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Abstract. Subspace-valued functions arise in a wide range of problems, including parametric
reduced order modeling (PROM), parameter reduction, and subspace tracking. In PROM, each
parameter point can be associated with a subspace, which is used for Petrov–Galerkin projections of
large system matrices. Previous efforts to approximate such functions use interpolations on manifolds,
which can be inaccurate and slow. To tackle this, we propose a novel Bayesian nonparametric model
for subspace prediction: the Gaussian process subspace (GPS) model. This method is extrinsic and
intrinsic at the same time: with multivariate Gaussian distributions on the Euclidean space, it induces
a joint probability model on the Grassmann manifold, the set of fixed-dimensional subspaces. The
GPS adopts a simple yet general correlation structure, and a principled approach for model selection.
Its predictive distribution admits an analytical form, which allows for efficient subspace prediction
over the parameter space. For PROM, the GPS provides a probabilistic prediction at a new parameter
point that retains the accuracy of local reduced models, at a computational complexity that does not
depend on system dimension, and thus is suitable for online computation. We give four numerical
examples to compare our method to subspace interpolation, as well as two methods that interpolate
local reduced models. Overall, GPS is the most data efficient, more computationally efficient than
subspace interpolation, and gives smooth predictions with uncertainty quantification.
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1. Introduction. In this paper we propose a method to solve the following
formal problem. Consider a subspace-valued mapping f : Θ 7→ Gk,n from a parameter
space Θ ⊂ Rd to the Grassmann manifold Gk,n, which is the set of all k-dimensional
subspaces of the Euclidean space Rn. Given function evaluations at l points, (θi,Xi =
f(θi))

l
i=1, construct a probabilistic surrogate model g such that g(θ∗) is a probability

distribution on Gk,n concentrated near f(θ∗) for any point θ∗ ∈ Θ.

1.1. Motivation. Numerical models can accurately predict many phenomena in
science and engineering, with wide-ranging applications such as turbomachinery [29],
ocean modeling [48], and biomedicine [10]. Yet, high-fidelity models must resolve
multiple physics, multiple scales, complex geometry, and stochasticity. This leads to
large-scale dynamical systems that incur major computational costs, especially when
they need to be solved repeatedly. Other applications require real-time or embedded
computing based on limited computational resources. In both cases, one needs to
reduce the cost of solving large systems of differential equations. Reduced order
modeling (ROM) approximates the full model with a reduced order model, which is
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a much smaller system of differential equations that takes significantly less time and
storage to simulate. ROM often provides a speedup of several orders of magnitude
and has been used in many types of problems in scientific computing [8].

In many use cases, the full model itself depends on some parameters, to allow
variations in material, geometry, loading, initial conditions, or boundary conditions.
However, the accuracy of reduced models often declines quickly as parameters change,
so we want to develop a reduced model that is also a function of the parameters. This is
called parametric reduced order modeling (PROM), which is useful for design, control,
optimization, uncertainty quantification, and inverse problems. Since most ROM
methods are based on Petrov–Galerkin projection, which projects the model state
space onto a low-dimensional subspace, one approach to PROM is to approximate
the mapping from the parameters to such subspaces [8].

Subspace-valued mappings also arise in other areas of scientific computing. Active
subspace methods [12] reduce the input space of a real-valued function to a low-
dimensional subspace called the active subspace. For functional outputs, e.g., spatially
varying fields or time series, such active subspaces become a function of space or time.
Time-varying subspaces also arise in subspace tracking [13] and ROM [6].

1.2. Previous methods. A natural idea to solve this problem is to interpo-
late subspaces as a function of the parameters. However, this is infeasible since the
Grassmann manifold is not a vector space and linear combination is undefined. To
circumvent this difficulty, [3] proposed a method that takes the interpolation to tan-
gent spaces of the Grassmann manifold, which are vector spaces. It comes in three
steps. Given a target parameter point, it chooses a few nearby parameter points and
maps the associated subspaces to the tangent space of one of them via the Riemannian
logarithm. Then the tangent vectors are interpolated as a function of the parameters,
using any traditional interpolation method. Finally, the interpolated tangent vector
is mapped back to the Grassmann manifold via the Riemannian exponential, which
gives the predicted subspace. We will refer to this method as subspace interpolation.
In fact, this three-step approach applies to any Riemannian manifold, as long as ef-
fective algorithms exist for the Riemannian exponential and logarithm maps [2, 4].
This approach is extrinsic, i.e., referring to other sets and structures, which introduces
distortions to the map.

Another type of method uses the Riemannian center of mass of weighted data
points. The global or local Riemannian center of mass is the set of global or local
minimizers of the sum of weighted squared Riemannian distances [1]. As before, the
parameter-dependent weights can use any interpolation scheme such as splines [19] or
Lagrange polynomials [40], both of which were introduced in the context of geodesic
finite elements. Similarly, in the statistics literature, [37] proposed global and local
regression models with predictors in a Euclidean space and random responses in a
metric space. These methods are intrinsic, i.e., involving operations entirely on the
manifold, so they avoid the limitations of mapping to a tangent space. However, their
computation requires iterative algorithms for Riemannian optimization, and only local
minimizers can be found. So far their uses are mostly for low-dimensional manifolds,
with limited applications in PROM [35].

Zimmermann [49] reviewed interpolation methods on the Grassmann manifold
and other matrix manifolds in the context of model reduction. More recently, he
introduced Hermite interpolation of parameterized curves on Riemannian manifolds
[50], which uses derivative data. All these methods are deterministic, while proba-
bilistic methods for subspace approximation have not been explored in the literature.
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A1430 RUDA ZHANG, SIMON MAK, AND DAVID DUNSON

1.3. Contribution. We propose a new Gaussian process (GP) model for the
approximation of subspace-valued functions, which we call the Gaussian process sub-
space (GPS) model. Instead of using differential geometric structures of the Grass-
mann manifold as in [3], the GPS uses matrix-variate Gaussian distributions on the
Euclidean space to induce a probability model on the Grassmann manifold. Our
method therefore yields a probabilistic prediction of the subspace response, with in-
trinsic characterization of its predictive mean and uncertainty. Specifically, the mean
prediction is a k-subspace of the span of the observed subspaces, and the latter also
covers most of the predictive uncertainty. This GP model is flexible and yet well-
guided: it can be used with any correlation function on the parameter space, and
the function form and hyperparameters can be optimized via specific model selection
criteria.

The main advantages of our method are summarized as follows. (1) Data efficient :
Accurate prediction requires only a small sample size l, even when subspace dimension
k and parameter dimension d are large. (2) Computationally efficient : Its prediction
cost does not depend on ambient dimension n, and thus it is suitable for large-scale
problems and online computation. (3) Flexible: It is a flexible Bayesian nonparamet-
ric model that is robust against model misspecification. (4) It provides uncertainty
quantification, which gives a probabilistic description of a predicted subspace.

In our observation, GPS is much more accurate than subspace interpolation [3],
which is in turn much more accurate than other PROM methods [4, 36]. Such data
efficiency can be attributed to two factors. First, our method is intrinsic, so it does not
suffer from distortions due to pulling back the mapping to a tangent space. Second,
it has clear rules for model selection, while the other methods are often subject to
model misspecification, due to arbitrary choices of reference point, subsample points,
and interpolation schemes.

1.4. Related work. The authors have worked on estimating functions whose
domains or codomains are manifolds. For inputs on an unknown embedded subman-
ifold, [44] proposed a GP model that attains the minimax-optimal convergence rate,
without estimating the manifold. To allow for noisy inputs and better scalability,
[21] first projects the input to random subspaces, and then applies a GP model. For
inputs on a known embedded submanifold, [25] proposed an extrinsic GP, while [33]
proposed an intrinsic GP, with heat kernel as the covariance function. For outputs on
an embedded submanifold, [26] proposed a non-GP method, which applies an extrinsic
local regression and then obtains manifold estimates via projection [46].

