj(x, t) ∈ C1((0, T0], C2(Rd)) (see Chapter 2.3 Theorem 7 in [E10]). ρ is hence a classical
solution. We’ll next show that under the condition ρj(x, 0) ∈ C1

b (Rd) then ρj(x, t) ∈ C2
b (Rd) for t ∈ (0, T0],

i.e. all the first and second partial derivatives in x are bounded for 0 < t ≤ T0.
Let us denote Φ(x, t) as the fundamental solution of d-dimensional heat equation. Note that for any

x ∈ Rd

(4.4)

∫
Rd
|∂xiΦ(x− y, t)| dy =

√
1

πt
.
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We establish two estimates for the first and second partial derivatives for ρj(x, t), t ∈ (0, T0]. We claim

(Inequality 1) ||∂xiρj(x, t)||Cb(Rd) ≤ ||ρj(x, 0)||C1
b (Rd) + 6

(
C2

2 ∨ 1
)( L∑

`=1

k`

)√
T0

π

for any 0 < t ≤ T0, any i = 1, · · · , d, and j = 1, · · · , J . Starting from Eq. (3.1), we have that

|∂xiρj(x, t)| = |∂xi
∫
Rd

Φ(x− y, t)ρj(y, 0) dy + ∂xi

∫ t

0

∫
Rd

Φ(x− y, t− s) (N2[ρ])j (y, s) dy ds|

≤
∫
Rd
|Φ(x− y, t)||∂xiρj(y, 0)| dy + ||N2[ρ]||M ×

∫ t

0

∫
Rd
|∂xiΦ(x− y, t− s)| dy ds

= ||ρj(x, 0)||C1
b (Rd) + ||N2[ρ]||M ×

∫ t

0

√
1

π(t− s)
ds

≤ ||ρj(x, 0)||C1
b (Rd) + 3

(
C2

2 ∨ 1
)( L∑

`=1

k`

)
× 2

√
t

π
,(4.5)

where in the last inequality, we use the estimates for ||N2[ρ]||M in Lemma 4.2 and recall that we denote
C2 := supρ∈M ||ρ||M .

For the second derivatives, we claim

(Inequality 2) ||∂xi,xkρj(x, t)||Cb(Rd) ≤ ||ρj(x, 0)||C1
b (Rd)

√
1

πt
+ 6C4(2C2 ∨ 1)

(
L∑
`=1

k`

)√
T0

π

for any 0 < t ≤ T0, any i, k = 1, · · · , d, and j = 1, · · · , J , where we have denoted C4 = supj=1,··· ,J ||ρj(x, 0)||C1
b (Rd)+

6
(
C2

2 ∨ 1
) (∑L

`=1 k`

)√
T0

π . Using that ||∂xiρj(x, t)||Cb(Rd) ≤ C4 from (Inequality 1) we have

|∂xi (N2[ρ])j (x, t)|

= −
L∑
`=1

(
1

α(`)!

α`j∑
r=1

∂xi

∫
x̃∈X(`)

δx(x̃(j)
r )K`(x̃)

(
ΠJ
k=1Πα`k

s=1ρk(x̃(k)
s , t)

)
dx̃

)

+
L∑
`=1

 1

α(`)!

β`j∑
r=1

∂xi

∫
x̃∈X(`)

K`(x̃)

(∫
y∈Y(`)

δx(y(j)
r )m`(y | x̃) dy

)(
ΠJ
k=1Πα`k

s=1ρk(x̃(k)
s , t)

)
dx̃


≤

L∑
`=1

β`j + α`j
α(`)!

× k` (2C2 ∨ 1) sup
k=1,··· ,J

||∂xmρk(x, t)||Cb(Rd) ( by Lemma B.1-Lemma B.2 )

≤ 3C4(2C2 ∨ 1)

(
L∑
`=1

k`

)
.(4.6)

Using Eq. (3.1)

|∂xi,xkρj(x, t)| = |∂xi,xk
∫
Rd

Φ(x− y, t)ρj(y, 0) dy + ∂xi,xk

∫ t

0

∫
Rd

Φ(x− y, t− s) (N2[ρ])j (y, s) dy ds|

≤
∫
Rd
|∂xiΦ(x− y, t)||∂xkρj(y, 0)| dy + sup

t∈(0,T0]

||∂xi (N2[ρ])j (x, t)||Cb(Rd)

×
∫ t

0

∫
Rd
|∂xkΦ(x− y, t− s)| dy ds

≤ ||ρj(x, 0)||C1
b (Rd)

√
1

πt
+ 3C4(2C2 ∨ 1)

(
L∑
`=1

κ`

)
×
∫ t

0

√
1

π(t− s)
ds

≤ ||ρj(x, 0)||C1
b (Rd)

√
1

πt
+ 3C4(2C2 ∨ 1)

(
L∑
`=1

κ`

)
× 2

√
t

π
.(4.7)
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Thus we conclude ρj(x, t) ∈ C2
b (Rd) for any t ∈ (0, T0] as claimed and the theorem has been proven. �

For the Standard Model (SM), let N1[ρ] = ((N1[ρ])1 , (N1[ρ])2 , · · · , (N1[ρ])J)
T

represent the nonlinear
reaction term with

(N1[ρ])j =
L∑
`=1

κ`(β`j − α`j)
(
ΠJ
k=1ρk(x, t)α`k

)
,

for 1 ≤ j ≤ J . It is standard to show that N1[ρ] is a smooth and locally Lipschitz function w.r.t. ρ.
Analogously to the previous calculations for the MFM, we can obtain

Theorem 4.5. For all C0 > 0, there exists a T0 > 0 such that for ρ0 ∈ X, with ||ρ0||X ≤ C0, there exists a
unique mild solution ρ ∈ C([0, T0],X) to Eq. (2.2) with ρ(0) = ρ0.

