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Abstract

For a chemical signal to propagate across a cell, it must navigate a tortuous environment
involving a variety of organelle barriers. In this work we study mathematical models for a
basic chemical signal, the arrival times at the nuclear membrane of proteins that are acti-
vated at the cell membrane and diffuse throughout the cytosol. Organelle surfaces within
human B cells are reconstructed from soft X-ray tomographic images, and modeled as
reflecting barriers to the molecules’ diffusion. We show that signal inactivation sharpens sig-
nals, reducing variability in the arrival time at the nuclear membrane. Inactivation can also
compensate for an observed slowdown in signal propagation induced by the presence of
organelle barriers, leading to arrival times at the nuclear membrane that are comparable to
models in which the cytosol is treated as an open, empty region. In the limit of strong signal
inactivation this is achieved by filtering out molecules that traverse non-geodesic paths.

Author summary

The inside of cells is a complex spatial environment, filled with organelles, filaments and
proteins. It is an open question how cell signaling pathways function robustly in the pres-
ence of such spatial heterogeneity. In this work we study how organelle barriers influence
the most basic of chemical signals; the diffusive propagation of an activated protein from
the cell membrane to nucleus. Three-dimensional B cell organelle and membrane geome-
tries reconstructed from soft X-ray tomographic images are used in building mathemati-
cal models of the signal propagation process. Our models demonstrate that organelle
barriers significantly increase the time required for a diffusing protein to traverse from
the cell membrane to nucleus when compared to a cell with an empty cytosolic space. We
also show that signal inactivation, a fundamental component of all signaling pathways,
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can provide robustness in the signal arrival time in two ways. Increasing rates of signal
inactivation reduce variability in the arrival time, while also dramatically reducing the
degree to which organelle barriers increase the arrival time (in comparison to a cell with
an empty cytosol).

Introduction

Spatial dynamics can play a critical role in the successful functioning of cellular signaling pro-
cesses, where as basic a property as cell shape can significantly influence the behavior of signal-
ing pathways [1, 2]. Idealized one-dimensional [3], spherical [2, 4, 5] or planar [6] geometries
are commonly used in mathematical models of the cell, with the cytosol represented as an
empty region of fluid [1-3]. Despite the simplicity of the representation of the plasma mem-
brane and/or cytosolic space, the study of spatial signaling dynamics within mathematical
models has provided key insights into the function of many biological pathways, including
cyclic AMP signaling in neurons [1], T cell synapse formation through T cell receptor signal-
ing [6], B cell activation through kinase-receptor interactions [4], and general protein kinase
signaling [2, 3, 5]. For example, changes in idealized cell shapes can induce significant changes
in the timing of signal propagation and the size of concentration gradients across the cytosol
[2].

In modeling signal propagation from the cell membrane to the nucleus, a further challenge
arises from the crowded, spatially heterogeneous nature of the cytosolic space [7]. In this work
we investigate the question of how spatial heterogeneity arising from organelle barriers, as
illustrated in Fig 1b, might influence the propagation of signals from the cell membrane to the
nuclear membrane. We consider the simplest possible model for signal propagation from the
cell membrane to the nucleus, the release of a one or more activated proteins from the inner

(c)

Fig 1. Soft X-ray tomography (SXT) imaging of human B cells. (a) One 2D image plane within a 3D SXT reconstruction of a B cell. The corresponding 3D
reconstruction is subsequently labeled as Bcelll in simulations. Pixel intensity corresponds to linear absorption coefficient (LAC), a measure of the local density
of organic material [10, 11]. Larger LAC values are shown in lighter colors. The bright white band corresponds to the glass capillary in which the cryo-
preserved cell was contained. (b) 3D SXT reconstruction of a human B cell with cutaway to show segmented organelles: heterochromatin (blue), euchromatin
(green), mitochondria (beige), Golgi (purple) and endoplasmic reticulum (ER) (red). Bulk cytosol is shown in gray, with the cell membrane given by the outer
boundary of the cytosol. In our mathematical model, the nucleus, N, is given by the set of voxels with labels corresponding to components of the nucleus (e.g.
euchromatin and heterochromatin in this image). Cytosol, C, is given by voxels rendered in gray, while all other (colored) voxels outside the nucleus are labeled
as organelles, O. (c) Organelle label field values for voxels within the cell in the image plane shown in (a). Here free cytosolic space corresponds to the regions in

yellow, and voxels outside the cell are not shown.

https://doi.org/10.1371/journal.pcbi.1008356.9001
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cell membrane, and their diffusion throughout the cytosol until they first reach the nuclear
membrane. As the classical picture of signal propagation to the nucleus typically involves large
pathways of many chemically reacting molecules (such as the MAPK pathway [3]), this model
may seem overly simplified. However, a number of proteins are known to be activated at the
cell membrane and then directly translocate to the nucleus [8, 9]. For example, in Notch sig-
naling the extracellular domain of Notch receptor can interact with ligands, leading to release
of NICD (Notch intracellular domain) from the plasma membrane into the cytosol. NICD
then translocates to the nucleus where it can regulate gene transcription [8, 9]. More generally,
studying signals that correspond to the diffusive propagation from cell membrane to nucleus
of individual proteins provides a first step towards understanding how cellular substructure
might influence the dynamics of more complicated signaling pathways.

Using segmented reconstructions of organelle geometry obtained by soft X-ray tomography
(SXT) imaging, we study how the presence of organelle barriers modifies the time needed for
diffusing molecules to reach the nucleus in comparison to the time required within an empty
cytosol. As signaling molecules diffusing through the cytosol can not persist indefinitely, we
next investigate how signal inactivation might influence the search process. This creates a com-
petition where the diffusing signal may be inactivated or degraded prior to reaching the
nuclear membrane. We study how the strength of signal inactivation can modulate statistics of
the first passage time (FPT) for an individual molecule to reach the nucleus, conditional on it
reaching the nucleus before inactivation. It is shown that if the total signal (i.e. number of mol-
ecules) that ultimately reach the nucleus is held constant, increasing the inactivation rate leads
to signal sharpening. We also find that signal inactivation can provide robustness to the pres-
ence of organelle barriers, significantly reducing the difference between the average arrival
time of molecules that successfully reach the nucleus in geometries containing organelle barri-
ers, from the time in geometries containing an empty cytosol.