While our method extends GPs to mappings that take values in the Grassmann
manifold, we are not the first to define GPs on Riemannian manifolds. Wrapped
Gaussian process regression [30] approximates mappings to a general Riemannian
manifold, using distributions induced by Gaussian distributions on tangent spaces.
However, this approach encounters problems when the manifold has a finite injectiv-
ity radius, as is the case for Grassmann manifolds. In particular, one cannot calculate
the induced probability density function (PDF) on the manifold or the intrinsic mean.
In contrast, our proposed approach produces analytic forms for predictive quantities
that admit efficient computation, albeit restricted to Grassmann manifolds.

1.5. Article structure and notation. Section 2 provides basics of the algebra
and statistics of some matrix manifolds. Section 3 presents the theoretical foundation
of our GPS model, and section 4 gives an algorithm for prediction. Section 5 discusses
model selection for our model. Section 6 overviews ROM and discusses the use of
GPS in PROM in the context of existing methods. Section 7 gives several numerical
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GAUSSIAN PROCESS SUBSPACE PREDICTION A1431

experiments: one to visualize the posterior process, and three to access its accuracy
in benchmark PROM problems. Section 8 concludes with a discussion on practical
issues. Additional text is included in the Supplementary Materials. An R package
accompanying this paper is available at https://github.com/rudazhang/gpsr.

Notation. Scalars are in lowercase, n, k, l, d; vectors in boldface lowercase, m,xi,
θ; and matrices in boldface uppercase, M,Xi,Kl. Sets are in nonboldface upper-
case, Θ, Gk,n; subspaces in Fraktur script, X,M; and equivalence classes in brackets,
[M], [m].

2. Preliminaries. Because we are building a probabilistic surrogate of subspace-
valued mappings, it is helpful to review the algebra and statistics of the Grassmann
manifold and some related matrix manifolds. For some basics of the algebra and
differential geometry, see, e.g., [7, 47]; for a reference on the statistics, see [11].

2.1. Matrix manifolds. Let Mn,k be the set of all n-by-k real matrices, which
can be identified as the Euclidean space Rn×k. The set of all full-rank n-by-k matrices
is M∗

n,k = {M ∈ Mn,k : rank(M) = min(n, k)}. When k = n, it coincides with the
general linear group GLn, which consists of full-rank order-n matrices.

The Stiefel manifold Vk,n consists of all orthonormal k-frames in the Euclidean
n-space: Vk,n = {X ∈ M∗

n,k : XTX = Ik}, where k ≤ n and Ik is the order-k
identity matrix. The order of the subscripts is reversed by convention. When k = n,
the Stiefel manifold coincides with the orthogonal group O(n). Define projection
π : M∗

n,k 7→ Vk,n such that for any M ∈M∗
n,k with a thin singular value decomposition

(SVD) M = VΣUT , V ∈ Vk,n, U ∈ O(k), we have π(M) = VUT . Although the
SVD is not unique, this mapping is uniquely defined.

The Grassmann manifold Gk,n consists of all k-subspaces of the Euclidean n-
space: Gk,n = {span(M) : M ∈M∗

n,k}, where span(M) denotes the subspace spanned
by the columns of M. Every element of Gk,n is a subspace, which is often represented
by a basis. For example, every M ∈ M∗

n,k represents M = span(M), the column
vectors of M form a basis of M, and every element in its equivalence class [M] =
{MA : A ∈ GLk} represents M as well. We call M a basis representation of M. In
particular, every X ∈ Vk,n represents X = span(X), and its column vectors form an
orthonormal basis of X. We call X a Stiefel representation of X.

The Grassmann manifold is often identified with the set of rank-k symmetric pro-
jection matrices Pk,n: let S(n) be the set of order-n symmetric matrices, and define
Pk,n = {P ∈ S(n) : P2 = P, rank(P) = k}. This identification is possible because
span() is a bijection from Pk,n to Gk,n. Given a Stiefel representation X, a subspace X
can thus be uniquely identified as XXT . Due to this explicit identification, probabil-
ity distributions on the Grassmann manifold can be induced through distributions on
Pk,n, with the corresponding PDF being p : Pk,n 7→ R≥0,

∫
Pk,n

p(P)µ(dP) = 1,

where µ is the normalized invariant measure on Pk,n under the group action of
GLn.

2.2. Probability distributions. Let S+(n) be the set of order-n positive-
definite matrices. Let M ∈ Mn,k, Σ1 ∈ S+(n), and Σ2 ∈ S+(k). The n-by-
k matrix-variate Gaussian distribution Nn,k(M;Σ1,Σ2) is the distribution of Y =

Σ
1/2
1 ZΣ

1/2
2 +M, where Z is a random n-by-k matrix whose entries are independent

standard Gaussian random variables. The vectorized matrix Y is an (nk)-dimensional
Gaussian random vector with a special form of covariance matrix: vec(Y) ∼
Nnk(vec(M),Σ2 ⊗ Σ1), where vec() denotes vectorization of a matrix by stacking
its columns, and ⊗ is the Kronecker product.
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The matrix angular central Gaussian distribution MACG(Σ) is a probability dis-
tribution on Vk,n, with PDF p(X;Σ) = z−1|XTΣ−1X|−n/2, where | · | denotes the
determinant, normalizing constant z = |Σ|k/2, and parameter Σ ∈ S+(n). This
parametric family contains the uniform distribution: since p(X; In) = 1, we have
MACG(In) ∼ Uniform. The parameter of the MACG distribution is identified up to
scaling: for all Σ ∈ S+(n) and c ∈ R>0, MACG(Σ) = MACG(cΣ).

Any probability distribution on Mn,k or Vk,n that is invariant under right-
orthogonal transformation induces a probability distribution on Gk,n [11, Thm 2.4.8]:
let p be a PDF on Mn,k such that p(M) = p(MQ) for all M ∈Mn,k and Q ∈ O(k), if
M ∼ p, letX = π(M) ∼ pV andXXT ∼ pG, then pV (X) = pV (XQ) for allQ ∈ O(k),
and pG(XXT ) = pV (X). Because the MACG distribution on Vk,n is invariant under
right-orthogonal transformation, it defines a family of distributions on Gk,n with the
same PDF. We call it the MACG distribution on Gk,n.

These three distributions are related: let M ∼ Nn,k(0;Σ, Ik) where Σ ∈ S+(n);
let X = π(M), then X ∼ MACG(Σ) and XXT ∼ MACG(Σ). Due to this property,
one can easily sample MACG(Σ): generate M ∼ Nn,k(0;Σ, Ik), and project it via π.

3. Gaussian process subspace prediction. We now present the proposed
GPS model. Because GP models take values in Euclidean spaces, they are not di-
rectly applicable to approximate subspace-valued mappings f : Θ 7→ Gk,n, where the
codomain is the Grassmann manifold. Instead, we may find vector-valued mappings
f : Θ 7→ Rnk that are representations of f , in the sense that f = span ◦ vec−1 ◦ f .
Here, ◦ denotes the composition of two mappings and vec−1 : Rnk 7→ Mn,k de-
notes the “inverse” of vec(), that is, constructing a matrix columnwise from a vector.
Such representations are not unique, and we denote the set of representations as
F = {f : f = span ◦ vec−1 ◦ f}. Now f can be identified with F , or equivalently, any
distribution supported on F .

