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ABSTRACT
Monte Carlo methods are widely used for approximating complicated, multidimensional integrals for
Bayesian inference. Population Monte Carlo (PMC) is an important class of Monte Carlo methods, which
adapts a population of proposals to generate weighted samples that approximate the target distribution.
When the target distribution is expensive to evaluate, PMC may encounter computational limitations
since it requires many evaluations of the target distribution. To address this, we propose a new method,
Population Quasi-Monte Carlo (PQMC), which integrates Quasi-Monte Carlo ideas within the sampling and
adaptation steps of PMC. A key novelty in PQMC is the idea of importance support points resampling, a
deterministic method for finding an “optimal” subsample from the weighted proposal samples. Moreover,
within the PQMC framework, we develop an efficient covariance adaptation strategy for multivariate normal
proposals. Finally, a new set of correction weights is introduced for the weighted PMC estimator to improve
the efficiency from the standard PMC estimator. We demonstrate the improved empirical performance
of PQMC over PMC in extensive numerical simulations and a friction drilling application. Supplementary
materials for this article are available online.
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1. Introduction

A fundamental challenge in Bayesian inference is the eval-
uation of integrals involving some multi-dimensional poste-
rior distribution π that cannot be analytically derived. Monte
Carlo methods are often used in practice, and in particular,
Markov chain Monte Carlo (MCMC) because of its flexibil-
ity and ease of implementation (Robert and Casella 2013). In
recent decades, there has been renewed interest in exploring
an alternative class of methods called iterated Importance Sam-
pling (IS), which allows for parallel implementation and easy
assessment of approximation error (Bugallo et al. 2017; Elvira
et al. 2017). However, it is difficult to identify a good pro-
posal distribution that mimics the target posterior π , espe-
cially when π is complicated and/or high-dimensional. On the
other hand, Monte Carlo methods may encounter computa-
tional limitation in applications where the posterior distribu-
tion is expensive to evaluate (Joseph et al. 2019). To address
the aforementioned challenges, we propose a novel Popula-
tion Quasi-Monte Carlo (PQMC) framework, which integrates
Quasi-Monte Carlo (QMC) ideas (Niederreiter 1992) within the
Population Monte Carlo (PMC) method (Cappé et al. 2004) – a
popular iterated IS method – for improved sampling efficiency.

Each iteration of PMC consists of three steps. First, from each
of the K proposals {qk}K

k=1, it samples J particles, xk,j ∼ qk.
Next, it weighs the KJ particles {xk,j}K

k=1
J
j=1 to correct for the

mismatch between the proposal and target distribution. Last, it
adapts the K proposals for selectively exploring only the relevant
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30332.
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sample space; this adaptation idea can be traced back to Oh
and Berger (1993), West (1993), and Givens and Raftery (1996).
PMC repeats the sampling, weighting, and adaptation steps for
T iterations, yielding a total of N = TKJ weighted samples for
approximating π . PMC is closely related to Sequential Monte
Carlo (SMC) but with the same target distribution in all T iter-
ations (see Chen 2003; Moral, Doucet, and Jasra 2006; Cappe,
Godsill, and Moulines 2007 and for a review of SMC).

Resampling techniques are widely employed in PMC and
SMC for adapting proposals’ centers (Cappé et al. 2004;
Elvira et al. 2017) to avoid weight degeneracy, as most of
the weights could concentrate on only a few particles and
thus, resulting in an estimator with large variance (Kong, Liu,
and Wong 1994). By eliminating particles with insignificant
weights and duplicating the important samples, resampling
allows for efficient exploration of the promising regions, albeit
with additional randomness. The simplest way to do this
is multinomial resampling (Gordon, Salmond, and Smith
1993), which samples with replacement according to the
weights. Several improved resampling methods have been
proposed for variance reduction, including stratified (Kitagawa
1996), residual (Liu and Chen 1998), systematic (Carpenter,
Clifford, and Fearnhead 1999), optimal (Fearnhead and Clifford
2003), and optimal transport resampling (Reich 2013). In
one dimension, the ordered stratified resampling yields a set
of randomized “low discrepancy” resamples, which reduces
variation and yields desired resampling properties (Li et al.
2021). The multi-dimensional generalization of the ordering
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utilizes the projection onto the space-filling Hilbert curve
(Gerber and Chopin 2015; Gerber, Chopin, and Whiteley 2019),
a continuous measure-preserving mapping from [0, 1] to [0, 1]p

where p > 1 is the dimension of the parameter space. However,
because of the nonsmoothness of the Hilbert curve, points far
away on the Hilbert curve could be close in [0, 1]p. Therefore,
the “low discrepancy” resamples on the Hilbert curve might
not be all well spread out in [0, 1]p. Hence, we propose the
importance support points (ISP) resampling, which instead
makes use of the support points in Mak and Joseph (2018) to
find the set of space-filling resamples in the original parameter
space that “optimally” represents the weighted proposal samples
in terms of the energy distance (Székely and Rizzo 2013).
This could retain the most information from the KJ simulated
samples, and thus, may require fewer samples to get the same
precision, which is especially beneficial for applications with
expensive posterior.

Following Fearnhead (2005) and Gerber and Chopin (2015),
we also leverage QMC ideas in the sampling step by generating
a set of randomized low discrepancy points for the proposal
samples {xk,j}K

k=1
J
j=1. By combining QMC proposals with ISP

resampling, the proposed PQMC framework can be shown to
provide faster empirical convergence rate over PMC, thus, mak-
ing PQMC a useful tool for tackling problems with expensive
posteriors.

In addition, we propose two other improvements to PMC.
First, by taking advantage of ISP resampling, we derive a compu-
tationally efficient adaptation scheme for the covariance param-
eter when elliptical proposal distribution is used, addressing one
limitation of the existing PMC literature that the covariance is
often kept fixed from beginning. This is important because a
poorly chosen covariance could significantly hurt the efficiency
of PMC. Second, by employing adaptation, the samples in the
latter stages are often “better” quality, and thus, we also develop
a weighted estimator accounting for the quality of the samples
to further minimize the variance of the estimator.

The article is organized as follows. Section 2 first reviews
QMC and then introduces the importance support points (ISP).
Section 3 proposes the ISP resampling and compares it with
the state-of-the-art Hilbert curve ordered resampling. Section 4
discusses the novel Population Quasi-Monte Carlo (PQMC),
which makes use of the proposed ISP resampling and QMC
proposals. Section 5 presents several simulation studies demon-
strating the improvements of PQMC over the existing PMC
methods. Section 6 illustrates the usefulness of PQMC on fric-
tion drilling model calibration application, where the posterior
is computationally expensive. We conclude the article with some
remarks in Section 7.

2. Importance Support Points

We first provide a brief review of QMC and then introduce
the importance support points, which is fundamental to our
proposed importance support points (ISP) resampling.

