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Detailed Balance for Particle Models of Reversible Reactions in Bounded Domains
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In particle-based stochastic reaction-diffusion models, reaction rate and placement
kernels are used to decide the probability per time a reaction can occur between
reactant particles, and to decide where product particles should be placed. When
choosing kernels to use in reversible reactions, a key constraint is to ensure that de-
tailed balance of spatial reaction-fluxes holds at all points at equilibrium. In this work
we formulate a general partial-integral differential equation model that encompasses
several of the commonly used contact reactivity (e.g. Smoluchowski-Collins-Kimball)
and volume reactivity (e.g. Doi) particle models. From these equations we derive a
detailed balance condition for the reversible A + B <= C reaction. In bounded do-
mains with no-flux boundary conditions, when choosing unbinding kernels consistent
with several commonly used binding kernels, we show that preserving detailed bal-
ance of spatial reaction-fluxes at all points requires spatially varying unbinding rate
functions near the domain boundary. Brownian Dynamics simulation algorithms can
realize such varying rates through ignoring domain boundaries during unbinding and
rejecting unbinding events that result in product particles being placed outside the

domain.

2)Electronic mail: yingzhang@brandeis.edu

b)Electronic mail: isaacson@math.bu.edu


mailto:yingzhang@brandeis.edu
mailto:isaacson@math.bu.edu

I. INTRODUCTION

Particle-based stochastic reaction-diffusion (PBSRD) models are a common approach for
studying biochemical systems where stochasticity in both the diffusive motion of particles
and reactive interactions between particles are important. They have been used in studying
a variety of spatially-distributed cellular and biological systems. Examples include how
molecular reach can control the efficacy of T-cell activation within the cell membrane!, how
noise can influence the response of spatially-distributed signaling pathways?, and how the
dynamics and formation of protein clusters are tuned to balance cluster size and protein
mobility?.

In PBSRD models, the state of a chemical system is given by the collective chemical
states and positions of all particles. PBSRD models represent an intermediate physical scale
between computationally expensive microscopic all-atom molecular dynamics models?, and
macroscopic mean-field chemical kinetics models in which biochemical systems are described
through a system of reaction-diffusion partial differential equations (PDEs) for the spatially-

dependent concentrations of chemical species.

In studying spatially-distributed biological and chemical reaction processes, there are
several classes of PBSRD models that have been used in applications. In this work we focus
on models that treat molecules as point-particles moving by Brownian motion, but note that
these models can be generalized to systems where particles have physical sizes®® and /or move
by drift-diffusion”. We consider two main classes of PBSRD models, distinguished in how
they model bimolecular reactions such as A + B — C. The first class are contact-reactivity
(CR) models, where two molecules of species A and B may react upon reaching a fixed
separation. This includes the popular Smoluchowski-Collins-Kimball (SCK) model, in which
a pair of reactant particles have a probability of successfully reacting, or reflecting apart, once
they reach some specified reaction-radius, €%. Note that while the SCK model can account
for molecular sizes in bimolecular reaction processes via appropriately chosen reaction-radii,
in many applications molecule densities are assumed sufficiently dilute that molecules are
otherwise treated as point particles, offering improved computational performance®®. It is

this latter form of the SCK model we consider in this work.

The second general class of PBSRD models are volume reactivity (VR) models, in which

A and B particles react with probabilities per time based on their current positions. Perhaps



the most common VR model is the Doi'®'? or A-p'* model (which Doi attributes to'?), in
which two reactants react with a fixed probability per time when within a reaction-radius of
each other. As we show in the next section, in both the CR and VR models these reaction
choices can be encoded through a specified reaction kernel, which determines the probability
per time individual pairs of reactants may react based on their positions, and the probability
density reaction products are placed at given positions.

Both the CR and VR models are the basis for a number of widely-used particle-based sim-
ulation packages. These include Brownian Dynamics (BD) simulators such Smoldyn®, which
was originally designed to support the Smoluchowski model but now supports volume exclu-

sion® and several different PBSRD models; and ReaDDy, a Doi-model based simulator!®16.
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A variety of timestep-based BD type methods , spatially-discrete continuous-time
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jump process methods , exact propagation methods>*", and efficient coarse-grained and
multiscale simulation methods?>?® have been proposed for simulating various CR and VR
PBSRD models. We note that while we later discuss reaction product placement models
near boundaries based on models developed for Smoldyn, in its default mode Smoldyn sim-
ulates Smoluchowski dynamics?”, which is not a special case of either the VR or CR models
(but does arise as a limit of both®*3!). Smoldyn also chooses reaction parameters not as
independent model features, but in a timestep dependent manner?.

In this work we investigate a basic equilibrium property of the CR and VR PBSRD
models; whether they preserve detailed balance of (pointwise) spatial reaction fluxes at
equilibrium for reversible reactions. We study the A + B < C reaction, in the simplified
case of a system with just one particle of species A at & and one particle of species B at
y, or one particle of species C at z. For this system, detailed balance of (pointwise) spatial

reaction fluxes is the statement that at equilibrium the following are equal

1. The probability density per time the system is in the unbound state and the A particle

at x reacts with the B particle at y to produce a C particle at z.

2. The probability density per time the system is in the bound state and the C particle

at z dissociates into an A particle at & and a B particle at y.

For reversible reactions, microscopic reversibility of quantum mechanical systems can,

via systematic approximations, be argued to result in detailed balance of reaction fluxes



3233 Though we are not aware

at equilibrium for macroscopic well-mixed reaction systems
of any rigorous derivations, we similarly expect that microscopic reversibility also implies
detailed balance of forward and backward (pointwise) spatial reaction fluxes in PBSRD
models at equilibrium. From a statistical mechanical perspective, it has been postulated
that reversible chemical reactions should not alter the state of thermodynamic equilibrium,
so that diffusing particles are well-mixed at equilibrium and detailed balance of (pointwise)
spatial reaction fluxes holds'".

Preserving detailed balance of physical processes has been shown to be important in mod-
eling transport processes within cells**, and choices of reaction kernels that violate detailed
balance have been shown to cause convergence to non-equilibrium steady states for closed
particle systems’. In addition, preserving detailed balance of (pointwise) spatial reversible
reaction fluxes has also been a key design consideration in several recent numerical meth-
ods and simulation packages”!" 9. Other methods may not rigorously preserve the detailed
balance of (pointwise) spatial reaction-fluxes, but have been designed to still accurately cap-
ture equilibrium properties such as equilibrium and dissociation constants at the population
level”3®. Note, in most of these methods detailed balance was only presented for PBSRD
models in periodic or unbounded domains™!"!8.

In many contexts, for example modeling cellular processes, PBSRD models are used in
closed and bounded domains with reflecting boundary conditions, where detailed balance
of (pointwise) spatial reaction fluxes would also be expected to hold at equilibrium. This
raises the question of whether previously proposed reaction kernels ensure detailed balance in
such domains, or whether modifications are needed to account for more general geometries
and/or reflecting boundaries. In this work, we derive and explore a pointwise detailed
balance condition for the CR and VR PBSRD models in bounded domains with no-flux
reflecting boundary conditions.

Unless stated otherwise, in the remainder “detailed balance” will refer to the microscopic
balance of (pointwise) spatial reaction fluxes at equilibrium. Similarly, “reaction rates” will
refer to the microscopic PBSRD parameters determining the probability per time a reaction
can occur given one or more particles in an appropriate configuration to possibly react.

We begin in the next section by formulating a generalized equation that can be used to
represent either the CR or VR model for a pair of A and B molecules undergoing the re-

versible A + B < C reaction. We then explain in Section IIT how requiring detailed balance
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to hold at equilibrium determines the general solution to this model, and requires that the
association and dissociation kernels are proportional. In Section IV A we consider several
popular choices for association and dissociation kernels in the VR and CR models, inves-
tigating whether they allow detailed balance to hold in bounded domains with reflecting
boundary conditions. Next, in Section IV B we demonstrate a trade-off arises between pre-
serving detailed balance when using standard association kernels in the CR and VR models,
versus allowing for a spatially uniform dissociation rate for the dissociation reaction. We
show that preserving detailed balance with these association kernels requires a (decreased)
spatially varying dissociation rate near domain boundaries. Such a mechanism can be real-
ized in simulation methods by either using the spatially-varying dissociation rate near the
domain boundary, or by using a constant rate, ignoring the domain boundary, and rejecting
any unbinding events in which molecules are placed outside the domain. In Section IV C we
reverse our approach, specifying an unbinding kernel for the Doi VR model that includes
a spatially uniform dissociation rate, and demonstrating that the corresponding detailed
balance preserving association kernel then involves a locally increased probability per time
for reactants to react when near the boundary. Finally, in Section IV D we demonstrate
a simple numerical example illustrating differences that arise when using reaction product
placement kernels that preserve detailed balance and do not preserve detailed balance in the

vicinity of the domain boundary.

II. PBSRD MODELS FOR REVERSIBLE BINDING

We consider the reversible A + B = C reaction in a system with one A molecule and one
B molecule (or equivalently one C molecule). Let & denote the position of the A molecule,
y the position of the B molecule, and z the position of the C molecule. We assume the
molecules diffuse within a bounded domain @ C R? (with d = 2 or d = 3). Let p(x,y,t)
denote the probability density the A and B molecules are unbound and located at « and y
respectively at time ¢, and py(z,t) the probability density the molecules are bound and the

corresponding C molecule is located at z at time t.