GP models extend naturally to approximate distributions on a set of functions.
Let X = f(θ) with a basis representation X. Recall that X has an equivalence class
[X] = {XA : A ∈ GLk}. Let x = vec(X), whose equivalence class can be written
as [x] = {vec(XA) : A ∈ GLk}. Assuming that f has a GP prior, we may assign
equal likelihood to [x]. We can then proceed to derive the posterior and the predictive
distributions. In the following, we provide modeling details and analytical solutions
for this approach.

3.1. Model specification. We start by specifying a prior for the representa-
tions. Without other information on f , an uninformative prior is for f(θ) to be
uniformly distributed on Gk,n. We can achieve this by assigning f(θ) ∼ Nnk(0, Ink),
the nk-dimensional standard Gaussian. To see this, let matrix M = vec−1(f(θ)),
then M ∼ Nn,k(0; In, Ik) is a matrix-variate standard Gaussian; let subspace M =
span(M), then M ∼ MACG(In) ∼ Uniform. We assign a correlation structure as
follows. Let k : Θ × Θ 7→ [−1, 1] be a correlation function, i.e., a positive-definite
kernel with k(θ,θ) = 1 for all θ ∈ Θ. For any finite collection of input points
θ = (θi)

l
i=1, let mi = f(θi), and let Kl be the order-l correlation matrix with en-

try [Kl]ij = k(θi,θj). We assign the function values m = (mi)
l
i=1 a prior joint

distribution m ∼ Nnkl(0,Kl ⊗ Ink). Compactly, we can write this GP prior as
f ∼ GP(0, k ⊗ Ink). This is the simplest covariance structure for f .

Without a likelihood function, this GP prior gives predictions as follows. Let θ∗
be a target point and m∗ = f(θ∗). We have the prior joint distribution:

(m∗,m) ∼ Nnk(l+1)(0,Kl+1 ⊗ Ink),(3.1)
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where Kl+1 = [1 kT
l ;kl Kl] and kl = (k(θ∗,θi))

l
i=1. If we write K22 = Kl ⊗ Ink and

K12 = kT
l ⊗ Ink, by properties of multivariate Gaussian distributions, the conditional

distribution of m∗ given m can be written as

m∗|m ∼ Nnk(K12K
−1
22 m, Ink −K12K

−1
22 K

T
12)

= Nnk

(
l∑

i=1

[K−1
l kl]imi, (1− kT

l K
−1
l kl)Ink

)
.

(3.2)

We assign equal likelihood to the equivalence class of representations. Assume
that we have function evaluations Xi = f(θi) with Stiefel representations Xi ∈ Vk,n.
Let xi = vec(Xi) and [xi] = {vec(XiA) : A ∈ GLk}. For mi = f(θi), the likelihood
function gives

L(mi|Xi) = 1(mi ∈ [xi]).(3.3)

The posterior distribution of m given observations X = (Xi)
l
i=1 is derived from

the prior and the likelihood (3.3) via the Bayes’ rule:

p(m|X) ∝ exp

{
− 1

2
mT (Kl ⊗ Ink)

−1m

} l∏
i=1

1(mi ∈ [xi]).(3.4)

3.2. Predictive distributions. The predictive distribution of m∗ given ob-
servations X is obtained by integrating the conditional distribution (3.2) over the
posterior distribution (3.4). We summarize the result as follows.

Theorem 3.1. Let X = [X1 · · · Xl] be the matrix that combines Xi by columns,
and X = diag(Xi)

l
i=1 be the matrix with Xi as diagonal blocks. Let ε2 = 1−kT

l K
−1
l kl

and v = K−1
l kl. If v ∈ Rl

̸=0,
1 let Dv = diag(v) and K̃l = (DvKlDv)

−1. The
predictive distribution of m∗ is

m∗|X ∼ Nnk(0, Ik ⊗Σ),

Σ = ε2In +X[XT (K̃l ⊗ In)X]−1XT .(3.5)

The proof is quite lengthy and thus deferred to section SM1. This theorem shows that,
given observations (1) the matrix M∗ = vec−1(m∗) has a matrix-variate Gaussian
distribution, M∗|X ∼ Nn,k(0;Σ, Ik); and (2) the subspace M∗ = span(M∗) has an
MACG distribution, M∗|X ∼ MACG(Σ) (see subsection 2.2).

The predictive distributions admit an intuitive interpretation. Since Σ is positive
semidefinite, there is an eigenvalue decomposition (EVD) Σ = Qdiag(λ)QT , where
λ ∈ Rn

≥0 are in decreasing order and Q ∈ O(n). Therefore we can simulate M∗|X as

M∗ = Σ1/2Z = Qdiag(λ)1/2QTZ, where Z ∈ Mn,k is a random matrix of standard
Gaussians. The columns of Z are scaled by the square root of the eigenvalue in each
eigenspace; therefore the range (i.e., column space) of M∗ is more likely to align with
the top eigenspaces of Σ. Recall that M∗ = span(M∗). We have the following results.
(1) The global Riemannian center of mass of M∗|X is span(V), where V is the first k
columns of Q. (2) The uncertainty of M∗|X is compactly described by the eigenvalues

1The condition of no zero entry in v(θ) holds almost everywhere in Θ, but it breaks most notably
when predicting at sample points, v(θi) = ei, which means Σ is singular at sample points and close
to singular nearby. In these cases, one needs to be careful with matrix inversion in implementing the
prediction algorithm in section 4.
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λ: the larger an eigenvalue is, the more important is the associated eigenspace; and
the mean prediction is more useful if (λi)

n
i=k+1 are small relative to (λi)

k
i=1.

A main feature of our GP model is that, while its construction involves the ex-
trinsic Euclidean space Rnk of basis representations of subspaces, its predictive dis-
tribution is intrinsic to the Grassmann manifold Gk,n. In particular, our model does
not involve tangent spaces or the Riemannian exponential, and thus it is not subject
to the distortions associated with applying local tangent approximations. Moreover,
the function space explored by the GPS is much broader than the existing interpo-
lation methods, so our model is more flexible and robust to model misspecification.
Perhaps surprisingly, the GPS has closed-form expressions for its predictive distri-
butions, which enables efficient computation for subspace prediction and uncertainty
quantification.

While Theorem 3.1 is concerned with point predictions on the Grassmann man-
ifold, our GPS model also induces joint distributions on Gk,n and can be used to
generate random subspace-valued functions (see section SM2).

4. Prediction algorithm. From Theorem 3.1 and the discussion thereafter we
see that, to compute the predictive distribution, one needs the EVD of Σ. Even with
Σ available, the EVD would cost O(n3), which is intractable for large n. Here we
give an efficient method to compute this.

4.1. Efficient EVD of Σ. Denote Π = XT (K̃l ⊗ In)X and Σ̌ = XΠ−1XT .

We note that K̃l,Π > 0 and Σ̌ ≥ 0. Let r = rank(X) ≤ min(n, kl), then Σ̌ also
has rank r and therefore r positive eigenvalues. From the form of Σ̌, we see that its
top-r eigenvectors span the range of X. Let X = ṼR̃P̃T be a rank-revealing QR
decomposition, such that Ṽ ∈ Vr,n has r orthonormal columns, R̃ ∈ Mr,kl is upper

triangular, and P̃ is a permutation matrix. Denote order-r matrix S = ṼT Σ̌Ṽ and let
S = Q̊diag(λ̊)Q̊T be an EVD where λ̊ is descending and Q̊ ∈ O(r). Let V = ṼQ̊ and

let Q = (V,V⊥) ∈ O(n) be an orthogonal completion. Let λ̌ = (λ̊,0n−r) where 0n−r

is the vector of zeros with length n − r. Then we have an EVD: Σ̌ = Qdiag(λ̌)QT .
Because Σ = Σ̌+ ε2In, we have an EVD of Σ:

Σ = Qdiag(λ̌+ ε21n)Q
T .(4.1)

Here 1n is the vector of ones with length n. We see that, for a complete probabilistic
prediction, we only need a rank-revealing QR of X, an EVD of S, and ε2. For the
mean prediction, we only need the top-k eigenvectors of S.