Theorem 4.6. Under the condition of Theorem 4.5, then the mild solution ρj(x, t) ∈ C([0, T0], Cb,unif (Rd))∩
C1((0, T0], C2(Rd)) is a classical solution to Eq. (2.2). Furthermore when assuming ρj(x, 0) ∈ C1

b (Rd), for
all j = 1, · · · , J , indeed ρj(x, t) ∈ C2

b (Rd) for any t ∈ (0, T0].

5. On Global Well-posedness

Global existence in time of the classical solution to the SM Eq. (2.2) for general reaction systems is a
difficult open problem. We refer the interested reader to the recent review article [P10] for survey of the
current state of the art. The recent papers by [FMT20, CGV19, S18] also deal with global well-posedness of
reaction-diffusion systems under various combinations of growth and mass control assumptions.

For two main reasons, the setup of this paper is only partially covered by the existing literature. First,
we are dealing with non-local systems of equations (the MFM) while the vast majority of the literature has
concentrated on local systems of equations (such as the SM). Second, since our main interest in this paper is
to examine conditions under which the SM is a special case of the MFM, we need to be able to assume that
the reaction kernels converge to delta Dirac masses, see Assumption 2.3, which would then require uniform
bounds with respect to this approximation (see Theorem 3.1). The latter precludes us from being able to
work with global boundedness assumptions on the reaction kernels (see also Remark 5.2 for a more detailed
explanation of this).

In this section we demonstrate that global well-posedness can be proven to hold for our non-local MFM
Eq. (2.1) in, at least, the cases of A+B � C +D and A+B � C (the latter under specific choices for the
placement measures). The case of A+B � C +D can be addressed using the results of [FMT20], using the
mass conservation property of the non-local system, see Lemma 5.1. This approach, however, fails for the
non-local A+ B � C reaction. We address the non-local A+ B � C reaction in Lemma 5.3 by modifying
an argument of [P10] to deal with the non-local nature of the equations, which uses in an essential way that
two of the equations have only linear growth. We stress here that the two methods are different in nature;
the first is based on mass conservation properties, while the second is based on finding a linear combination
of the equations with linear growth.

It is an interesting open problem to address global well-posedness in a more unifying way generally for
the MFM Eq. (2.1). However, this is outside the scope of this paper, whose primary focus is elucidating
how the commonly used SM approximates the rigorous large population limit of PBSRD systems given by
the MFM.

We begin in Lemma 5.1 by addressing the A + B � C + D reaction network. In Remark 5.2 we make
a number of comments on alternative approaches in the literature that might be used to establish global
existence.

Lemma 5.1. For the A + B � C + D reaction, both the SM and the MFM are globally well posed, i.e.
Theorem 4.6 and Theorem 4.4 hold for all T0 <∞.

Proof. By the results of [FMT20], global well-posedness will follow if the following additional conditions hold

(A1) Local Lipschitz and Preservation of Positivity: For all j = 1, · · · , J , (N [ρ])j is locally Lipschitz

and (N [ρ])j ≥ 0 for all ρ ≥ 0 with ρj = 0,

(A2) Mass Control:
∑J
j=1 wj × (N [ρ])j ≤ C0 + C1

∑J
j=1 ρj , for ρ ≥ 0, some constants C0 and C1, and

some set of {wj}j=1,··· ,J with wj > 0,
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(A3) (Super)-Quadratic Growth: | (N [ρ])j | ≤ C(1 + ||ρ||2+ε), for ρ ≥ 0, some constant C, ε > 0 and
all j,

where N [ρ] represents the nonlinear reaction term of a general reaction-diffusion equation, including our SM
and MFM. Here, in condition (A3), || · || represents the uniform norm in space, i.e. ||ρ|| = supj=1,··· ,J supx∈Rd |ρj(x)|.
This is slightly different from what is assumed in [FMT20], but an examination of the proofs in [FMT20]
shows that the argument goes through in this norm.

Let us denote by ρ1(x, t), · · · , ρ4(x, t) the concentration at position x and time t for species A, B, C, D
respectively. Let ρ = (ρ1, ρ2, ρ3, ρ4)T . Without loss of generality, we may assume that once the forward
reaction happens, A becomes C and B becomes D, whereas once the backward reaction happens, C becomes

A and D becomes B. Then the reaction term N [ρ] = ((N [ρ])1 , (N [ρ])2 , (N [ρ])3 , (N [ρ])4)
T

for the MFM
Model is

(5.1) N [ρ](x, t) =


−
(∫

Rd K1(x, y)ρ2(y, t) dy
)
ρ1(x, t) +

(∫
Rd K2(x,w)ρ4(w, t) dw

)
ρ3(x, t)

−
(∫

Rd K1(y, x)ρ1(y, t) dy
)
ρ2(x, t) +

(∫
Rd K2(z, x)ρ3(z, t) dw

)
ρ4(x, t)

+
(∫

Rd K1(x, y)ρ2(y, t) dy
)
ρ1(x, t)−

(∫
Rd K2(x,w)ρ4(w, t) dw

)
ρ3(x, t)

+
(∫

Rd K1(y, x)ρ1(y, t) dy
)
ρ2(x, t)−

(∫
Rd K2(z, x)ρ3(z, t) dw

)
ρ4(x, t)

 .