We note that our studies focus on statistics of the time required for the diffusing protein to
reach the nucleus. In the case that there is no inactivation, so that the protein simply diffuses
until reaching the nucleus, this is an example of a classical diffusion-limited first passage time
problem [12]. First passage time problems are widely used in the study of chemical reactions
[13, 14], with a variety of asymptotic results and exact solution techniques when the target site
is small or a basic geometrical shape such as a sphere [15-18].

Results
Mathematical model

We consider the time required for a protein to diffuse from the cell membrane to the nuclear
membrane. Let N denote the nucleus of the cell, with N denoting the nuclear membrane.
Similarly, we let C denote the cytosol of the cell, with OC denoting the cell membrane. We
assume the cytosol may be filled with a collection of closed subvolumes corresponding to
organelles, denoted by O, with boundary surfaces JO. Fig 1a shows a slice plane through a 3D
soft X-ray tomography (SXT) reconstruction of a human B cell illustrating such geometries,
with Fig 1b showing a 3D reconstruction identifying the nucleus, cytosolic organelles, and the
cytosol.

We assume a molecule is initially activated at the cell membrane, and diffuses throughout
the cytosolic space until it first reaches the nuclear membrane. Both the cell membrane and
organelle surfaces are assumed to be reflecting barriers to the molecule’s diffusion. Denote by
D =10(um)’s~" the diffusivity of the molecule, and by p(x, ¢) the probability density the mole-
cule is located at position x within C at time ¢. 77(x) will denote the unit outward normal to a
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surface at x. p(x, t) then satisfies the diffusion equation

% (x0) =DAplx1),  xeC

P(x7 t) = 07 X € 8N7 (1)
Vp(x,t) - n(x) =0, x € 90 or 9C,
p(x,0) = g(x), x e CUHC.

Note, in the following we assume the initial position of the molecule is located on the inner
surface of the cell membrane, so that g(x) is zero away from OC. The Dirichlet boundary condi-
tion on N in (1) encodes that the protein is instantly absorbed upon reaching the nuclear
membrane, allowing us to study statistics of diffusing protein’s arrival time at the nuclear
membrane.

Let T denote the random time at which the protein first reaches the nuclear membrane sur-
face. The survival probability that the protein has not yet reached ON at time ¢ is then given by

S(t) = Prob[T > f] /C p(x, 1) dx.

The corresponding probability per time the molecule reaches ON is the probability density
function (pdf)

76 =~ = =D [ Tp0)- nix)da), @)

where dA(x) denotes the surface area measure at x € IN. Knowing f(t), we can calculate statis-
tics of T, using that the average of a function w(T), denoted by E[w(T)], is defined by

Our representations of cellular geometry are derived from 3D SXT reconstructions, see
Methods, for which the label field identifying organelles is provided as a Cartesian grid of
cubes with mesh-width A, see Fig 1. To simulate the time required for the protein to traverse
the cytosol we therefore discretize (1) onto this grid, generating a system of ODEs we solve
numerically. Let C;, denote the collection of mesh voxels that are labeled as being cytosol, with

N, those that are labeled as being within the nucleus, and Oy, those within organelles. We label
M

the individual voxels within the cytosol by C, = {V,}.", and let N'(V; C,) denote the indices
of the subset of the six Cartesian grid nearest-neighbors of voxel V; that are within the cytosol.
N (V;N,) will similarly denote the indices of the subset of the six Cartesian grid nearest-
neighbors of V; that are within the nucleus. For x; denoting the centroid of voxel V;, we let

Pulx; t) = p(x;, t). py, then satisfies the semi-discrete diffusion equation that

Br (e ) =D(Ap)(x.1),  V,EC,

i

ph(xi7 0) = gh(xi)7 Ve G,
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where the discrete Laplacian is defined by

(Ahph)(xi’t)_hl?L Z (Pu(x,1) = pi (x5 1)) — Z pu(x, )] (4)

EN(ViiCh) JEN(ViNy)

and g;,(x;) denotes the initial condition in the semi-discrete model.

This semi-discrete model corresponds to approximating the continuous Brownian motion
of the particle in C by a continuous-time random walk of the molecule hopping between near-
est-neighbor voxels of Cj,.

If we denote by T}, the corresponding random time for the protein to first reach a voxel that
is labeled as being within the nucleus, we have the corresponding survival probability,

$,(t) = Prob [T, > t] = > p(x,, )",

VieCy,

with analogous definitions for the pdf f,,(f) and averages, E[w(T,)], as above.
In the remainder, unless stated otherwise time will be reported in units of seconds, and dis-
tance in units of ym.

Organelle barriers slow the propagation of a signal from the cell membrane
to nucleus, while increasing variability in arrival time for signals initiated
at different locations

We begin by numerically solving (3) to investigate how the presence of organelles as reflecting
barriers influences statistics of the time required for the diffusing protein to reach the nuclear
membrane. Let C;, denote the collection of voxels within the free cytosol, C,, that border the
exterior of the cell, with |0Cj,| denoting the volume of this set of voxels. Note, this collection of
voxels corresponds to a thin region of cytosol bordering the cell membrane. In the semi-dis-
crete model, we will approximate starting the protein uniformly distributed on the inner sur-
face of the cell membrane by starting the protein uniformly within the volume 0Cj,. Then

L V. e 0C
Ta~ [ i h
g,(x) = { 19Gi (5)

0, else.