We can simplify the computation of S as follows. Note that ṼTX = R̃P̃T and
P̃−1 = P̃T . Because S = ṼT Σ̌Ṽ and Σ̌ = XΠ−1XT , we have S = R̃(P̃ΠP̃T )−1R̃T .
Let order-(kl) Gram matrix □ = XTX, which has a block matrix structure □ =
[□ij ]

l
i,j=1 with □ij = XT

i Xj . Note that Π similarly has a block matrix structure

Π = [Πij ]
l
i,j=1 with Πij = k̃ij□ij , where k̃ij = [K̃l]i,j . The construction of Π can

be written in a compact form: Π = □ ◦ (K̃l ⊗ Jk), where ◦ denotes the Hadamard

product and Jk = 1k1
T
k is the order-k matrix of ones. Let Π̃ = P̃ΠP̃T and let

Π̃ = LLT be a Cholesky decomposition, where L ∈ Mkl,kl is lower triangular. Let

L̃ = L−1R̃T ∈ Mkl,r by solving linear equations, which is also lower triangular; then

we have S = L̃T L̃.
We formally describe the prediction procedure in two parts: Algorithm 4.1 only

needs to be done once, and Algorithm 4.2 is needed for each prediction.
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Algorithm 4.1. GPS: Preprocessing

Input: observation X = [X1 · · · Xl].
1: Compute Gram matrix: □← XTX.
2: Rank-revealing QR: X = ṼR̃P̃T .

Output: Gram matrix □; global basis Ṽ; upper triangular R̃; pivoting P̃.

Algorithm 4.2. GPS: Prediction

Require: correlation function k(·, ·); preprocessing output (□, Ṽ, R̃, P̃).
Input: sample (θi)

l
i=1; target θ∗; truncation size t ∈ {k, k + 1, . . . , r}.

1: Construct correlation matrix and vector: kij ← k(θi,θj), ki ← k(θ∗,θi).

2: Solve linear equations: v← solve(K,k), K̂← solve(K,diag(v)−1).

3: Construct matrix: Π← [Πij ]
l
i,j=1, where Πij ← v−1

i k̂ij□ij .

4: Cholesky decomposition: P̃ΠP̃T = LLT .
5: Solve linear equations: L̃← solve(L, R̃T )

6: Cross product: S← L̃T L̃.
7: Truncated EVD: S = V̊ diag(λ̊)V̊T , where λ̊ has length t.
8: Compute noise variance: ε2 ← 1− kTv.

Output: principal directions V = ṼV̊; principal variances λ̊; noise variance ε2.
Note: May return Ṽ and V̊ instead of V to avoid matrix multiplication.

4.2. Computational cost. Here we analyze the computational cost of each
step in floating point operations (flops), accurate up to the dominant term. In Al-
gorithm 4.1, line 1 takes nk2l2 flops; line 2 takes O(nklr) flops, and if r ≈ kl, this
requires about 4nk2l2 flops using the Householder QR with column pivoting [16]. In
Algorithm 4.2, line 1 evaluates the correlation function l2/2 times; line 2 takes l3/3
flops for Cholesky decomposition, and 2l3 for forward and back substitution; line 3
takes k2l2/2 flops; line 4 takes k3l3/3 flops; line 5 takes k3l3/3 − (kl − r)3/3 flops,

due to the upper triangular structure in R̃; line 6 takes r3/3+ (kl− r)r2 flops, due to

the lower triangular structure in L̃; line 7 takes O(r2t) with classical or randomized
algorithms [22]; and line 8 takes 2l flops. Note that K and its Cholesky decomposi-
tion can be reused for future predictions. Overall, with n > kl and assuming r ≈ kl
and t = k, Algorithm 4.1 gives an overhead cost of about 5nk2l2 flops if we use the
Householder QR with column pivoting, and Algorithm 4.2 gives a cost of about k3l3

flops per prediction.
An alternative version of Algorithm 4.2 is to conduct a truncated SVD, L̃ =

V̊ diag(σ̊)WT , and then return V̊ and λ̊ = σ̊2. Although this avoids the cross product
in line 6 and thus saves about k3l3/3 flops, the truncated SVD can take a significant
amount of time and eliminate the savings. Theoretically, the truncated SVD takes
O(rklt) with classical algorithms and O(rkl log t) with randomized algorithms [22].
But in practice, the truncated SVD appears to be more costly than the truncated
EVD. Since truncated SVD gives a less accurate result than truncated EVD, we
consider Algorithm 4.2 as the reference version.

Note that the matrix multiplication V = ṼV̊ takes 2nrk flops for t = k, which
would dominate the prediction cost if n > kl2/2. However, this cost can be avoided
if V is not explicitly needed. In PROM problems, to compute an order-k reduced
matrix Ak = VTAV, one may precompute an order-r matrix Ar = ṼTAṼ, and
then compute Ak = V̊TArV̊. Since A is usually sparse, the cost of a matrix-vector
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A1436 RUDA ZHANG, SIMON MAK, AND DAVID DUNSON

multiplication Ax is usually Tmult = O(n). Then this approach has an overhead cost
of 2nk2l2 + klTmult flops, and only takes about 2k3l2 flops per prediction.

5. Model selection. To make predictions with a GP model, we need to specify
a covariance function; this is called model selection. Although the kernel k(·, ·) can be
arbitrary, it is often specified in a form that depends on some hyperparameters [38,
Chap. 4]. For example, the squared exponential (SE) kernel is

k(θ,θ′;β) =

d∏
i=1

exp

[
− (θi − θ′i)

2

2β2
i

]
,(5.1)

where length-scales β = (βi)
d
i=1 are the hyperparameters. GP models with the SE

kernel are smooth, and the length-scales can be understood as characteristic distances
along each parameter dimension before the function values become uncorrelated.

One can set the hyperparameters to optimize a certain criterion; see, e.g., [38, sect.
5.4] and [41, sect. 3.3]. For GPS, we recommend minimizing the leave-one-out cross
validation (LOOCV) predictive error, measured in Riemannian distances. (Other
distances between subspaces may be used as well, but we choose Riemannian distance
for concreteness.) In this section we analyze and give an algorithm to compute this
criterion. Section SM3 provides a procedure to compute its gradient, and section SM4
discusses some alternative criteria.

A rule-of-thumb length-scale. In our experience, the predictive performance of
GPS is not very sensitive to hyperparameters, so one may use certain default values
to trade accuracy for reduced computational cost. For the SE kernel, one may set the
length-scales to 3d3/2/l relative to the parameter ranges and expect good predictions.

5.1. LOOCV predictive error. To measure predictive error, we need a score of
dissimilarity for pairs of subspaces. There are many metrics defined on the Grassmann
manifold; see, e.g., [45] for a list. Among them, the most commonly used is the
Riemannian distance, which is the length of the shortest curves connecting two points
in a Riemannian manifold. The Riemannian distance between subspaces X,Y ∈ Gk,n

is the 2-norm of their principal angles, which can be computed as [7]

dg(X,Y) = ∥ arccosσ(XTY)∥.(5.2)

Here, X,Y ∈ Vk,n are representations of the subspaces, and σ(·) denotes the singular
values of a matrix. Let V−i represent the mean prediction for target θi, using the
remaining data points (θj ,Xj)j ̸=i. The LOOCV predictive error can be defined as

LLOO =

l∑
i=1

d2g(Xi,V−i) =

l∑
i=1

k∑
j=1

(
arccosσj(X

T
i V−i)

)2
.(5.3)

Here we use the sum of squared errors for its smoothness and, with a slight abuse of
notation, we replace the subspaces with their Stiefel representations.