Preservation of positivity is satisfied by the non-negativity of the reaction kernel K1(x, y) and K2(z, w). A

local Lipschitz condition is shown in Lemma 4.2, while
∑4
j=1 (N [ρ])j = 0 gives (A2). By symmetry, it is

sufficient to show (A3) when j = 1.

| (N [ρ])1 | =
∣∣∣∣−(∫

Rd
K1(x, y)ρ2(y, t) dy

)
ρ1(x, t) +

(∫
Rd
K2(x,w)ρ4(w, t) dw

)
ρ3(x, t)

∣∣∣∣ ,
≤
(∫

Rd
K̂1(x− y)|ρ2(y, t)| dy

)
|ρ1(x, t)|+

(∫
Rd
K̂2(x− w)|ρ4(w, t)| dw

)
|ρ3(x, t)|,

≤
(
||K̂1||L1 + ||K̂2||L1

)
||ρ||2.

Thus, conditions (A1)-(A3) are satisfied for the MFM Model. Note, all the constants involved do not
depend on ε. The same argument works for the SM model by choosing the reaction kernels to be delta
functions. �

Remark 5.2. For completeness we mention here that apart from [FMT20], [CGV19] and [S18] have also
addressed the global well-posedness question of general reaction-diffusion systems with condition (A1), (A2),
and (A3) with C1 = 0 plus an additional entropy condition.

In addition, in principle, one could also use the regularized effects of the bimolecular reaction kernel in
order to prove well-posedness of the A + B � C + D system, as in Section 7 in [LLN19]. However, this
method of proof requires boundedness of the reaction kernel whereas for the SM, the reaction kernel term
is essentially a Dirac delta function, which is rather singular. The idea of the method of proof in [LLN19]
is that under the conditions (A1), (A2) and (A3), ||ρj(x, t)||L1(Rd) is bounded for any time t ∈ [0,∞) for

all j = 1, · · · , J . Then the main argument of [LLN19] is that by the prior L1 bound on the solutions and
the L∞ bound on the reaction kernels, the regularized (convoluted) quadratic growth term can be bounded by
linear growth of the solutions, and thereby admits global existence. However, as ε→ 0, the L∞ bound of the
reaction kernel unfortunately is not uniform in the approximation parameter ε. Therefore, given that our
aim is to compare the two models, this method of proof is not immediately applicable to our case.

As such, we found that for our problem of interest using [FMT20] was more straight-forward for the
non-local A+B � C +D system.

We now address global existence for the A+B � C reaction network.

Lemma 5.3. For the case of the A+B � C reaction, by choosing the binding placement measure m1(z |x, y) =
pδ(z − x) + (1− p)δ(z − y), for some p ∈ [0, 1] and assuming the detailed balance condition Eq. (3.10) in the
MFM, solutions to both the SM and the MFM exist globally, i.e. Theorem 4.6 and Theorem 4.4 hold for
all T0 <∞.

20



Proof. We only address the MFM model as the situation for the local model SM is immediately covered
by the results of both [P10] and [FMT20].

Let us denote by ρ1(x, t), · · · , ρ3(x, t) the concentration at position x and time t for species A, B, C
respectively. Let T be the maximal existence time for L∞ solutions. The MFM Model is

∂tρ1(x, t) = DA∆ρ1(x, t)−
(∫

Rd
K1(x, y)ρ2(y, t) dy

)
ρ1(x, t) +

∫
Rd
K2(z)

(∫
Rd
m2(x, y|z)dy

)
ρ3(z, t) dz

∂tρ2(y, t) = DB∆ρ2(y, t)−
(∫

Rd
K1(x, y)ρ1(x, t) dx

)
ρ2(y, t) +

∫
Rd
K2(z)

(∫
Rd
m2(x, y|z)dx

)
ρ3(z, t) dz

∂tρ3(z, t) = DC∆ρ3(z, t)−K2(z)ρ3(z, t) +

∫
R2d

K1(x, y)m1(z|x, y)ρ1(x, t)ρ2(y, t) dx dy.

(5.2)

Recall that the detailed balance condition gives

K̂1(x− y)m1(z|x, y)×Kd = K2(z)m2(x, y|z),

where Kd = k2/k1 is the equilibrium dissociation constant of the reaction and K2(z) = k2 is a constant
function. Let us denote (f ∗ g)(x) =

∫
Rd f(x − y)g(y) dy as the convolution. Utilizing the detailed balance

condition and the explicit form m1(z |x, y) = αδ(z−x) + (1−α)δ(z− y), Eq. (5.2) can be further simplified
to

∂tρ1 = DA∆ρ1 − (K̂1 ∗ ρ2)ρ1 + αK2 × ρ3 + (1− α)Kd × (K̂1 ∗ ρ3),(5.3)

∂tρ2 = DB∆ρ2 − (K̂1 ∗ ρ1)ρ2 + αKd × (K̂1 ∗ ρ3) + (1− α)K2 × ρ3,(5.4)

∂tρ3 = DC∆ρ3 −K2ρ3 + α(K̂1 ∗ ρ2)ρ1 + (1− α)(K̂1 ∗ ρ1)ρ2.(5.5)

By summing up Eqs. (5.3) to (5.5), we see immediately

∂tρ3 −DC∆ρ3 = −α
(
∂tρ1 −DA∆ρ1

)
− (1− α)

(
∂tρ2 −DB∆ρ2

)
+ α2K2 × ρ3 + (1− α)2K2 × ρ3 + 2α(1− α)Kd × (K̂1 ∗ ρ3)−K2ρ3.(5.6)

Let C and C1 be a generic constant that only depends on p, α,Kd, ||K̂1||L1 ,K2, D
A, DB, DC, ρ1(x, 0), ρ2(x, 0), ρ3(x, 0).