2.1. Quasi-Monte Carlo

Quasi-Monte Carlo (QMC) is traditionally used for numerical
integration of an integrand φ with respect to the p-dimensional

unit hypercube [0, 1]p, that is
∫

[0,1]p
φ(x)dx ≈ 1

N

N∑
n=1

φ(xn) . (1)

In standard Monte Carlo, the N evaluation points {xn}N
n=1 are

sampled uniformly on [0, 1]p. It is well known that, by the
Central Limit Theorem, its integration error converges at a rate
ofO(N−1/2). QMC aims to improve this rate by carefully choos-
ing a set of well-spread out points that fill the p-dimensional
hypercube in an even and uniform way. This measure of sample
uniformity is typically referred to as a discrepancy measure in
the QMC literature. One well-known discrepancy measure for
sample {xn}N

n=1 on [0, 1]p is the star discrepancy (Niederreiter
1992; Aistleitner and Dick 2015),

D∗
N({xn}N

n=1) = sup
A∈A∗

∣∣∣∣ 1
N

N∑
n=1

1A(xn) − λ(A)

∣∣∣∣ , (2)

where λ is the Lebesgue measure and A∗ = {A : A =∏p
i=1[0, ai], 0 < ai < 1}. The star discrepancy measures the

maximum difference between the empirical cumulative distri-
bution of the sample {xn}N

n=1 and the desired uniform distribu-
tion on [0, 1]p. A small star discrepancy suggests a more uniform
sample on [0, 1]p, and vice versa.

The Koksma–Hlawka inequality connects integration error
in (1) to the star discrepancy,

∣∣∣∣ 1
N

N∑
n=1

φ(xn) −
∫

[0,1)p
φ(x)dx

∣∣∣∣ ≤ VHK(φ)D∗
N({xn}N

n=1) , (3)

where VHK(φ) is the total variation of φ in the sense of Hardy
and Krause for measuring smoothness of φ (Niederreiter
1992). Equation (3) shows that a smaller integration error
can be achieved if the samples have lower star discrepancy.
Several methods have been proposed in QMC to generate low
discrepancy samples in uniform hypercube that can achieve an
convergence rate of O(N−1+ε) for some ε > 0 (Niederreiter
1992) under mild smoothness assumption on φ, showing its
comparative performance over Monte Carlo rate of O(N−1/2).
Recent developments have focused on randomized QMC
methods, which provide randomized low discrepancy samples,
with each sample marginally distributed as Uniform[0, 1]p.
Randomized QMC allows for unbiased integral estimates,
and provides relief from the curse-of-dimensionality for high-
dimensional sampling (Dick, Kuo, and Sloan 2013). We will
later make use of randomized QMC for generating proposal
samples within PQMC. See Niederreiter (1992), Dick, Kuo,
and Sloan (2013), and Owen (2013) for the detailed review
of QMC.

The star discrepancy of {xn}N
n=1 can be generalized with

respect to any nonuniform normalized Borel measure μ in [0, 1]p

(Aistleitner and Dick 2015),

D∗
N({xn}N

n=1; μ) = sup
A∈A∗

∣∣∣∣ 1
N

N∑
n=1

1A(xn) − μ(A)

∣∣∣∣ . (4)

The Koksma–Hlawka inequality also holds (Aistleitner and
Dick 2015, Theorem 1),
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∣∣∣∣ 1
N

N∑
n=1

φ(xn) −
∫

[0,1)p
φ(x)dμ(x)

∣∣∣∣
≤ VHK(φ)D∗

N({xn}N
n=1; μ) , (5)

However, finding low discrepancy samples from a general prob-
ability measure μ is difficult. The inverse transform method is a
potential solution, as “Satz 2” of Hlawka and Mück (1972) shows
that D∗

N({F−1
μ (xn)}N

n=1; μ) ≤ cD∗
N({xn}N

n=1) under some mild
conditions on Fμ. However, this requires a closed form for the
inverse distribution function Fμ, which is typically not available
in Bayesian problems. Thus, we next introduce the support
points (Mak and Joseph 2018) and our proposed extension
importance support points that can both generate low discrep-
ancy samples from a general distribution.

2.2. Importance Support Points

We first review the definition of support points in Mak and
Joseph (2018):

Definition 1 (Support Points; Mak and Joseph, 2018). Let Y ∼ F,
a distribution function on ∅ �= X ⊆ R

p with finite means. The
support points {ξi}n

i=1 of F are

{ξi}n
i=1 ∈ arg min

x1,...,xn∈X E(Fn, F)

= arg min
x1,...,xn∈X

2
n

n∑
i=1

E‖xi − Y‖2

− 1
n2

n∑
i=1

n∑
j=1

‖xi − xj‖2 , (6)

where E(Fn, F) is the energy distance (Székely and Rizzo 2004,
2013) between F and Fn. Fn is the empirical distribution func-
tion (edf) of any n-point {xi}n

i=1 ⊆ X .

For most distribution functions F, the expectation in (6)
cannot be analytically computed, and thus, in implementation,
we would optimize the Monte Carlo approximation

{ξi}n
i=1 = arg min

x1,...,xn∈X
2

nM

n∑
i=1

M∑
m=1

‖xi − ym‖2

− 1
n2

n∑
i=1

n∑
j=1

‖xi − xj‖2 , (7)

where {ym}M
m=1 (with M > n) are sampled from F. The first term

in (7) forces the support points {ξi}n
i=1 to mimic the samples

{ym}M
m=1 from F, while the second term forces these points

to be as far apart from each other as possible. The latter is
often referred to as a “space-filling property” in experimental
design (Johnson, Moore, and Ylvisaker 1990). The problem in
(7) can be efficiently solved via the convex-concave procedure
(Yuille and Rangarajan 2002), and is implemented in the R
package support (Mak 2019b). However, (7) shows that the
quality of the support points depends critically on the samples
{ym}M

m=1 from F. From previous discussion on QMC, if samples
{ym}M

m=1 have low discrepancy measure, then the support points
{ξi}n

i=1 computed from (7) can be better representative points

for F, but generating low discrepancy samples directly from any
nonuniform distribution is difficult.

To overcome this issue, we introduce the importance support
points (ISP) that uses Importance Sampling (Robert and Casella
2013) to circumvent sampling directly from F.

Definition 2 (Importance Support Points). Let π be the pdf of
the distribution function F. Let Y ∼ q, where q is the pdf
of an importance distribution defined on the same support X .
The importance support points {ξi}n

i=1 of F with respect to the
importance distribution q are

{ξi}n
i=1 ∈ arg min

x1,...,xn∈X
2
n

n∑
i=1

Eq[w(Y)‖xi − Y‖2]

− 1
n2

n∑
i=1

n∑
j=1

‖xi − xj‖2 , (8)

where w(·) = π(·)/q(·) is the importance weight (or Radon–
Nikodym derivative).

The expectation in (8) is with respect to the importance distri-
bution q, so we only require samples {ym}M

m=1 simulated from q
for Monte Carlo approximation,

{ξi}n
i=1 ∈ arg min

x1,...,xn∈X
2
n

n∑
i=1

M∑
m=1

w̄m‖xi − ym‖2

− 1
n2

n∑
i=1

n∑
j=1

‖xi − xj‖2 , (9)

where w̄m = (π(ym)/q(ym))/(
∑M

l=1 π(yl)/q(yl)) are the nor-
malized importance weights. We can choose q to be a simple
distribution (e.g., uniform) where low discrepancy samples can
be easily simulated. Corollary 1 of Aistleitner and Dick (2015)
justifies the use of QMC samples in Importance Sampling. The
formulation in (9) applies to the pdf that is known up to an
unknown constant of proportionality. It can be further gener-
alized to optimally compact any large set of weighted samples
{(ym, w̄m)}M

m=1 to a few unweighted representative points {ξi}n
i=1

in terms of their weighted energy distance. This weighted energy
criterion is also recently explored in Huling and Mak (2020), but
their objective is to optimize for the weights given fixed samples.
Last, the optimization algorithm for solving (9) is analogous to
solving support points (7) in Mak and Joseph (2018), and we
refer readers to Appendix A, supplementary materials for the
detailed algorithm.