In Fig 2a we show the survival probability S;(¢) from Bcelll, the reconstruction shown in
Fig 1 (results from two additional cell reconstructions, labeled Bcell2 and Bcell3, are shown in
Fig A and Fig B of S1 Text). We consider three cases, the physiological data where voxels corre-
sponding to organelles within the cytosol are inaccessible (labeled “physiological”), a modified
geometry where voxels corresponding to the endoplasmic reticulum (ER) are added back into
the collection of cytosolic voxels the protein can diffuse through (labeled “no ER”), and a mod-
ified geometry where all voxels within cytosolic organelles are added back into the collection
of cytosolic voxels the protein can diffuse through (labeled “no organelles”). This latter geome-
try corresponds to the cytosol filling all space between the cell membrane and the nuclear
membrane. In Fig 2a we observe that the presence of organelle barriers dramatically increases
the time required for the protein to reach the nuclear membrane (shifting the survival proba-
bility curve upwards), with the primary contribution to this shift arising from the barrier pro-
vided by the ER. Table 1 shows that the corresponding mean and median times to reach the
cell membrane change similarly. For Beelll, the presence of the ER as a barrier accounts for
most of the the time required to reach the nucleus; removing the ER decreases the median of
T}, by almost a factor of three.
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Fig 2. The presence of organelles as diffusive barriers increases the time required for a diffusing (signaling) molecule to traverse from the cell membrane
to the nuclear membrane. (a) Survival probability, S;(t), when the diffusing molecule is started uniformly distributed within a thin region, dCy, of cytosol
bordering the inner surface of the cell membrane (5). (b) Mean first passage time (MFPT) u(x;) from each voxel within 9Cj, to reach the nuclear membrane in
the “physiological” case that organelles are present as diffusive barriers. Colorbar gives the MFPT values in seconds, spatial units are ym. (c) Corresponding
MFPTs in the “no organelles” case that the molecules can freely diffuse everywhere between the cell and nuclear membranes. Color scale is the same as (b). (d)
Volume rendering of the organelles in Bcelll, with the cell in the same orientation as in (b) and (c) (but zoomed in). Note, the ER rendering (green) is
attenuated to make other organelles more apparent, and the cell membrane is not shown. Nucleus is in yellow, mitochondria in cyan, and the Golgi in purple.
(e) Distributions of mean first passage times (MFPTs), {1, (x;) },, .y, > Starting from the same thin region of cytosolic voxels bordering the cell membrane as in
(b) and (c). Note, here the distribution is over the voxels within the region, illustrating how starting at different initial positions can lead to variation in the
MEFPT. For the “No ER” case we use the analogous region when just the ER is removed. See (6) for definition of the MFPTs u;,(x;). Bin width is .01 (seconds). (f)
Distribution of the ratios of the corresponding “Physiological” to “No Organelles” MFPTS from (e). This illustrates when starting from each individual voxel
bordering the cell membrane, how much organelle barriers increase the MFPT to reach the nucleus from that voxel. Bin width is .1. Note, almost all locations
have a ratio of two or more, showing that organelle barriers significantly increase the time required to reach the nuclear membrane from most initial positions.
Fig A and Fig B of S1 Text show similar results for Beell2 and Bcell3 respectively. The obscured z-axes labels in panels (b) and (c) range from zero to eighteen
on a linear scale.

https://doi.org/10.1371/journal.pcbi.1008356.9002

Table 1. Statistics of Ty, the random time to reach the nucleus in Bcelll. The diffusing molecule is assumed to ini-
tially be randomly distributed on the cell membrane, 9C;,. Here STD denotes standard deviation and CV denotes the
coefficient of variation (the standard deviation divided by the mean). Values in parenthesis denote the ratio of the phys-
iological value to the corresponding no ER or no organelle values. See Table A of S1 Text for statistics in Beells 2 and 3.

Physiological No ER No Organelles
Beelll Mean 0.7070 0.2721 (2.6) 0.2499 (2.8)
Beelll Median 0.4054 0.1393 (2.9) 0.1335 (3.0)
Bcelll STD 0.8472 0.3561 0.3173
Beelll CV 1.1983 1.3086 1.2695

https://doi.org/10.1371/journal.pchi.1008356.t001
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In Fig 2b-2f we examine how the time to reach the nucleus varies when the diffusing mole-
cule is started at different points on the cell membrane. Let u(x) denote the mean first passage
time (MFPT) to diffuse from x € C to the nuclear membrane. u(x) then satisfies [19]

Au(x) = -1 xecC
0, x € ON
Vu(x)-n(x) =0, x € 90 or OC.

In practice, we solve a discretized version of this PDE that gives the corresponding MFPT's
on our Cartesian grid arising from the imaging data. Let u;,(x;) denote the MFPT to reach the
nucleus from x;, which satisfies the linear system of equations

(Ayw)(x) = —5 vV, eG,. (6)

Fig 2b plots uy,(x;) over the cytosolic voxels bordering the cell membrane (0C,,) in the physi-
ological case, while Fig 2c shows the case with no organelles (i.e. an empty cytosol). We see
that the presence of organelles significantly slows the MFPT to the nucleus for most points bor-
dering the cell membrane. Not surprisingly, locations closest to the nucleus (left side) generally
have smaller MFPTs than locations far from the nucleus (right side). Fig 2e shows that the dis-
tribution of MFPTs, {u(x;) }, .y, across the cytosolic voxels bordering the cell membrane is
much flatter and broader when organelles are present as barriers (green, physiological case) in
comparison to an empty cytosol (purple, no organelles case). Moreover, examining the ratio of
these MFPTs in the physiological case to the no organelle case, Fig 2f, we find that at almost all
locations the presence of organelle barriers increases the MFPT by a factor of two or more.