We’ll always assume that for all i = 1, 2, 3, ||ρi(x, 0)||Lp < ∞ for all 1 ≤ p ≤ ∞ and ρi(x, 0) ≥ 0, for all
x ∈ Rd. By the positivity preserving property of Eq. (5.2), we actually know that ρi(x, t) ≥ 0, for all
t ∈ [0, T ]. Then Eq. (5.3) gives

∂tρ1 −DA∆ρ1 ≤ αK2 × ρ3 + (1− α)Kd × (K̂1 ∗ ρ3),

from which we obtain that for all p ∈ (1,∞),

||ρ1(t)||Lp ≤ ||ρ1(0)||Lp + C

∫ t

0

[||ρ3(s)||Lp + ||K̂1 ∗ ρ3(s)||Lp ] ds.

Using Young’s inequality, ||K̂1 ∗ ρ3||Lp ≤ ||K̂1||L1 ||ρ3||Lp , it further simplifies to

(5.7) ||ρ1(t)||Lp ≤ ||ρ1(0)||Lp + C

∫ t

0

||ρ3(s)||Lp ds.

Similarly, Eq. (5.4) gives

(5.8) ||ρ2(t)||Lp ≤ ||ρ2(0)||Lp + C

∫ t

0

||ρ3(s)||Lp ds.

Let Qt := Rd × [0, t]. Lemma 5.4 (an extension of Lemma 3.4 in [P10]) gives that

(5.9) ||ρ3||Lp(Qt) ≤ C
(
1 + ||ρ1||Lp(Qt) + ||ρ2||Lp(Qt)

)
.

This implies (∫ t

0

||ρ3(s)||Lp ds
)p
≤ tp−1

∫
Qt

|ρ3|p ≤ C
(
1 + ||ρ1||Lp(Qt) + ||ρ2||Lp(Qt)

)p
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≤ C
(

1 + ||ρ1||pLp(Qt)
+ ||ρ2||pLp(Qt)

)
.

Therefore, Eqs. (5.7) and (5.8) can be combined to give

||ρ1(t)||pLp + ||ρ2(t)||pLp ≤ C1 + C

(∫ t

0

||ρ3(s)||Lp ds
)p

≤ C1 + C

(
1 +

∫ t

0

||ρ1(s)||pLp + ||ρ2(s)||pLp ds
)
.

By Gronwall’s inequality, we know that ρ1, ρ2 ∈ Lp(QT ), and furthermore ρ3 ∈ Lp(QT ) by Eq. (5.9),
for all p ∈ (1,∞). Notice that since the reaction terms in Eqs. (5.3) to (5.5) are all polynomial (with a
convolution that does not effect the Lp bound by Young’s inequality), they are bounded in Lp(QT ) for all
p ∈ (1,∞). Morrey’s inequality in Rd+1 together with the Lp-regularity theory for parabolic operators (see
Chapter IV Section 3 in [LSU68]) implies that ρ1, ρ2, ρ3 ∈ L∞(QT ) , and therefore T =∞ (See Lemma 1.1
in [P10] ). �

Lemma 5.4. For ρ1, ρ2, ρ3 as used in Lemma 5.3 satisfying

∂tρ3 −DC∆ρ3 + θ1ρ3 + θ2(K̂1 ∗ ρ3) = −α
(
∂tρ1 −DA∆ρ1

)
− (1− α)

(
∂tρ2 −DB∆ρ2

)
,(5.10)

on QT := Rd × [0, T ] for some θ1 ∈ R and θ2 < 0, it holds that

||ρ3||Lp(Qt) ≤ C
(
1 + ||ρ1||Lp(Qt) + ||ρ2||Lp(Qt)

)
,

for all t ∈ (0, T ] and p ∈ (1,∞).

Proof. For any t ∈ (0, T ], let φ be the solution of the following dual problem

(5.11) − [∂tφ+DC∆φ] + θ1φ+ θ2(K̂1 ∗ φ) = Θ,

with φ(t) = 0, where Θ ≥ 0 and Θ ∈ C∞0 (Qt). Let q = p/(p − 1) be the conjugate index of p. Then the
solution to Eq. (5.11) φ is smooth, satisfies φ ≥ 0 and for all t ∈ [0, T ],

(5.12) ||φt||Lq(Qt) + ||∆φ||Lq(Qt) + sup
s∈[0,t]

||φ(s)||Lq + sup
s∈[0,t]

||K̂1 ∗ φ(s)||Lq ≤ C||Θ||Lq(Qt).

One can show that φ ∈ Lq(Qt) by a fixed point argument, φ ≥ 0 by comparison principle and further get
the estimates Eq. (5.12) by investigating the mild solution form via Young’s convolution inequality and Lq

estimates of heat potential (see Chapter IV Section 3 in [LSU68]).
Multiply ∂tρ1 −DA∆ρ1 by φ and integrate by parts on Qt, we find∫
Qt

(
∂tρ1 −DA∆ρ1

)
φdt dx =

∫
Rd

[ρ1(t)φ(t)− ρ1(0)φ(0)] dx−
∫
Qt

(
∂tφ+DA∆φ

)
ρ1 dt dx

= −
∫
Rd
ρ1(0)φ(0) dx+

∫
Qt

(
Θ + (DC −DA)∆φ− θ1φ− θ2(K̂1 ∗ φ)

)
ρ1 dt dx.(5.13)