We denote by D*, DB and D the constant (positive) diffusivities of the A, B and C

molecules respectively. With Z; the d-dimensional identity matrix, we define two constant
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FIG. 1. Reactive regions in the volume reactivity (VR) and contact reactivity (CR) PBSRD models
when € is a one-dimensional interval. Here we plot the two-particle (x,vy) phase-space within the
given interval. 2 corresponds to the entirety of the squares in both figures, while the shaded
regions correspond to Q%ree, the accessible region in which particles can diffuse. A) The VR model,
where particles can react when within R, the cross-hatched region. For some variants of the VR
model this region can fill the entire square (e.g. Gaussian kernels (I1.8)), while for others (e.g. Doi
kernels (I1.6)) it may denote a subset of the square when x and y are sufficiently close. B) The CR
model, where particles are excluded from the unshaded region, and can react or reflect apart when

reaching the boundary (lines) OR (e.g. the SCK model (IL.7)).

diffusivity matrices, given by the block matrices

DAZ, O
0 DBZ, (IL.1)
Dy, := DYT,.

With e again labeling the reaction-radius, let R = {(x,y) € Q?| |x — y| < €}, and denote
by OR = {(z,y) € Q2| |z — y| = €} the boundary of R. In R* 9R corresponds to the
set of (x,y) pairs at which the association reaction can occur in the CR model. In the VR
model the region in which a reaction can occur depends on the choice of rate functions.
For example, the Doi model'®!! only allows reactions for (z,y) € R, while a Gaussian
interaction function model' allows for reactions at all (z,y) € Q2. We denote the set of

realizable reactant particle pair positions (z,y) € Q? by

{ 02, VR model, (IT.2a)
0 =
free

Q*\ RUOIR, CR model. (I1.2b)
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The choice (I1.2a) is used in the VR model, for which the Doi and A-p models are special

casesl0:11:14

The choice (I1.2b) corresponds to the CR model, for which the Smoluchowski-Collins-Kimball

where molecules react with a constant probability per time when positioned in R.

(SCK) partial-absorption model is a special case®3!. In the SCK model two reactants either
instantly react or are reflected apart upon reaching the boundary of the reactive region, OR.
The preceding geometric regions are illustrated when €2 is an interval in Fig. 1.

We will make use of an indicator function to denote the positions of realizable reactant
pairs

1, (z,y)€ O}

free»

0, (v,y) & Qee-

Finally, with V., = (Vg, Vy) we then have the effective diffusion operators in (x,y) and

lg: (x,y) = (IL.3)

free

z:
L=Vy,y- ILngree(:c, Y)DVyy (1)
ﬁb - VZ . vaz-
The forward association A + B — C reaction process is defined by a reaction kernel
kT (z|x,y), corresponding to the probability density per unit time a reaction occurs creating

a C molecule at z given an A molecule at & and a B molecule at y. We assume that

kT (z|x,y) is specified through the factorization

KT (zlz,y) = 67 (2, y)R" (z]x, y), (IL.5)

where 87 (x,y) denotes the probability per unit time an A molecule at & and a B molecule
at y attempt to react. AT(z|x,y) denotes the probability density a reaction successfully
occurs and creates a C molecule at z, given that an A molecule at & and a B molecule at y

attempted to react. Common choices for 51 (x,y) are

+ ) - Al )
) wley) (Doi VR model) (IL.6)
= )\:H'Bs(o) (.’13 - y)7
B+($, y) = a58R<$7 y)

(SCK CR Model) (IL.7)
= V20695, (0) (T — y),

Here B.(0) = {|z| < ¢} denotes the d-dimensional ball of radius € about the origin, and
0B.(0) = {|z| = ¢} the corresponding surface of the ball. In the Doi VR model, A cor-

responds to the probability per unit time the molecules may react when within ¢ of each
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other. In the SCK CR model, a corresponds to the absorption constant for the molecules
to either react or reflect upon reaching a separation of e (with units of length per time).
The equivalence of the two J-surface measure representations given in (II.7) is shown in
Appendix A.

While (I1.6), which is discontinuous, is the most popular VR model, smooth interaction
functions also arise in applications. For example, in modeling bimolecular reactions between
membrane-bounded tethered signaling molecules with unstructured tails we derived and

used the Gaussian interaction®3%
3N\ 1 sy
B (x,y) =\ (—) —6_32672. (IL.8)

2 g3

In both the VR and CR models, it is common to choose the placement kernel ™ (z|x, y)

such that a newly created C molecule is placed on the line connecting the A and B molecules,

R (zlx,y) = 0(z —yx — (1 —7)y), (11.9)

where 7 is a fixed value in [0, 1]. One simple choice is v = %, which corresponds to the mid-

point between the two molecules. Another common choice, when D* and DP are constants,

is to use the diffusion weighted center of mass?,

DB
~ DAL+ DB’
We note that with the choices (I1.9) and (I1.10), v = 0 indicates that the B molecule is

~ (I1.10)

not diffusing. Upon binding, the C molecule is therefore placed at y. On the other hand,
~v = 1 indicates that the A molecule is not diffusing, and the C molecule is then placed at
. Such choices would be appropriate if one of the A or B molecules represents a stationary
or significantly more massive target.

With the factorization (IL.5), the probability that an attempted reaction between an A
molecule at & and a B molecule at y successfully creates a C molecule (within the domain)
is given by

/ kT (zlz,y) d=.
As such, the probability per time an X molecule at & and a B molecule at y successfully

react to produce a C molecule within the domain is

W @) i [ ' (zley)ds

= Bt AT dz.
B (2, ) / (2], y) dz



In freespace and periodic domains one usually has [, A" (z|z,y)dz = 1, i.e. the reaction
always occurs successfully, so that k™ (x,y) = ST (x,y). As we discuss in Section IV, this
does not generally hold for standard association or dissociation reaction kernels in bounded
domains with reflecting boundary conditions.

To completely specify the reaction-diffusion model, we must also give the unbinding kernel
for the reverse dissociation C — A + B reaction. Let ™ (x,y|z) denote the probability
density per time a reaction occurs producing an A molecule at & and a B molecule at
y given a C molecule at z. Without loss of generality, assume v # 1. As we will later
show, detailed balance preserving choices for ™ (x, y|z) given the association reaction rate

functions of the Doi (I1.6) or SCK (I1.7) models with placement density (I1.9) are

- - zZ =T .

K (wa ’y’Z) :mﬂlg(l_wg(ﬂ)(w - Z)5 (y - 1— v ) ) (DOI VR,) (1111)
_ - z— T

K (z,y[2) :m%&l_w(o)(w — z)0 (y i ) ; (SCK CR)  (I1.12)

assuming 3~ is chosen appropriately. Here B(_,).(0) denotes the ball of radius (1 — 7)e
centered at the origin, 0B(1_)-(0) the sphere of radius (1 — y)e centered at the origin (i.e.
boundary of the ball), and | B(_,)-(0)| and |0B(_,)-(0)] their respective sizes (e.g. volume
and surface area respectively when in three-dimensions). S~ represents the (constant) prob-
ability per time a C molecule attempts to dissociate into A and B molecules. As written,
the Doi unbinding kernel corresponds to sampling the position of the A molecule within a
ball of radius (1 — v)e about the C molecule, and then placing the B molecule by reflection
on the line connecting the A and C molecules. The SCK CR model modifies this process
by sampling the position of the A molecule on the surface of the sphere. Note, for the Doi
VR (SCK CR) model one could equivalently sample the position of the B molecule within
(on) a ball of radius e, and then place the A molecule on the line connecting the B and C
molecules.

Finally, with £~ (a, y|2z) specified we define £~ (z) to be the probability per time that a

C molecule successfully dissociates at z, producing A and B molecules within 2. We have

K (z) = /Q2 K (x,y|z) dz dy.

In freespace and periodic domains one usually has k= (z) = 7, i.e. the reaction always

occurs successfully with fixed rate constant, 3~ 717.
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Given the preceding definitions, our general model for the two-particle reversible A+B =
C reaction with (z,y) € Q% and z € Q is
lﬂ?ree(w,m%(w,y,t) = Lp(x,y,t) — £"(z, y)p(z, y,1) +/Qﬂ"(w,y|z)pb(z,t) dz,
(II.13a)

Opy

T ant) = Lum(zt) — & (Dm(et) + [ 6 (Bl y)play.t) dwdy

02
(I1.13b)
Here we assume a reflecting zero Neumann boundary condition on 0f) in each coordinate

respectively (i.e. ¢, y and z),

Vayp(@, y,t) - n(z,y) =0, (,Y) € O(Qfee);
V.p(2z,t) - mu(z) =0, z € 09,

where 0(QZ..) denotes the two-particle phase-space boundary, n(x, y) denotes the unit out-
ward normal to this boundary at (x,vy), and n,(z) denotes the unit outward normal to 02

at z. For the VR model 9(Q2

free

) = 00 x 0F, i.e. the phase-space boundary correspond-
ing to each particle reflecting off the domain boundary 0f2. In Fig. 1 this corresponds to
the entire square bounding the domain. In the CR model 9(QZ,,) corresponds to the por-

tion of 02 x 0f) that is outside R U OR. In Fig. 1 this corresponds to the portion of the

2
free*

square bounding the domain that borders the shaded region that represents (2 Finally,

we assume the initial conditions

p(x,y,0) = po(z,y), pu(2,0) = pro(2),

2

where po(x,y) is zero outside Qf...