In conclusion, we observe that organelle barriers can substantially hinder the diffusion of
molecules across the cytosol, significantly increasing the time required to reach the nuclear
membrane, and increasing the variability of this time over cytosolic voxels bordering the cell
membrane when comparing signals initiated at different points (Fig 2f). While our discussion
has focused on Bcelll, we observe similar qualitative behavior in Beell2 and Bcell3, see Fig A
and Fig B of S1 Text.

Inactivation filters out molecules undergoing longer searches, reducing
variability in signal arrival time

Activated signaling molecules cannot diffuse throughout the cytosol of cells searching for the
nuclear membrane indefinitely. Whether by degradation mechanisms, or inactivation mecha-
nisms (such as phosphorylation or dephosphorylation), cellular signals will eventually be ter-
minated. From the perspective of a diffusing signaling molecule this creates a competition
between the search for the nuclear membrane and the inactivation process. We now examine
how the interplay between these two processes can modulate the timing at which activated sig-
nals reach the cell membrane.

We consider the simplest possible mechanism for modeling signal inactivation, assuming
the diffusing molecule can now also be inactivated with probability per time A. Let p;(x, )
denote the probability density the diffusing molecule is still activated and within the cytosol at

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008356 November 16, 2020 7/19


https://doi.org/10.1371/journal.pcbi.1008356

PLOS COMPUTATIONAL BIOLOGY Strong signal inactivation provides robustness in signal propagation

time t. p, then satisfies

Ps x.1) = DAp,(x.1) p, (1), xeC.
pk(x7 t) :Oa X € 6N, (7)
Vp,(x,) -m(x) =0, x € 00 or OC,
p,(x,0) = g(x), x € CUAC.

Note that p;(x, t) = e plx, 1), so that py(x, £) = p(x, £), the solution to the diffusion equation (1).

We are interested in statistics of the exit time through the nuclear membrane, T}, condi-
tioned on the protein actually reaching the nuclear membrane before inactivation (i.e. the
event that T < 00). The probability per time that the diffusing molecule reaches the nuclear
membrane at time ¢ is then

f(t) =D / P, .0) - m(x) dA(3) = ¢ (0 (8)

where f(t) = fy(t) denotes the probability per time to reach the nuclear membrane in the
absence of degradation, given by (2). With these definitions, the probability the molecule
reaches the nuclear membrane before inactivation is

7, = Prob|[T, < oc] = /chh(t) dt — /Ooe’“ (t) dt.

Denoting the conditional cumulative distribution function (CDF) of T) by

_ fotf,(s) ds
Iy fils)ds’

F,(t) = Prob[T, < t|T, < o0 )
in Section SI1 of S1 Text we prove the following results

Theorem 1 For all fixed t > 0 and X > 0, Z,(t) is a strictly decreasing function of A, and F,(t)
is a strictly increasing function of A.

This result gives several immediate corollaries, including that

Corollary 1 Both the conditional MFPT, (T,) = E[T,|T, < oc], and the conditional median
first passage time, M(T,) := F; (%), are strictly decreasing with respect to A. That (T5) is
decreasing in A was also shown in [20] for probability density functions with the factored form
e M g(.

Theorem 1 and Corollary 1 together demonstrate that as the inactivation rate A is increased,
the time for a molecule to reach the nucleus, conditioned on the molecule actually reaching the
nucleus, decreases. The probability any individual molecule actually reaches the nucleus, Z;,
also decreases as A increases. In this way strong signal inactivation will filter out molecules
undergoing longer diffusive searches.

To explore how increasing the inactivation rate A influences statistics of the time to reach
the nucleus, we now study a semi-discrete model defined on the meshes representing the B cell
geometries, and corresponding to a spatial discretization of (7). Let p; n(x;, t) = pi(x;, t) denote
the probability density that the diffusing molecule is located at x; at time ¢, then

dp;,
d:h (x;,t) = D(A,p; ) (x5 ) — Apy (%, 1), V,eC,

(10)
Px,h(xiao) =g,(x), V,eC,
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Fig 3. Signal inactivation filters out molecules undergoing longer diffusive searches, reducing both the average ime and variance in the time at which a
molecule reaches nucleus, conditional on the molecule reaching the nucleus before inactivation. The figures show statistics of the conditional first passage
time, Tj j,, to reach the nucleus when the diffusing molecule is started randomly on the cell membrane (i.e. uniformly distributed, see (5)), and the molecule can be
inactivated with rate . (a) The conditional mean first passage time (MFPT), (T, ;) (12). In all cases we see that (T} ) is strictly decreasing as A increases,
illustrating Corollary 1. Fig D of S1 Text shows an expanded range of A values, with a logarithmic scale on the y-axis. (b) The conditional variance of Tj j, given by
(13), is decreasing as A increases. (c) The probability that the diffusing molecule reaches the nucleus, Z, ;, is strictly decreasing as A increases, illustrating

Theorem 1.

https://doi.org/10.1371/journal.pchi.1008356.9003

where p; n(x;, 1) = eM pu(x;, ). Similarly, f, ,(f) = eM fu(t), so that the probability the diffusing
molecule reaches the nucleus is given by

Zu= [ fuwdi= [ g (1)

For T) ;, the random time at which the nucleus is reached, the conditional MFPT to reach
the nucleus is then

Z, ;e (v dt
Zl,h ﬁ)oo efx%(o dt

In Fig 3 we consider statistics of T) ; when the diffusing molecule is initially placed ran-

domly on the cell membrane (i.e. the uniform initial condition (5)). Fig 3a illustrates Corollary
1, showing that for each cell (T, ;) is strictly decreasing as A is increased. Similarly, Fig 3¢ illus-

(T,,) = ]E[Tx,h ‘ T,y < OO] = _i In (Zxﬁh) = (12)

dh

trates Theorem 1, showing that the probability the molecule reaches the nucleus, Z; j, is strictly
decreasing as A increases. In Fig 3b we examine the conditional variance of T} ;, defined by

Var[Tw] = E[(TM - <TM>)2 | T, < OO] = f()m(tz — <Tk’h>2)eiktﬁ'(t) dt. (13)

[ e M (1) dt

In each B cell the conditional variance is strictly decreasing. In Fig E, Fig F and Fig G of S1
Text we show that similar results hold when the diffusing molecule’s initial position is more
localized. There the molecule is initially placed randomly within small patches of the cell mem-
brane, see Section SI2 of S1 Text for details.