Multipling Eq. (5.10) by φ and integrating by parts over Qt in a similar manner as Eq. (5.13), we find∫
Qt

Θ× ρ3 dt dx =

∫
Rd
ρ3(0)φ(0) dx+ α

∫
Rd
ρ1(0)φ(0) dx+ (1− α)

∫
Rd
ρ2(0)φ(0) dx

− α
∫
Qt

(
Θ + (DC −DA)∆φ− θ1φ− θ2(K̂1 ∗ φ)

)
ρ1 dt dx

− (1− α)

∫
Qt

(
Θ + (DC −DB)∆φ− θ1φ− θ2(K̂1 ∗ φ)

)
ρ2 dt dx.(5.14)

Notice that ρ1, ρ2, ρ3, φ ≥ 0, then Eq. (5.14) combined with Eq. (5.12) gives∫
Qt

Θ× ρ3 ≤ C||Θ||Lq(Qt)
(
1 + ||ρ1||Lp(Qt) + ||ρ2||Lp(Qt)

)
dt dx.

Since the choices of Θ are arbitrary, by duality argument, we have

||ρ3||Lp(Qt) ≤ C
(
1 + ||ρ1||Lp(Qt) + ||ρ2||Lp(Qt)

)
.

�
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A Lemmas for Estimating Differences Between Two Models

First, we start with a key estimate presented in Lemma A.1.

Lemma A.1. For any non-negative kernel K̂ε(w) ≥ 0 with w ∈ Rd, ε sufficiently small, of the type

(A) : radially symmetric K̂ε(w) only depends on |w|,
(B) : renormalized integrable ||K̂ε||L1(Rd) = 1,

(C):
∫
Rd K̂

ε(w)|w|2 dw = O(ε2),

and for any function f, g ∈ C2
b (Rd), any real number |α| <∞, we get as ε→ 0

(A.1) ‖
∫
Rd
K̂ε(x− y)f(x+ α(y − x))g(y) dy − f(x)g(x)‖L∞ = ||f × g||C2

b (Rd)O(ε2),

where O(ε2) depends on α.

Remark A.2. In particular, in Lemma A.1, one can choose g ≡ 1 to obtain as ε→ 0

(A.2) ‖
∫
Rd
K̂ε(x− y)f(x+ α(y − x)) dy − f(x)‖L∞ = ||f ||C2

b (Rd)O(ε2).

Proof of Lemma A.1. Assume that α 6= 0. The case when α = 0 can be adapted from the following proof.
Notice that for any f ∈ C2

b (Rd), any x, y ∈ Rd, we can apply Taylor’s theorem to obtain

(A.3) f(y) = f(x) + 〈∇f(x), y − x〉+
〈
y − x,D2f(ξ)(y − x)

〉
,

where 〈·, ·〉 is the inner product on Rd, D2f(ξ) is the Hessen matrix at x and ξ ∈ B|y−x|(x). Since f ∈ C2
b (Rd),

we can alternatively rewrite Eq. (A.3) as

(A.4) |f(y)− f(x)− 〈∇f(x), y − x〉 | ≤ ||f ||C2
b (Rd) × |y − x|2.

Applying Taylor’s theorem to f(x+ α(y − x))× g(y), we find

|f(x+ α(y − x))g(y)− f(x)g(x)− α 〈∇f(x), (y − x)〉 g(x)− 〈∇g(x), (y − x)〉 f(x)|
≤
(
α2 ∨ 1

)
||f × g||C2

b (Rd) × |y − x|2.

so that

‖
∫
Rd
K̂ε(x− y)f(x+ α(y − x))g(y) dy − f(x)g(x)‖L∞

= sup
x∈Rd

∣∣∣∣∫
Rd
K̂ε(x− y) [f(x+ α(y − x))g(y)− f(x)g(x)] dy

∣∣∣∣
≤ sup
x∈Rd

∣∣∣∣∫
Rd
K̂ε(x− y) [f(x+ α(y − x))g(y)− f(x)g(x)− α 〈∇f(x), (y − x)〉 g(x)− 〈∇g(x), (y − x)〉 f(x)] dy

∣∣∣∣
+ sup
x∈Rd

∣∣∣∣∫
Rd
K̂ε(x− y) (α 〈∇f(x), (y − x)〉 g(x) + 〈∇g(x), (y − x)〉 f(x)) dy

∣∣∣∣
≤ sup
x∈Rd

∫
Rd
K̂ε(x− y)

(
α2 ∨ 1

)
||f × g||C2

b (Rd) × |y − x|2 dy ( by property (A) of the reaction kernel )

≤
(
α2 ∨ 1

)
||f × g||C2

b (Rd)

∫
Rd
K̂ε(w)|w|2 dw, ( by property (C) of the reaction kernel )

≤ ||f × g||C2
b (Rd)O(ε2),

where we note that in the final expression the O(ε2) term depends on α. �

Lemma A.3.

(A.5) Λ`,j(τ) ≤ 2C

(
max

j=1,··· ,J
||ρj(x, τ)− ρεj(x, τ)||L∞ +

(
C2 +

C3√
τ

)
O(ε2)

)
,

where C,C2, C3 is defined in the proof of Theorem 3.1 and independent of ε.
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Proof. We’ll discuss this case by case. When α`j = 0, Λ`,j(τ) = 0, and Eq. (A.5) is trivially true. When

α`j = 1, note that α(`)! = 1 for the allowable types of reactions. If R` is a first order reaction, based on
Assumption 2.5, Kε

` (x) = k`, x ∈ Rd, is a constant rate function. As long as we choose k` = κ`,

Λ`,j(τ) ≤ k` max
j=1,··· ,J

||ρj(x, τ)− ρεj(x, τ)||L∞ .