We also assume that py and py, ¢ define a proper proba-

bility distribution so that

/ Mawmw+/mwmﬁﬂ.
02 Q

free
Integrating (I1.13) over (z,y) € Q? and 2z € , and using the definitions of £~ (z) and
kT (x,y), this normalization of the initial conditions immediately implies that probability is

conserved for all times:

/ p(:c,y,t)dccdy+/pb(z,t)dzzl.
02 Q

free
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We note that (I1.13) encompasses both the general VR and CR models. In particular,
in Appendix C we show the weak form3™3® of (I1.13) with SCK rate kernels (IL.7), (I1.9)
and (I1.12) is equivalent to the weak form of the standard representation for the SCK
model (in which the association reaction is represented by a partial-absorption boundary

condition®31:39).

ITI. STEADY-STATE DETAILED BALANCE AND EQUILIBRIUM
SOLUTIONS

At steady-state we find the solutions to (II.13), p(x,y) and p,(2), satisfy

0= Lp(e,y) — it @ y)pley) + [ 5 (@ yl2)m(z)dz
@ (I1L.1)

0= Lupn(2) = i (2)lz) + [ #* (el (o) do dy,

with a reflecting zero Neumann boundary condition in each coordinate on 02 and the

normalization

/ p(fv,y)dmder/pb(z)dz:L
02 Q

free

As discussed in the introduction, we expect that the steady-state for the reversible A +
B & C reaction is a state of thermodynamic equilibrium, with (pointwise) detailed balance

of spatial reaction fluxes holding for the reactive terms, i.e.

K (zl@, y)p(e, y) = 5 (4, y|2)ps(2). (I1.2)

By integrating (II1.2) in z (resp. (x,y)), we find that the reactive terms in (II1.1) cancel

out,

/<;+(:1c,y)p(:1:,y):/Q/-ﬁ_(:c,y|z)pb(z) dz,

@) = [ (el y)ie.y) dady

These then imply that £p = 0 on QF . and Lyp, = 0 on Q which, together with the
assumed reflecting zero Neumann boundary conditions on 9Q% and 02, gives that p and py,
are constant. Using (II1.2), we see that for the system to be consistent with the principle of
detailed balance, we must choose k™ (z|x,y) and k™ (x, y|z) such that

kT (z|lz,y) < k™ (z, y|2). (I11.3)
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We may define the dissociation constant of the reaction, Ky, to be the constant of propor-
tionality, so that
R (x,ylz) = Kar' (2|2, y). (I11.4)

Note, for detailed balance to hold this implies that K is also given by

ffﬂz fQ (x,y|z)dzdy dx

K,
T ffm fQ (z|z,y) dzdydx

(I11.5)

Together with the normalization condition that
_ 2 _
p }eree‘ +pb |Q| =1
we obtain

Theorem II1.1. When the detailed balance statement (111.2) is satisfied, on their appropri-

ate domains of definition, Q3. and Q respectively,

K 1
D= d , Py = . (I1L.6)
‘Q‘—i_Kd‘eree‘ ‘Q‘+Kd|eree|
In the VR model %, = Q* so that this simplifies to
Ky 1
5= , 5 — . 117
Ny P I Kal) D

Let P = fQQ p(x,y)dxdy and P, = fQ pv(z) dz denote the probabilities to be in the
unbound and bound state respectively. For the VR model (II1.7) gives

Kq |0 _ 1

P=_—""_ P=—" I11.8
1+ Kq9| b 1+ K419 ( )

which are identical to what one obtains in a well-mixed stochastic chemical kinetics model,

see Appendix G.

IV. DETAILED BALANCE IN BOUNDED DOMAINS

Unless €2 is convex, the line segment connecting the positions of an A molecule and a B
molecule may leave the domain. As such, when using the placement density given by (IL.9)
the position of a new C molecule may fall outside € if v € (0,1). One approach to address
this issue is that used in the Smoldyn simulator?, where a straight line is drawn from one

molecule to the other. If the straight line crosses the domain boundary, then the A and B
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molecules are not allowed to react. Let (5, = {sx + (1 — s)y | s € [0,1]} be the straight
line connecting an A molecule at  and a B molecule at y. &7 (z|x,y) is modified to

0z — (yx+ (1 — , i ly,, CQ
K (2lz.y) = (z—(ve+ (1=7)y)) (v

0, otherwise.

With this choice
Pr [reaction is accepted] = / i (z|z,y)dz
Q

if 0y, CQ

Ty =

1

7
0, otherwise,

so that only binding events for which the line segment is within {2 are accepted. In contrast,

with the choice (I1.9),

/Q/%Jr(z|az,y) dz = 1o(yx + (1 — 7)y),

so that binding events where z would be placed outside €2 are rejected (i.e. are not allowed
to proceed). Note, if {2 is convex then y& + (1 — )y € Q for all  and y in €. Association
reactions are therefore always successful and the choices (I1.9) and (IV.1) are identical.
Analogously, for the backward dissociation reaction when z is near 02 there is the pos-
sibility that one or both of the sampled product particle positions, & and y, end up outside
the domain. One approach that has been used in existing simulators is that developed by
Smoldyn?. There, if either of the A or B molecules are placed outside the domain, they
are then reflected across the boundary surface back into €2, so that unbinding reactions are
always successful. However, even if 2 is assumed convex so that association reactions are
always accepted, we show in Section IV B that a detailed balance preserving Doi or SCK
unbinding kernel with the forward placement kernel (I1.9) results in a reduced unbinding
rate, which is equivalent to rejection of some unbinding events near 0f). As such, a Doi
or SCK unbinding kernel with reflection violates detailed balance near domain boundaries.
The rejection-based kernel we discuss preserves detailed balance, but in contrast to a re-
flection model in which unbinding is always successful, requires the use of a reduced and
spatially-varying unbinding rate near domain-boundaries. For the Doi model of the next
subsection the rejection versus reflection unbinding processes are illustrated in Fig. 2.
Whether a decreased unbinding rate is physically appropriate will depend on the un-

derlying physics for the unbinding reaction. For example, if the domain boundary can be
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FIG. 2. Rejection vs. reflection placement mechanisms for the C — A + B reaction in the standard
Doi VR model considered in Section IV. A) and B) illustrate the acceptance/rejection mechanism
which preserves detailed balance. Here positions for the A and B molecules are chosen ignoring
the boundary. The approach in Section IV A1 and IV B samples the position of the A particle,
x, uniformly within the ball of radius (1 — v)e about z, the position of the C molecule. The
position of the B molecule, y, is then chosen by reflection as y = (z — y&)/(1 — 7). The circle
corresponds to the ball of radius (1 — 7)e in which the A molecule can be placed, with the gray
region representing the portion of the ball within the domain, Q.. If both molecules end up within
the domain, Qfee, their positions are accepted (case A), otherwise the unbinding event is rejected
(case B). C) illustrates a mirror-like reflection process that can be used if either the product A or B
molecules end up outside the domain”. The particle is initially placed ignoring the boundary, but
then reflected off the surface relative to the normal to the surface at the point of intersection of the
line connecting the position of the C molecule and the product molecule. In C) the A molecule is
reflected to A’. Figures are draw with v = %

thought of as impeding two particles from separating apart, using a reduced reaction-rate
may be physically realistic. In contrast, if being near the domain boundary should have no
effect on the timescale for molecules to dissociate, a constant unbinding rate would be more
appropriate. In Section IV C we take the opposite perspective to (I11.4), using this formula
to choose k™ given a choice for k= in a Doi-type model with a spatially uniform unbinding
rate, i.e. kK~ (z) = 7. In this special case we show that the detailed balance relation then
requires kT to give an increased probability per time for a reaction to occur when reac-
tants are near the domain boundary. As such, preserving detailed balance, spatially uniform
unbinding rates, and standard association kernels, x*(x,y), appears to require alternative

product placement kernels from those commonly used in applications.
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We begin in the next section by illustrating several commonly used choices of rate func-
tions and placement kernels, demonstrating for which pairs detailed balance holds or does
not hold. In Section IV B we then show that the standard Doi VR and SCK CR model
choices for the forward reaction kernel require rejection of some unbinding events near the
domain boundary to satisfy detailed balance. In Section IV C we show that assuming de-
tailed balance and a spatially uniform unbinding rate for a version of the Doi model results
in an increased probability per time for the forward reaction to occur in the vicinity of the
domain boundary. Finally, in Section IV D we illustrate via numerical simulations how dif-
ferences can arise when using the detailed balance preserving rejection-based kernel versus

a reflection-based approach.

A. Detailed Balance Determines the Unbinding Kernel

The detailed balance condition given by (I11.4) implicitly defines one of the binding or
unbinding kernels in terms of the other through the dissociation constant, K4. As such, any
detailed balance preserving binding and unbinding kernels must have the same functional

form. We now show that for the standard choices of k™ (z|x, y), several standard choices for

2
free

k™ (x,y|z) will preserve detailed balance for all (x,y) € Q.. and all z € Q when including
rejection near 0€). We further demonstrate that several other choices that have been used

in the literature will violate detailed balance for particles near the domain boundary.

1. The Standard Doi VR Model

In the Doi VR model with a zero reflecting Neumann boundary condition, a common

choice of reactive terms are given by (I1.6), (I1.9), and (II.11),

KT (z|z,y) = Mp.o)(x — y)d(z — e — (1 —7)y), (Iv.2)
_ — 45 2~ ’Yw) ]]'B(lf'y)e(o)(w - z) v,
) = (v - 50 ) ST av.s)
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In (IV.2) the 0 function implies that y = (z — y&)/(1 — ) so that

1.0y —y)d(z —yx — (1 —7)y) = (1 —7) “1p.(0 (T :j) 0 (y B 21—_775’3)

_ z—yx
=(1—7) d:H-B(l,,Y)E(O) (x—2)0 <y — 7 > .

