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A key objective in engineering problems is to predict an unknown exper-
imental surface over an input domain. In complex physical experiments this
may be hampered by response censoring which results in a significant loss of
information. For such problems, experimental design is paramount for max-
imizing predictive power using a small number of expensive experimental
runs. To tackle this, we propose a novel adaptive design method, called the in-
tegrated censored mean-squared error (ICMSE) method. The ICMSE method
first estimates the posterior probability of a new observation being censored,
then adaptively chooses design points that minimize predictive uncertainty
under censoring. Adopting a Gaussian process regression model with prod-
uct correlation function, the proposed ICMSE criterion is easy to evaluate
which allows for efficient design optimization. We demonstrate the effective-
ness of the ICMSE design in two real-world applications on surgical planning
and wafer manufacturing.

1. Introduction. In many engineering problems a key objective is to predict an unknown
experimental surface over an input domain. However, for complex physical experiments one
can encounter censoring, that is, the experimental response is missing or partially measured.
Censoring arises from a variety of practical experimental constraints, including limits in mea-
surement devices, safety considerations of experimenters, and a fixed experimental time bud-
get. Figure 1 provides an illustration: in such cases the experimental response of interest is
latent, and the observed measurement is subject to censoring. Here, censoring can result in
significant loss of information which leads to poor predictive performance (Brooks (1982)).
For example, suppose an engineer wishes to explore how pressure in a nuclear reactor changes
under different control settings. Due to safety concerns, experiments are forced to stop if the
pressure hits a certain upper limit, leading to censored responses. To further complicate mat-
ters, the input region, which results in censoring, is typically unknown prior to experiments
and needs to be estimated from data.

Given the presence of censoring in physical experiments, it is, therefore, of interest to
carefully design experimental runs and to best model and predict the experimental response
surface. We present a new integrated censored mean-squared error (ICMSE) method which

FIG. 1. An illustration of response censoring in the measurement process. The goal is to predict the response
surface for the experiment prior to censoring.
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sequentially selects physical experimental runs to minimize predictive uncertainty under cen-
soring. ICMSE leverages a Gaussian process model (GP; Sacks et al. (1989))—a flexible
Bayesian nonparametric model—for the response surface to obtain an easy-to-evaluate de-
sign criterion that maximizes GP’s predictive power under censoring. We consider two fla-
vors of ICMSE. The first is a “single-fidelity” ICMSE method for sequentially designing
(potentially) censored physical experiments. The second is a “bifidelity” ICMSE method for
sequentially designing (potentially) censored physical experiments, given auxiliary computer
simulation data. The two settings are motivated from the following two applications.

1.1. 3D-printed aortic valves for surgical planning. The first motivating problem con-
cerns the design of 3D-printed tissue-mimicking aortic valves for heart surgeries. With ad-
vances in additive manufacturing (Gibson, Rosen and Stucker (2014)), 3D-printed medical
prototypes (Rengier et al. (2010)) play an increasingly important role in presurgical studies
(Qian et al. (2017)). They are particularly helpful in complicated heart diseases, for example,
aortic stenosis, where 3D-printed aortic valves can be used to select the best surgical option
with minimal postsurgical complication (Chen et al. (2018b)). The printed aortic valve (see
Figure 2(a)) contains a biomimetic substructure: an enhancement polymer (white) is embed-
ded in a substrate polymer (clear); this is known as metamaterial (Wang et al. (2016)) in the
materials engineering literature. The goal is to build a model to understand how the stiffness of
the metamaterials is affected by the geometry of the enhancement polymer (see Figure 2(b)).
This model can then be used by doctors to select a polymer geometry that mimics the tar-
get stiffness of the specific patient—a procedure known as “tissue-mimicking” (Chen et al.
(2021)). An accurate tissue-mimicking is paramount for surgery success, since inaccurate
stiffness may lead to severe postsurgery complications and death.

Using earlier terminology, this is a bifidelity modeling problem involving two types of
experiments: a preconducted database of computer simulations and patient-specific physi-
cal experiments. The physical experiments here are very costly: we need to 3D print each
metamaterial sample, then physically test its stiffness using a load cell. Furthermore, the
measurement from physical experiments may be censored, due to an inherent upper limit of
the testing machine. This is shown in Figure 2(c): if the metamaterial sample is stiffer than
the load cell (i.e., a spring), the experiment is forced to stop to prevent breakage of the load
cell. One workaround is to use a stiffer load cell; however, it is oftentimes not a preferable
option: a stiffer load cell with a broader measurement range can be very expensive, costing
over a hundred times more than the standard integrated load cells. Here, the proposed ICMSE
method can adaptively design experimental runs to maximize the predictive power of a GP
model under censoring. We show later in Section 4.2, ICMSE can lead to better predictions
for younger patients (with stiff tissues which can be censored in experiments) and older pa-
tients (with soft tissues which are uncensored in experiments) (Sicard et al. (2018)). This

FIG. 2. Illustrating the surgical planning application: (a) a 3D-printed aortic valve with enhanced metamate-
rial, (b) simulation inputs in the computer experiment, (c) visualizing the physical experiment and the measure-
ment censoring of the load cell (labeled “F”).
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FIG. 3. Illustrating the wafer manufacturing application: (a) visualizing the thermal processing procedure with
the six input parameters, (b) visualizing the measurement censoring of the temperature sensor array.

then leads to greatly improved tissue-mimicking performance for personalized printed valves
(Chen et al. (2021)) which is crucial for improving heart surgery success rate (Qian et al.
(2017)). Our method is particularly valuable in urgent heart surgeries, where one can perform
only a small number of runs prior to the actual surgery.

1.2. Thermal processing in wafer manufacturing. The second problem considers the de-
sign of the semiconductor wafer manufacturing process (Jin, Chang and Shi (2012), Quirk
and Serda (2001)). Wafer manufacturing involves processing silicon wafers in a series of re-
finement stages to be used as circuit chips. Among these stages, thermal processing is one of
the most important stages (Singh, Fakhruddin and Poole (2000)), since it facilitates the nec-
essary chemical reactions and allows for surface oxidation. Figure 3(a) illustrates the typical
thermal processing procedure: a laser beam (in orange) is moved back and forth over a rotat-
ing wafer. The output of interest here is the minimal temperature over the whole wafer after
heating; a higher minimal temperature facilitates better completeness of chemical reactions
which leads to better quality of the final wafer product (Goodson et al. (1993), Van Gurp and
Palmen (1998)). However, higher temperatures may result in higher energy costs for heating.
With the fitted predictive model on minimal wafer temperature, industrial engineers can then
use this to optimize a heating process which not only is economical (i.e., conserves heating
power) but also meets target quality requirements.

However, laser heating experiments are quite costly, involving high material and operation
costs. In industrial settings the minimal wafer temperature is often subject to censoring, due
to the nature of measurement procedures. This is shown in Figure 3(b): the wafer temperature
is typically measured by either an array of temperature sensors or a thermal camera, both of
which have upper measurement limits (Feteira (2009)). The minimal temperature is censored
when the whole sensor array reaches the measurement limits. While more sophisticated sen-
sors exist, they are much more expensive and may lead to tedious do-overs of experiments.
The proposed single-fidelity ICMSE method can be used to adaptively design experimental
runs that maximize the predictive power of a GP model under censoring. We show later in
Section 4.1 that the resulting model using ICMSE enjoys improved predictive performance
for high wafer temperatures (that are potentially censored) and low temperatures (that are not
censored) to ensure flexibility for different quality requirements. The fitted model can then be
used to find an optimal thermal processing setting which minimizes operation costs subject
to target quality requirements.