When α`j = 1 and R` is of the type Si + Sj → · · · , i 6= j, Assumption 2.3 gives

Λ`,j(τ) = ‖
(∫

Rd
K̂ε
` (x− y) ρεi(y, τ) dy

)
ρεj(x, τ)− κ`ρi(x, τ)ρj(x, τ)‖L∞

≤ ‖
(∫

Rd
K̂ε
` (x− y) ρεi(y, τ) dy − κ`ρεi(x, τ)

)
ρεj(x, τ)‖L∞

+ ||ρεj(x, τ) (ρεi(x, τ)− ρi(x, τ)) ||L∞ + ||ρi(x, τ)
(
ρεj(x, τ)− ρj(x, τ)

)
||L∞

≤ ||ρεi(x, τ)||C2
b (Rd)O(ε2)× ||ρεj(x, τ)||L∞ + ||ρεj(x, τ)||L∞ ||ρεi(x, τ)− ρi(x, τ)||L∞

+ ||ρi(x, τ)||L∞ ||ρεj(x, τ)− ρj(x, τ)||L∞

≤ C
(
||ρεi(x, τ)||C2

b (Rd)O(ε2) + 2 max
j=1,··· ,J

||ρεj(x, τ)− ρj(x, τ)||L∞
)
,(A.6)

by choosing k` = κ` and applying Lemma A.1 and the regularity results of the solutions in Theorem 4.6 and
Theorem 4.4. Here in the last step, recall that C = (max`=1,··· ,L k`) maxj=1,··· ,J{supε>0 supτ∈[0,T0] ||ρεj(x, τ)||L∞∨
supτ∈[0,T0] ||ρj(x, τ)||L∞} was assumed independent of ε.

When α`j = 2, R` should be of the type Sj + Sj → · · · , Assumption 2.3 gives

Λ`,j(τ) = ‖
(∫

Rd
K̂ε
` (x− y) ρεj(y, τ) dy

)
ρεj(x, τ)− 2κ`ρj(x, τ)2‖L∞ .

By choosing k` = 2κ` in this case, Eq. (A.5) follows closely from Eq. (A.6). �

Lemma A.4.

(A.7) Θ`,j(τ) ≤ 4C

(
max

j=1,··· ,J
‖ρj(x, τ)− ρεj(x, τ)‖L∞ +

(
C2 +

C3√
τ

)
O(ε2)

)
,

where C,C2, C3 is defined in the proof of Theorem 3.1 and independent of ε.

Proof. We’ll again discuss this case by case. When β`j = 0 then Θ`,j(τ) = 0, and Eq. (A.7) is trivially true.

(1) When R` is of the type Si → Sj , i 6= j, by plugging in Assumption 2.7 and Assumption 2.5, we obtain

Θ`,j(τ) = ‖k`ρεi(x, τ)− κ`ρi(x, τ)||L∞ ≤ k`||ρεi(x, τ)− ρi(x, τ)‖L∞ .(A.8)

(2) When R` is of the type Si + Sk → Sj , i 6= k, by plugging in Assumption 2.8 and Assumption 2.3, we
obtain

Θ`,j(τ) = ‖
∫
R2d

K̂ε
` (x1 − x2)mε

`(x |x1, x2)ρεi(x1, τ)ρεk(x2, τ) dx1 dx2 − κ`ρi(x, τ)ρk(x, τ)‖L∞

≤ ‖
∫
R2d

K̂ε
` (x1 − x2)mε

`(x |x1, x2)ρεi(x1, τ)ρεk(x2, τ) dx1 dx2 − κ`ρεi(x, τ)ρεk(x, τ)‖L∞

+ κ`||ρεi(x, τ)||L∞ ||ρk(x, τ)− ρεk(x, τ)||L∞ + κ`||ρεi(x, τ)− ρi(x, τ)||L∞ ||ρk(x, τ)||L∞ .(A.9)

Without loss of generality, we assume that αi > 0 for all 1 ≤ i ≤ I in the following, then by choosing k` = κ`,
we have that∣∣∣∣ ∫

R2d

K̂ε
` (x1 − x2)mε

`(x |x1, x2)ρεi(x1, τ)ρεk(x2, τ) dx1 dx2 − κ`ρεi(x, τ)ρεk(x, τ)

∣∣∣∣
=

∣∣∣∣∣
∫
R2d

K̂ε
` (x1 − x2)

I∑
i=1

piδ (x− (αix1 + (1− αi)x2)) ρεi(x1, τ)ρεk(x2, τ) dx1 dx2 − κ`ρεi(x, τ)ρεk(x, τ)

∣∣∣∣∣
≤

I∑
i=1

pi

∣∣∣∣∫
Rd

1

αdi
K̂ε
`

(
1

αi
(x− x2)

)
ρεi

(
1

αi
(x− (1− αi)x2) , τ

)
ρεk(x2, τ) dx2 − k1ρ

ε
i(x, τ)ρεk(x, τ)

∣∣∣∣
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=
I∑
i=1

pi

∣∣∣∣∫
Rd

1

αdi
K̂ε
`

(
1

αi
(x− x2)

)
ρεi

(
x+

(1− αi)
αi

(x− x2), τ

)
ρεk(x2, τ) dx2 − κ`ρεi(x, τ)ρεk(x, τ)

∣∣∣∣
= ||ρεi(x, τ)ρεk(x, τ)||C2

b (Rd)O(ε2),

based on Lemma A.1 and the regularity results in Theorem 4.6 and Theorem 4.4. Substituting this back
into Eq. (A.9), we obtain