Here we have used that &(ax) = 6(x)/|a|”. The two rate kernels are therefore proportional,

and detailed balance will hold if A and 5~ are chosen appropriately.

The constant of proportionality, Kq, can be determined using (I11.5), allowing us to write
k~ in terms of kT for all (z,y) € Q% and all 2 € Q. Assuming the rate constants are

non-zero, evaluating (I11.5) we find

1 r—z
o 570 (3 — 22 ) g

_ =7 ) [Bu—y:(0)]

" Jos Mo (® —9)d(z — 9@ — (1 —7)y) dzdz dy’

) Jor Lo (@ — y)la(@ + (1 = 7)y) de dy (IV.5)

A Jop Loy (x — y)lo(ye + (1 — 7)y) de dy

__
A|B:(0)|

Kq

Here we have again used that d(ax) = &(x)/|a|’, and used that |Ba_ye(0)] = (1 —
7)?|B.(0)|. From (IV.2) and (IV.4) we may then write £~ in terms of x* as

Ko sl ) = 52200 Wiz — g - (1= 2y,
— -5 2~ 7w> :[I'B(lf'y)s(o)(m - z)
’ <y L—7 | Ba—:(0)]
— 5 (@.y2).

In Section IV B, considering the association kernel as fixed we show that the unbinding
kernel (IV.3) implies the unbinding rate £~ (z) is smaller than 5~ for z near 052, while equal
to f~ away from the boundary. We then illustrate how this can be realized in simulations
by allowing molecules to unbind at rate S~ while ignoring the domain boundary, and then
rejecting unbinding events that lead to a molecule ending up outside the domain. See also

Fig. 2A and Fig. 2B for an illustration of the acceptance/rejection process.
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2. An alternative VR Model

We consider an alternative VR model for the reversible A + B = C reaction, based
on the model proposed in'”. As in the Doi VR model the A molecule reacts with the B
molecule with rate A when their separation is within a distance €. Let p be the probability
of placing the C molecule at the position of the A molecule upon binding, and let (1 — p)
be the probability of placing the C molecule at the position of the B molecule. Hence, upon
binding (A + B — C), one of the two molecules is chosen at random with probability p (or
1—p) and turns into the C molecule while the other molecule disappears. One simple choice

of the selection probability p is to take p = 3 as in'". For a general p, v (z|x,y) is
k' (2]®,y) = ALp.o)(z — y) [pd(z — z) + (1 = p)d(z — y)]. (IV.6)

Unbinding (C — A + B) is assumed to occur with a rate f~. Upon unbinding a product
A(or B) is chosen at random with probability p (or 1 — p) and is placed at the position of C.
The other product is placed uniformly in a sphere centered at the position of C with radius

e. k™ (x,y|z) becomes

1p.(0)(x — 2)

1p.(0)(y — Z)5
|B.(0)]

¥ leylz) = 6| =R

(x—2)+(1—p) oy —=2)|. (IV.7)

These reaction rate functions are shown to be detailed-balance preserving with periodic
boundary conditions in'". We now show that the detailed balance condition (II1.4) holds for
all (z,y) € O? and all z € Q with reflecting boundary conditions. With (IV.6) and (IV.7),
and using the same scaling properties as in Section IV A 1, when detailed balance holds the

dissociation constant K4 is given by

Joz Jo B [/)%5(‘” —z)+(1- P)%&y — z)} dz dx dy
o fm fQ M. oy(x—1y)[pé(z —x) + (1 — p)i(z — y)] dzdxdy ’
B e Py —x)+ (1= p)lp.o)(x —y)] dxdy
~ A|B.(0)] Joz Lp.(0)(x — y) dz dy
__
A[B:(0)]

17



This immediately gives
Ko™ (2| y) = 6~ [p%(‘”o)‘,y)&z Loyt y)} ,
_ 4 [ ey =2 _ .
=5 [’) X A A X () ﬂ

=k (z,y|2),

showing detailed balance.

In Appendix D, considering the association kernel as fixed we show that detailed balance
holding corresponds to a decreased effective unbinding rate, k= (z), for z near 92. This can
once again be realized in simulations by using a rejection kernel near 0f2, initially ignoring
the domain boundary when a C molecule dissociates into A and B molecules, but rejecting

unbinding events that lead to a molecule outside the domain.

3. The SCK CR Model

For the SCK CR model, one can repeat the same calculation as for the Doi VR model with
the reaction terms (I1.6) and (II.11) replaced by (II.7) and (II.12). We show in Appendix E
that the dissociation constant, Ky, for the SCK CR model is

5

d:—

av2[9B.(0)|
and detailed balance is preserved. As in the previous two sections, considering the association
kernel as fixed this again corresponds to having a non-uniform unbinding rate, k= (z) <
[~ for z near 0f), as we prove in Appendix F. In simulations, this kernel can again be
implemented by ignoring the boundaries when placing molecules, but rejecting those reaction

events that lead to molecules outside the domain.

4. Reflection across the Boundary

Here we consider an alternative reaction kernel to overcome the problem of having to
account for the boundary when a C molecule dissociates into A and B molecules. The
boundary is initially ignored when placing the products, with those placed outside the

domain then reflected across the boundary back into €2, see Fig. 2C. The kernel is inspired
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by how Smoldyn handles products that are placed outside a domain, and represents a mirror-
like reflection process?. With this reflection kernel unbinding events are always successful

and we have
3 = [ @yl dedy = 5 (Iv.8)
QZ

for all z € 2, i.e. the unbinding rate is spatially constant. Note, however, as mentioned in
the introduction Smoldyn’s standard reaction model is based on the pure Smoluchowski?’
diffusion limited reaction mechanism, which corresponds to molecules reacting instantly
upon reaching a separation given by the reaction-radius, . It is therefore not a special case
of the SCK CR model we now consider.

We now show what x~(z) must be to satisfy detailed balance in the SCK model with the
mirror-like reflection unbinding process, and demonstrate it is inconsistent with (IV.8). In

what follows, we assume (2 is convex so that binding events are always successful. If detailed

balance holds, by (II1.4), (IL.7), and (IV.1), k= («, y|z) can be rewritten as

"ii(m7y|z> = Kd/i+<Z|iB,y)
= Kd\/§065335(0)(33 —y)o(z —yx — (1 —7)y).

Then ™ (z) becomes

K (2) = KaV2a . do.(0)(® — Y)o(z —vx — (1 —7)y) dz dy,

Kd\/ﬁoz T —z z— T
=94 =[5 1 d

(1—7)d/g aBE(°)<1—7> Q<1—7> m’ (1V-9)
B KV 2a z—yx
N /R om0 (@) 1o ( — ) da.

Here in the third equation we have used the identity that for a scaling constant, ¢ > 0,

09B.(0) <:1; E Z) = (0oB..(=)(T), (IV.10)

which is shown in Appendix B. Defining the translated and dilated set Q,y(z) by

Q,(z) = {:1: € Q‘ Zl__nyw € Q} : (IV.11)

we have that (IV.9) simplifies to

Kd\/§oz

(1 =)D
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Near 090 the intersection of the two sets will vary in z, implying that £~ (z) is again non-
constant. With a spatially uniform unbinding rate, e.g. (IV.8), we conclude the reflection

kernel for handling domain boundaries does not preserve detailed balance at all points in €.

5. The \— p Model

40 considers the case that the B and C molecules

The A— p model for reversible reactions in
stay stationary at the origin (D® = D® =0 and y = z = 0). Any A molecule is allowed to

react with the B molecule with rate A when within € of each other so that
KT (z|2,y) = M p.0)(2)d(y)d(2).

In one version of the model, upon unbinding a newly created A molecule is placed uniformly
on a sphere with radius ¢ about the origin, with the stationary B molecule placed at the
origin so that 5 (@)
_0)(x
K (@,ylz) = 85 oy SR
We note that the reaction kernels in the A — p model are in different functional forms —
the binding kernel is given by an indicator function on a ball, whereas the unbinding kernel

is defined by a spherical ¢ surface measure. By (II1.4) we can immediately conclude that

these reaction kernels can not preserve detailed balance.

B. Detailed Balance Leads to Rejection of Some Unbinding Events Near

Boundaries

We now show that for the standard form of the Doi model with detailed balance, near
domain boundaries unbinding rates are effectively reduced. An analogous result is derived
for the standard form of the SCK model in Appendix F. These reduced unbinding rates can
be realized in simulations through rejection of unbinding events that would lead to molecules
being placed outside the domain. In contrast, once a reactant C molecule is sufficiently far
from the boundaries that product molecules would always be placed within the domain,

unbinding reactions are always successful.

Theorem IV.1. Consider the Doi binding kernel (IV.2) with corresponding detailed balance

preserving Dot unbinding kernel (I1.11) and unbinding rate constant, 5~. For a C molecule
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at z in ), the probability per time the molecule successfully dissociates is

/Q2 K (x,y|z)dedy < 5~ (IV.12)
when z is within max(y,1 —v)e of 0. Similarly,

/92 K (x,y|z)dedy = 5~ (IV.13)
if z is at least max(y,1 — v)e away from ON2.