Figure 1 shows n = 100 support points for the two-
dimensional axe-shaped, banana-shaped, and mixture normal
distributions. Top panels shows the support points from 10,000
MCMC samples obtained using the R package adaptMCMC
(Scheidegger 2018). The Markov chain is run for 15,000
iterations, and the first 5000 samples is discarded as burn-
in. Bottom panels shows the proposed ISPs generated from
(9) with importance distribution q = Uniform[0, 1]2, using
10,000 Sobol’ points (Joe and Kuo 2003) (generated from
the R package randtoolbox (Christophe and Petr 2019))
as low discrepancy importance samples. When the MCMC
explores the distribution well as in the axe-shaped distribution,
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Figure 1. n = 100 support points (red dots) generated from 10,000 MCMC samples (green diamonds) and 10,000 importance samples (green diamonds) for axe-shaped,
banana-shaped, and mixture normal distributions. Lines represent density contours.

the support points from MCMC samples are as good as the
ISPs. However, for the banana-shaped distribution, the support
points from MCMC samples cannot reflect the underlying
symmetry structure. The problem is more severe for the mixture
normal, as poor mixing on multimodal distribution is a known
issue of standard MCMC. ISP shows substantial improvement
over support points generated by the MCMC samples, by
making use of the density information in F for the discrepancy
correction.

The choice of the importance distribution q is critical for
the success of ISPs. A robust choice would be uniform distri-
bution over a region that covers the support of π as shown in
Figure 1, but sufficient samples would also need to be placed
in high-probability regions. The effective sample size, Ne =
[∑M

m=1 w̄2
m]−1, is one popular diagnostic metric that can be used

for evaluating the quality of importance samples.

3. Importance Support Points Resampling

With the proposed ISPs in hand, we now present a new impor-
tance support points (ISP) resampling procedure which we later
integrate within PQMC. We then demonstrate the improve-
ment of ISP resampling over existing resampling schemes via
simulation.

3.1. ISP Resampling Algorithm

Let {(ym, w̄m)}M
m=1 be any normalized weighted samples,

weights satisfying
∑M

m=1 w̄m = 1, and denote its edf as Fw
M(y) =

∑M
m=1 w̄m1(ym,1 ≤ y1, . . . , ym,p ≤ yp). A good resampling

scheme should return a set of unweighted samples {ξi}n
i=1, with

ξi ∈ {ym}M
m=1, such that the discrepancy between the resamples

edf F̃n(y) = n−1 ∑n
i=1 1(ξi,1 ≤ y1, . . . , ξi,p ≤ yp) and Fw

M
is small. A popular criterion for quantifying the difference
between any two multivariate edfs is the aforementioned energy
distance (Székely and Rizzo 2004, 2013). Here, we propose the
ISP resampling, a deterministic resampling method that aims to
find the n-point resamples {ξ∗

i }n
i=1 which minimize the energy

distance to the original weighted samples {(ym, w̄m)}M
m=1,

{ξ∗
i }n

i=1 ∈ arg min
x1,...,xn∈{ym}M

m=1

E(F̃n, Fw
M)

= arg min
x1,...,xn∈{ym}M

m=1

2
n

n∑
i=1

M∑
m=1

w̄m‖xi − ym‖2

− 1
n2

n∑
i=1

n∑
j=1

‖xi − xj‖2 , (10)

where F̃n is the edf of any n-point resamples. Equation (10)
is the same optimization problem of the ISPs in (9) but with
constraints that ξ∗

i ∈ {ym}M
m=1, making it a discrete optimization

problem that is much harder to solve.
We present Algorithm 1, a quadratic time complexity

sequential procedure that approximately solves for the ISP
resamples {ξ∗

i }n
i=1 in (10). The procedure starts with the one-

point-at-a-time greedy initialization, sequentially adding a new
point ξ∗

i from {ym}M
m=1 that minimizes the energy distance
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Algorithm 1: Importance Support Points Resampling (10).
Input: the set of normalized weighted samples
{(ym, w̄m)}M

m=1.
Greedy Initialization: conditional on having {ξ∗

j }i−1
j=1,

obtain ξ∗
i by

ξ∗
i = arg min

x∈{ym}M
m=1

2
i

M∑
m=1

w̄m‖x−ym‖2 − 2
i2

i−1∑
j=1

‖x−ξ∗
j ‖2 .

(11)
Solve (11) for i = 1, . . . , n sequentially to obtain the initial
resamples {ξ∗

i }n
i=1.

Point Refinement: for i = 1, . . . , n, fixing {ξ∗
j }j �=i, refine

ξ∗
i by

ξ∗
i = arg min

x∈{ym}M
m=1

2
n

M∑
m=1

w̄m‖x−ym‖2− 2
n2

n∑
j=1
j �=i

‖x−ξ∗
j ‖2 .

(12)
Repeat above until the energy distance defined in (10)
converges.
Return: {ξ∗

i }n
i=1, the set of ISP resamples.

between {ξ∗
j }i−1

j=1 ∪ {ξ∗
i } and {(ym, w̄m)}M

m=1. This one-point-
at-a-time greedy procedure is popularly used in experimental
design construction from a set of candidate points (Kennard and
Stone 1969; Joseph et al. 2019), but it yields a local optimum
solution. Thus, we adapt the resamples by point refinement:
update ξ∗

i via solving (12) to improve the energy distance
while fixing the other resamples {ξ∗

j }j �=i. In our simulation,
less than 10 repetitions of the point refinement step is enough
for convergence. The proposed procedure splits the n variables
optimization problem in (10) to n smaller problems each with
only one variable, making it feasible to solve in polynomial time.
Both computational and memory complexity of Algorithm 1 is
O(M2) from computing and storing the pairwise Euclidean
distance of {ym}M

m=1.

3.2. Theoretical Properties

We now discuss the deterministic error bounds by the ISP
resamples {ξ∗

i }n
i=1 with edf F̃∗

n . We start with the Koksma–
Hlawka-like bound that connects the squared integration error
with the energy distance E(F̃n, Fw

M).

Lemma 1. LetH be the native space induced by the radial kernel
�(·) = −‖·‖2 on X . For any integrand φ ∈ H, we have the
following bound for the squared integration error,
( ∫

X
φ(x)dF̃n(x)−

∫
X

φ(x)dFw
M(x)

)2
≤ CφE(F̃n, Fw

M) , (13)

where Cφ ≥ 0 is a constant depending on only the integrand φ.

The proof of Lemma 1 follows directly from Theorem 4 of
Mak and Joseph (2018). The squared integration error intro-
duced by the resamples, another important measure of goodness
for resampling schemes (Hol, Schon, and Gustafsson 2006; Li

et al. 2021), is upper bounded by a term proportional to the
energy distance, again justifying the use of energy distance
for choosing a good resampling scheme. Moreover, we have
E(F̃∗

n , Fw
M) ≤ E(F̃n, Fw

M) by definition of the ISP resampling
in (10), showing the theoretical advantage of ISP resamples in
controlling the squared integration error in (13). Next, we inves-
tigate the asymptotic convergence rate of the squared integration
error using the ISP resamples.

Theorem 1. Assume the same conditions in Lemma 1 and The-
orem 5 of Mak and Joseph (2018), we have, for some constant
α > 1,

(∫
X

φ(x)dF̃n(x) −
∫
X

φ(x)dFw
M(x)

)2

= O
(

n−1(log n)−(α−1)

)
. (14)

The proof of Theorem 1 follows directly from Theorem 5 of
Mak and Joseph (2018). Theorem 1 demonstrate the faster
convergence of using the deterministic ISP resamples over the
Monte Carlo rate of O(n−1). Moreover, from our simulation
studies presented in Section 3.3, we observe a faster empirical
convergence rate by the ISP resamples, which is aligned with the
conjecture by Mak and Joseph (2018) that the rate in (14) is not
tight.