Θ`,j(τ) ≤ k`||ρεi(x, τ)||L∞ ||ρk(x, τ)− ρεk(x, τ)||L∞ + k`||ρεi(x, τ)− ρi(x, τ)||L∞ ||ρk(x, τ)||L∞

+ ||ρεi(x, τ)ρεk(x, τ)||C2
b (Rd)O(ε2)

≤ 2C

(
max

j=1,··· ,J
||ρj(x, τ)− ρεj(x, τ)||L∞ + ||ρεi(x, τ)ρεk(x, τ)||C2

b (Rd)O(ε2)

)
(A.10)

where C = (max`=1,··· ,L k`) maxj=1,··· ,J{supε>0 supτ∈[0,T0] ||ρεj(x, τ)||L∞ ∨ supτ∈[0,T0] ||ρj(x, τ)||L∞} is inde-
pendent of ε.
(3) When R` is of the type Si + Si → Sj , by plugging in Assumption 2.8 and Assumption 2.3, we obtain

Θ`,j(τ) = ‖1

2

∫
R2d

K̂ε
` (x1 − x2)mε

`(x |x1, x2)ρεi(x1, τ)ρεi(x2, τ) dx1 dx2 − κ`ρi(x, τ)ρi(x, τ)‖L∞ .

By choosing k` = 2κ` and following the same arguments as the previous case, we shall obtain

Θ`,j(τ) ≤ 2C

(
max

j=1,··· ,J
||ρj(x, τ)− ρεj(x, τ)||L∞ + ||ρεi(x, τ)ρεk(x, τ)||C2

b (Rd)O(ε2)

)
.

(4) When R` is of the type Si → Sj + Sk, by plugging in Assumption 2.10 and Assumption 2.5, using
symmetry and choosing k` = κ` we obtain

Θ`,j(τ) = β`j‖
(∫

Rd
K̂ε
` (z)

(∫
Rd
mε
`(x, y| z) dy

)
ρεi(z, τ) dz

)
− κ`ρi(x, τ)‖L∞

= β`jκ`‖

∫
Rd

∫
Rd
ρε(|x− y|)

J∑
j=1

qj × δ (z − (βjx+ (1− βj)y)) dy

 ρεi(z, τ) dz

− ρi(x, τ)‖L∞

= β`jκ`‖
J∑
j=1

qj ×
∫
Rd
ρε(|x− y|)ρεi(βjx+ (1− βj)y, τ) dy − ρi(x, τ)‖L∞

≤ β`jκ`‖
J∑
j=1

qj ×
∫
Rd
ρε(|x− y|) (ρεi(βjx+ (1− βj)y, τ)− ρi(βjx+ (1− βj)y, τ)) dy‖L∞

+ β`jκ`‖
J∑
j=1

qj ×
∫
Rd
ρε(|x− y|)ρi(βjx+ (1− βj)y, τ) dy − ρi(x, τ)‖L∞

≤ β`jκ`
(
||ρεi(x, τ)− ρi(x, τ)||L∞ + ||ρi(x, τ)||C2

b (Rd)O(ε2)
)

(A.11)

where the last term here again uses Lemma A.1 and the regularity of solutions in Theorem 4.6 and Theo-
rem 4.4.
(5) When R` is of the type Si + Sk → Sj + Sr, i 6= k, by plugging in Assumption 2.9 and Assumption 2.3,
using symmetry and choosing k` = κ` we obtain

Θ`,j(τ) = β`j‖
(∫

R2d

Kε
` (z, w)

(∫
Rd
mε
`(x, y|z, w) dy

)
ρεi(z, τ)ρεk(w, τ) dz dw

)
− κ`ρi(x, τ)ρk(x, τ)‖L∞

= β`jp ‖
(∫

Rd
Kε
` (x, y)ρεi(x, τ)ρεk(y, τ) dy

)
− κ`ρi(x, τ)ρk(x, τ)‖L∞

+ β`j(1− p)‖
(∫

Rd
Kε
` (y, x)ρεi(y, τ)ρεk(x, τ) dy

)
− κ`ρi(x, τ)ρk(x, τ)‖L∞

≤ β`j2C
(

sup
i=1,··· ,J

||ρεi(x, τ)||C2
b (Rd)O(ε2) + max

j=1,··· ,J
||ρεj(x, τ)− ρj(x, τ)||L∞

)
,(A.12)
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where the last inequality comes from Eq. (A.6).
(6) When R` is of the type Si + Si → Sj + Sr, by choosing k` = 2κ` instead, we obtain the same estimates
as Eq. (A.12).

This concludes the proof of the lemma. �

B Lemmas for Estimating Derivatives of the Nonlinear Term of MFM

Lemma B.1. For R` to be a first or second order reactions,

|∂xi
∫
x̃∈X(`)

δx(x̃
(j)
1 )K`(x̃)

(
ΠJ
k=1Πα`k

s=1ρk(x̃(k)
s , t)

)
dx̃| ≤ k` (2C2 ∨ 1) sup

k=1,··· ,J
||∂xiρk(x, t)||Cb(Rd).

Proof. When R` is first order of the type Sj → · · · ,

|∂xi
∫
x̃∈X(`)

δx(x̃
(j)
1 )K`(x̃)

(
ΠJ
k=1Πα`k

s=1ρk(x̃(k)
s , t)

)
dx̃| = k`|∂xiρj(x, t)|,

≤ k` sup
k=1,··· ,J

||∂xiρk(x, t)||Cb(Rd).