Inactivation can sharpen the signal reaching the nuclear membrane

To understand how inactivation can affect signal propagation, we investigate how the signal
reaching the nucleus changes as the inactivation rate A is increased, but the number of mole-
cules reaching the nucleus is held fixed. By fixing the number of molecules (i.e. total signal)
that ultimately reach the nucleus, we can investigate how inactivation influences signal timing
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without modulating the total signal strength. Note, to fix the total signal reaching the nucleus
requires that an increasing number of signaling molecules be released from the cell membrane
as A increases.

Consider a deterministic version of (10). Assume N, molecules are initially uniformly dis-
tributed across the interior of the cell membrane, and let u;,(x;, ) denote the (deterministic)
concentration of molecules located at x; at time t. We assume 4, has units of number per
(ym)3. uy, then also satisfies (10), but with the initial condition

u,(x,,0) = Nyg,(x,), V,€C,

so that u,(x;, ) = Ng py u(x;> t). The number of molecules per time that successfully reach the
nucleus is given by the total flux of ), into the nucleus, Ny f; 5,(f). Similarly, the total number of
molecules to successfully reach the nucleus is

N =N, / fx.h(t) dt = N()Zk.h'
0

We define the signal reaching the nucleus to be the number of molecules per time that
reach the nucleus, given that we assume N molecules overall arrive. Ny is therefore chosen so
as to keep N fixed as the inactivation rate is varied, so that

N
NU == Z_
hh

With this choice, the signal, i.e. number of molecules per time, reaching the nuclear mem-
brane is then Nf, ,,(t)Z; ;.

In Fig 4 we plot the signal reaching the nucleus in Beelll as the inactivation rate is increased.
Fig H of S1 Text shows the corresponding signals reaching the nucleus in Bcell2 and Beell3.
We see a clear sharpening effect as A increases, with molecules arriving within an earlier and
more localized time window. In this context we can interpret increasing inactivation as speed-
ing up the arrival of the signal at the nuclear membrane. We note that in the single particle sto-
chastic model (10), f, ,(t)Z; , corresponds to the particle’s first passage time density to reach
the nucleus, conditional on it reaching the nucleus before inactivation. Fig 4 therefore illus-
trates that the (conditional) density of random arrival times for an individual particle also
undergoes sharpening as the strength of inactivation is increased (setting N = 1 on the y-axis).

While the deterministic model shows the window in which the molecules arrive becomes
smaller as inactivation increases, the single-particle stochastic model (10) allows us to see how
much variation one would have in the number of molecules that successfully reach the nucleus.
We again assume that N, signaling molecules are activated uniformly on the interior of the cell
membrane, and that the molecules’ dynamics are completely independent. The number of mol-
ecules that reach the nucleus would then be a binomial random variable, N ~ B(Ny, Z; 5), in
N with parameter Z, . The average number of molecules to reach the nucleus would be
E[N] = N,Z, ,,, while the coefficient of variation in the number of molecules to reach the

N=Z, 1
CVINI = NyZy,, B E[N] .

for A large. Here we have used that the probability to reach the nucleus, Z, ;, approaches zero as
A — 00, see the next section, and approximated the square root in the numerator by the

nucleus is
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Fig 4. The signal in Bcelll that successfully reaches the nuclear membrane is sharpened as the inactivation rate, X, is increased. Here signal denotes the
expected rate of arrival of signaling molecules at the nuclear membrane when the number of arriving molecules overall is N. The expected rate of arrival is
plotted as a function of the time that has elapsed since the signaling molecules were released uniformly distributed across the interior of the cell membrane.
Note that the total number of arriving molecules is being held constant in the results plotted here, and this requires that more signaling molecules be released
when A is greater. This is achieved by choosing the total number of molecules that are released initially as N, = NZ; ;. As explained above, in a deterministic
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0 0.005

model with this initial condition, the signal corresponds to the flux (number of molecules per time) successfully reaching the nucleus (given by Nf, ,(£)Z;}).
For the single-particle stochastic model (10), we can alternatively define the signal to be f, ,,(£)Z; ;. This corresponds to the single particle’s first passage time
density to reach the nucleus, conditional on the molecule arriving before inactivation. The graph of this function is mathematically equivalent to the preceding
figure with the units N = 1 on the y-axis. A similar signal sharpening effect is observed in Bcell2 and Bcell3, see Fig H of S1 Text.

https://doi.org/10.1371/journal.pchi.1008356.9004

leading-order term of its Taylor series expansion about Z, j, = 0. Keeping NoZ, , fixed as the
inactivation rate is increased then preserves the expected number of molecules to reach the
nucleus. Moreover, (14) demonstrates that the relative variation in the number of molecules
that reach the nucleus will be small if the average number of molecules that reach the nucleus,
E[N], is sufficiently large. By modulating both the inactivation rate and the number of signal-
ing molecules released at the cell membrane, a cell can then tune both how localized the signal
is in time, and the noisiness in the number of molecules that successfully reach the nuclear
membrane.
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Fig 5. Strong signal inactivation can buffer out the effects of cellular substructure on the time to find the nucleus. (a) The ratio of the conditional mean first
passage time (MFPT) to reach the nucleus, (T ;) in the physiological case to the conditional MFPT in the no organelles case decreases significantly from its initial
value as A increases. For each cell the ratio approaches a number close to one, indicating that strong signal inactivation can completely buffer out the effect of cellular
substructure on the time to find the nucleus. (b) Difference of the ratio of (T} ) shown in (a) from its asymptotic limit (18). Note, (b) demonstrates that the slight
increase above one for the ratio (18) in Beelll is just the approach to its asymptotic limit, 1.125. The ratios (18) for Beell2 and Bcell3 both converge to 1 in (a).