3.3. Comparison to Existing Resampling Methods

Since the introduction of resampling by Rubin (1987) for iter-
ated IS procedure, many randomized resampling schemes have
been proposed in the literature. The simplest approach is multi-
nomial resampling: draw each resample ξi independently from
the weighted empirical distribution Fw

M . In contrast to the ISP
resamples ξ∗

i (which are deterministic), in randomized resam-
pling schemes, each ξi is a random variable. For any integrand
φ, the resamples {ξi}n

i=1 then yield an unbiased estimator,

E

[ ∫
X

φ(x)dF̃n(x)

∣∣∣∣Fw
M

]
= E

[
1
n

n∑
i=1

φ(ξi)

∣∣∣∣Fw
M

]

= 1
n

n∑
i=1

M∑
m=1

w̄mφ(ym)

=
∫
X

φ(x)dFw
M(x) . (15)

The existing randomized resampling schemes, such as multino-
mial, stratified, residual, systematic, and etc., are all unbiased
(Douc and Cappe 2005; Li et al. 2021). It follows that the
expected square integration error between F̃n and Fw

M is

E

[(∫
X

φ(x)dF̃n(x) −
∫
X

φ(x)dFw
M(x)

)2∣∣∣∣Fw
M

]

= var
[

1
n

n∑
i=1

φ(ξi)

∣∣∣∣Fw
M

]
, (16)

reducing to a conditional variance that we want to minimize. We
focus on the comparison of the ISP resampling to the stratified
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Figure 2. The Hilbert Curve in p = 2 dimension is the limit of the curve Hp,o as o → ∞.

resampling, which has been shown to achieve the smallest con-
ditional variance in (16) with integrand φ(x) = x on the one
dimensional sorted samples, that is, y1 ≤ · · · ≤ yM ∈ R (Li
et al. 2021). Stratified resampling draws {ξi}n

i=1 by

ξi = Fw
M

−1
(

i − 1 + Ui
n

)
, Ui

iid∼ Uniform[0, 1], ∀i = 1, . . . , n,

(17)
where Fw

M
−1 is the inverse distribution function of Fw

M . By parti-
tioning the space and drawing one resamples from each stratum
in (17), stratified resampling can return a set of randomized
low discrepancy (space-filling) resamples. Moreover, Theorem
1 of Li et al. (2021) proves that the ordered stratified resampling
in one-dimensional case also minimizes the expected squared
energy distance and the earth mover distance (Wasserstein met-
ric) between F̃n and Fw

M . It can achieve an integration rate of
O(n−2) for the conditional variance with respect to any Lips-
chitz integrand φ (Li et al. 2021).

The key to achieve low discrepancy resamples via stratified
resampling depends on the ordered particles, but the ordering in
multivariate setting is not obvious until the introduction of the
space-filling Hilbert curve in the context of resampling (Gerber
and Chopin 2015). A p-dimensional Hilbert curve is a contin-
uous function H : [0, 1] → [0, 1]p that is surjective, Hölder
continuous with exponent 1/p, and measure-preserving (He
and Owen 2016; Gerber, Chopin, and Whiteley 2019; Li et al.
2021). It is defined as the limit of a sequence of functions, and see
Figure 2 for the illustration in p = 2 dimensions. Proposition 2
of Gerber, Chopin, and Whiteley (2019) shows that there exists a
one-to-one Borel measurable function h : [0, 1]p → [0, 1] such
that H(h(x)) = x for all x ∈ [0, 1]p. Intuitively, h(x) is comput-
ing the one-dimensional projection of x onto the Hilbert curve.
Thus, the multivariate weighted samples {(ym, w̄m)}M

m=1 can be
sorted by their projection onto the Hilbert curve {h(ym)}M

m=1.
By the Hölder continuity, the Hilbert curve sorted resampling
essentially first partitions {(ym, w̄m)}M

m=1 into n strata (spatially
nonoverlapping) in the hypercube, and then select one resample
from each stratum to yield a set of n-point low discrepancy
(spatially spread out) resamples in multi-dimension. Theorem
2 of Li et al. (2021) shows that the conditional variance in (16)
for Lipschitz integrand with n resamples can be bounded by
O(n−(1+2/p)) with Hilbert curve sorted stratified resampling,
the best bound that can be obtained for any randomized resam-
pling scheme with/without any ordering, but its improvement

over the Monte Carlo rate of O(n−1) diminishes as dimension
p increases.

In the implementation of Hilbert curve sorting, we need to
first transform the samples {(ym, w̄m)}M

m=1 into unit hypercube.
Following Li et al. (2021), we first find the hypercube that covers
{(ym, w̄m)}M

m=1 by using the range of each dimension, and then
rescale the hypercube to [0, 1]p. As we can see from the banana-
shaped distribution in Figure 1, such cubified transformation
would not work well since most space in the hypercube are
not important with density arbitrarily closed to 0. On the other
hand, a discretized approximation of Hilbert curve (Figure 2) is
used in practice, but a too fine approximation could (i) result in
high computational cost and (ii) well spread out points in [0, 1]
might be close in [0, 1]p since the curve is very nonsmooth (He
and Owen 2016). Thus, we follow Li et al. (2021) to use Hilbert
curve with o = 8 defined in Figure 2. We implement our R
version of Hilbert curve according to the C code provided in
Skilling (2004) with the R package gmp to handle the large bit
integer (e.g., 2po − 1 for Hp,o).

Consider first the visualization of ISP resampling compared
to the baseline multinomial resampling and the state-of-the-art
Hilbert curve sorted stratified resampling on a two-dimensional
example. Figure 3 shows the 100-point resamples for the ear-
lier mixture of five normals distribution using three different
resampling schemes. We can see that the ISP resamples are not
only space-filling, but also better captures the shape of the target
distribution compared to existing methods.

Consider next a quantitative comparison of different resam-
pling schemes, including residual and Hilbert curve sorted sys-
tematic resampling. Let π = N (0, Ip) be the target distri-
bution and q = N (0,

√
2Ip) be the importance distribution.

Further let {ym}M
m=1 be the 1000 inverse Sobol’ points from q

(i.e., the inverse transformation of q on Sobol’ points), with
corresponding weights w̄m set as π(ym)/q(ym) with normaliza-
tion. We then obtain 100 resamples from {(ym, w̄m)}M

m=1. The
middle panel of Figure 4 shows the mean squared integration
error in log over 100 independent sets of resamples, which is
an Monte Carlo estimator of the expected squared integration
error in (16) with φ(x) = x. Empirically, ISP resampling
significantly outperforms the other four resampling schemes up
to 20 dimensions. However, ISP resampling appears to suffer
from small effective sample sizes as dimension increases. Note
that ISP resampling is deterministic, so every run yields the
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Figure 3. n = 100 multinomial, Hilbert curve sorted stratified, and ISP resamples from 10,000 Sobol’ points for the earlier mixture normal example.