When R` is second order of the type Sk + Sj → · · · ,

|∂xi
∫
x̃∈X(`)

δx(x̃
(j)
1 )K`(x̃)

(
ΠJ
k=1Πα`k

s=1ρk(x̃(k)
s , t)

)
dx̃|

= |∂xi
(∫

Rd
K̂`(x− y) ρk(y, t) dy × ρj(x, t)

)
|,

= |
(∫

Rd
K̂`(y) ∂xiρk(x− y, t) dy × ρj(x, t)

)
|+ |

(∫
Rd
K̂`(y) ρk(x− y, t) dy × ∂xiρj(x, t)

)
|,

≤ 2k`C2 sup
k=1,··· ,J

||∂xiρk(x, t)||Cb(Rd).

�

Lemma B.2. For R` to be a reaction producing one or two species,

|∂xm
∫
x̃∈X(`)

K`(x̃)

(∫
y∈Y(`)

δx(y
(j)
1 )m`(y | x̃) dy

)(
ΠJ
k=1Πα`k

s=1ρk(x̃(k)
s , t)

)
dx̃|

≤ k` (2C2 ∨ 1) sup
k=1,··· ,J

||∂xmρk(x, t)||Cb(Rd).

Proof. We discuss this case by case for the different types of reactions.

(1) When R` is of the type Sk → Sj ,

|∂xm
∫
x̃∈X(`)

K`(x̃)

(∫
y∈Y(`)

δx(y
(j)
1 )m`(y | x̃) dy

)(
ΠJ
k=1Πα`k

s=1ρk(x̃(k)
s , t)

)
dx̃|

= k`|∂xmρk(x, t)| ≤ k` sup
k=1,··· ,J

||∂xmρk(x, t)||Cb(Rd).

(2) When R` is of the type Sk+Sr → Sj , without loss of generality, let us assume αi > 0 for all i = 1, · · · , I.
Then,

|∂xm
∫
x̃∈X(`)

K`(x̃)

(∫
y∈Y(`)

δx(y
(j)
1 )m`(y | x̃) dy

)(
ΠJ
k=1Πα`k

s=1ρk(x̃(k)
s , t)

)
dx̃|

= |∂xm
∫
R2d

K̂`(y − z)m`(x|y, z)ρk(y, t)ρr(z, t) dy dz|.

= |∂xm
∫
R2d

K̂`(y − z)
I∑
i=1

pi × δ (x− (αiy + (1− αi)z)) ρk(y, t)ρr(z, t) dy dz|.

= |
I∑
i=1

pi × ∂xm
∫
Rd

1

αdi
K̂`

(
x− z
αi

)
ρk

(
x− (1− αi)z

αi
, t

)
ρr(z, t) dz|,
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= |
I∑
i=1

pi ×
∫
Rd
K̂`(w)∂xm (ρk (x+ (1− αi)w, t) ρr(x− αiw, t)) dw|

≤ k` × 2 sup
k=1,··· ,J

||∂xmρk(x, t)||Cb(Rd)||ρ||M ≤ 2k`C2 sup
k=1,··· ,J

||∂xmρk(x, t)||Cb(Rd).

(3) When R` is of the type Sk + Sr → Sj + Si,

|∂xm
∫
x̃∈X(`)

K`(x̃)

(∫
y∈Y(`)

δx(y
(j)
1 )m`(y | x̃) dy

)(
ΠJ
k=1Πα`k

s=1ρk(x̃(k)
s , t)

)
dx̃|

= |∂xm
∫
R2d

K`(z, w)

(∫
Rd
m`(x, y | z, w) dy

)
ρk(z, t)ρr(w, t) dz dw|

≤ p× |∂xm
∫
Rd
K̂`(x− y)ρk(x, t)ρr(y, t) dy|+ (1− p)× |∂xm

∫
Rd
K̂`(y − x)ρk(y, t)ρr(x, t) dy|

= p× |
∫
Rd
K̂`(y)∂xm (ρk(x, t)ρr(x− y, t)) dy|+ (1− p)× |

∫
Rd
K̂`(−y)∂xm (ρk(x− y, t)ρr(x, t)) dy|

≤ k` × 2 sup
k=1,··· ,J

||∂xmρk(x, t)||Cb(Rd)||ρ||M ≤ 2k`C2 sup
k=1,··· ,J

||∂xmρk(x, t)||Cb(Rd).

(4) When R` is of the type Sk → Sj +Sr, without loss of generality, let us assume αi > 0 for all i = 1, · · · , I.
Then,

|∂xm
∫
x̃∈X(`)

K`(x̃)

(∫
y∈Y(`)

δx(y
(j)
1 )m`(y | x̃) dy

)(
ΠJ
k=1Πα`k

s=1ρk(x̃(k)
s , t)

)
dx̃|

= |∂xm
∫
Rd
K`(z)

(∫
Rd
m`(x, y | z) dy

)
ρk(z, t) dz|

= |∂xm
∫
Rd
K`(z)

(∫
Rd
ρ(|x− y|)

I∑
i=1

pi × δ (z − (αix+ (1− αi)y)) dy

)
ρk(z, t) dz|

= |
I∑
i=1

pik` × ∂xm
∫
Rd
ρ(|x− y|)ρk(αix+ (1− αi)y, t) dy|

= |
I∑
i=1

pik` ×
∫
Rd
ρ(|w|)∂xmρk(x− (1− αi)w, t) dw| ≤ k` sup

k=1,··· ,J
||∂xmρk(x, t)||Cb(Rd).

This concludes the proof of the lemma.
�
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