5.2. Efficient computation of LLOO. To compute the LOOCV predictive er-
ror in (5.3), we need XT

i V−i. First we derive a form of V−i. Analogous to (3.5), for
the leave-one-out prediction we have

Σ−i = ε2−iIn +X−i[XT
−i(K̃−i ⊗ In)X−i]

−1XT
−i.(5.4)

Here, all the quantities are defined without the ith observation. Similar to the analysis
in subsection 4.1, denote Π−i = XT

−i(K̃−i⊗ In)X−i and Σ̌−i = X−i(Π−i)
−1XT

−i. Let
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r−i = rank(X−i); then the top-r−i eigenvectors of Σ̌−i span the range of X−i, which

is a subset of the range of X. Recall that X = ṼR̃P̃T is a rank-revealing QR. Let
S−i = ṼT Σ̌−iṼ and let S−i ≈ V̊−i diag(λ̊−i)V̊

T
−i be a rank-k truncated EVD; then

ṼV̊−i are the top-k eigenvectors of Σ̌−i. Since V−i consists of the top-k eigenvectors

of Σ−i and Σ−i = ε2−iIn + Σ̌−i, we have V−i = ṼV̊−i.

To avoid big matrix multiplication, let C̃ = ṼTX = R̃P̃T , which has the form
C̃ = [C̃1 · · · C̃l] where C̃i = ṼTXi ∈Mr,k. We have XT

i V−i = XT
i ṼV̊−i = C̃T

i V̊−i.

Similarly, let C̃−i = ṼTX−i = [· · · C̃j · · · ]j ̸=i, and we have S−i = C̃−i(Π−i)
−1C̃T

−i.
We can express Π−i using entries of K−1. Let K−i = [kpq]p,q ̸=i and k−i =

(kpi)p ̸=i. Let K = K−1, K−i = [kpq]p,q ̸=i, and k−i = (kpi)p̸=i. We can write v−i =
(K−i)

−1k−i as v−i = −k−i/kii and (K−i)
−1 = K−i − kiiv−iv

T
−i (see, for example,

[38, sect. 5.4.2]). With K̃−i = (Dv−i
K−iDv−i

)−1 and Dv−i
= diag(v−i), we have

K̃−i = k
−1

ii ∆−i where ∆−i = [kpqkii/(kipkiq)−1]p,q ̸=i. Now we have Π−i = k
−1

ii □−i ◦
(∆−i ⊗ Jk).

The computation of S−i follows subsection 4.1. Since we are only concerned with
the eigenvectors of S−i, with a little abuse of notation, we redefine Π−i without the

term k
−1

ii . We describe the overall procedure in Algorithm 5.1.

Algorithm 5.1. LOOCV predictive error

Require: correlation function k; sample (θi)
l
i=1; preprocessing output (□, C̃ =

R̃P̃T ).
Input: hyperparameters β.
1: Construct inverse correlation matrix: K← solve(K), where kij ← k(θi,θj ;β).
2: for i in 1, . . . , l do
3: Construct: Π← [Πpq]p,q ̸=i, where Πpq ← δpq□pq, δpq ← kpqkii/(kipkiq)− 1.

4: Construct: S← L̃T L̃, where Π = LLT , L̃← solve(L, C̃T
−i).

5: Truncated EVD: S = V̊ diag(λ̊)V̊T , where λ̊ has length k.

6: Compute singular values: σ ← σ(C̃T
i V̊).

7: Compute squared error: ϵi ←
∑k

j=1 arccos(σj)
2

8: end for
Output: LOOCV predictive error LLOO =

∑l
i=1 ϵi.

5.3. Computational cost. In terms of computation, Algorithm 5.1 is approxi-
mately l repetitions of Algorithm 4.2, so it costs about k3l4 flops per evaluation. This
means that evaluating the LOOCV error takes about the same time as making l pre-
dictions. Because such evaluation needs to be repeated until numerical optimization
converges, hyperparameter training may be a significant part of the overall cost. In
practice, we recommend setting a very rough convergence threshold: for parameters
with a range of one, a threshold of 0.01 is sufficient for the length-scale. If the problem
has multiple parameters, they may be scaled into comparable ranges and share the
same length-scale. If multiple hyperparameters are to be trained, gradient-based opti-
mization methods (see section SM3) can be more efficient than just using the LOOCV
error. To minimize the number of iterations, one may also set a restrictive range and,
if applicable, a good initial value for the hyperparameters, for example, ±30% of the
aforementioned rule-of-thumb length-scale, with initial value at the midpoint.
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A1438 RUDA ZHANG, SIMON MAK, AND DAVID DUNSON

6. Application in model reduction. In this section, we review the general
setup of model reduction and compare the GPS with other methods for PROM.

6.1. Reduced order modeling. To simplify the narrative, consider a system of
ordinary differential equations (ODEs) that is first-order, linear, and time-invariant,
with multiple input and output:

Σ :

{
Eẋ = Ax+Bu,

y = Cx.
(6.1)

With system dimension n, input dimension p, and output dimension q, this system
is defined by constant matrices E,A ∈ Mn,n, B ∈ Mn,p, and C ∈ Mq,n. The state
x, input u, and output y are all functions of time, with dimension n, p, and q,
respectively. We assume x(0) = 0; any fixed initial condition x0 can be included
in the input as an impulse x0δ(t). In general, the ODE system Σ may represent a
physical or artificial system modeled by a PDE system, which is discretized in space,
and linearized around a stationary trajectory. The system dimension n typically scales
with the size of a spatial grid, and for a large-scale problem, usually we have n > 105.

Projection-based model reduction constructs a reduced-order model (ROM) as

Σr :

{
Erẋr = Arxr +Bru,

yr = Crxr.
(6.2)

Let V,W ∈ Vk,n be orthonormal bases of k-dimensional subspaces, the reduced
system matrices are defined as Er = WTEV, Ar = WTAV, Br = WTB, and
Cr = CV. Therefore we have Er,Ar ∈ Mk,k, Br ∈ Mk,p, and Cr ∈ Mq,k. If the
reduced bases V and W are the same, this framework is called the Galerkin projec-
tion; otherwise, it is called the Petrov–Galerkin projection. Usually we would want
a reduced system dimension k ≤ 50. Because simulation time and model storage
scale at least linearly with system dimension, they are reduced by several orders of
magnitude via ROM.

6.2. Error measures. To measure the error introduced by a ROM, one choice
is the L2 state error for a given input. The L2 metric of square-integrable functions
on the interval [0, T ], discretized into J parts of length δt, can be approximated as

∥x− x̂∥2L2
=

∫ T

0

∥x(t)− x̂(t)∥22 dt ≈
J∑

i=1

∥x(ti)− x̂(ti)∥22 δt.(6.3)

Relative L2 state error is the L2 error of the state of a ROM, divided by the L2 norm
of the state of the original system. With approximated state x̂ = Vxr, we have

e(x,xr)L2
=
∥x−Vxr∥L2

∥x∥L2

.(6.4)

Another error measure is the H2 metric, defined as the largest possible amplitude
of the output error given any unit-energy input: with ∥y∥L∞ = supt≥0 ∥y(t)∥∞,

∥Σ− Σr∥H2 = sup
u∈L2

∥y − yr∥L∞

∥u∥L2

.(6.5)
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The H2 error of a ROM is, in a sense, more comprehensive than the L2 state error.
Relative H2 error is the H2 error divided by the H2 norm of the original system:

e(Σ,Σr)H2
=
∥Σ− Σr∥H2

∥Σ∥H2

.(6.6)

The H2 norms can be obtained analytically via the controllability Gramian, which
can be computed by solving the Lyapunov equations [39].