https://doi.org/10.1371/journal.pchi.1008356.9005

Inactivation can provide robustness with respect to cellular substructure in
the time for a signal to reach the nucleus

In Fig 5a we plot the ratio of (T; ;) in the physiological case to the no organelles case. For very
small values of the inactivation rate the figure demonstrates that the presence of organelles can
significantly increase the time required for one diffusing molecule to reach the nucleus. In con-
trast, as A increases, for each B cell we see that the ratio decreases to a value close to one. That
is, strong signal inactivation seems to be able to buffer out the effect of cellular geometry. This
comes at the cost of a significantly decreased probability any individual signaling molecule will
reach the nucleus.

These simulations illustrate that the ratio of the MFPTs between the physiological and no
organelle cases is decreased for sufficiently strong signal inactivation. To understand the limit
to how much strong signal inactivation can buffer out the effect of organelle barriers in our
model, we now examine the large A asymptotic expansion of the conditional MFPT, (T; ;).
Our goal is to derive an explicit formula for the asymptotic limit of (T} ;) as L — oo that illus-
trates the role of the geometry of the cytosolic space. Our derivation demonstrates how the
effect of geometry on the limiting conditional MFPT arises. Readers interested solely in the
derived formula may skip ahead to (17).

By (12), knowing the asymptotic behavior of Z, ;, as L — oo would allow us to calculate the
behavior of (T ). In turn, the behavior of Z, ;, can be calculated from the integral representa-
tion (11). This will be determined by the short-time behavior of f(¢) due to the rapid decay of
the exponential for large A. We therefore begin by examining the behavior of f;, as t — 0. We
can estimate this short-time behavior by direct Taylor series expansion using a matrix
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exponential representation for the evolution operator, i.e.

B NPy g

VieCy,

= —Di’ Z (Ae™'g,) (%, 1)

VieCy

=S [P )

VieCy n=0

= 2 () ().

n=0 V;eCy n

To simplify this expression we make use of the relationship between powers of the discrete
Laplacian and geodesic (nearest-neighbor) graph distances.

Recall our assumption that g;,(x;) = 0 for all x; ¢ OCy,, and denote by G, C JC, the set of vox-
els in which g;,(x;) # 0 (i.e. the support of g;). If the particle is started randomly placed within
the voxels bordering the cell membrane then G, = 9C,, whereas if the particle is initially
started at a fixed point, x;, then G, = {x,}. Given a set of voxels V C C,, we define d(V, N,) to
be the shortest (integer) graph distance along a nearest-neighbor path from each voxel in V to
first reach a voxel in N,. Here by nearest-neighbor we mean the six nearest-neighbors to a
given voxel, two from each of the x, y and z directions. For example, if no voxel in V is within
Ny, but some voxel in V has a nearest neighbor that is within Nj,, then d(V,N,) = 1.

It is from the powers of the discrete Laplacian in (15) that the role of cytosolic geometry in
the short-time behavior of f,(t) arises, ultimately dictating the large A behavior of (T ;). As
shown in Lemma 1 of S1 Text, the {V; € Ch|(Ah)k gn(x;) # 0} will contain no voxels bordering
the nucleus until k = d(G,, N,) — 1. For any smaller k, one additional application of the dis-
crete Laplacian then simply moves probability mass within the cytosol. As such, mass is con-
served and we have the following result which is proven in Section SI1 of S1 Text

Theorem 2

> ((A)'g)(x) =0

V,€Cy

for1 <k<d(G,N,)— 1
With d, = d(G,, N,), the theorem implies that (15) can be simplified to

A0 =103 S 2 () (x)

n=d,~1V;€C;, n:

dy tdg—l

~ (2g - 1)' Z <(Ah)dggh> (xi), as £ = 0.

' VieG,

Assuming that d, > 1, we obtain the corresponding estimate for Z, , as A — oo by

Z,, = /OOC e Mf, (t)dt = %/090 ef,(sh") ds

d (16)
~ —h3D—d‘g Z ((Ah)dxgh) (x,), ask— oo.
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In Theorem 3 of S1 Text we prove this asymptotic formula holds. Taking logarithmic deriv-
atives, we find that

d d(G,,N,
(1) =~ log(z,) ~ WM oy oo (17)

In Fig D of S1 Text we show the convergence of (T} ;) to this asymptotic formula as A — oo.
Letd(G,,N,)

d(G,,N,),, the distance in the no organelle case. Define (T ) phys and (T u)n.o. analogously.

sy denote the distance from G, to the nucleus in the physiological case, with

The ratio of the conditional MFPTs then approaches

<Tk,h>phys ~ d(gh’ Nh)phys
<Tk.h>n,o. d(gh7 Nh)n.o, 7

as A — oo. (18)

That is, how much the effect of geometry on the search time can be buffered out by strong
inactivation in our model is essentially controlled by how the shortest path (nearest-neighbor)
graph distance from the initial set the particle can be placed in to the nucleus changes between
the physiological and no organelle cases. In particular, since the voxels within the cytosol in
the physiological case are always a strict subset of those in the no organelles case, we see the
ratio is always at least one (in the limit).