Proof. We will consider two cases: max(y,1 —+v) = 1 — v and max(y,1 — ) = 7. First
assume max(7y, 1 —v) = 1 —~. The probability per time a C molecule at z will successfully

produce A and B molecules each within €2 is given by

h(2) = / & (@, y|2) de dy,

- B 'y)s(z) z =T
=5 / } (0 ( 1=+ ) de, (IV.14)

where €0, (2) denotes the translated and dilated set defined in (IV.11). Let d(z,dQ) be the
Euclidean distance from z to 9€2, and assume d(z,0f2) < (1 — v)e so that

|B(1_7)5(2) N Q| < |B(1_7)5(0)} .

By (IV.14) this immediately gives
K (z)<p.
Now consider z with d(z,0) > (1 — 7v)e so that the ball of radius (1 — v)e about z is
strictly contained in Q. Let w € B(1_).(2). We claim w € Q. (z). Take

v = 1%/ (z —yw) (IV.15)

so that

lv—z| = |z —w| < 7e.

1 —
This implies that v € B,.(z), and hence in Q as B,.(2) C Bu_:(2) C Q. By defini-
tion (IV.11) this shows that w € Q,(2), which implies By_-.(2) C Q,(z). By (IV.14)

‘Bl 7)6 |

O R e
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Finally, we note that using scaling properties of the d-function and the indicator function,

we can equivalently write

(1 — 1s. (o ﬂ(y _ z)>
K- _ g~ a=?s _Z (1 7)2/) B(1-4)c(0) ( 5
v =7 ” <w Y B(l—v)a(o)}
e N P (1 —’Y)y) 1p.,.(0) (y—z)‘
ro(e-5 5..0)

Integrating first with respect to @, we obtain

g, () z—(1- v)y)
=0 / |Bvs ( Y W,

IV.16
‘B% 2)N QH(z)‘ (1V.16)
| By:(0)]
A similar argument to above interchanging v and 1—+ then gives the result when max(y, 1—
7 =7 -

In simulations we can incorporate the spatially varying dissociation rate near 9€) given
by (IV.14) in several ways. One could pre-tabulate £~ (z), or dynamically calculate k™ (2)
based on the position of a C molecule. Alternatively, one could use the previously men-
tioned rejection mechanism by interpreting (IV.14) as the probability per time a C molecule
attempts to dissociate apart, f~, multiplied by the probability such a dissociation event is
successful. In this case we could first sample the position, x, of the A molecule uniformly
within a ball of radius (1 — ), and then place the B molecule by reflection across the sphere
at a position y such that z = y& + (1 — v)y. This method is illustrated in Fig. 2A and
Fig. 2B. The probability density for these placement steps is just

5 <y 2T 7"’) Lo .2 (2)
[t ‘B(1—7)6(0)| 7

which gives the corresponding (acceptance) probability that the positions of the two

molecules are within €,

|Bie(2) N, (2)|
|Ba—:(0)]

as derived in (IV.14). Note, one could equivalently sample the B molecule’s position uni-

Prlx e QyeQ|z] =

formly within the sphere of radius e about z, and then choose the A particle’s position by

reflection, corresponding to (IV.16).
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C. Preserving a constant unbinding rate

Our results so far show that assuming a forward reaction kernel, k™ (z|x, y), and choosing
k™ via the detailed balance relation (II1.2) results in a spatially varying unbinding rate near
the domain boundary. We now investigate what happens if we formulate x~ (x, y|2z) to
have a uniform unbinding rate, k= (z) = [~ at all points within {2, and then choose the
association kernel, x*, via (IIL.2).

For simplicity, we will restrict attention to a version of the Doi model with a simplified
placement kernel for the products of the C — A + B reaction, but expect our analysis could
be adapted to more general placement kernels and the SCK model too. We take v = 0 in the
standard Doi model, and normalize the placement kernel to guarantee particles are always
successfully placed within the domain:

o . 7]136(0)(113—,2)
K (x,y|lz)=p m5(y—z)~

This model corresponds to placing the a particle uniformly within the portion of the ball of
radius € about z that is within the domain, and then placing the y particle at the position

of the z particle. Sufficiently far from boundaries it is consistent with the kernels used in'7.
Note that
r(z) = / R (e,ylz) dedy = 5
02

with these choices so that unbinding is always successful.

Applying (I11.2), we then have that
_ ﬂ__ﬂBE(O)(m — Z)

Ky |B:(z) N Q|
so that the probability per time an A and B molecule can react is

ﬁf / ILB (0)($ — Z)
K(xy) = | —F——— 0 (y —2) dz

_ B lpo(®—y)
Kq |Be(y)mQ| '

Here the effective probability per time two particles can react when separated by € or less

K (22, y) 0(y—=),

is 87 /(K4 |B:(y) N ), which will increase for y sufficiently close to the boundary.

It is therefore possible to achieve a uniform unbinding rate using a standard product
placement model, however, we see that we then require an increased pointwise association
rate in the vicinity of the domain boundary for the underlying particle model to be consistent

with detailed balance holding.
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TABLE I. Parameters for Brownian Dynamics (BD) Simulations

Parameter|Description Value
D diffusion coefficient 1 pm? s~!
A association rate varies, s 1,
see Appendix H
€ reaction-radius 10 nm
8~ dissociation rate 17.3 571
[Co]  |initial C concentration 1.25 x 107° nm—3
[Ao] , [Bo] |initial A and B concentrations 0 nm~3
domain length varies, nm
domain (0, L) or
L x L x 30 nm
Cmax |maximum number of C particles [Co] |92
At BD step size 1078 s
T final time bs

D. Numerical Examples

As a simple illustration of how preserving detailed balance near domain boundaries can
impact model predictions, we now consider Brownian Dynamics (BD) simulations of the
standard Doi VR model of Section IV A 1, using both our rejection mechanism that is con-
sistent with detailed balance holding, and the mirror-like reflection mechanism of Fig. 2C.
Our basic BD algorithm is summarized in Algorithm 1 of Appendix H.

We consider the reversible A + B & C reaction in three cubic domains of increasing
size, Q = (0, L) with L € {20 nm, 100 nm, 200 nm}. Particles were initialized in the bound
state, i.e. as C particles, with a fixed initial concentration of [Cp] = 1.25 x 107°(nm) >
that was initially uniformly distributed across §2. This corresponded to C.x = 1 particle
for L = 20 nm, Ch.. = 125 particles for L = 100 nm, and Cn., = 1000 particles for

L =200 nm. All boundaries were treated as reflecting.

For the smallest domain we chose A = 40.5745s™! so that by (IIL.8) the steady-state

24



L =20nm L =100 nm L =200 nm
1 P 125 1000
0.87 —Rejectlf)rl —110 —Rejection — g75 —Rejection
€ 0.74 — Reflection € 95 —Reflection = —Reflection
x° 061 NS —Tlie_ozy_ O 80 —Theory Q. 750 — Theory
0.48 . TTTTTTTTT = 65 N — & 625
0.35 e e e s 50 500
0 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
o 06 0.15 0.08
g 8 0.06
2 o 04 0.1 )
< &;.3 0.04
Q
o 5 0.2 0.05 0.02
0 0 0
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
time (sec) time (sec) time (sec)

FIG. 3. How the average number of C particles changes when using the detailed balance preserving
rejection method versus the reflection method for dissociation reactions. See Section IV D for details,
and both Table I and Appendix H for parameter values. The domains were taken to be cubes of
width L with reflecting boundaries. Initially Chax particles of species C were distributed uniformly
throughout the domain. Each curve is an average from 11,000 Brownian Dynamics simulations of
the A+B = C reaction using the method described in Appendix H. Dashed lines give 95% confidence
intervals. Solid red lines represent the analytical value for P, (upper left panel) from (II1.8), and
the steady-state value of E[C(¢)] from a well-mixed chemical master equation (CME) model (upper
middle and right panels). Both P, and the CME steady-state for E[C(t)]/Cax Were fixed at
.551, with the Doi association probability per time, A, chosen to give this steady-state value in the

well-mixed CME model, see Appendix H.

probability of being in the bound state was 0.5512 when using the rejection model. Let

E[C(t)] denote the average number of C molecules within the system at time ¢, with

E[C®)]

= IV.1
Croe (IV.17)

f(t)

denoting the average fraction of bound A (or B) particles in the system at ¢. As the domain
size was increased, A was increased so that the steady state value of f(¢) in a corresponding
well-mixed chemical master equation (CME) model was held constant at .551 (i.e. three
digits of accuracy). In the well-mixed CME model the association rate for the reaction was
given by the fast diffusion limit'*?° A37e?, with a dissociation rate of ~. Our method for
calculating A\ from the steady-state value of lim; ., f(¢) = .551 in the well-mixed CME is
summarized in Appendix H. All simulations used a timestep of At = 10~% s, which is also

discussed in Appendix H. All other parameters are given in Table I.
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FIG. 4. How the average number of C particles changes when using the detailed balance preserving
rejection method versus the reflection method for dissociation reactions in a box of size 200 x 200 x 30
nm. Cpax = 150 particles of type C were initially uniformly distributed within the domain. All

other parameters are the same as described in Fig. 3.