6.3. Methods for ROM. To compute a reduced basis for the Galerkin pro-
jection, a widely used classic method is called the proper orthogonal decomposition
(POD), originally proposed for turbulent flow analysis by [28]. This method takes a
collection of system states x(ti) at discrete times {ti}mi=1, called snapshots, which may
be obtained via simulation or experimental measurements. Let X be the matrix that
stacks the snapshots as column vectors; then the POD basis V corresponds to the
left singular vectors of X associated with the largest k singular values. This means
that the POD basis minimizes the L2 error of snapshot reconstruction, which is an
appealing property of POD. Besides providing a reduced basis, POD also associates
each basis vector with the corresponding singular value, which can be used to deter-
mine basis dimension k. For large-scale systems, the number of snapshots required is
far less than the system dimension, and usually m = O(103).

Another class of ROM methods are interpolatory [5], which approximate the
transfer function of the original system using rational interpolation. The transfer
function of the system Σ is defined as H(s) = C(sE − A)−1B. Here, H : C 7→
Mq,p(C) is a complex matrix-valued function of a complex frequency variable. These
methods interpolate the transfer function at an arbitrary number of points and up
to an arbitrary number of derivatives along certain tangent directions. Among such
methods, the iterative rational Krylov algorithm (IRKA) introduced by [20] has seen
great success. It iteratively searches for an order-k rational function that approximates
the transfer function, until it satisfies the tangential interpolation conditions. If IRKA
converges, the converged point locally minimizes the H2 error in the space of order-k
rational functions. IRKA constructs a ROM in state space via the two-sided Petrov–
Galerkin projection, that is, the reduced bases V and W are different.

Besides POD and interpolatory methods, there are other ROM methods such as
balanced truncation [31], most common in systems and control theory. There are
effective ROM methods for systems more general than (6.1) as well, such as DEIM
[9] for nonlinear systems and DMD [42] for black-box systems.

6.4. Methods for PROM. Our discussion so far assumes that the full model
Σ in (6.1) is constant. In a more general class of problems, Σ is parametric, such that
the system matrices E,A,B, and C depend on a set of parameters θ ∈ Θ ⊂ Rd. This
dependency can be nonlinear in general, and the dimension d of the parameter space
varies greatly with the problem. There are many methods for PROM, and we refer
the readers to [8] for a comprehensive review.

One approach is to construct a single basis that works well for the entire para-
metric set of systems. For example, given local reduced bases (Vi)

l
i=1 obtained

for a sample of the parameter space, one can concatenate them into a global ba-
sis V = [V1 · · ·Vl]. However, this increases the dimension of the reduced subspace,
and therefore the size and simulation time of the ROM.

Another approach is to consider a projection-based ROM method as a map-
ping that associates each parameter point with a reduced subspace. Given local
reduced subspaces at a parameter sample, one may approximate this subspace-valued
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mapping and predict reduced subspaces at other parameter points. This fits the
problem in section 1 and includes subspace interpolation and our GPS method.
Compared with using a global basis, this keeps the ROM small and often more
reliable [3].

Instead of interpolating subspaces, [36] proposed a method that directly inter-
polates the reduced models: it first applies a congruence transformation to the local
reduced models, and then interpolates the model matrices elementwise. We will re-
fer to this approach as matrix interpolation. Influenced by this work, [4] proposed
a method that interpolates the transformed matrices on a relevant matrix manifold,
e.g., the general linear group, in a procedure analogous to subspace interpolation. We
will refer to this approach as manifold interpolation.

An idea bridging the global and local approaches is parameter domain partition-
ing: one can partition the parameter space into small regions and apply a PROM
method within each. This idea has been adopted in many papers; see, e.g., [2, 14].

6.5. Comparing PROM methods. Here we compare the GPS with other
methods in model reduction, in terms of speed, accuracy, and property preservation.

6.5.1. Speed versus local bases. Our method is typically much faster than
methods for computing local reduced bases. Consider the computation of a local POD
basis givenm snapshots at one parameter point. The cost is dominated by a truncated
SVD of the n-by-m snapshot matrix, which takes O(nmk) time. To compare the costs,
take the rocket injector example in [29], where n ≈ 105, m = 103, k = 45, l = 30.
We have (nmk)/(k3l3) ≈ 1.83. Considering the constant factor in truncated SVD, in
this case our method is about an order of magnitude faster than computing a local
POD basis. Because the cost of computing snapshots dominates the overall POD
procedure, this implies a clear advantage in using our method to approximate local
POD bases.

The cost of computing a pair of local IRKA bases is less straightforward to an-
alyze [5]. Every iteration needs to solve 2k systems of linear equations, each with a
different coefficient matrix of order n that cannot be reused across iterations. The
number of iterations depends on the initial values provided to the algorithm, and the
algorithm needs to be restarted if it does not converge after a predefined maximum
number of iterations. Depending on the problem, IRKA can take longer than the
POD procedure.

6.5.2. Speed versus interpolatory methods. Subspace interpolation [3] uses
the Riemannian exponential and logarithm of the Grassmann manifold, both involving
a thin SVD of an n-by-k matrix, which scales with O(nk2). Since its prediction
does not have a special factorization structure (as the GPS does), it takes another
2nk2 + kTmult flops to compute a reduced matrix, where Tmult denotes the cost of
a matrix-vector multiplication. The prediction cost can be greatly reduced if the
problem has only one parameter and one uses linear interpolation [43]. In general,
the prediction scales with n and is slow for large-scale problems.

Matrix interpolation [36] and manifold interpolation [4] directly interpolate local
ROMs so their prediction costs do not depend on n, and therefore they are considered
as suitable for online computation.

In comparison, our algorithm turns the truncated EVD of the order-n matrix Σ
into one of the order-kl matrix S, and the prediction cost is instead dominated by the
construction of S, which is carried out efficiently via matrix decomposition and linear
solvers. Thus, the prediction cost also does not depend on n.
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Table 1
Interpolatory methods for PROM: flop counts of the dominant terms.

Preprocess Subspace ROM Training Reference

GPS 5nk2l2 k3l3 2k3l2 k3l4 this paper
Subspace-Int 10nk2l2 8nk2 2nk2 † [3]
Matrix-Int 6nk2l2 - 2k2l † [36]

Manifold-Int nk2l2 - O(k3l)* † [4]

* Coefficient usually on the scale of 50 due to matrix logarithm/exponential, which
can be numerically unstable [23].

† Optimal choice of reference ROM and interpolation scheme is an open problem.

Table 1 compares the computational costs of these methods in detail. This table
does not include the generation of reduced bases at a sample of the parameter space, a
step required by all these methods. Generating a reduced basis can be computationally
expensive depending on the ROM method in use, which limits the sample size l.

6.5.3. Accuracy. All three interpolation methods lack a clear rule for model
selection, i.e., selecting the reference point, other interpolation points, and the in-
terpolation scheme. This often leads to model misspecification, which undermines
accuracy. Moreover, interpolation on tangent spaces of Riemannian manifolds, such
as subspace and manifold interpolation, are extrinsic to the underlying manifolds. As
explained in section SM6, when points further away from the reference point are used,
the true mapping becomes more distorted on the tangent space and thus harder to
approximate. A similar concern is addressed in [50, sect. 3]. Therefore, these meth-
ods cannot use more than a handful of points at a time and have limited potential to
extend to higher-dimensional parameter spaces.