In Fig 5b we plot the difference between the ratio of the conditional MFPT's and the derived
asymptotic limit in (18). We see that for each cell the asymptotic limit is approached as A —
00, but that the approach is not always monotonic. In particular, the asymptotic limit (18)
does not appear to be a rigorous lower bound for how much the effect of geometry can be buft-
ered out over all possible inactivation rates.

If the diffusing molecule is started at a fixed location, x;, we obtain

<Tk1h>phys ~ d(xi’ Nh)phys
<T7\.,h>n,o. d(xi7 Nh) ’

n.o.

as A — 00,

the ratio of the shortest graph (nearest-neighbor) distances from x; to the nucleus in the two
cases. In particular, if the shortest path distance from x; to the nucleus is the same in both
cases, we find that the effect of organelle barriers on the conditional MFPT is completely fil-
tered out in the limit of strong signal inactivation.

In Section SI2 of S1 Text, we show analogous results to Fig 5 when the diffusing molecule is
started randomly within small patches of the cell membrane. We see similar qualitative behav-
ior for statistics of T) j,, and for the ratio of (T} ;) in the physiological to no organelles cases.
Note, however, that we observe a variation in how much the effect of geometry can be buffered
out as the patch of cell membrane where the signal is initiated moves about.

Discussion

Our results demonstrate that organelle barriers to the molecular diffusion of signaling mole-
cules can significantly slow the propagation of a signal from the cell membrane to the nucleus.
Such barriers also increase the variability in the distribution of times to reach the nucleus for
signals activated at different localized portions of the cell membrane. Strong signal inactivation
provides one potential mechanism to both buffer out the effect of organelle barriers, and to
reduce variability in the time at which signals reach the nucleus. Mechanisms to reduce such
variability may be needed to ensure robust functioning of pathways that involve pulsatile
responses. For example, the relative expression of the pituitary hormones LH and FSH is
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controlled by the pulse frequency of extracellular GnRH ligands [21]. Sufficient variability in
processing such signals might lead to improper expression levels through misidentification of
the pulse frequency.

Under the constraint that the expected number of molecules to reach the nucleus should be
fixed at N, the inactivation rate can be adjusted provided that the initial number of molecules
activated at the inner surface of the cell membrane are varied in a compensating manner.
Under these assumptions, Fig 4 demonstrates that the time for a signal to reach the nuclear
membrane can be made arbitrarily small by increasing the inactivation rate. This comes with a
clear cost though; increasing the rate of signal inactivation requires increasing numbers of sig-
naling molecules to be activated at the cell membrane to maintain a fixed number of molecules
that successfully reach the nucleus.

Our conclusions can be generalized in several ways. First, while we focused on the propaga-
tion of a signal between the cell and nuclear membranes, our results should hold more gener-
ally for a variety of signal sources and targets within cells. In more general signaling pathways
they should also apply to the most downstream signaling component, presuming it is not acti-
vated right near the nuclear membrane. Finally, we note that while signaling pathways can
involve complicated reaction kinetics throughout the cytosol, it may be that in some cases
their overall effect can be approximated as a single signal that propagates throughout the cyto-
sol and is inactivated on some timescale.

Regime of Model Applicability: It is important to note that the large A asymptotic scaling
in (17), and convergence to the ratio (18), may require relatively large values of A (on the order
of L between 10* s™" and 10° s™* for D = 10(um)’s ™", see Fig 5b and Fig D of S1 Text). Mole-
cules that successfully reach the nucleus would on average arrive on time scales of 10™*s™" or
less, see Fig D of S1 Text, which would not necessarily be expected to be physically plausible in
a typical mammalian cell. More generally, as L — 0o these results rely on the (increasingly)
short-time behavior of the continuous-time random walk model (10). However, both the con-
tinuous diffusion model (7) and the continuous time random walk model (10) become physi-
cally unrealistic as models for the very short-time motion of a molecule within a cell.
Moreover, the very short-time behavior of the semi-discrete model (10) and the continuous
diffusion model (7) would not be expected to agree, since the former only approximates the
latter on sufficiently large timescales.

The relative behavior of the two models is illustrated in Fig I and Section SI3 of S1 Text.
There we compare the analytical PDE solution, when the nuclear membrane and cell mem-
brane are represented as concentric spheres, to the numerical solution of the corresponding
semi-discrete model on a Cartesian grid approximation of the cytosolic region between the
spheres. We find that for a mesh spacing of h = 0.0351ym, comparable to that of our B cell
reconstructions, (T,) and (T;_,) agree exceptionally well until the asymptotic A ™" scaling takes
over in the semi-discrete model. Then we see a discrepancy due to the different short-time
behavior of the semi-discrete model, with the A" scaling, and the exact solution to the contin-
wous diffusion PDE, which exhibits a A~/ scaling, see (SI5) in S1 Text.

For these reasons the usefulness of understanding the large A asymptotic behavior is not in
the predicted scaling of (T; 1) (17), but in the decreasing asymptotic behavior of the condi-
tional MFPT ratio (18). This asymptotic limit provides insight into why, on physiological time-
scales, we observe a decrease in the effect of organelle barriers on signal propagation. Namely,
signal inactivation filters out the molecules that would have had to traverse longer paths to get
to the nucleus. This reduces differences between the lengths of paths which molecules that
reach the nucleus must take in the organelle filled, and organelle empty, cell.

Conjectures and Open Problems: For the continuous diffusion model (7), let G denote the
set on which g(x) # 0 (i.e. the support of g(x)). For example, if the particle is started uniformly
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on the inner surface of the cell membrane than G = 0C. We conjecture that the corresponding
ratio of conditional MFPTs satisfies

<T7\>phys ~ d(g’ aZ\])phys
<T >nAo, d(gv aN)n.o. ’

A

as A — 00,

where d(G, ON) refers to the shortest path geodesic distance through the cytosol from the sig-
nal initiation location, G, to the nuclear membrane ON. We have obtained partial results to this
effect when there are straight line paths from G to N and the principal curvatures of the
nuclear membrane satisfy certain constraints, but the general case remains an open problem.