In the upper panels of Figure 3 we compare the average number of C molecules in the sys-
tem, E[C(t)], using both the detailed balance preserving rejection method and the reflection
method to handle A or B particles that end up outside the domain when the C — A + B
reaction occurs. In the figures the curve labelled "Theory" refers to the corresponding
value from the well-mixed CME model to which A was calibrated, i.e. .551C.x. Note that
B, (t) = E[C(t)] in the case that Ciax = 1 (i.e. when L = 20 nm). Here we used the same
parameters for each method, and estimated E[C(¢)] by averaging over 11,000 simulations.
We see clear differences between the steady-state value of E[C(t)] obtained by the reflection
method (solid blue line) and the chemical master equation value (solid red line) for small
domain sizes, while the detailed balance preserving rejection method (solid black line) al-
ways matches the well-mixed steady-state value. As the simulation domain size is increased,
thereby reducing the surface to volume ratio of the domain and frequency of dissociation
reactions occurring near boundaries, the discrepancy between the reflection method and the
CME steady-state value decreases. The bottom row of panels in Fig. 3 show the relative
difference of the curves obtained by the reflection method relative to that of the rejection

method.

How strongly the reflection-based approach disagrees from the rejection-based approach

is a complicated function of reaction and transport parameters, particle densities, possible
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reactions, and domain geometry. For example, in Fig. 4 we consider the same comparison
as in Fig. 3, but in a domain of size 200 nm x 200 nm x 30 nm, where the width of 30 nm
is comparable to the width of the interior of yeast endoplasmic reticulum sheets*'. We see
a clear increase in the relative difference between the rejection and reflection approaches

compared to the cubical domain of width 200 nm.

V. DISCUSSION

Methods for preserving detailed balance in simulations of particle-based stochastic
reaction-diffusion models have been considered recently in a variety of contexts™!"18. These
works focus on reactions in freespace or periodic domains, raising the question of how such
schemes should work for reactions occurring near (reflecting) domain boundaries. For the
general volume reactivity and contact reactivity models in a closed domain with reflecting
boundaries, we have formulated a pointwise detailed balance condition for the reversible
A + B = C reaction, and illustrated how enforcing detailed balance offers guidelines for the
placement of reaction products in simulations.

When using common variants of the Doi VR and Smoluchowski-Collins-Kimball CR mod-
els in closed domains, it is a modeling choice how reaction products should be placed for
reactants close to the boundaries. We demonstrated that for common choices of association
kernels, preserving pointwise detailed balance requires a decreased and spatially varying un-
binding / dissociation rate near domain boundaries (even in convex domains). Our work
provides one simple approach to realize this rate in typical Brownian Dynamics and lattice
simulation algorithms; initially ignoring the domain boundary when placing reaction prod-
uct(s), and then rejecting unbinding events where one of the products was placed outside
the domain. One benefit to this approach is that no modification to the underlying reaction
kernels used for the binding and unbinding process is needed for common variants of the
Doi and SCK models, or for recently proposed versions that have been shown to satisfy de-
tailed balance in periodic domains'”. Note, some lattice jump-process simulation methods
can trivially enforce (pointwise) detailed balance of spatial reaction fluxes for such VR ker-
nels by appropriate choice of dissociation (or association) transition rates'?. In Figure 5 we
summarize several options for standard Doi (VR) and SCK (CR) reaction rate and product

placement models which are consistent with detailed balance holding in a general bounded
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A+B-C

C-A+B

Rate

Placement

Rate

Placement

Doi
(VR)

Alt.
Doi
(VR)

When

|xq —ypl <&

react with
probability per
time A.

zZc=yx,+(1-7)ys

Reject if z is outside the
domain.

With probability p
Zc = xA
with probability (1 — p)

Zc =)Yp

Each C particle dissociates
with probability per time

B~ = Kaa|B:(0)]

Place x4
uniformly in
ball of radius
(1 = y)e about
Zc.

Set

R o £.7)
Vg = 1y
Reject if either
X4 Or yp is
outside the
domain.

With
probability p
place x4 at z,
else place yg
at z..

Place the other
uniformly in
the ball of
radius € about
Zc.

Reject if either
X4 Or yp is
outside the
domain.

SCK
(CR)

When

|xqa —ypl=¢

react with
adsorption rate
a.

zc=yx,+ (1 =7)ys

Reject if z. is outside the
domain.

Each C particle dissociates
with probability per time

B~ = KqaV'2|0B.(0)]

Place x4
uniformly on
the surface of
the ball with
radius

(1 —y)e about
ZC .

Set

_ Zc~YXa
Y ="
Reject if either
X, Or yp is
outside the
domain.

FIG. 5. Table of Doi (VR) and SCK (CR) variants that are consistent with detailed balance holding.
Here xa, yg, and z¢ denote the positions of the A, B, and C particles involved in the reaction as

reactants and/or products.
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domain with reflecting boundaries.

We note that other approaches for handling product placement near domain boundaries,
such as the boundary reflection model, can preserve a spatially-uniform unbinding rate for
the C — A 4+ B reaction. However, as we showed this leads to models that violate detailed
balance of (pointwise) spatial reaction fluxes in the neighborhood of domain boundaries when
using a standard association kernel. We therefore formulated a specific variant of the Doi
model unbinding kernel that includes a spatially-uniform unbinding rate, and derived the
corresponding detailed balance preserving association kernel. We found that to compensate
for the uniform unbinding rate, the effective probability per time two reactants within a
reaction-radius can react must be increased in the vicinity of the domain boundary. Though
we do not show it here, we expect that a similar increase would occur when modifying other
commonly-used Doi and SCK unbinding kernels to support a spatially-uniform unbinding
rate.

Importance and benefits of preserving detailed balance: As mentioned in the introduction,
we expect detailed balance of (pointwise) spatial reaction fluxes to hold at all points within
the domain from both time reversibility of more microscopic models, and from statistical
mechanics arguments'”. Analogous to how we want reaction models to preserve mass at a
population level in the A + B <> C reaction, it seems desirable to have PBSRD models with
reaction kernels that preserve detailed balance. In addition, as illustrated by (IV.5), when
detailed balance is known to be satisfied, equilibrium dissociation constants can be used in
estimating (microscopic) reaction parameters, eliminating the need to directly parametrize
one of the microscopic association or dissociation rates (which can be more difficult to mea-
sure). Preserving detailed balance at the particle level should also ensure that it is preserved
in more macroscopic models that can be derived from PBSRD models. For example, the
corresponding large-population limit of the VR model gives macroscopic mean-field partial
integral differential equation (PIDE) models for deterministic concentration fields***3. We
would expect detailed balance being satisfied at the PBSRD level to imply it is also satisfied
in the derived PIDEs.

Whether preserving detailed balance near domain boundaries will significantly impact
model predictions is likely to be a model-specific question that depends on reaction parame-
ters, transport parameters, domain shape, and the concentration of chemical species. While

it is beyond the scope of the current work to systematically explore all these different de-
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grees of freedom, we can make some general statements. If one is interested in dynamics near
the domain boundary, for example interactions between cytosolic proteins and membrane
bound /tethered proteins or receptor tails!, then how boundary interactions are handled may
become important in model predictions. Likewise, when trying to resolve chemical dynam-
ics within a tortuous space like the inside of the cystosol or endoplasmic reticulum, where
boundary surfaces can block significant portions of the domain, it may be that the choice of
how reaction kernels handle boundary interactions can significantly impact PBSRD model
predictions.

Similarly, our numerical examples show that if one is interested in reaction dynamics
within a domain that is comparable in size to interaction distances, then boundary effects
would be expected to play a role in model predictions, potentially giving altered dissocia-
tion/equilibrium constants in methods that do not preserve detailed balance. In contrast,
as demonstrated by our larger cubical domain example, boundary effects are less important
when studying reaction processes within large, open regions with lower surface to volume
ratios. We believe it would be an interesting future study to investigate the impact of
preserving versus violating pointwise detailed balance near boundaries for varying choices
of reaction kernels, physical parameters (reaction rates, diffusivities, interaction distances),
species concentrations, reaction networks, reaction localizations, and domain geometries.

Finally, we note that the relative importance of preserving a constant unbinding rate,
preserving a constant association rate for molecules that are appropriately separated, and
preserving detailed balance at all points in a domain, may depend on the underlying physical
process being approximated. If preserving all three is desirable for a given model, alternative
choices for product placement kernels in association or dissociation reactions appear to be
needed.

Additional Future work: Here we have only discussed detailed balance conditions for
(point) particle-based stochastic reaction-diffusion models, focusing on a perspective of
adapting unbinding kernels to preserve detailed balance for specified functional forms of
association kernels. An interesting future direction would be to more carefully consider fam-
ilies of unbinding kernels that allow for a uniform unbinding rate, and investigate if any give
corresponding detailed balance-preserving association kernels in which the probability per
time sufficiently close reactants can react is spatially-uniform.

This work also only analytically studied the two-particle A + B < C reaction; it would
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be helpful to analytically confirm our expectation that our results should be fully consistent
with detailed balance holding in the multi-particle case. In addition, we treated molecules
as point particles, ignoring other physical effects that can be important in some contexts.
These include volume exclusion and other finite size effects that may be important in more
dense systems®, along with potential interactions between particles”. We hope to report on
more general multiparticle systems in future work.

Finally, we note that it has recently been demonstrated that PBSRD models predict
reduced macroscopic reaction rates for molecules localized near surface boundaries®*. This
suggests an analogous future problem to study; whether more microscopic Langevin dynam-
ics or molecular dynamics models might suggest explicit modifications to common PBSRD

reaction kernels near boundary surfaces.
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Appendix A: PROOF OF (IL.7)

In this section, we prove (I1.7).

Sor(,y) = V2095.0) (T — Y).