1.3. Literature. GP regression (or kriging; see Mathéron (1963)) is widely used as a
predictive model for expensive experiments (Sacks et al. (1989)) and has been applied in cos-
mology (Kaufman et al. (2011)), aerospace engineering (Mak et al. (2018)), healthcare (Chen
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et al. (2021)), and other applications. The key appeals of GPs are the flexible nonparamet-
ric model structure and closed-form expressions for prediction and uncertainty quantification
(Santner, Williams and Notz (2018)). In the engineering literature, GPs have been used for
modeling expensive physical experiments (Ankenman, Nelson and Staum (2010)), integrat-
ing computer and physical experiments (Kennedy and O’Hagan (2001)), and incorporating
various constraints (Da Veiga and Marrel (2012), Ding, Mak and Wu (2019), Groot et al.
(2012), Henkenjohann et al. (2005), López-Lopera et al. (2018)). We will adapt in this work
a recent censored GP model (Cao et al. (2018)) which integrates censored physical experi-
mental data.

There have been several works in the literature on experimental design under response
censoring; see, for example, Borth (1996), Monroe and Pan (2008). These methods, however,
presume a parametric form for the response surface, which may be a dangerous assumption
for black-box experiments, hence the recent shift for more nonparametric models, such as
GPs. Existing design methods for GPs can be divided into two categories—space-filling and
model-based designs. Space-filling designs aim to fill empty gaps in the input space; this
includes minimax designs (Johnson, Moore and Ylvisaker (1990)), maximin designs (Morris
and Mitchell (1995)), and maximum projection designs (Joseph, Gul and Ba (2015)). Model-
based designs instead maximize an optimality criterion based on an assumed GP model; this
includes integrated mean-squared error designs (Sacks et al. (1989)) and maximum entropy
designs (Shewry and Wynn (1987)). Such designs can also be implemented sequentially in
an adaptive manner; see Bect, Bachoc and Ginsbourger (2019), Chen, Wang and Wu (2017),
Lam (2008), Xiong, Qian and Wu (2013). Recently, Binois et al. (2019) proposed a design
method for a heteroscedastic GP model (i.e., under input-dependent noise); this provides a
flexible framework that allows for different correlation functions, closed-form gradients for
optimization, and batch sequential implementation.

The above GP design methods, however, do not consider potential response censoring.
The key challenge in incorporating censoring information is that an experimenter does not
know which inputs may lead to censoring prior to experimentation, since the response sur-
face is black-box. The proposed ICMSE method addresses this by leveraging a GP model
on the unknown response surface: it first estimates the posterior probability of a potential
observation being censored and then finds design points that minimize predictive uncertainty
under censoring. Under product correlation functions our method admits an easy-to-evaluate
design criterion which allows for efficient sequential sampling. We show that ICMSE can
yield considerably improved predictive performance over existing design methods (which do
not consider censoring) in both motivating applications.

1.4. Structure. Section 2 presents the ICMSE design method for the single-fidelity set-
ting with only physical experiment data. Section 3 extends the ICMSE method for the bi-
fidelity setting, where auxiliary computer simulation data are available. Section 4 demon-
strates the effectiveness of ICMSE in the two motivating applications. Section 5 concludes
the work.

2. ICMSE design. We now present the ICMSE design method for the single-fidelity
setting; a more elaborate bifidelity setting is discussed later in Section 3. We first review
the GP model for censored data, and derive the proposed ICMSE design criterion. We then
visualize this via a one-dimensional (1D) example and provide some insights.

2.1. Modeling framework. We adopt the following model for physical experiments. Let
xi ∈ [0,1]p be a vector of p input variables (each normalized to [0,1]), and let y ′

i be its latent
response from the physical experiment prior to potential censoring (see Figure 1). We assume

y′
i = ξ(xi ) + εi, i = 1,2, . . . , n,(2.1)
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where ξ(xi ) is the mean of the latent response y′
i at input xi and εi is the corresponding

measurement error. Since ξ(·) is unknown, we further assign to it a GP prior with mean μξ ,
variance σ 2

ξ , and correlation function Rθξ
(·, ·) with parameters θ ξ . This is denoted as

(2.2) ξ(·) ∼ GP
(
μξ ,σ

2
ξ Rθξ

(·, ·)).
The experimental noise εi

i.i.d.∼ N (0, σ 2
ε ) is assumed to be i.i.d. normally distributed and in-

dependent of ξ(·).
For simplicity, we consider only the case of right-censoring below, that is, censoring of

the response only when it exceeds some known upper limit (this is the setting for both mo-
tivating applications). All equations and insights derived in the paper hold analogously for
the general case of interval censoring, albeit with more cumbersome notation. Suppose, from
n experiments, no responses are observed without censoring, and nc responses are right-
censored at limit c, where no + nc = n. The training set experimental data can then be
written as the set Yn = {yo,y′

c ≥ c}, where yo is a vector of observed responses at inputs
xo = x1:no = {x1, . . . ,xno}, y′

c is the latent response vector for inputs in censored regions
xc = x(no+1):n prior to censoring, and c = [c, . . . , c]T is the vector of the right-censoring
limit. Assuming known model parameters, a straightforward adaptation of the equations (11)
and (12) in Cao et al. (2018) gives the following expressions for the conditional mean and
variance of ξ(xnew) at new input xnew:

ξ̂ (xnew) = E
[
ξ(xnew)|Yn

] = μξ + γ T
n,new�−1

n

([yo, ŷc]T − μξ · 1n

)
,(2.3)

s2(xnew) = Var
[
ξ(xnew)|Yn

] = σ 2
ξ − γ T

n,new
(
�−1

n − �−1
n ��−1

n

)
γ n,new.(2.4)

Here, �n = σ 2
ξ [Rθξ

(xi ,xj )]ni=1
n

j=1
+ σ 2

ε In, γ n,new = σ 2
ξ [Rθξ

(x1,xnew), . . . ,Rθξ
(xn,xnew)]T ,

1n is a one-vector of length n, and In is an n×n identity matrix. Furthermore, ŷc = E[y′
c|Yn]

is the expected response for the latent vector y′
c, given the dataset Yn, �c = Var[y′

c|Yn] is
its conditional variance, and � = diag(0no,�c). The computation of these quantities will
be discussed later in Section 3.3. The conditional mean (2.3) is used to predict the mean
experimental response at an untested input xnew, and the conditional variance (2.4) is used to
quantify predictive uncertainty.

In the case of no censoring (i.e., Yn = {yo}), equations (2.3) and (2.4) reduce to

ξ̂ (xnew) = E
[
ξ(xnew)|Yn

] = μξ + γ T
n,new�−1

n (yo − μξ · 1n), and(2.5)

s2(xnew) = Var
[
ξ(xnew)|Yn

] = σ 2
ξ − γ T

n,new�−1
n γ n,new.(2.6)

These are precisely the conditional mean and variance expressions for the standard GP re-
gression model (Santner, Williams and Notz (2018)) which is as expected.