The geodesic distance has recently been suggested to also arise in the context of the first
searcher problem. Here one is interested in the average time at which the first of N searchers
reaches a target as the number of searchers, N, becomes large (i.e. N — 00). In [22] it was sug-
gested that, similar to our observations for strong signal inactivation, this limit also filters out
all but the shortest paths, with the average time for the first searcher to reach a target scaling
like the square of the geodesic distance. An interesting future question would be to understand
the interplay of these two problems; i.e. the time required for the first of many searchers to suc-
cessfully reach a binding target in the presence of strong signal inactivation.

Finally, we note that it is an open question to understand whether spatial signaling path-
ways [3, 23, 24] involve more general mechanisms for filtering out the effect of spatial hetero-
geneity within the cytosolic environment. It would be particularly interesting to investigate
such questions while also studying the role of two effects that we have not explicitly resolved;
crowding between molecules within the cytosol and active transport of signaling molecules to
the nuclear membrane. In addition, in this work we considered only the simplest of signaling
components: linear inactivation. For many signaling pathways, including BCR signaling in B
cells and general protein kinase signaling, inactivation is more appropriately modeled as
occurring through a nonlinear interaction with a phosphatase [4, 5]. Such pathways also com-
monly involve cascades of interactions [3], which could conceivably have additional mecha-
nisms that buffer out the influence of cellular substructure on signal timing. We hope to
explore such models in future work.

Cell signaling and computational modeling are an enormous field with a breadth of studies,
both spatial and non-spatial, that have been carried out, see the many references of [25, 26].
Within the field a variety of studies have investigated the spatial dynamics of cell signaling,
which can be critical to the proper function and decision making of cells, see the review [23]
and references. In particular, one focus within these works is understanding how cell shape
and organelle positioning can influence signaling [1, 4], the former reviewed in [27]. Our work
complements such studies, demonstrating how internal organelle barriers can impact signal-
ing, and provides insight into mechanisms that regulate the timing of signal propagation. It
represents another step in developing detailed, anatomically accurate whole-cell spatial models
that can account for the inherent stochasticity in both spatial transport and chemical reactions
[28].

Methods
Reconstruction of cellular substructure

To reconstruct the locations of organelles and membrane surfaces, we made use of soft X-ray
tomographic (SXT) imaging of cells. For an overview of SXT imaging, we refer the reader to
[11]. In this work we used reconstructions of three human B cells (GM 12878 lymphoblastoids)
from [29]. The experimental protocol for obtaining these reconstructions was also described
in [29]. SXT is similar in concept to medical X-ray CT imaging, but uses soft X-rays in the
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“water window,” which are absorbed by carbon and nitrogen dense organic matter an order of
magnitude more strongly than by water [11]. As the absorption process satisfies the Beer—
Lambert law, the measured linear absorption coefficient (LAC) of one voxel of a 3D recon-
struction is linearly related to the density of organic material within that voxel [11]. In practice,
SXT reconstructions are able to achieve resolutions of 50 nm or less. For all reconstructions
used in this work, the underlying voxels were cubes with sides of length 0.03515625um.
Another advantage of SXT is in the minimal preprocessing of cells that is required before
imaging. Cells are cryogenically preserved, but no segmentation, dehydration, or chemical fix-
ation is necessary. Fig 1a shows the reconstructed LAC values from one image plane within a
3D SXT reconstruction of Beelll.

As discussed in [30], many organelles have different underlying densities of organic mate-
rial, and therefore attenuate soft X-rays differently. This is reflected in their having different
LAC values. Exploiting this property, 3D SXT reconstructions were labeled and segmented in
Amira [31], using a combination of Amira’s automated segmentation tools based on LAC val-
ues, followed by hand segmentation to refine segmentation boundaries [30]. Each underlying
voxel within the 3D SXT reconstruction was labeled as belonging to one of a variety of organ-
elles (heterochromatin, euchromatin, endoplasmic reticulum, mitochondria, Golgi apparatus,
bulk cytosol, etc.). Fig 1c shows one plane of the resulting label field.

Numerical solution of semi-discrete diffusion eq (3)

The semi-discrete diffusion eq (3) was solved in PETSc 3.7.7 [32, 33] using the adaptive
Runge-Kutta Chebyshev (RKC) method of [34] with both the absolute and relative errors set
to 107°. To evaluate the solution, pj(x, t), at larger times, it was approximated by a truncated
eigenvector expansion using all terms with eigenvalues having a magnitude less than one. The
corresponding eigenvalues and eigenvectors of the discrete Laplacian (4) were calculated in
SLEPc 3.7.4 [35] using the Krylov-Schur solver with default parameter values and tolerances.
For all simulations the decision to switch from the RKC solver to the eigenvector expansion
was made by looking over the interval 1 < t < 10 for where the two solutions first differed by
an absolute error of less than 10> and a relative error of less than .01.

To numerically evaluate the integrals defining statistics such as Z, j, and (T ), we split
them into two pieces. The integral from zero to the time at which the PDE solver switched
from the RKC method to the truncated eigenvector expansion, and the integral from this time
to infinity. The first integral was evaluated using the cumulative trapezoidal rule at the discreti-
zation times used in the RKC method. The second integral was evaluated by analytically inte-
grating the truncated eigenvector expansion. Within these integrals the probability density
function for the molecule to reach the nucleus was calculated directly from the flux into voxels
of the nucleus,

D M
AO-25 3 pio),
i=1 JEN(Vi;Ny)

using the numerically computed solutions.

Supporting information

S1 Text. Supporting information for “Strong intracellular signal inactivation produces
sharper and more robust signaling from cell membrane to nucleus”.
(PDF)
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