Proof. Let v(x,y) be an arbitrary test function with compact support. We define a change
of variables

r=x—-y, w=x+y. (A.1)

To prove (I1.7), we subsequently prove

/emv(a:,y) dS(xz,y) = \/§/Rd /8135(0) v(z(r,w),y(r,w))dS(r) dw. (A.2)
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By the definition of the delta surface measure, we begin by rewriting the integral as

/de v(x, y)dor (T, y) de dy = /m v(z,y) dS(z, y). (A.3)

We let ¢(x,y) = | — y|, which gives |Vo(z,y)| = 2. Applying the co-area formula we

obtain

/ v(z,y) dS(z, y)
0

R
_ / o(@,y) dS(@.y),
{|le—y|=¢c}

v(x,y)dS(x,y), (A.4)

/w@ (
/de v(x, y)d(p(x, y) — €) |Vayd(x,y)| dxdy,
V2 2 v(x,y)i(o(z,y) —¢)dr dy.

By a change of variables (A.1) we can rewrite the last integral in (A.4) as

| o wieley)—)dwdy = 55 [ ol w).ylrw)b @latrw).yr.w) - ) dr dw,
(A.5)
where ¢(x(r, w),y(r,w)) = ¢(r) = |r|, which gives |V,¢(r)| = 1. Applying the co-area

formula again we have

/R2dv(w(r,w),y(r,w))5 (p(x(r,w),y(r,w)) — ) drdw

// e ¢<y§T’w)) A5(r) duo

/Rd /83 w),y(r,w))dS(r) dw (A.6)
= | dop.(o(r)o(z(r, w), y(r, w)) dr dw

R2d

=27 , doB.(0)(T — y)v(z,y) dz dy.
RQ

Equation (A.4) together with (A.5) and (A.6) imply that

/ v(x,y)dS(z,y) = V2 | dop.0)(x — y)v(z,y) dz dy,
OR R2d

so that we have

Sor(,y) = V2055.0) (T — y).

32



Appendix B: PROOF OF (IV.10)

In this appendix we show that as a function of x the following identity holds

808.(0) (m E z) = (00B..(=)(T) (B.1)

for ¢ > 0.

Proof. Using the change of variables

the action of the surface delta-function against a test function ¢(x) is then

/ 5@35(0) (m g z)gb(az) diL‘
Rd

=" [ bom.0)(y)o(Cy + 2) dy

R4

_ / 6(Cy + 2)dS(y)
8B<(0)

= ¢ ¢(Cy)dS(y)

0B:(2z)
= ¢(x)dS(x)
0B¢e(2)
~¢ [ on o (@)0() da
R4
O
Note, an immediate corollary is that
T —z
005 (0) ( c ) = (oo (0) (T — 2). (B.2)

Appendix C: Equivalence of Weak Forms of the SCK CR Model

In this appendix we show that our generalized model with ¢ surface-measure coefficients
is consistent in weak form3™® with the standard representation of the SCK CR model as a

system of PDEs with reactive boundary conditions.
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We begin by considering the probability density of the unbound state in our formulation

of the SCK CR model

dp
Lo2\rusr (T, y>8_(w’ Y,t) = Vay - Lozguor (2, Y) DV yp(z, Y, 1)

t
— ador(x,y)la(ye + (1 —7)y)p(x, y, 1)

(53 Q’J—Z) z — v
i 6 / B -(0) o) (y — ﬁ) pb(z,t) dZ,

\aB 1-(0)]
(C.1)
with the reflecting zero Neumann boundary condition
Vayp(@,y,t) - n(x,y) =0, (2,y) € I AR..). (C.2)

Here 9(Q3..) corresponds to the portion of 9Q x 9 that is outside R U IR, and n(x,y)
denotes the unit outward normal vector to 9(Q%..) at (x,y). We assume the probability
density the two particles are initially unbound is zero within the reaction surface and its
interior, ensuring the molecules never approach closer than €. That is, we assume p(x, y,0) =
0 for (z,y) € 2N (RUIR).

Denote by V a space of test functions, with v(x,y) € V. To obtain the weak form
of (C.1), we multiply by v(x,y) and integrate both sides over (z,y) € Q2. We now simplify

each term above one by one. The time-derivative term of (C.1) becomes

ap(:v y, v(x,y)dedy. (C.3)

)
/ Itm\mm(w,y)a—j;(w,y,t)v(w,y)dwdy=/ o
02 Q2\RUOR

The diffusion term of (C.1) is

, vm,y ' []-QZ\RU(?'R(:C7 y>Dvm,yp<m7 Yy, t)} U(IB, y) dx dy
Q

= — / Vayv(2,y) - [DVayp(z,y,t)] dedy. (C.A4)
Q2\RUIR
The association reaction term of (C.1) is
| adimle.y)tabe + (1= y)pla.y. ol ) de dy
02
—a [ Labot -y dS@y). (C5)
Q2NOR

Let m,(x,y) = y& + (1 — v)y denote the position a newly produced C particle is placed at.
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The dissociation term of (C.1) is then

5 z—2z -
. [ [ o810~ 2) <y - ﬂ) Pz 1) dz] v(w,y) dz dy
02 Q

|aBl —7)e (0)| 1—7
- ﬁ_m/ 008, _.0) (1 =) (@ — y))pp(m (2, 9), 1)

x 1o (m,(x,y)) v(z,y) de dy
laBﬁ_( 0] oo doB.0) (T — Y)pb (My(,Y),t) La(my(x,y))v (T, y) dedy
8-
\/_|8B( )| Q2NOR

Here, in the second equality we have used the scaling properties of the surface J-function

P (my(2,9), 1) Lo(my(z, y))v (2, y) dS(z, y).

shown in the previous appendix, while in the third equality we have used the identity of
Appendix A.

Substituting (C.3), (C.4), (C.5), and (C.6) into (C.1), we obtain the weak form of the
equation for the probability density of the unbound state as

dp
/ 9 — (z,y,t)v(z,y) dz dy
Q2\RUOR

- _ / Vayv(Z,y)  [DVgyp(x,y,t)] dedy
Q2\RUIR (C.7)
~a [ Lalm (@ )iy Oele.y) dS(.p)
Q2NOR
5
\/_|3B (0)] Jaznor

We now derive the corresponding weak form for p(«, y, t) in the more common PDE with

pb(mv(m’ y)’ t)]lﬂ (m’Y(w’ y)) U(ﬂ), y) dS(ac, y)'

reactive boundary condition representation of the SCK CR model. Note, we abuse notation
and again use p(x,y,t) for the density, as we ultimately derive the same weak-form. The

PDE version of the model is

dp

a(w, Y,t) = Vay  [DVeyp(x,y,t)], V(xz,y) € O\ RUOIR,

with the reactive boundary condition

—DVayp(x,y,t) -0z, y) = la (m,(z, y)) [ap(w,y,t) — Zmy P (ma (@, y), 1) |

for (z,y) € Q> N IR, and the reflecting zero Neumann boundary condition (C.2). We note

that this representation may appear different than commonly used simplified forms, which
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are often written in the separation coordinate for the unbound state, see for example.
There particles are assumed to move in free-space so that the two-particle dynamics in the
unbound state can be formulated in terms of their scalar separation r (assuming spherical
symmetry). Our SCK model formulation allows all three particles to diffuse in a general
domain, and so must track the probability densities to both be in a particular chemical
state, and for each particle to be at specified positions. It likewise specifies the boundary
condition at each point (z,y) on the reactive boundary, as opposed to®’, where spherical
symmetry allows specifying a boundary condition for the total flux into a reactive sphere
(i.e. the probability per time of entering/leaving the bound state). The intrinsic bimolecular
association rate constant of?*, kg, is related to our surface adsorption constant, o, by

4v2me%a,  in three dimensions
Ko =

2v2mea,  in two dimensions.
Our unbinding rate, 37, should be identical to the intrinsic dissociation rate, rq of*.
For any test function v(x,y) € V, we have that the weak form of the SCK PDE repre-

sentation is then

dp
[)Q\R BRE(wvyﬂf)U(way) dx dy
U

= / Vay  [DVayp(x,y.t)|v(x,y) dxdy,
Q2\RUIR

= - / Vayv(x,y) - [DVayp(z,y,t)] dedy
Q2\RUIR

s e ) DVl yt) () dS(a. ),

Q2NOR

=— / Vaeyv(x,y) DVgyp(x,y,t) dedy
Q2\RUIR

- /szan [La(m,(z, y))p(e,y, t)v(z, y)] dS(z,y)

T V2|8B:(0)] /mmmpb(mv(m’ y),t) 1o (m, (2, y)) v(z,y) dS(z,y),

which recovers (C.7).

For the C — A 4+ B unbinding reaction there are no reactive boundary conditions for
pu(z,t), and hence the standard PDE form of the SCK CR model and our representa-
tion (II.13b) are consistent for the dynamics of py(z,t) (up to rewriting integration regions

through evaluation of d-functions).
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Appendix D: Detailed Balance Leads to Rejection of Some Unbinding Events
Near Boundaries for the Alternative VR Model

Theorem D.1. Consider the detailed balance preserving unbinding kernel (IV.7) for the
alternative VR model 7. Denote the unbinding rate constant by 3~. For a C molecule at z
mn

/92 K (x,y|z)dedy < 5~ (D.1)

when z is within € of 0X). Similarly,
/ K (x,y|z)dxdy = 5~ (D.2)
02
if z is at least € away from OS).