Figure 4. Comparison in computational time and squared integration error in log (log-MSE) of the five resampling schemes on problems ranging from dimension 2 to 20
averaged over 100 independent runs. ESS stands for the effective sample size.

same set of resamples, but we still run it 100 times for the
time comparison shown in the top panel of Figure 4. Regarding
computation time, ISP resampling does incur a longer runtime
than both multinomial and residual resampling, but on average,
the runtime is still within around 10 sec and does not grow
much as dimensionality increase. Though both Hilbert curve
sorted stratified and systematic resampling have a complexity of
O(M log M) (Gerber and Chopin 2015), we see an increasing
computational cost as the dimension gets larger in practice,
where the major cost resulted from computing the projection
onto the Hilbert curve in high-dimension. For moderate sample
size M, these results suggest that ISP resampling may enjoy
improved integration performance and reduced computation
time over Hilbert curve sorted resampling approach, particu-
larly as dimensionality increases.

4. Population Quasi-Monte Carlo

In this section, we discuss the integration of ISP resampling
within the proposed Population Quasi-Monte Carlo (PQMC)
framework. For reference, Algorithm 2 outlines the standard
PMC procedure, using normal proposal distributions, static
global covariance (i.e., all proposals share the same covariance
matrix 	), and the deterministic mixture weighting strategy

(19) from Elvira et al. (2017). For this procedure, Elvira et al.
(2019) shows that its mixture weights can achieve a smaller
variance for the PMC estimator than the standard weights wk,j =
γ (xk,j)/qk(xk,j), but at the cost of higher complexity of O(K2J).
We introduce below the proposed adjustment to sampling and
adaptation steps using QMC ideas, with the complete PQMC
framework detailed in Algorithm 3.

4.1. Quasi-Monte Carlo Proposals

Consider first the improvement of the sampling step in PMC
using randomized low discrepancy proposal samples for
{x(t)

k,j }K
k=1

J
j=1. From the earlier discussion on QMC, this yields an

unbiased estimator with a faster convergence rate than standard
Monte Carlo proposals. Such an improved convergence rate
also holds for the importance samples {(x(t)

k,j , w̄(t)
k,j )}K

k=1
J
j=1 after

weighting step (see Theorem 2 of Gerber and Chopin (2015)).
For the multivariate normal proposal distribution considered
here, we can generate randomized low discrepancy samples via
inverse transform approach. First, randomized low discrepancy
samples {uk

j }J
j=1 are generated on the uniform hypercube [0, 1]p.

We use in our implementation Owen-style scrambled Sobol’
points (Owen 1998) from the R package randtoolbox
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Algorithm 2: PMC with Normal Proposals and Static
Global Covariance.

Target Distribution: π = γ /Z where Z is an unknown
normalizing constant.
Initialization: set parameters for the initial proposals
{q(1)

k = N (·|μ(1)

k , 	)}K
k=1.

for t = 1, . . . , T do
• Sampling: draw J samples from each proposal
k = 1, · · · , K

x(t)
k,j ∼ q(t)

k , j = 1, · · · , J, k = 1, · · · , K, (18)

so that a total of KJ samples are simulated.
• Weighting: compute deterministic mixture weights

w(t)
k,j =

γ (x(t)
k,j )

K−1 ∑K
i=1 q(t)

i (x(t)
k,j |μ(t)

i 	)
,

j = 1, · · · , J, k = 1, · · · , K, (19)

and normalize them by

w̄(t)
k,j =

w(t)
k,j∑K

i=1
∑J

l=1 w(t)
i,l

. (20)

• Adaptation: perform resampling to update the
proposal centers

μ
(t+1)

k
iid∼

K∑
k=1

J∑
j=1

w̄(t)
k,j δx(t)

k,j
, k = 1, · · · , K. (21)

end
Return: {(x(t)

k,j , w(t)
k,j )}T

t=1
K
k=1

J
j=1 where w(t)

k,j are the
unnormalized weights.

(Christophe and Petr 2019). Next, the samples {xk,j}J
j=1 for the

k-th proposal are obtained by

xk,j = μk + 	1/2[�−1(uk
j1), . . . , �−1(uk

jp)]T . (25)

The transformed samples can be shown to be randomized low
discrepancy samples with respect toN (μk, 	) (“Satz 2”; Hlawka
and Mück 1972). Here, the superscript k is to emphasize that
different sets of {uk

j }J
j=1 are simulated for different proposals. A

similar QMC proposal sampling idea via inverse transformation
is also employed in Sequential Quasi-Monte Carlo (Gerber and
Chopin 2015) and later extended by Li et al. (2021) to allow for
multiple samples (J > 1) from each proposal. We adopt the same
J > 1 setting here, since this provides an empirical improvement
for standard PMC (Elvira et al. 2017).

4.2. Proposal Adaptation

For the proposal distribution, we consider a multivariate nor-
mal distribution, which is widely used in PMC (Elvira et al.
2017). There are two associated parameters for adaptation: the
proposal centers and the covariance matrices. In the literature,

Algorithm 3: PQMC with Normal Proposals and Adaptive
Global Covariance.

Target Distribution: π = γ /Z where Z is the normalizing
constant;
Initialization: set parameters for the initial proposals
{q(1)

k = N (·|μ(1)

k , 	(1))}K
k=1.

for t = 1, . . . , T do
• Sampling: draw J scrambled Sobol’ points {uk

j }J
j=1,

and compute

x(t)
k,j = μ

(t)
k + (	(t))1/2[�−1(uk

j1), . . . , �−1(uk
jp)]T ,

j = 1, . . . , J, k = 1, · · · , K (22)

so that a total of KJ samples are simulated.
• Weighting: compute the deterministic weights in
(19) and normalize the weights by (20) as in PMC to
obtain {(x(t)

k,j , w̄(t)
k,j )}K

k=1
J
j=1.

• Adaptation: update {μ(t+1)

k }K
k=1 via ISP resampling

by solving

arg min
ξ1,...,ξK∈{x(t)

k,j }K
k=1

J
j=1

2
K

K∑
i=1

K∑
k=1

J∑
j=1

w̄(t)
k,j ‖ξi − x(t)

k,j ‖2

− 1
K2

K∑
i=1

K∑
l=1

‖ξi − ξl‖2 . (23)

Update the global covariance matrix 	(t+1) via
lookback adaptation:

	(t+1) =
K∑

k=1

J∑
j=1

w̄(t)
k,j

q(t)
k (x(t)

k,j |μ(t)
k , 	(t))∑K

i=1 q(t)
i (x(t)

k,j |μ(t)
i , 	(t))

× (x(t)
k,j − μ

(t)
k )(x(t)

k,j − μ
(t)
k )T . (24)

end
Return: {(x(t)

k,j , w(t)
k,j )}T

t=1
K
k=1

J
j=1 where w(t)

k,j are the
unnormalized weights.

resampling is a popular method for adapting proposal cen-
ters (Cappé et al. 2004; Elvira et al. 2017). In the new PQMC
approach, we replace this traditional resampling step with the
proposed ISP resampling approach, which was shown to have
theoretical and empirical advantages from Section 3. In par-
ticular, ISP resamples allow for reduced integration error from
simulation studies, which suggests that this modified resam-
pling procedure can further reduce the additional random-
ness introduced by the resampling adaptation step. The space-
filling property of the ISP resamples also allows for efficient
exploration of the parameter space. With this, the number of
proposals K can be set smaller without much loss of information
after resampling, which then reduces computational cost in the
deterministic weight (19) computation. Since ISP resampling
is deterministic, it introduces systematic bias in the resamples,
whereas existing randomized resampling schemes are unbiased.
Such bias is not problematic in PQMC, as proposal centers do
not contribute directly to the PQMC estimator. The adaptation
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is only to update the proposals such that we can retain informa-
tion from the samples from previous steps to better approximate
the target distribution.