Our method has specific model selection criteria which make it data efficient, so
a small sample size is enough to give accurate results. Besides, the GPS is intrinsic
to the Grassmann manifold, so it does not incur extra approximation error and its
accuracy improves with sample size.

6.5.4. Preservation of properties. Another important issue in ROM is the
preservation of system properties, such as stability, passivity, and contractivity. Al-
though stability is not guaranteed for the reduced models generated by our method,
from section 7 we will see that it is still observed in most cases, simply because our
method can accurately approximate the subspace map of local ROMs.

7. Numerical experiments.

7.1. Visualization of GP subspace prediction. The simplest type of
subspace-valued functions have the form f : R 7→ G1,2, which maps a real number to
a one-dimensional linear subspace in the plane. The Grassmann manifold G1,2 can
be identified as the unit circle, treating antipodal points as equivalent (Figure 1(a)).
Therefore, such a function f can be plotted on the surface of a cylinder (Figure 1(b)),
which helps us visualize the posterior process of the GPS model.

Specifically, let f be a covering map such that f(θ) is the subspace with angle α =
θ mod π. This can be plotted as a double helix on the cylinder. To approximate this
function with the proposed GPS model, suppose we observe sample points θi = ciπ,
where ci are seven equal-distanced points between 0.2 and 1.8. For the correlation
function k, we use the SE kernel and set the length-scale β by minimizing the LOOCV
predictive error. In this example, β = 2.8 ≈ 0.9π. To visualize predictive uncertainty,
we plot the 95% posterior predictive intervals from Theorem 3.1. We also include
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Fig. 1. Visualization of the GPS model. (a) Every one-dimensional subspace in the plane can
be uniquely identified by either a pair of antipodal points on a circle, or an angle α ∈ [0, π). (b)
Posterior process of the GPS model on the surface of a cylinder. (c) Same as (b) but as a two-
dimensional plot. True function (black line), data (black points), GPS predictive mean (blue curve),
95% predictive interval (red shade). Orange curves are predictions from subspace interpolation:
nr = 3 (solid), nr = 4 (dotted).

results from subspace interpolation for comparison. As suggested by the authors of [3],
for every target parameter we use the nearest nr sampled points for the interpolation
(where nr = 3 and 4 in Figure 1), among which the nearest sampled point is used as
the reference point. We use Lagrange interpolation for the tangent vectors.

We see that, with only seven data points, the predictive mean function of GPS
closely tracks the true function within the range of sampled parameter points. Fur-
thermore, the uncertainties from our model also well cover the truth: the posterior
predictive intervals contain the true subspace values for all θ ∈ [0, 2π]. Note that
as the target point moves away from the sample points, the predictive distribution
degenerates to the prior, the uniform distribution on G1,2. Subspace interpolation,
on the other hand, yields noticeably poorer predictions compared to GPS for both
nr = 3 and nr = 4. As a deterministic interpolation approach, it also does not provide
a quantification of interpolation uncertainty. This shows that, for this example, the
proposed GPS model uses sample data more effectively to yield better predictions
with uncertainty quantification.

7.2. Anemometer: Approximating local POD bases. Here we consider
a benchmark problem for PROM known as the anemometer [32], a type of micro-
electromechanical system device that measures the flow speed of its surroundings.
Such a device needs to be calibrated under different flow conditions for its temperature
response. However, an accurate representation of the device needs to resolve the
coupled fluid and thermodynamics and can be very time-consuming to compute. It
is therefore useful to apply PROM methods.

Specifically, a convection-diffusion equation is discretized into a linear ODE sys-
tem as (6.1), with system dimension n = 29,008 and input and output dimensions
p = q = 1. The matrix A depends on one parameter θ ∈ [0, 1] representing fluid
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velocity and is not symmetric in general, while E,B,C are constants. The input map
B represents a heat source, and the output map C gives the temperature difference
of two nodes.

To build a parametric reduced-order model (PROM), we first construct local
POD bases at a sample of the parameter space, and then use the mean prediction
of GPS to estimate the reduced subspaces at other parameter points. As before, we
use the SE kernel, with a length-scale that minimizes the LOOCV predictive error.
The subspace-valued mappings being approximated in this problem have very high
dimensional codomains: because the dimension of Gk,n is k(n− k), with k = 20 and
k = 40, the manifold dimensions here are 579,760 and 1,158,720, respectively.

For comparison, we also estimate the reduced subspaces using subspace interpola-
tion, with the same setup as in the visualization example. For manifold interpolation
[4], we use the same setup for subspace interpolation. For matrix interpolation [36],
we use the nearest sampled point as the reference point and, as suggested by the au-
thors, we use linear interpolation for the reduced system matrices. We include results
for local POD bases as a reference level we would like to match.

Figure 2(a) shows the relative H2 errors using these methods, with subspace
dimension k = 20. Here we use a sample of seven equal-distanced points from 0 to
1. GPS uses a length-scale β = 0.36, selected via LOOCV. The results for subspace
and manifold interpolation use nr = 3; the results are similar for nr = 4 or 5. We see
that the three existing interpolation methods perform similarly, and the errors tend
to blow up in between sample points. In comparison, the proposed GPS model yields
much lower errors: the relative H2 error is comparable to that for the local POD (the
reference level). Note that the goal here is not to perfectly match the error curve of
the local POD, but to keep the error as low as possible; in this sense, the GPS model
appears to provide noticeable improvements over existing methods.

Figure 2(b) shows the results for k = 40. Here we use a sample of 11 equal-
distanced points from 0 to 1. GPS uses a length-scale β = 0.25. Setup for the
interpolation methods are unchanged. We see that, even with the increased sample
size, all three interpolation methods fail to keep a low error level. While matrix inter-

Fig. 2. Anemometer, relative H2 error: (a) k = 20; (b) k = 40. Training data shown as points.
The H2 error curve of local POD is wiggly because it minimizes the L2 state error.
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Fig. 3. Anemometer, relative L2 state error: (a) k = 20; (b) k = 40.

polation occasionally does better than the other two, this is probably not generalizable
due to the linear interpolation scheme. In comparison, our method again yields much
lower errors, and maintains a similar level of accuracy as the local POD.

Figure 3 shows the relative L2 state errors using these methods. The local POD
is omitted from these plots since its relative L2 state error is practically zero. The er-
ror curves of the three interpolation methods are qualitatively similar, with subspace
interpolation better than manifold interpolation, which is in turn better than matrix
interpolation. In comparison, the GPS again yields much lower errors: for k = 20,
the average error is about two orders of magnitude lower than that of subspace inter-
polation; for k = 40, it is about three orders of magnitude lower. This improvement
can be attributed to the more flexible and intrinsic nature of the GPS model, which
allows for more effective use of sample data.

Measured computation time for this problem is provided in section SM5.

7.3. Microthruster: Approximating local IRKA bases. Here we consider
another benchmark problem for PROM known as the microthruster [34], an array of
solid propellant microthrusters on a chip. To find an optimal design of array geometry
and driving circuit, many simulations need to be carried out, which can be prohibitive
with large-scale models. The use of PROM is therefore justified.

Specifically, the numerical model discretizes a heat transfer equation into a linear
ODE system as (6.1), with system dimension n = 4,257, input dimension p = 1,
and output dimension q = 7. The input B represents the electrical circuit, and the
output C gives the temperature at seven nodes. The convection boundary conditions
are parameterized into three parameters, each within the range [1, 104], and affect the
symmetric system matrix A on the diagonal. To simplify comparison, we fix the three
parameters to always be the same, and take the base-10 logarithm of their original
values, so we have one parameter θ ∈ [0, 4].