2.2. Design criterion. Now, given data Yn from n experiments (no of which are ob-
served exactly; nc of which are censored), we propose a new design method that accounts
for the posterior probability of a potential observation being censored. Let xn+1 be a po-
tential next input for experimentation, Y ′

n+1 be its latent response prior to censoring, and
Yn+1 = Y ′

n+1(1 − 1{Y ′
n+1≥c}) + c1{Y ′

n+1≥c} be its corresponding observation after censoring,
with 1{·} denoting the indicator function. The proposed method chooses the next input x∗

n+1
as

x∗
n+1 = argmin

xn+1

ICMSE(xn+1)

:= argmin
xn+1

∫
[0,1]p

EYn+1|Yn

[
Var

(
ξ(xnew)|Yn, Yn+1

)]
dxnew.

(2.7)
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The design criterion ICMSE(xn+1) can be understood in two parts. First, the term
Var(ξ(xnew)|Yn, Yn+1) quantifies the predictive variance (i.e., mean-squared error, MSE) of
the mean response at an untested input xnew, given both the training data Yn and the poten-
tial observation Yn+1. This is a reasonable quantity to minimize for design, since we wish
to find which new input xn+1 can minimize predictive uncertainty. Second, note that this
MSE term cannot be used directly as a criterion, since it depends on the potential observation
Yn+1, which is yet to be observed. One way around this is to take the conditional expec-
tation EYn+1|Yn[·] (more on this below). Finally, the integral over [0,1]p yields the average
predictive uncertainty over the entire design space.

The proposed criterion in (2.7) can be viewed as an extension of the sequential integrated
mean-squared error (IMSE) design (Lam (2008), Santner, Williams and Notz (2018)) for
the censored response setting. Assuming no censoring (i.e., Yn = {yo}), the sequential IMSE
design chooses the next input x∗

n+1 by minimizing

min
xn+1

IMSE(xn+1) := min
xn+1

∫
[0,1]p

Var
(
ξ(xnew)|Yn, Y

′
n+1

)
dxnew.(2.8)

Note that, in the uncensored setting, the MSE term Var(ξ(xnew)|Yn, Y
′
n+1) in (2.8) does not

depend on the potential observation Y ′
n+1 which allows the criterion to be easily computed in

practice. However, in the censored setting at hand, not only does this MSE term depend on
Y ′

n+1 but such an observation may not be directly observed due to censoring. The conditional
expectation EYn+1|Yn[·] in (2.7) addresses this by accounting for the posterior probability of
censoring in Y ′

n+1.
One attractive feature of the ICMSE criterion (2.7) is that it will be adaptive to the exper-

imental responses from data. The criterion (2.7) inherently hinges on whether the potential
observation Yn+1 is censored (i.e., Y ′

n+1 ≥ c) or not (i.e., Y ′
n+1 < c), but this censoring behav-

ior needs to be estimated from experimental data. Viewed this way, the ICMSE criterion can
be broken down into two steps; it: (i) estimates the posterior probability of a new observation
being censored from data and then (ii) samples the next point that minimizes the average pre-
dictive uncertainty under censoring. We will show how our method adaptively incorporates
the posterior probability of censoring Yn+1 for sequential design, in contrast to the existing
IMSE method (2.8).

2.2.1. No censoring in training data. To provide some intuition, consider a simplified
scenario with no censoring in the training set, that is, Yn = {yo} (censoring may still occur
for the new Yn+1). In this case the following proposition gives an explicit expression for the
ICMSE criterion.

PROPOSITION 1. Suppose there is no censoring in training data, that is, Yn = {yo}.
Then, the ICMSE criterion (2.7) has the explicit expression

ICMSE(xn+1) =
∫
[0,1]p

σ 2
new − hc(xn+1)ρ

2
new(xn+1)σ

2
new dxnew, where

hc(xn+1) = h(zc) = �(zc) − zcφ(zc) + φ2(zc)

1 − �(zc)
, zc = c − μn+1

σn+1
.

(2.9)

Here, σ 2
new = Var[ξ(xnew)|Yn], ρnew(xn+1) = Corr[ξ(xn+1), ξ(xnew)|Yn], μn+1 =

E[ξ(xn+1)|Yn], and σ 2
n+1 = Var[ξ(xn+1)|Yn] follow from (2.5) and (2.6). φ(·), and �(·)

are the probability density and cumulative distribution functions for the standard normal
distribution.
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FIG. 4. Visualizing the censoring adjustment function h(zc), where zc is the normalized right-censoring limit.

In words, μn+1 is the predictive mean at xn+1, given data Yn, σ 2
n+1 and σ 2

new are the pre-
dictive variances at xn+1 and xnew, respectively, and ρnew(xn+1) is the posterior correlation
between ξ(xn+1) and ξ(xnew). Note that the p-dimensional integral in (2.9) can also be effi-
ciently computed in practice; we provide more discussion later in Corollary 1. The proof of
this proposition can be found in Appendix A.2 of the Supplementary Material.

To glean intuition from the criterion (2.9), we compare it with the existing sequential IMSE
criterion (2.8). Under no censoring in training data (i.e., Yn = {yo}), (2.8) can be rewritten as

IMSE(xn+1) =
∫
[0,1]p

σ 2
new − ρ2

new(xn+1)σ
2
new dxnew.(2.10)

Comparing (2.10) with (2.9), we note a key distinction in the ICMSE criterion: the presence
of hc(xn+1) = h(zc), where zc is the normalized right-censoring limit under the posterior dis-
tribution at xn+1. We call h(·) the censoring adjustment function. Figure 4 visualizes h(zc)

for different choices of zc. Consider first the case of zc large. From the figure we see that
h(zc) → 1 as zc → ∞ in which case the proposed ICMSE criterion (2.9) reduces to the stan-
dard IMSE criterion (2.10). This makes sense intuitively: a large value of zc (i.e., a high
right-censoring limit) means that a new observation at xn+1 has little posterior probability of
being censored at c. In this case the ICMSE criterion (which minimizes predictive variance
under censoring) should then reduce to the IMSE criterion (which minimizes predictive vari-
ance ignoring censoring). Consider next the case of zc small. From the figure, we see that
h(zc) → 0 as zc → −∞, and the proposed criterion (2.9) reduces to the integral of σ 2

new.
Again, this makes intuitive sense: a small value of zc (i.e., a low right-censoring limit) means
a new observation at xn+1 has a high posterior probability of being censored. In this case
the ICMSE criterion reduces to the predictive variance of the testing point xnew, given only
the first n training data points, meaning a new design point at xn+1 offers little reduction in
predictive variance. Viewed this way, the proposed ICMSE criterion modifies the standard
IMSE criterion by accounting for the posterior probability of censoring via the censoring
adjustment function h(zc).

Equation (2.9) also reveals an important trade-off for the proposed design under censor-
ing. Consider first the standard IMSE criterion (2.10) which minimizes predictive uncertainty
under no censoring. Since the first term σ 2

new does not depend on the new design point xn+1,
this uncertainty minimization is achieved by maximizing the second term ρ2

new(xn+1)σ
2
new.