Similar to PMC, the adaptation of proposal covariance
matrix is also critical for the success of PQMC, as it plays a
key role in determining the size of the proposal ellipsoid. We
focus on the case with global covariance (i.e., all proposals
share the same covariance matrix 	). In the PMC literature,
the choice of “optimal” kernel covariance often relies on cross-
validation, which can be computational expensive (Elvira et al.
2017). An alternative solution to this, which we adopt below
for PQMC, is to find the global covariance matrix 	(t+1)

that minimizes the Kullback-Leibler (KL) divergence between
the target density π and the next iteration mixture proposal
K−1 ∑K

k=1 N (x|μ(t+1)

k , 	(t+1)). Letting Sp
+ be the set of p × p

symmetric positive-definite matrices, this optimization takes
the form

	(t+1) = arg min
C∈Sp

+
KL

(
π(x)

∣∣∣∣
∣∣∣∣ 1
K

K∑
k=1

N (x|μ(t+1)

k , C)

)

= arg min
C∈Sp

+

( ∫
X

π(x) log π(x)dx

−
∫
X

π(x) log
[

1
K

K∑
k=1

N (x|μ(t+1)

k , C)

]
dx

)

= arg max
C∈Sp

+

∫
X

π(x) log
[

1
K

K∑
k=1

N (x|μ(t+1)

k , C)

]
dx

≈ arg max
C∈Sp

+

K∑
k=1

J∑
j=1

w̄(t)
k,j log

[
1
K

K∑
k=1

N (x(t)
k,j |μ(t+1)

k , C)

]
,

(26)

where the last equality uses a Monte Carlo approximation
using the importance samples {(x(t)

k,j , w̄(t)
k,j )}J

j=1
K
k=1 from the tth

iteration. This optimization of the global covariance was first
proposed by Cappé et al. (2008) for mixture PMC and by Ji
and Schmidler (2013) for adaptive MCMC. The optimization of
the final expression in (26) can be performed via Expectation-
Maximization (EM, Dempster, Laird, and Rubin 1977; Wu
1983). We call this approach the exact covariance adaptation;
this, however, may still be computational expensive as each EM
step requires O(K2J) evaluations of the proposal distribution.

To address this, we propose the following lookback covari-
ance adaptation, which provides computationally efficient way
to update the global covariance in PQMC without additional
evaluations of the proposal distribution. The key idea lies in
the fact that, after several iterations of PQMC, the samples
should converge to regions with high probability. After this,
the ISP resamples typically do not vary much from iteration to
iteration. The lookback covariance adaptation exploits this by
using centers from the previous iteration {μ(t)

k }K
k=1, giving the

optimization formulation

	(t+1) = arg max
C∈Sp

+

K∑
k=1

J∑
j=1

w̄(t)
k,j log

[
1
K

K∑
k=1

N (x(t)
k,j |μ(t)

k , C)

]
.

(27)

A closed-form update can then be obtained by one step of EM,

	(t+1) =
K∑

k=1

J∑
j=1

w̄(t)
k,j

N (x(t)
k,j |μ(t)

k , 	(t))∑K
i=1 N (x(t)

k,j |μ(t)
i , 	(t))

× (x(t)
k,j − μ

(t)
k )(x(t)

k,j − μ
(t)
k )T , (28)

with 	(t), the covariance matrix from the previous iteration
as the prior. No additional evaluations of the proposal dis-
tribution are needed for (28), since all quantities are already
computed previously in the weighting steps. While this look-
back covariance adaptation would also work with the existing
resampling methods, its performance may not be as good since
this approach assumes that proposal centers remain relatively
stationary as the algorithm converges.

4.3. Weighted Estimator

With the PQMC samples {(x(t)
k,j , w(t)

k,j )}T
t=1

K
k=1

J
j=1 in hand, one

can then tackle the problem of estimating posterior integral
Eπ [φ(X)] for a desired integrand φ. One may use the standard
PMC estimator forEπ [φ(X)] with known normalizing constant
Z is,

ÎPMC = 1
Z

(
1

TKJ

T∑
t=1

K∑
k=1

J∑
j=1

w(t)
k,j φ(x(t)

k,j )

)
= 1

T

T∑
t=1

ÎPMC
t ,

(29)
where ÎPMC

t = 1
Z ( 1

KJ
∑K

k=1
∑J

j=1 w(t)
k,j φ(x(t)

k,j )) is the estimator
using only the t-th iteration weighted samples. If Z is unknown,
we can replace it by a consistent estimator,

ẐPMC = 1
TKJ

T∑
t=1

K∑
k=1

J∑
j=1

w(t)
k,j . (30)

We can see that the standard PMC estimator can be viewed
as a simple average of T estimators each is constructed by the
weighted samples from the corresponding iteration.

However, when there is adaptation, the standard PMC esti-
mator is not efficient since better samples are obtained as the
algorithm proceeds. The weighted PMC (WPMC) estimator
assigns a set of correction weights {α(t)}T

t=1 with constraint that∑T
t=1 α(t) = 1 to the T estimators, allowing to “forget” the poor

samples simulated at the early stages (Douc et al. 2007; Portier
and Delyon 2018). When the normalizing constant Z is known,
the WPMC estimator for Eπ [φ(X)] is

ÎWPMC = 1
Z

T∑
t=1

α(t)ÎPMC
t

= 1
Z

(
1

KJ

T∑
t=1

K∑
k=1

J∑
j=1

α(t)w(t)
k,j φ(x(t)

k,j )

)
. (31)

If Z is unknown, we replace it by the following consistent esti-
mator,

ẐWPMC = 1
KJ

T∑
t=1

K∑
k=1

J∑
j=1

α(t)w(t)
k,j . (32)
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Let N(t)
e denotes the effective sample size of the t-th iteration

samples. We propose the following correction weights {α(t)}T
t=1

that approximately minimize the variance of ÎWPMC,

α(t) = N(t)
e∑T

i=1 N(i)
e

. (33)

The proposed weights are proportional to the effective sample
size, assigning larger weights to the estimators that are more
reliable. See Appendix B.4, supplementary materials for further
justification. This approach is free from the integrand φ and
does not require knowledge of the normalizing constant. A sim-
ilar idea of using effective sample size to weight the estimators
is also used in the Adaptive Population Importance Sampler
(Martino et al. 2015).

4.4. Asymptotic Properties

From the standard (29) and weighted (31) PMC estimator,
we can see that only the QMC proposal samples play a role
in the estimator. By using a set of randomized QMC points
which are marginally distributed as the proposal, the PQMC
enjoys the same consistency result of standard PMC methods.
Appendix B.3, supplementary materials provides a proof of the
consistency for standard/weighted PMC estimator. However,
with the use of low discrepancy proposal samples, this should
result in a faster convergence rate than the Monte Carlo rate of
O(N−1/2). Recent results on importance sampling convergence
rates with low discrepancy samples on general measures (Gerber
and Chopin 2015, Theorem 2) should be useful for showing this
theoretically. We will further explore theoretical properties on
convergence rates for ISP resampling and lookback adaptation
in a future work.

5. Simulation Results

In this section, we report simulation results comparing the
performance of the proposed PQMC method to existing
approaches. Further simulations results can be found in
Appendix C, supplementary materials, with source codes
provided at https://github.com/BillHuang01/PQMC.