Proof. For the unbinding kernel (IV.7), the probability per time a C molecule at z will

successfully produce A and B molecules each within €2 is given by

K (z) = /92 Kk (x,y|z) dz dy,

o 1.(2)(y) . _ 15.(z)(x) 2 da
=0 ["/ oy e ) dy+ (1 -p) | SRS (2) de

_ - | 120 Be(2)] 9N B.(2)|
-/ [p o) TP B }
:B7|QﬂBg(z)|

| B(0)]|

Let d(z,012) be the Euclidean distance from z to 052, and assume d(z,0f2) < ¢ so that
|B=(2) N Q| < [B:(0)].

By (D.3) we immediately obtain
K (z)<p.

Finally, suppose d(z,02) > € so that the ball of radius € about z is strictly contained in
Q). In this case (D.3) becomes
| B:(2)|

() =8 5y = (D.4)
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Appendix E: Detailed Balance for the SCK CR Model

In the SCK CR model, the chosen reaction kernels are

KM (z|w,y) = av209p.0)(z — y)d(z — v — (1 - 7)y), (E.1)
z —yx\ %98, L0 — 2
epls) = 575 (g = S ) M S (£2)

To verify that these reaction terms satisfy detailed balance, we will show that (III.4) holds
for all (z,y) € Q2 . and all z € Q. Using (IIL.5) the dissociation constant, Ky, of the SCK
CR model is given by

5
fm fQ p7o < - z177w> T dz dx dy

Ky = 7 0B 0)\
fﬂ?ree Ja O‘\f%Bs (T —y)o(z —yx — (1 —7)y)dzdedy’
_ ZAQ Joz don.0)(® — y)La (v + (1 — 7)y) dzdy (E.3)
a2 fﬂ? So.(0)(® — Y)la(ye + (1 —Y)y) dedy
_ 8
av/2|0B.(0)|

Here we have used the scaling property that §(Ax) = 6(x)/A\?, the surface §-function scaling
property (B.2), and that |0B(_,)-(0)| = (1—~)4"" |0B.(0)|. Reusing these properties again,
with the proceeding choice for Kd we find

Kart(z|z,y) = % av/20 bop.0)(T — y)o(z —yx — (1 —7)y),
_0op.(0) (T — y)

=0 9B.(0) 0z —yx —(1-7)y),

_ z — v\ 008, _,).0)(T — z)
- |0B(1+)=(0)]

=k (x,y|z).

Appendix F: Detailed Balance Leads to Rejection of Some Unbinding Events
Near Boundaries for the SCK Model

Theorem F.1. Consider the detailed balance preserving SCK unbinding kernel (11.12). De-

note the unbinding rate constant by f~. For a C molecule at z in <)
/ K (x,y|z)dedy < 5~ (F.1)
02
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when z is within max(y,1 —)e of 9. Similarly,

/Q2 K (x,y|z)dxdy = (F.2)

if z is at least max(y,1 — v)e away from OS).

Proof. Given the unbinding rate 8, the unbinding mechanism for the SCK CR model that
satisfies detailed balance is given by (I1.12). We will again consider two cases: max(y,1 —
v) =1 — v and max(v,1 — v) = . First assume max(vy,1 —v) =1 —~.

The probability per time a C molecule at z will successfully produce A and B molecules

each within €2 is given by

5(2) = / 5 (@, yl2) da dy,
- [ Sty

_b&k7<>mﬂ<ﬂ

|0B(1-):(0)] 7

where the Q. (z) denotes the translated and dilated set given by (IV.11). Let d(z, %) be
the Euclidean distance from z to 0f2, and assume d(z,09) < (1 —7)e so that

‘83(1—7)5(2) N Q| < |8B(1_7)5(0)‘ .

By (F.3) this immediately gives
K (z)<p™.
Now consider z with d(z,0€2) > (1 — 7)e so that the ball of radius (1 — 7)e about z is
strictly contained in Q. Let w € 0B(1_,):(z) C 2. We claim w € Q,(2). Take

v = (2 — qw)

so that

lv—z| = |z —w| =

1—

This implies that v € 0B,.(z), and therefore in Q. As such, w € ,(z) implying
OB _-):(2) C Q,(2). By (F.3)

‘63 (z |

= gm0

e
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Finally, using scaling properties of the d-function, we can equivalently write

y — (- 8oy .0 (5 (Y — 2)
K (x,ylz) = 5_—(153) ) (:13 _Z (1 ﬂy) a= ( il )
v |8B(1_7)5(0)|

g5y ==Y 08,0 (Y — 2)
‘“( 5 ) 0B,.(0)]

Using the preceding formula, and integrating (F3) first with respect to @, we obtain

58375 z—(1-7y
=5 | T5Etor |aB% ( 7 ) .

B ‘8BW€ z)N Ql_v(z)’
0B,(0)]

A similar argument to above interchanging v and 1—+ then gives the result when max(y, 1 —

v) =". O

Appendix G: Equilibrium State for a Well-Mixed Stochastic Chemical Kinetics
Model

We consider a well-mixed stochastic chemical kinetics model for the reversible reaction

A+Ba2,

based on the Chemical Master Equation®®. Here k. denotes the well-mixed association rate
in units of volume per time, while k_ is the dissociation rate in units of per time. Let
P(t) denote the probability the system is in the unbound state at time ¢, with B, (f) the
probability the system is in the bound state. The well-mixed Chemical Master Equation

model for the two-particle reversible reaction is

dP ky
—(t) = ——=P() + k_P(t 1
dt() |Q| ()+ b( )7 (G a)
dp, k.
—(t) = —k_B(t) + —P(t G.1b
(0 =~k R(0)+ 1P, (1)
Together with the normalization P + P, = 1 we can eliminate (G.1b) and rewrite (G.1a) as
dP k.
)= — P+ k(1 — Pt
() =~ PO+ k(1= PlD),

which gives the steady-state solution as

k- _ K49

P= = :
ko4 (he/ 1) 14 KalQ

(G.2)
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where the dissociation constant, Ky, is defined as

ke

Ky =—.
d N

The steady-state solution to (G.1b) is similarly given by

1

P=1-P=—_———.
b 1+ Kq|Q

(G.3)

Provided Kj is chosen the same in the well-mixed and particle models, we note that (G.2)
and (G.3) give the same steady-state probabilities as we find for the particle model,
see (IIL.8).

Appendix H: Brownian Dynamics Simulations

The Brownian Dynamics method used in Section IV D is summarized in Algorithm 1 and
based on the small timestep BD method for the Doi VR model described in'3. It uses a
standard first order Lie-Trotter splitting in time to first diffuse all particles over one timestep,
then sample bimolecular reactions over one timestep based on particle positions after the
diffusion step, and finally sample dissociation reactions over one timestep based on particle
positions and numbers after the bimolecular reaction timestep.

For L = 20 nm and © = (0, L)? we used A\ = 40.5745 s™1, giving a steady-state probability
to be in the C state of B, = .5512 for a system with one initial C particle. Values of \ for
other domain sizes were calculated by solving the steady-state well-mixed chemical master
equation®® for the number of C particles in the system numerically, and using Matlab’s
fzero command to optimize these solutions to recover the desired steady-state fraction
limy o f(t) = .551, see (IV.17), to three digits of accuracy. The association rate in the well-
mixed chemical master equation was taken to be /\‘517r53 and the dissociation rate was 7,
see Table I for numerical values of 5~ and . For a cubic domain with L = 100 nm we found
A = 89.7914 s7!, and for a cubic domain with L = 200 nm we found A = 90.3269519 s~ 1.
For a domain of dimensions L x L x 30nm with L = 200 nm we found \ = 89.8725 s~

All BD simulations used a timestep of At = 107%s. With D = 1(um)?/s as in our
simulations, this timestep gives a standard deviation in spatial displacements due to diffusion
per timestep of V6DAt ~ .24 nm, substantially smaller than the reaction-radius of 10 nm.
With the dissociation rate of 17.3 s™!, it gives a probability per timestep that a C particle
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Algorithm 1 Brownian Dynamics (BD) method used in Section IV D

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

: Input domain, Q C R3; diffusivity, D; on rate, \; off rate, 7; reaction radius, ¢; initial

concentration of C molecules, [Cp]; number of timesteps, V;; and timestep, At.

: In the following randn(3) denotes a vector of three independent samples from the normal

distribution with mean zero and variance one.

: Uniformly distribute No = || [Cp] molecules throughout €. Set the number of A and B

molecules to zero, N4 = Ng = 0.

: Denote by X s(t) the position of the ith molecule of species S € {4, B,C}.

: for nin 1 to N; do

for Sin {A,B,C} and i in 1 to Ng do
X; 5(t+ At) := X; 5(t) + V2DAt randn(3)
If X; s(t+ At) ¢ Q, use normal reflection®® to reflect it back into the domain.
end for
for all pairs (X; 4, X B) where both molecules still exist do
If || X; 4 — X Bl <e¢, react with probability AAZ.
if reaction occurs then
Place a new C molecule at $(X; 4 + X ) (ie. v =5 in IV.3).
end if
end for
for all C molecules X; ¢ do
Dissociate the molecule with probability 5~ At.
if reaction occurs then
Place the A molecule uniformly in the sphere of radius (1 — v)e about X; c.
Place the B molecule such that X; ¢ is the midpoint between the A and B molecules.
If any reaction product is outside €2 either:
(a) reject the reaction (detailed balance method).
(b) reflect the product(s) back into the domain (reflection method).
end if
end for

end for
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dissociates of 37At = 1.73 x 10~7. For a pair of A and B particles within ¢ it gives a
probability per timestep of reacting of AAt € [4 x 1077,9.1 x 1077] as \ was varied between

domain sizes.
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