This can be interpreted as the variance reduction from observing Y ′
n+1 (Gramacy and Ap-

ley (2015)). Consider next the proposed ICMSE criterion (2.9) which maximizes the term
h(zc)ρ

2
new(xn+1)σ

2
new. This can further be broken down into: (i) the maximization of vari-

ance reduction term ρ2
new(xn+1)σ

2
new and (ii) the maximization of the censoring adjustment

function h(zc). Objective (i) is the same as for the standard IMSE criterion; it minimizes
predictive uncertainty assuming no response censoring. Objective (ii), by maximizing the
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censoring adjustment function h(zc), aims to minimize the posterior probability of the new
design point being censored. Putting both parts together, the ICMSE criterion (2.9) features
an important trade-off: it aims to find a new design point that jointly minimizes predictive
uncertainty (in the absence of censoring) and the posterior probability of being censored.

2.2.2. Censoring in training data. We now consider the general case of censored training
data Yn = {yo,y′

c ≥ c}. The following proposition gives an explicit expression for the ICMSE
criterion.

PROPOSITION 2. Given the censored data Yn = {yo,y′
c ≥ c}, we have

ICMSE(xn+1) =
∫
[0,1]p

σ 2
new − γ T

n+1,new�−1
n+1Hc(xn+1)�

−1
n+1γ n+1,new dxnew,(2.11)

where σ 2
new = Var[ξ(xnew)|Yn] and γ n+1,new and �n+1 follow from (2.3) and (2.4). The ma-

trix Hc(xn+1) has an easy-to-evaluate expression given in Appendix A.3 of the Supplementary
Material.

Here, σ 2
new is the predictive variance at point xnew, conditional on the data Yn. The full

expression for (n + 1) × (n + 1) matrix Hc(xn+1), while easy-to-evaluate, is quite long
and cumbersome; this expression is provided in Appendix A.3 of the Supplementary Ma-
terial. The key computation in calculating Hc(xn+1) is evaluating several orthant probabili-
ties from a multivariate normal distribution. The proof for this proposition can be found in
Appendix A.3. Section 3.3 and Appendix C provide further details on computation.

While this general ICMSE criterion (2.11) is more complex, its interpretation is quite
similar to the earlier criterion; its integrand contains a posterior variance term conditional
on data Yn and a variance reduction term from the potential observation Yn+1. The matrix
Hc(xn+1) on the variance reduction term serves a similar purpose to the censoring adjustment
function. A large value of Hc(xn+1) (in a matrix sense) suggests a low posterior probability of
censoring for a new point xn+1, whereas a small value suggests a high posterior probability of
censoring. This again results in the important trade-off for sequential design under censoring:
the proposed ICMSE criterion aims to find the next design point which not only: (i) minimizes
predictive uncertainty of the fitted model in the absence of censoring but also (ii) minimizes
the posterior probability that the resulting observation is censored. The posterior probability
is adaptively learned from the training data and is not considered by the standard IMSE
criterion.

2.3. An illustrative example. We illustrate the ICMSE criterion using a 1D example. Sup-
pose the mean response of the physical experiment is

(2.12) ξ(x) = 0.5 sin
(
10(x − 1.02)2) − 1.25(x − 0.75)(2x − 0.25) + 0.2,

with measurement noise variance σ 2
ε = 0.12. Further, suppose censoring occurs above an

upper limit of c = 0.55. The initial design consists of six equally-spaced runs which result in
five observed runs and one censored run. The Gaussian correlation function is used for Rθξ

,
with model parameters estimated via maximum likelihood.

We compare the ICMSE method (2.11) with IMSE methods. Note that, from Section 2.2,
the standard IMSE criterion (2.8) cannot be directly applied here, since it depends on the
potential observation Y ′

n+1 which is unobserved. We adopt the following two variants of
IMSE for the censored setting. The first method, “IMSE-Impute,” is a simple baseline which
imputes the censored responses in the training data with the known measurement limit c. The
new design point is then optimized, assuming its corresponding response Y ′

n+1 is not subject
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FIG. 5. The 1D illustrative example in (2.12): (a) shows the design criteria of the next run x7 for the considered
methods. (b), (c), and (d) show the three sequential runs (x∗

7 , x∗
8 , x∗

9 ) using ICMSE, IMSE-Impute, and IMSE-Cen,
respectively, with the censored regions shaded in red. Top plots show the true function ξ(·) (black line) and the
predictor ξ̂ (·) (dashed line) with initial observed runs (black crosses, with censored runs indicated by red vertical
lines) and sequential points (numbered). Bottom plots show the corresponding predictive standard deviation.

to censoring. The second method, “IMSE-Cen,” integrates the censored runs (in training data)
using the censored GP model (2.3)–(2.4). The new design point is again optimized, assuming
its response Y ′

n+1 is not subject to censoring. In contrast, the proposed ICMSE method (2.11)
considers both censored training data and the possibility of censoring in the new observation
Y ′

n+1 within the design criterion. For a fair comparison we use the censored GP model (2.3)–
(2.4) for evaluating predictive performance for all design methods.

Figure 5(a) shows the proposed criterion for the ICMSE method (in orange). It selects the
next design point at x∗

7 = 0.068 which balances the two desired properties from the ICMSE
criterion. First, it avoids regions with high posterior probabilities of response censoring, due
to the presence of Hc(·) in (2.11). The next point x∗

7 , which minimizes (2.11), subsequently
avoids the censored regions (shaded red), as desired. In contrast, Figure 5(a) also shows
the design criteria for IMSE-Impute (green) and IMSE-Cen (blue). We see that both IMSE
methods choose the next point within the censored regions, as the IMSE design criterion does
not consider the probability of a new observation being censored. Second, the next point x∗

7
chosen by ICMSE minimizes the overall predictive uncertainty for the mean function ξ(·),
since the ICMSE criterion is small in regions away from existing design points. This can
be seen within the region [0.2,0.5], where local minima of the ICMSE criterion are found
between training points.

The top plots in Figure 5(b)–(d) show the next three design points (x∗
7 , x∗

8 , x∗
9 ) from the

three considered design methods as well as the final predictor ξ̂ (·), using the censored GP
model (2.3)–(2.4) with all nine points. The bottom plots in Figure 5(b)–(d) show the cor-
responding predictive standard deviation. We see that ICMSE yields noticeably better pre-
dictive performance, compared to the two IMSE methods. One reason is that the proposed
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TABLE 1
Predictive performance (in RMSE) for three sequential runs in the 1D example (2.12), using ICMSE and the two

IMSE baselines (IMSE-Impute and IMSE-Cen)

IMSE-Impute IMSE-Cen ICMSE

6 runs 0.260 0.260 0.260
7 runs 0.214 0.214 0.119
8 runs 0.172 0.236 0.102
9 runs 0.153 0.203 0.096

criterion makes use of the censored GP model for both modeling and design, whereas the
two baselines do not. Table 1 shows the root mean-squared error (RMSE) after the three se-
quential runs over a test set of 1000 equally-spaced points. The proposed ICMSE method
achieves much smaller errors compared to the two IMSE baselines. We will provide a more
comprehensive comparison of predictive performance in Section 3.4.

3. ICMSE design for bifidelity modeling. Next, we extend the ICMSE design to the
bifidelity setting, where auxiliary computer experiment data are available. We first present
the GP framework for bifidelity modeling and extend the earlier ICMSE criterion. We then
present an algorithmic framework for efficient implementation and investigate its perfor-
mance on two illustrative examples.

3.1. Modeling framework. Let f (x) denote the computer experiment output at input x.
We model f (·) as the GP model

(3.1) f (·) ∼ GP
{
μf ,σ 2

f Rθf
(·, ·)}.