5.1. Two-Dimensional Example

Consider a two-dimensional mixture of five normals
distribution,

π(x) = 1
5

5∑
i=1

N (x|μi, 	i) , (34)

with μi’s and 	i’s listed in Appendix C.1, supplementary mate-
rials. The example is from Elvira et al. (2017) but with proper
scaling so the main support of π is in [0, 1]2. Figure 3 shows
the density contour of this distribution. The mean Eπ [X] =
[0.540, 0.535]T and the normalizing constant Z = 1 can both
be computed analytically, so we can validate the performance
of PQMC and PMC. We use mean squared error (MSE) of the
estimates as the evaluation metric.

We first compare the proposed PQMC method (Algorithm 3)
to the generic PMC approach (Algorithm 2), both with normal
proposals and global covariance. For PMC, we consider simple
Monte Carlo proposals with multinomial/residual resampling as
the baseline comparisons. For PQMC, QMC proposals are used,
and we consider both Hilbert curve sorted stratified/systematic
resampling and our proposed ISP resampling for proposal cen-
ter adaptation. For covariance, we use isotropic matrix σ 2I2 for
initialization, that is, 	

(1)

k = σ 2I2, with σ = 0.1, 0.2, 0.5. We
apply lookback covariance adaptation only for PQMC, with the
adapted global covariance kept isotropic for fair comparison,
that is, 	

(t)
k = (σ (t))2I2. We run both PMC and PQMC for

T = 10 iterations but vary K and J while keeping KJ = 1000,
leading to total TKJ = 10,000 samples for the weighted PMC
estimator (31).

Table 1 shows log-MSEs for the estimation ofEπ [X] averaged
over 100 independent trials. In general, the PQMC outperforms
the baseline PMC significantly, with the proposed ISP resam-
pling yielding the largest improvements for different settings of
K, J, and σ . Regarding computation, ISP resampling is generally
faster than Hilbert curve sorted resampling in implementation
(see also Figure 4). Furthermore, PQMC appears to be quite
robust in performance even with a small number of proposals
K. Recall that the mixture weighting scheme in (19) requires
O(K2J) evaluations of the proposal distribution. By being able to
use a small number of proposals K, PQMC can yield significant

Table 1. Log-MSEs for the weighted estimator of Eπ [X] with π being the 2D mixture of five normals (34).

K J Algorithm σ = 0.1 σ = 0.2 σ = 0.5

25 40 PMC (Multinomial) −8.03 [−15.27,−5.04] −8.78 [−13.43,−7.03] −8.07 [−13.48,−6.87]
25 40 PMC (Residual) −8.31 [−16.02,−4.97] −8.77 [−17.91,−6.69] −8.03 [−15.40,−6.50]
25 40 PQMC (Systematic + Lookback) −14.55 [−19.18,−12.61] −14.28 [−20.14,−12.29] −13.36 [−20.98,−11.54]
25 40 PQMC (Stratified + Lookback) −14.31 [−18.36,−12.68] −14.10 [−18.90,−12.06] −13.41 [−18.27,−11.67]
25 40 PQMC (ISP + Lookback) −15.15 [−20.72,−13.62] −14.72 [−18.00,−12.63] −13.86 [−18.42,−11.96]

50 20 PMC (Multinomial) −10.04 [−15.04,−7.66] −8.89 [−13.07,−7.19] −7.93 [−13.26,−6.31]
50 20 PMC (Residual) −9.37 [−16.82,−5.46] −8.83 [−12.54,−6.95] −7.93 [−12.35,−6.24]
50 20 PQMC (Systematic + Lookback) −14.50 [−18.63,−12.79] −14.27 [−19.53,−12.52] −13.21 [−17.76,−11.21]
50 20 PQMC (Stratified + Lookback) −14.35 [−18.71,−12.45] −13.91 [−19.92,−12.39] −13.15 [−20.12,−11.56]
50 20 PQMC (ISP + Lookback) −14.83 [−19.35,−13.25] −14.43 [−19.40,−12.57] −13.25 [−17.29,−11.80]

100 10 PMC (Multinomial) −10.31 [−16.22,−8.69] −8.84 [−16.60,−6.99] −8.02 [−11.63,−6.30]
100 10 PMC (Residual) −10.03 [−13.56,−8.59] −8.89 [−16.32,−7.36] −7.97 [−11.40,−6.27]
100 10 PQMC (Systematic + Lookback) −14.04 [−20.66,−12.73] −13.64 [−17.08,−11.88] −13.03 [−18.95,−11.53]
100 10 PQMC (Stratified + Lookback) −13.77 [−19.05,−12.09] −13.68 [−19.21,−12.24] −12.97 [−16.52,−11.50]
100 10 PQMC (ISP + Lookback) −14.27 [−19.40,−12.50] −13.79 [−18.42,−12.25] −12.97 [−19.30,−11.05]

NOTE: The MSEs are averaged over 100 independent runs and shown in log with “mean [min,max]”. The best results for each σ are highlighted in red bold-face.

https://github.com/BillHuang01/PQMC
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reductions in computational cost from proposal evaluations,
which may somewhat offset the additional computational bur-
den from ISP resampling. Additional simulation results on the
estimation of the normalizing constant and the comparison of
the standard and weighted estimator are described in Appendix
C.1, supplementary materials.

In this simulation, where the synthetic target distribution
(34) is cheap to evaluate, PQMC is indeed more computation-
ally expensive than PMC. However, in many complex Bayesian
problems such as the friction drilling application in Section 6,
the target distribution is oftentimes expensive. For such prob-
lems, the additional runtime from ISP resampling and lookback
adaptation in PQMC is overshadowed by the additional number
of target distribution evaluations required by PMC to achieve
the same level of precision.

5.2. Higher Dimensional Example

Consider a 10-dimensional mixture of three normals
distribution,

π(x) = 1
3

3∑
i=1

N (x|μi, 	i) , (35)

with μi’s and 	i’s provided in Appendix C.2, supplementary
materials. This example is also from Elvira et al. (2017) but
with proper scaling so that the main support of π is inside
[0, 1]10. The mean Eπ [Xj] = 0.550 for j = 1, . . . , 10 and the
normalizing constant Z = 1. We again use mean squared error
(MSE) of the weighted estimator for performance evaluation.
The same experimental setup in Section 5.1 is used, except we
now run PMC and PQMC with KJ = 2000, yielding a total
of TKJ = 20,000 evaluations of the target distribution. Table 2

shows the log-MSEs for the estimation of Eπ [X] averaging over
100 independent runs. As before, PQMC with the proposed
ISP resampling and lookback adaptation provides significant
improvements over other methods, for various settings of K, J,
and σ . Appendix C.2, supplementary materials provides further
comparisons.

To better study the performance of PQMC as dimension
p increases, we change the dimension for the mixture normal
distribution in (35) while keeping the same structure for the
means and covariances. In particular, we run PMC and PQMC
with K = 50 and J = 40, with an isotropic covariance
matrix with σ = 0.2 at initialization (other settings are the
same as before). Figure 5 shows log-MSEs for estimating the
normalizing constant Z = 1 as dimensionality increases. We
can see that PQMC outperforms PMC for all dimensions up to
p = 20, but the improvement diminishes for larger dimensions.
This diminishing improvement in higher dimensions is not too
surprising for PQMC, since it is known that QMC methods may
suffer from a “curse-of-dimensionality” for high-dimensional
sampling problems (Dick, Kuo, and Sloan 2013).