For this problem, we use IRKA to construct reduced bases at the sample points.
Because IRKA uses two different bases V and W, for a parametric system this means
that each parameter is associated with a pair of subspaces, and we may construct
a PROM by approximating a mapping for the form (V,W)(θ). Since our proposed
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Fig. 4. Microthruster, relative H2 error. k = 10. Training data are shown as points. The
error curve of local IRKA is more level than local POD in Figure 2 because it minimizes the H2

error.

method only handles mappings that output one subspace, we proceed by modeling
the pair of subspaces separately. This inevitably leaves some information in the data
unused, and there may be methods that can improve upon this work-around. Setup
for the interpolation methods is the same as in the anemometer example.

Figure 4 shows the relative H2 errors using these methods, with subspace dimen-
sion k = 10. Here we use a sample of six points: θ = 0.17, 0.94, 1.7, 2.47, 3.23, 4. GPS
uses a length-scale β = 1.4 for basis V and β = 2.56 for basis W. The result for
subspace interpolation uses nr = 3; the other values of nr give results with larger
errors. We see that while subspace interpolation matches the error curve of local
IRKA (the reference level) quite well in some parts of the parameter space, its error
blows up in an unsmooth region in between. These errors are noticeably larger for
manifold and matrix interpolation, so we cropped them out of the plot. To contrast,
the proposed GPS method instead tracks the local IRKA error curve smoothly across
the parameter space, yielding much lower errors than existing interpolation methods.

For this problem, many of the ROMs generated by manifold interpolation are
complex-valued, due to the matrix logarithm that computes the tangent vectors.
Moreover, many ROMs generated by manifold and matrix interpolation are unsta-
ble, which means that the H2 errors are infinite. Although our method and subspace
interpolation do not guarantee the stability of reduced models, because they seem to
accurately approximate the reduced subspaces, unstable ROMs appear less often. We
discuss issues specific to approximating IRKA bases in section SM7.

7.4. Anemometer: three-parameter case. To compare the methods in a
PROM problem with multiple parameters, here we consider the three-parameter ver-
sion of the anemometer [32]. The parameters include specific heat c ∈ [0, 1], thermal
conductivity κ ∈ [1, 2], and fluid velocity v ∈ [0.1, 2]. The system matrices have the
form E = Es + cEf and A = Ad,s + κAd,f + cvAc, while B and C are constant.
Other aspects of the problem are unchanged.

To sample the parameter space, we first use the maximin Latin hypercube sam-
pling (LHS) to obtain a training set, and then use the sequential maximin design to
obtain a testing set; see, e.g., [17, Chap. 4]. Maximin LHS generates a random set
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Table 2
Mean relative H2 error for three-parameter anemometer, k = 20,

varying sample size. Relative errors to local POD are shown in paren-
theses.

l = 14 l = 18 l = 21

local POD 5.55% (1)* 5.46% (1) 5.69% (1)
GPS 6.49% (1.169) 5.80% (1.062) 5.14% (0.903)
Subspace-Int 8.34% (1.503) 7.38% (1.352) 6.19% (1.148)
Manifold-Int 16.6% (2.986) 13.8% (2.524) 12.7% (2.232)
Matrix-Int 49.7% (8.962) 44.2% (8.104) 45.5% (8.003)

Table 3
Mean relative L2 state error for three-parameter anemometer, k = 20, vary-

ing sample size. Relative errors to subspace interpolation are shown in parenthe-
ses.

l = 14 l = 18 l = 21

local POD 7.98e-13 (0)* 8.36e-13 (0) 8.77e-13 (0)
GPS 1.24e-2 (0.437) 6.42e-3 (0.273) 5.55e-3 (0.250)
Subspace-Int 2.85e-2 (1) 2.35e-2 (1) 2.22e-2 (1)

of points that are spread out in the parameter space and well-distanced from each
other. Sequential maximin design generates another with similar properties, but also
well-distanced from the given training set.

The setup for the PROM methods remain unchanged from the one-parameter
case, except the interpolation scheme for the three interpolation methods. Since La-
grange and linear interpolations do not apply to multiple parameters, we use the
radial basis function (RBF) method described in [2, p. 278]. Specifically, a multi-
quadric RBF is applied entrywise to interpolate the tangent vectors in subspace and
manifold interpolation as well as the matrices in matrix interpolation. For subspace
interpolation, horizontal projection is applied to maintain validity of the interpolated
tangent vector.

Table 2 compares the mean relative H2 errors, with training sample sizes l =
14, 18, or 21, and testing sample size 100. For each training sample, GPS uses a length-
scale β = 1.05, 0.85, or 0.7, respectively. Notice that, with subspace dimension k = 20,
the mean relative H2 error of local POD is about 5.5%, which is not particularly low.
It is clear that our method is able to maintain the error level of local POD with as
few as 18 training points. In comparison, the error increase in subspace interpolation
is several times higher in all cases. Manifold interpolation is much less accurate than
the previous two methods, while matrix interpolation is the least accurate.

Similarly, Table 3 compares the mean relative L2 state errors. Manifold and
matrix interpolation are excluded because they cannot reconstruct the state vector.
Since local POD minimizes the L2 state error by construction, its error level is prac-
tically zero. With l = 14, our method has a relative error of about 1%, less than
half that of subspace interpolation. This ratio drops as sample size gets larger. Over-
all, the GPS method is much more data efficient than subspace interpolation in this
multiparameter setting, again owing to its flexibility and intrinsic nature.

Measured computation time for this problem is provided in section SM5.

8. Concluding remarks. In this paper we propose a new GP model for prob-
abilistic approximation of subspace-valued functions. A key application of this model
is parametric reduced order modeling. We show that the GPS model gives accurate
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predictions even with small sample sizes, and because its prediction cost does not
depend on system dimension n, it is typically faster than subspace interpolation in
PROM problems. In the following, we discuss several topics on the use of the GPS.

Prediction speed. Since the prediction cost of our method is cubic in subspace
dimension k and sample size l, it is best to keep them small for fast computation. To
keep k small, one needs to choose a ROM method that is best suited for the relevant
error measure. For example, POD is optimal in L2 error of snapshot reconstruction,
while IRKA is locally optimal in H2 error. To keep l small, one needs to choose an
efficient method for parameter sampling. One may consider adaptive sampling and
sparse grids [8], or experimental design methods in statistics [41, 17].

Handling higher-dimensional parameter spaces. When parameter dimension d is
large, even with the l = 10d rule of thumb for GP models [27], l can quickly become
very large. Fortunately, there are some methods to cap the l3 scaling. One approach
is to use local approximate GP [18], where for each target point only a subsample
of mostly nearby points are used in the prediction. Another approach is covariance
tapering [15] or compactly supported kernels [24], where the kernel becomes zero
beyond a certain distance, so that the covariance matrix is sparse and sparse matrix
algorithms can be used to speed up computation. Both are in a similar spirit to
parameter domain partitioning.

Prediction uncertainty. The uncertainty in subspace predictions, quantified by
the eigenvalues of Σ, serves as a diagnostic tool for prediction confidence. It can
also guide parameter sampling: one can put extra sample points in regions with high
prediction uncertainty. This could lead to efficient adaptive sampling methods [17].

Variation of subspace dimension. In some cases it can be desirable to let k vary
with the parameters, e.g., to attain a fixed ROM accuracy. Since the Grassmann
manifold requires a fixed k, it acts as a Procrustean bed and limits all methods based
on it, including the GPS. We recommend setting k to the highest value in the sample.
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