Following Section 2.1, let ξ(x) denote the latent mean response for physical experiments at
input x. We assume that ξ(·) takes the form

ξ(x) = f (x) + δ(x),(3.2)

where δ(x) is the so-called discrepancy function, quantifying the difference between com-
puter and physical experiments at input x. Following Kennedy and O’Hagan (2001), we
model this discrepancy using a zero-mean GP model,

(3.3) δ(·) ∼ GP
{
0, σ 2

δ Rθδ
(·, ·)},

where the prior on δ(·) is independent of f (·). Here, physical experiments are observed with
experimental noise, as in Section 2.1, whereas computer experiments are observed without
noise.

Suppose (n − m) computer experiments and m physical experiments (n experiments in
total) are conducted at inputs x1:n = {xf

1:(n−m),xξ
1:m}, yielding data f = [f1, . . . , fn−m] and

Ym = {yo,y′
c ≥ c}. Note that censoring occurs only in physical experiments, since computer

experiments are conducted via numerical simulations. Assuming all model parameters are
known (parameter estimation is discussed later in Section 3.3), the mean response ξ(xnew) at
a new input xnew has the following conditional mean and variance:

ξ̂ (xnew) = E
[
ξ(xnew)|f,Ym

] = μf + γ T
n,new�−1

n

([f,yo, ŷc]T − μf 1n

)
,(3.4)

s2(xnew) = Var
[
ξ(xnew)|f,Ym

] = σ 2
f + σ 2

δ − γ T
n,new

(
�−1

n − �−1
n ��−1

n

)
γ n,new,(3.5)

where γ n,new = σ 2
f [Rθf

(xi ,xnew)]ni=1 + σ 2
δ [0n−m,Rθδ

(xi ,xnew)]mi=1 is the covariance vec-

tor and �n = σ 2
f [Rθf

(xi ,xj )]ni=1
n

j=1
+ diag(0n−m,σ 2

ε Im + σ 2
δ × [Rθδ

(xi ,xj )]mi=1
m
j=1) is the
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covariance matrix. Here, ŷc = E[y′
c|f,yo,y′

c ≥ c] is the expected response for latent vec-
tor y′

c, given data {f,Ym}, and �c = Var[y′
c|f,yo,y′

c ≥ c] is its conditional variance, with
� = diag(0n−nc ,�c). While such equations appear quite involved, they are simply the bifi-
delity extensions of the earlier GP modeling equations (2.3) and (2.4). For simplicity, we have
overloaded some notations from (2.3) and (2.4) here; the difference should be clear from the
context.

3.2. Bifidelity design criterion. Now, we extend the ICMSE design to the bifidelity set-
ting. The goal is to design physical experiment runs (which may be censored), given auxiliary
computer experiment data (which are not censored).

Under the above bifidelity GP model the following proposition gives an explicit expression
for the ICMSE design criterion.

PROPOSITION 3. With experimental data {f,Ym}, the proposed ICMSE criterion has the
following explicit expression:

ICMSE(xn+1) =
∫
[0,1]p

EYn+1|f,Ym

[
Var

(
ξ(xnew)|f,Ym,Yn+1

)]
dxnew

=
∫
[0,1]p

σ 2
new − γ T

n+1,new�−1
n+1Hc(xn+1)�

−1
n+1γ n+1,new dxnew,

(3.6)

where σ 2
new = Var[ξ(xnew)|f,Ym] and γ n+1,new and �n+1 follow from (3.4) and (3.5). The

matrix Hc(xn+1) has an easy-to-evaluate expression given in Appendix B.1 of the Supple-
mentary Material (Chen et al. (2022)).

The proof can be found in Appendix B.1. The following corollary gives a simplification of
(3.6) under a product correlation structure.

COROLLARY 1. Suppose Rθf
(·, ·) and Rθδ

(·, ·) are product correlation functions,

(3.7) Rθf

(
x,x′) =

p∏
l=1

R
(l)
θf

(
xl, x

′
l

)
, Rθδ

(
x,x′) =

p∏
l=1

R
(l)
θδ

(
xl, x

′
l

)
,

with x = [x1, . . . , xp]T . Then, the ICMSE criterion (3.6) can be further simplified as

ICMSE(xn+1) = σ̄ 2 − tr
(
�−1

n+1Hc(xn+1)�
−1
n+1�

)
,(3.8)

where σ̄ 2 = ∫
σ 2

new dxnew and � is an (n + 1) × (n + 1) matrix with (i, j)th entry:

	ij =
p∏

l=1

[∫ 1

0
ζ (l)(xi,l, x)ζ (l)(xj,l, x) dx

]
, and

ζ (l)(z, x) = R
(l)
θf

(z, x) + 1{i>(n−m)}R(l)
θδ

(z, x).

(3.9)

The key simplification from Corollary 1 is that it reduces the p-dimensional integral in
the ICMSE criterion (3.6) to a product of 1D integrals which are more easily computed. Fur-
thermore, if Gaussian correlation functions are used, these integrals can be reduced to error
functions which yield an easy-to-evaluate design criterion for ICMSE (see Appendix B.2 for
details). Given the computational complexities of censored data, this simplification allows
for efficient design optimization. Corollary 1 is motivated by the simplification of the IMSE
criterion in Sacks, Schiller and Welch (1989). The proof can be found in Appendix B.2 of the
Supplementary Material (Chen et al. (2022)).
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The interpretation of the bifidelity ICMSE criterion (3.6) is analogous to that of the single-
fidelity ICMSE criterion (2.11). Similar to the censoring adjustment function, the matrix
Hc(·) factors in the posterior probability of censoring over the input space and is used to
adjust the variance reduction term in the criterion. Viewed this way, the ICMSE criterion
(3.6) provides the same design trade-off as before: the next design point should jointly: (i)
avoid censored regions by adaptively identifying such regions from data at hand and (ii)
minimize predictive uncertainty from the GP model.

3.3. An adaptive algorithm for sequential design. We present next an adaptive algorithm
ICMSE for implementing the proposed ICMSE design. Algorithm 1 applies for both the
single-fidelity setting (with flag IBF = 0) in Section 2 and the bifidelity setting (with flag
IBF = 1) in Section 3. First, an initial nini-point design is set up for initial experimentation:
physical experiments for the single-fidelity setting and computer experiments for the bifi-
delity setting. In our implementation we used the maximum projection (MaxPro) design, pro-
posed by Joseph, Gul and Ba (2015), which provides good projection properties and thereby
good GP predictive performance. Next, the following two steps are performed iteratively: (i)
using observed data {f,Ym}, the GP model parameters are estimated using maximum like-
lihood; (ii) the next design point x∗

n+1 is then obtained by minimizing the ICMSE criterion
(equation (2.11) for the single-fidelity setting, equation (3.6) for the bifidelity setting), along
with its corresponding response Yn+1. This is then repeated until a desired number of samples
is obtained.