6. Expensive Posterior Application: Friction Drilling

Finally, we present an application of PQMC on a practical engi-
neering problem where the posterior distribution is expensive
to evaluate. Miller and Shih (2007) develop a thermomechanical
finite element model (FEM) to simulate a friction drilling pro-
cess for analyzing the relationship between the thrust force (y)
and the tool travel distance (x). There is an unknown parameter,
the friction coefficient (η), in the FEM that one has to specify to
obtain the FEM output. The left panel of Figure 6 shows the FEM
outputs of thrust force over the tool travel distance for three
different values of the friction coefficient, and we can see that

Table 2. Log-MSEs for the weighted estimator of Eπ [X] with π being the 10D mixture of three normals (35).

K J Algorithm σ = 0.1 σ = 0.2 σ = 0.5

50 40 PMC (Multinomial) −5.80 [−8.86,−2.88] −10.86 [−12.62,−9.24] −6.95 [−8.41,−5.84]
50 40 PMC (Residual) −6.05 [−8.24,−4.48] −11.09 [−12.87,−9.73] −6.91 [−8.65,−5.44]
50 40 PQMC (Systematic + Lookback) −11.65 [−14.10,−10.41] −11.65 [−13.30,−10.37] −11.45 [−13.00,−9.93]
50 40 PQMC (Stratified + Lookback) −9.65 [−13.78,−5.23] −11.74 [−13.40,−10.36] −11.41 [−13.08,−9.64]
50 40 PQMC (ISP + Lookback) −11.89 [−13.53,−10.34] −12.07 [−14.16,−10.67] −11.97 [−13.26,−10.87]

100 20 PMC (Multinomial) −6.31 [−9.27,−3.65] −11.34 [−13.02,−10.32] −6.90 [−8.26,−5.52]
100 20 PMC (Residual) −6.70 [−9.15,−5.09] −11.23 [−12.83,−10.23] −6.97 [−8.50,−5.71]
100 20 PQMC (Systematic + Lookback) −11.84 [−13.46,−10.33] −12.03 [−13.80,−10.60] −11.77 [−13.58,−10.55]
100 20 PQMC (Stratified + Lookback) −11.81 [−13.39,−10.51] −11.99 [−14.29,−10.66] −11.82 [−13.57,−10.75]
100 20 PQMC (ISP + Lookback) −12.15 [−13.57,−11.03] −12.19 [−13.77,−10.96] −11.93 [−13.21,−10.79]

NOTE: The MSEs are averaged over 100 independent trials and shown in log with “mean [min,max]”. The best results for each σ are highlighted in red bold-face.

Figure 5. Log-MSEs for the weighted estimator of Z on the p = 2, . . . , 20 dimensional mixture of three normals. The MSEs are averaged over 100 independent trials.
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Figure 6. Left panel: FEM outputs at three values of the friction coefficient versus the physical experiment output. Right panel: Calibrated model output at the posterior
means from PQMC versus the physical experiment output.

Figure 7. Histograms of 5000 MCMC samples versus densities of 637 PQMC samples.

none of the FEM output aligns well with the physical experiment
output. A further investigation shows that due to the deflection
of the sheet at the initial contact with the tool, the tool travel
in the physical experiment is less than the tool travel inputted
to the FEM, causing the discrepancy. However, fixing this in the
FEM code is difficult and computationally expensive. Joseph and
Yan (2015) propose an engineering-driven statistical adjustment
that can reduce the discrepancy in a more efficient way.

Following the steps described in Section 5 of Joseph et al.
(2019), we introduce two adjustment parameters γ1 and γ2,
leading to the following log posterior distribution,

log p(η, γ1, γ2|y) = Const. − N
2

log
( N∑

i=1
[yi − ĝ(γ1xγ2

i ; η)]2
)

+ log p(η) + log p(γ1) + log p(γ2). (36)

Here, ĝ(·; η) is the Gaussian process (GP) prediction (Santner,
Williams, and Notz 2018) emulating the expensive FEM model
g(·; η). The details of this Bayesian model are presented in

Appendix D, supplementary materials. Using the GP fit from the
R package GPfit (MacDonald, Ranjan, and Chipman 2015),
each posterior evaluation requires more than 10 sec on a 2 cores
2.3 GHz laptop. Thus, given a computational budget, only a
handful of posterior evaluations can be performed.

We run the PQMC (Algorithm 3) for T = 7 iterations
with K = 13 proposals and J = 7 samples drawn from
each proposal, thus, leading to TKJ = 637 evaluations of the
posterior distribution. The initial centers are the 13 lattice points
over [0.5, 1]×[0.5, 1]×[0.75, 1.25], which covers the key regions
of the prior. The initial proposal covariance matrix is set as
0.22I3, since the minimax measure of the 13 centers over the
region is 0.3 (computed using the R packageminimaxdesign
(Mak 2019a)). The adapted covariance matrix is kept as isotropic
for the sampling procedure. Figure 6 shows the predictions from
the calibrated model (right plot) at the posterior mean (η =
0.76, γ1 = 0.87, γ2 = 1.17), computed using the weighted
PQMC estimator. We can see that the calibrated model aligns
much better with the actual physical experiment output, com-
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pared to the three uncalibrated FEM model outputs (left plot).
The performance comparison of PQMC (Algorithm 3) to PMC
(Algorithm 2) on this friction drilling example are included in
the Appendix D, supplementary materials.

The posterior uncertainty of the three parameters (η, γ1, γ2)
is also of interest, since it provides a measure of uncertainty for
the calibrated FEM model. To verify the uncertainty from the
PQMC weighted samples, we generate 5000 MCMC samples
using the random walk Metropolis algorithm. A normal pro-
posal distribution is used with covariance 0.012I3. The Markov
chain is initialized at the point [0.75, 0.88, 1.18]T , which is the
posterior mean of (η, γ1, γ2) reported in Joseph et al. (2019).
Given we start the Markov chain at a promising region, no
samples are discarded as burn-in. Figure 7 shows the histograms
of these MCMC samples, along with the marginal densities of
the PQMC weighted samples. We can see that the densities from
PQMC closely mimic the MCMC histograms, which suggest
that the proposed approach provides a good quantification of
uncertainty for the three calibration parameters, using a reduced
sample size of 637 (compared to 5000 for standard MCMC).
Given the expensive nature of the posterior evaluations, the
reduction in sample size while retaining the same level precision
demonstrates the computational advantage of PQMC under this
problem setting.

7. Conclusion

This article proposes a new method called Population Quasi-
Monte Carlo (PQMC), which incorporates Quasi-Monte Carlo
ideas within the sampling and adaptation steps of the generic
Population Monte Carlo procedure. The key novelty is the intro-
duction of the importance support points (ISP) resampling, a
deterministic resampling method that yields a set of resamples
minimized over the energy distance to the weighted samples.
Within the PQMC framework, we also propose a computation-
ally efficient adaptation scheme for the proposal covariance, and
suggest a new weighted estimator to further reduce the variance
of the estimator. Extensive numerical experiments show: (i)
significant improvement of the ISP resampling over the exist-
ing resampling schemes, including the state-of-the-art Hilbert
curve sorted resampling, for problems up to 20 dimensions,
and (ii) faster empirical convergence rate of the PQMC over the
generic PMC. Although ISP resampling has a higher computa-
tional complexity than multinomial resampling, the additional
runtime incurred is oftentimes negligible when the posterior is
expensive to evaluate, such as the friction drilling example in
Section 6.

Supplementary Materials

R codes are available at https://github.com/BillHuang01/PQMC. supple-
mentary.pdf contains additional details and simulation results.
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