To optimize the ICMSE criterion, we use standard numerical optimization methods in the
R package nloptr (Ypma, Borchers and Eddelbuettel (2014)), in particular, the Nelder–
Mead method (Nelder and Mead (1965)). The main computational bottleneck in optimiza-
tion is evaluating moments of the truncated multivariate normal distribution for Hc(·) (see
equations (A.10) and (B.3) in the Supplementary Material, Chen et al. (2022)). In our imple-
mentation these moments are efficiently computed using the R package tmvtnorm (Wilhelm
and Manjunath (2010)). Appendix C details further computational steps for speeding-up de-
sign optimization, involving an approximation of the expected variance term via a plug-in
estimator. Similar to the standard IMSE criterion, the ICMSE criterion can be quite multi-
modal. We, therefore, suggest performing multiple random restarts of the optimization and
taking the solution with the best objective value as the new design point.

Algorithm 1 ICMSE(nini, nseq, c, IBF): Adaptive design under censoring

1: if IBF = 0, then 	 Single-fidelity
2: Generate an nini-run initial MaxPro design x1:nini

3: Collect initial data Ynini at inputs x1:nini from physical experiments
4: Estimate model parameters {μξ ,σ

2
ξ , θ ξ } using MLE from initial data Ynini

5: else 	 Bifidelity
6: Generate an nini-run initial MaxPro design x1:nini

7: Collect initial data f at inputs x1:nini from computer experiments
8: Estimate model parameters {μf ,σ 2

f , θf } using MLE from Ynini , and let σ 2
δ = 0

9: for k = nini + 1, . . . , nini + nseq do 	 nseq sequential runs
10: if IBF = 0, then
11: Obtain new design point x∗

k by minimizing ICMSE criterion (2.11)
12: else
13: Obtain new design point x∗

k by minimizing ICMSE criterion (3.6)

14: Perform experiment at x∗
k , and collect response Yk (which may be censored)

15: Update model parameter estimates using new data
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3.4. Illustrative examples with adaptive design algorithm. We first illustrate the proposed
algorithm ICMSE on a 1D bifidelity example. Suppose the computer simulation is given by

f (x) = 0.5 sin
(
10(x − 1.02)2) + 0.1(3.10)

with the same physical experiment settings as in Section 2.3. We begin with an nini = 6-run
equally-spaced points x

f
1:6 = {(i − 1)/5}6

i=1 for computer experiments. We then perform a
sequential nseq = 20-run design for physical experiments using the algorithm ICMSE. The
Gaussian correlation function is used for both GPs. In addition to the two IMSE methods in
Section 2.3, we consider an additional “sequential MaxPro” method (Joseph (2016)) which
implements a sequential space-filling design. Again, for fair comparison we use the censored
GP model (2.3)–(2.4) for evaluating predictions for all design methods. The simulation is
replicated 20 times.

We consider two evaluation metrics for predictive performance: RMSE and the interval
score proposed in Gneiting and Raftery (2007). The first assesses predictive accuracy, and
the second assesses uncertainty quantification. The (1 − α)% interval score is defined as

IS(ξl, ξu; ξ) = (ξu − ξl) + 2

α
(ξl − ξ)+ + 2

α
(ξ − ξu)+,(3.11)

where (a)+ = max(a,0), ξ is the ground truth and [ξl, ξu] is an (1 − α)% predictive interval.
Here, we set 1 − α = 68%, with predictive interval [ξ̂ − √

s2, ξ̂ + √
s2], where ξ̂ and s2 are

obtained from (3.4) and (3.5). The mean interval score (MIS) is then computed over the entire
test set. We also compared computation time on a 1.4 GHz Quad-Core Intel Core i5 laptop.

Figure 6 shows the log-RMSE (a), log-MIS (b), and log-computation time (c) for the four
considered methods. The ICMSE method yields noticeable improvements over the IMSE
and sequential MaxPro methods with smaller RMSE and MIS values for most sequential
run sizes. One reason for this is that the proposed method integrates the possibility of a new
observation being censored directly within the design criterion which allows it to minimize
predictive uncertainty by avoiding censored regions. While ICMSE requires more compu-
tation time, compared to the two baseline methods, the computation complexities appear to
be comparable. Here, the IMSE-Cen method is terminated early after 12 sequential runs,
due to numerical instabilities (and, thereby, expensive computation) in evaluating the predic-
tive equations. This is because, by ignoring censoring, IMSE-Cen overestimates the potential
variance reduction in censored regions, leading to many sequential points very close together
in such regions.

Figure 7 shows the sequential design points and the predicted mean responses ξ̂ (·) for
a single replication. Compared to existing methods, ICMSE yields visually improved pre-
diction in both the censored (shaded) and uncensored (clear) regions. One reason for this is
that the ICMSE criterion chooses points which jointly: (i) avoid censored regions and (ii)

FIG. 6. The 1D bifidelity example in (3.10): (a), (b), and (c) show the log-RMSE, log-MIS, and log-computation
time (in seconds) over the number of sequential runs for each method. Solid lines mark the median over the 20
replications, and shaded regions mark the 25%–75% quantiles.
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FIG. 7. One replication in the 1D bifidelity example (3.10): (a)-(d) show the observed runs (black crosses, with
censored runs indicated by red vertical lines) and the predictor ξ̂ (·) (dotted lines), using the 4 considered methods.
Here, black lines mark the mean physical experiment ξ(·), and shaded regions mark the censored regions.

minimize predictive uncertainty. For (i), note that only 1/20 = 5% of sequential runs are cen-
sored for ICMSE, whereas 7/20 = 35%, 8/20 = 40%, and 9/12 = 75% of sequential runs are
censored for IMSE-Impute, MaxPro, and IMSE-Cen, respectively. This shows that ICMSE
effectively estimates the posterior probability of censoring, and avoids regions with high
probabilities for sampling. For (ii), Figure 7(d) shows that the sequential runs from ICMSE
are far away from existing points and also concentrated near the boundary of the censored re-
gion. Intuitively, this minimizes predictive uncertainty by ensuring design points well explore
the input space while avoiding losing information due to censoring.

Next, we conduct a 2D simulation. The computer simulation and mean physical experi-
ment functions are taken from Xiong, Qian and Wu (2013),

f (x) = 1

4
ξ

(
x1 + 1

20
, x2 + 1

20

)
+ 1

4
ξ

(
x1 + 1

20
,

(
x2 − 1

20

)
+

)

+ 1

4
ξ

(
x1 − 1

20
, x2 + 1

20

)
+ 1

4
ξ

(
x1 − 1

20
,

(
x2 − 1

20

)
+

)
,

(3.12)

ξ(x) =
[
1 − exp

(
− 1

2x2

)]
2300x3

1 + 1900x2
1 + 2092x1 + 6

100x3
1 + 500x2

1 + 4x1 + 20
,(3.13)

with measurement variance σ 2
ε = 1 and a right censoring limit of c = 10. We begin with

an initial nini = 12-run MaxPro design for the computer experiment, then add nseq = 40
sequential runs for physical experiments using ICMSE. This is then replicated 20 times.

Table 2 summarizes the median RMSE, MIS, and computation time after five, 15, and
40 sequential runs. We see that ICMSE yields noticeably lower RMSE and MIS, suggesting
the proposed design method gives a better predictive performance. While computationally
more expensive than IMSE-Impute and MaxPro, the proposed ICMSE method appears more
effective at integrating censoring information for sequential design which leads to improved
predictive performance.
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TABLE 2
The median RMSE, MIS, and computation time, under different sequential run sizes for the three considered

design methods in a 2D bifidelity example (3.12)

RMSE MIS Computation Time (in s)

Sequential runs 5 15 40 5 15 40 5 15 40

IMSE-Impute 1.62 1.38 1.14 4.91 4.03 3.29 4.14 12.18 64.34
IMSE-Cen 1.61 1.46 – 4.57 4.27 – 25.13 121.24 –
Seq-MaxPro 1.74 1.36 1.12 5.58 4.01 3.22 3.03 10.18 57.24
ICMSE 1.40 1.21 0.97 4.58 3.80 3.01 9.77 25.01 95.67

4. Case studies. We now return to the two motivating applications. For the wafer manu-
facturing problem (which only has physical experiments), we use the single-fidelity ICMSE
method in Section 2. For the surgical planning application (which has both computer and
physical experiments), we use the bifidelity ICMSE method in Section 3.

4.1. Thermal processing in wafer manufacturing. Consider first the wafer manufactur-
ing application in Section 1.2, where an engineer is interested in how a wafer chip’s heating
performance is affected by six process input variables that control wafer thickness, rotation
speed, heating laser (i.e., its moving speed, radius, and power), and heating time. The re-
sponse of interest ξ(x) is the minimum temperature over the wafer which provides an indica-
tion of the wafer’s quality after thermal processing. Standard industrial temperature sensors
have a measurement limit of c = 350°C (Thermo Electric Company (2010)), and tempera-
tures greater than this limit are censored in the experiment.

As mentioned earlier, certain physical experiments are not only costly (e.g., wafers and
laser operation can be expensive), but also time consuming to perform (e.g., each experiment
requires a recalibration of thermal sensors as well as a warmup and cooldown of the laser
beam). To compare the sequential performance of these methods over a large number of
runs, we mimic the costly physical experiments1 with COMSOL Multiphysics simulations
(Figure 8(a)) which provides a realistic representation of heat diffusion physics (Dickinson,
Ekström and Fontes (2014)). Measurement noise is then added, following an i.i.d. zero-mean
normal distribution with standard deviation σε = 1.0°C.

The set-up is as follows. We start with an nini = 30-run initial experiment, then perform
nseq = 45 sequential runs. Note that the total number of nini + nseq = 75 runs is slightly

FIG. 8. (a) The temperature contour over the wafer chip, simulated using COMSOL Multiphysics. (b) and (c)
show the RMSE and MIS of the fitted GP models over the sequential design size, respectively, for the two design
methods.

1The surgical planning application in Section 4.2 performs actual physical experiments but provides fewer
sequential runs, due to the expensive nature of such experiments.
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more than the rule-of-thumb sample size of 10p recommended by Loeppky, Sacks and Welch
(2009); this is to ensure good predictive accuracy under censoring. Due to the limited budget,
the proposed ICMSE method is compared with only the sequential MaxPro method. This is
because, from simulations in Section 3.4, it provides the best predictive performance and is
the fastest among the three baseline methods.

The fitted GP models are then tested on temperature data generated (without noise) on a
200-run Sobol’ sequence (Sobol’ (1967)). Of these 200 test samples, 25 samples have mini-
mum temperatures, which exceed the censoring limit of c = 350°C, suggesting that, roughly,
12.5% of the design space leads to censoring. It is important to note that predictive accu-
racy is desired for both censored and uncensored test runs, since the engineering objective
is to predict the experimental response surface prior to censoring. This allows industrial en-
gineers to explore a wide range of quality requirements in manufacturing wafers with low
temperatures (which are uncensored in experimentation) and high temperatures (which may
potentially be censored).

4.1.1. Predictive performance. Figure 8 compares the RMSE and MIS after nseq = 45
sequential runs. While both sequential methods provide relatively steady improvements in
RMSE and MIS, the proposed ICMSE method gives a greater predictive improvement over
MaxPro. In particular, with 45 sequential runs ICMSE achieves an RMSE reduction of
(5.8 − 4.8)/5.8 = 17.2% over the initial 30 runs which is greater than the RMSE reduction
of (5.8 − 5.35)/5.8 = 7.8% for MaxPro. Similarly, for MIS, ICMSE achieves a reduction of
(9.28 − 6.95)/9.28 = 25.1%, compared to (9.28 − 7.9)/9.28 = 14.8% for MaxPro. This can
again be explained by the fact that ICMSE jointly avoids censoring and minimizes predic-
tive uncertainty. Here, ICMSE yields no censored measurements, whereas MaxPro yields five
censored measurements (a censoring rate of 5/45 = 11.1%). Moreover, ICMSE adaptively
chooses points that minimize predictive uncertainty of the GP model under censoring. This
can be seen from Figure 8(b) and (c): the ICMSE yields progressively lower RMSE and MIS
values as sample size increases.

While the ICMSE provides noticeable improvements over the sequential MaxPro, the re-
ductions in RMSE for both methods are only moderate in magnitude. One reason may be
that the underlying response surface for minimum temperature is quite nonsmooth over the
parameter space, which makes it difficult to learn with a limited number of experimental
runs, particularly in censored regions. It is also worth noting, however, that even moderate
improvements in predictive accuracy can lead to significant improvements in wafer manufac-
turing. As mentioned in Section 1.2, the fitted GP model is used to find process settings that
jointly minimize operational costs while meeting target quality requirements. The improved
predictive model using ICMSE can cut down waste in heating power and reduce the num-
ber of wafers to be remanufactured which results in significant cost reductions in the wafer
manufacturing process.

4.2. 3D-printed aortic valves for surgical planning. Consider next the surgical planning
application in Section 1.1 which uses state-of-the-art 3D printing technology to mimic bio-
logical tissues. Here, doctors are interested in predicting the stiffness of the printed organs
with different metamaterial geometries. We will consider three design inputs x = (A,ω,d),
which parametrize a standard sinusoidal form of the substructure curve I (t) = A sin(ωt),
with diameter d (see Figure 2(b) for a visualization). This parametric form has been shown to
provide effective tissue-mimicking performance in prior studies (Chen et al. (2018a), Wang
et al. (2016)). The response of interest ξ(x) is the elastic modulus at a strain level of 8%
which quantifies the stiffness at a similar load situation inside the human body (Wang et al.
(2016)).
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We use the bifidelity ICMSE design framework in Section 3, since a preconducted database
of computer simulations is available, and we are interested in the sequential design of
physical experiments. Computer simulations were performed with finite element analysis
(Zienkiewicz et al. (1977)) using COMSOL Multiphysics. Physical experiments were per-
formed in two steps: the aortic valves were first 3D-printed by the Connex 350 machine
(Stratasys Ltd.), and then its stiffness was measured by a load cell using uniaxial tensile tests
(see Figure 2(c); Wang et al. (2016)). Here, physical experiments are very costly, requiring
expensive material and printing costs as well as several hours of an experimenter’s time per
sample. Censoring is also present in physical experiments; this happens when the force mea-
surement of the load cell exceeds the standard limit of 15N , corresponding to a modulus
upper limit of c = 0.23MPa = 15N(force)/8mm2(area)/8%(deformation).

The following design set-up is used. We start with an nini = 25-run initial computer ex-
periment design and then perform nseq = 8 sequential runs using physical experiments. The
limited number of sequential runs is due to the urgent demand of the patients; in such cases,
only one to two days of surgical planning can be afforded (Chen et al. (2018a)). Since physi-
cal experiments require tedious 3D printing and a tensile test (around 1.5 hours per run), this
means only a handful of runs can be performed in urgent cases. As before, we compare the
proposed ICMSE method with the MaxPro method. The fitted GP models from both meth-
ods are tested on the physical experiment data from a 20-run Sobol’ sequence. Among these
20 runs, five of them are censored due to the load cell limit; in such cases we reperform
the experiment using a different testing machine with a wider measurement range. The re-
experimentation is typically not feasible in urgent surgical scenarios, since it requires even
more time-consuming tests and higher material costs.

4.2.1. Predictive performance. Figure 9 compares the predictive performance of the two
design methods over nseq = 8 sequential runs. While MaxPro shows some stagnation in
RMSE and MIS improvement, ICMSE yields more noticeable improvements, as sample size
increases. More specifically, ICMSE achieves an RMSE reduction of roughly (0.0315 −
0.0235)/0.0315 = 25.4% over the initial GP model (fitted using 25 computer experiment
runs) which is much greater than the RMSE reduction of (0.0315−0.0288)/0.0315 = 8.57%
for MaxPro. Similar improvements can be seen by inspecting MIS. This can again be at-
tributed to the key design trade-off. ICMSE adaptively identifies and avoids censored regions
on the design space using the fitted bifidelity model (3.4). Here, the proposed method yields
no censored measurements, whereas MaxPro yields three censored measurements (a censor-
ing rate of 3/8 = 37.5%). Furthermore, in contrast to MaxPro, which encourages physical
runs to be “space-filling” to the initial computer experiment runs, ICMSE instead incorpo-
rates censoring information within an adaptive design scheme which allows for improved
predictive performance.

We investigate next the predictive performance of both designs within the censored region.
This region (corresponding to stiff valves) is important for prediction, since such valves can

FIG. 9. RMSE (a) and MIS (b) for the two sequential design methods, over the number of sequential runs.
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TABLE 3
RMSE on the full test set, the five censored runs and the 15 observed runs for the two sequential design methods

MaxPro ICMSE

Full 0.0288 0.0235
Censored 0.0462 0.0416
Observed 0.0199 0.0126

be used to mimic older patients (Sicard et al. (2018)). We divide the test set (20 runs in
total) into two categories: observed runs (15 in total) and censored runs (five in total). The
responses for the latter are obtained via new experiments on a stiffer load cell (which, as
mentioned in Section 1.1, is typically not feasible in practice). Table 3 compares the RMSE
of the two methods for the censored and uncensored test runs. For both methods the RMSE
for observed test runs is much smaller than that for censored test runs, which is as expected.
For censored test runs, ICMSE also performs slightly better than MaxPro, with (0.0462 −
0.0416)/0.0462 = 9.9% lower RMSE. One reason for this is that ICMSE encourages new
runs near (but not within) censored regions (see Figure 6), to maximize information under
censoring. Because of this adaptivity, ICMSE achieves better predictive performance within
the censored region without putting any sequential runs in this region.

The improved performance for ICMSE can greatly improve the surgery planning proce-
dure. As discussed in Section 1.1, the fitted GP model is used to optimize a polymer geometry
which mimics a patient’s tissue stiffness. An improved predictive model leads to better tissue-
mimicking performance of the printed valves which then translates to improved surgery suc-
cess rates. Indeed, in a recent study Chen et al. (2021) it was shown that a predictive model
with 42% improvement in predictive performance leads to six-fold error reduction for tissue-
mimicking. We would expect a similar improvement in tissue-mimicking performance here,
when comparing ICMSE with the baseline design methods. The resulting improved artificial
valves from ICMSE then leads to improved success rates for heart surgeries.

4.2.2. Discrepancy modeling. The ICMSE method can also yield valuable insights on
the discrepancy between computer simulation and reality. The learning of this discrepancy
from data is important for several reasons: it allows doctors to: (i) pinpoint where simulations
may be unreliable, (ii) identify potential root causes for this discrepancy, and (iii) improve the
simulation model to better mimic reality. In our modeling framework this discrepancy can be
estimated as

(4.1) δ̂(x) = ξ̂ (x) − f̂ (x),

where ξ̂ (x) is the predictor for the physical experiment mean, fitted using 25 initial computer
experiment runs and eight physical experiment runs, and f̂ (x) is the computer experiment
model fitted using only the 25 initial runs.

Figure 10 shows the fitted discrepancy δ̂(x) as a function of each pair of design inputs, with
the third input fixed. These plots reveal several interesting insights. First, when the diameter d

is moderate (i.e., d ∈ [0.2,0.7]), Figure 10(a) and (b) show that the discrepancy is quite small;
however, when d is small (i.e., [0,0.2]) or large (i.e., [0.7,1]), the discrepancy can be quite
large. This is related to the limitations of finite element modeling. When diameter d is small,
the simulations can be inaccurate, since the mesh size would be relatively large compared
to d . When diameter d is large, simulations can again be inaccurate, due to the violation of
the perfect interface assumption between the two printed polymers. Second, from Figure 10,
model discrepancy also appears to be largest when all design inputs are large (i.e., close to
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FIG. 10. Visualization of the estimated discrepancy δ̂(·) (a) over d and A with fixed ω = 1, (b) over d and ω

with fixed A = 1, and (c) over A and ω with fixed d = 1.

1). This suggests that simulations can be unreliable, when the stiff material is both thick
(d ≈ 1) and fluctuating (ω ≈ 1, A ≈ 1). Finally, the model discrepancy is mostly positive
over the design domain, revealing smaller stiffness evaluation via simulation, compared to
physical evaluation. This may be caused by the hardening of 3D-printed samples, due to
exposure to natural light, as an aging property for the polymer family (e.g., see Liao et al.
(1998)). Therefore, the printed aortic valves should be stored in dark storage cells for surgical
planning to minimize exposure to light.

5. Conclusion. In this paper we proposed a novel integrated censored mean-squared
error (ICMSE) method for adaptively designing physical experiments under response censor-
ing. The ICMSE method iteratively performs two steps: it first estimates the posterior proba-
bility of a new observation being censored and then selects the next design point which yields
the greatest reduction in predictive uncertainty under censoring. We derived easy-to-evaluate
expressions for the ICMSE design criterion, in both the single-fidelity and bifidelity settings,
and presented an adaptive design for efficient implementation. We then demonstrated the ef-
fectiveness of the proposed ICMSE method over existing methods in real-world applications
on 3D-printed aortic valves for surgical planning and thermal processing in wafer manufac-
turing. An R package is currently in development and will be released soon.

Looking ahead, there are several interesting directions to be explored. In this work the cen-
soring limit c is assumed to be known. While this is true for the two motivating applications,
there are other problems where c is unknown and needs to be learned from data; it would be
useful to extend ICMSE for such problems. Another direction is to explore the connection be-
tween the ICMSE method and the multipoints expected improvement method (Ginsbourger,
Le Riche and Carraro (2010)) which may speed up design optimization via rejection sam-
pling. Finally, for the bifidelity ICMSE it would be interesting to explore more elaborate
design schemes that allow for additional computer experiments to be added sequentially.

Funding. This work is supported by NSF CSSI Frameworks 2004571, NSF CMMI grant
1921646, and Piedmont Heart Institute.

SUPPLEMENTARY MATERIAL

Additional proofs and implementation details (DOI: 10.1214/21-AOAS1512SUPP;
.pdf). We provide in this supplement further details on technical results.
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