Computers in Biology and Medicine 134 (2021) 104507

Contents lists available at ScienceDirect o
Computers in Biology
and Medicine

Computers in Biology and Medicine

B4

ELSEVIER journal homepage: www.elsevier.com/locate/compbiomed

Check for

Simulation of 3D centimeter-scale continuum tumor growth at e
sub-millimeter resolution via distributed computing

Dylan A. Goodin“, Hermann B. Frieboes "

@ Department of Bioengineering, University of Louisville, KY, USA
b James Graham Brown Cancer Center, University of Louisville, KY, USA
¢ Center for Predictive Medicine, University of Louisville, KY, USA

ARTICLE INFO ABSTRACT
Keywords: Simulation of cm-scale tumor growth has generally been constrained by the computational cost to numerically
3D tumor model solve the associated equations, with models limited to representing mm-scale or smaller tumors. While the work

Cancer simulation
Distributed computing
Parallelized computing
Continuum models
Mixture models

has proven useful to the study of small tumors and micro-metastases, a biologically-relevant simulation of cm-
scale masses as would be typically detected and treated in patients has remained an elusive goal. This study
presents a distributed computing (parallelized) implementation of a mixture model of tumor growth to simulate
3D cm-scale vascularized tissue at sub-mm resolution. The numerical solving scheme utilizes a two-stage par-

CUDA allelization framework. The solution is written for GPU computation using the CUDA framework, which handles
MPI all Multigrid-related computations. Message Passing Interface (MPI) handles distribution of information across
openMP multiple processes, freeing the program from RAM and the processing limitations found on single systems. On

each system, Nvidia’s CUDA library allows for fast processing of model data using GPU-bound computing on
fewer systems. The results show that a combined MPI-CUDA implementation enables the continuum modeling of
cm-scale tumors at reasonable computational cost. Further work to calibrate model parameters to particular
tumor conditions could enable simulation of patient-specific tumors for clinical application.

prostate tumor with 2.66 cm® volume from CT-scan [30]. Antonopoulos
et al. represented a 4.2cm> domain for 3 simulated months with
2.2 mm? resolution [31]. While both models reached cm scale, multi-
species representation and vascularization were not incorporated. Wise
et al. developed an adaptive multigrid framework for simulating a
continuum multispecies tumor model using a single-core computer
process, finding that time required to simulate a single day of tumor
evolution at 1¥1072 days per time step increases from ~12 min during
early time steps to ~400 min by end of simulation [32]. In Ref. [33] the
model of [1] was coupled with a lattice-free random walk angiogenesis
model [34-37]. Recently, a mixture model with continuum 3D repre-
sentation of tumor, vasculature, and extracellular matrix (ECM) was
presented in Refs. [38,39]. Open Multi-Processing (OpenMP) paralleli-
zation benefits were offset in Ref. [38] by increased model complexity:
early model performance was 156 min per simulated day to ~280 min
per simulated day for 1¥10~2 days per time step. In these models,
coupling of tumor and vasculature in a biologically realistic 3D repre-
sentation to simulate clinically-relevant tumor growth incurs a high
computational cost. Consequently, the numerical implementation to
solve the coupled equations has hindered these models from reaching

1. Introduction

Representation of tumor growth in clinically-relevant contexts has
generally been explored via three main types of models: continuum
models that simulate tissue-scale behavior, discrete models that define
individual cells and their interactions, and hybrid models utilizing a
combination of both approaches. These efforts have been traditionally
constrained by the computational cost to numerically solve the associ-
ated equations, with the results limited to representing mm-sized or
smaller tumors. For discrete models the challenge has been to simulate
billions of cells and their interactions, while for continuum models the
cost of representing cm-scale domains becomes computationally pro-
hibitive. In particular, models based on continuum mixture theory to
simulate tumor growth have been developed [1-5] and analyzed [6-8],
building upon earlier work to represent tumor tissue as different phases
of a mixture [9-29]. However, more complex continuum models have
struggled to achieve high performance simulations at patient-scale (cm)
resolution.

Lorenzo et al. used a continuum two-phase model to simulate a

* Corresponding author. Department of Bioengineering, Lutz Hall 419, University of Louisville, KY, 40292, USA
E-mail address: hbfrie01 @louisville.edu (H.B. Frieboes).

https://doi.org/10.1016/j.compbiomed.2021.104507

Received 5 April 2021; Received in revised form 15 May 2021; Accepted 16 May 2021
Available online 21 May 2021

0010-4825/© 2021 Elsevier Ltd. All rights reserved.

mailto:hbfrie01@louisville.edu
www.sciencedirect.com/science/journal/00104825
https://www.elsevier.com/locate/compbiomed
https://doi.org/10.1016/j.compbiomed.2021.104507
https://doi.org/10.1016/j.compbiomed.2021.104507
https://doi.org/10.1016/j.compbiomed.2021.104507
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiomed.2021.104507&domain=pdf

D.A. Goodin and H.B. Frieboes

Abbreviations

3D Three-dimensional

AdpP Administrative process

CPU Central processing unit

CT Computed tomography

CUDA Compute unified device architecture
ECM Extracellular matrix

GCP General computation process

GPU Graphics processing unit
MDE Matrix degrading enzyme

MPI Message passing interface
openMP Open multi-processing
PC Personal computer

RAM Random access memory
TAF Tumor angiogenic factors
TGF Tumor growth factors

practical application, especially in terms of simulating patient tumor
response to potential courses of treatment in a timely manner to drive
clinical decision-making.

Outside of the context of continuum models, several parallelized
implementations have been developed over the past decade to improve
performance. In Ref. [40], a tumor model parallelization saw a 5.2x
performance increase over a single-process approach using eight pro-
cessors. OpenMP implementations have improved tumor modeling
performance, as shown in Refs. [41,42]. An early effort at parallelizing a
Cellular Potts model used Message Passing Interface (MPI) but remained
a 2D simulation [43]. Models have benefitted from multiple approaches,
including an MPI-based parallel solver named NAStJA [44-46] and
Compute Unified Device Architecture (CUDA) based solvers [47,48]. A
near 30x uplift over CPU-based implementations using a CUDA-based
solver was seen in Ref. [47]. Likewise, cellular automata tumor
modeling has benefited from CUDA and CPU-based parallelization ap-
proaches [49-51]. A tumor simulation using finite element methods
leveraged an MPI framework to attain ~4x performance improvement
by spanning the simulation across 16 processes [52]. Performance gains
for a finite-element method were also realized using Galois, a software
package that employs an amorphous data-parallelism model [53].
Recently, a hybrid model was parallelized using the framework to
simulate ~1 cm® melanoma evolution [54]. Of note, Antonopoulos
et al.’s continuum model in MATLAB emphasized macroscopic tumor
phenomena, simulating a cubic 4.2 cm length domain at 2 mm? resolu-
tion. By simulating fewer equations at a lower resolution than in
Ref. [38], the model was capable of simulating ~3 months of tumor
evolution in 10-12min [31].

Complementing these previous efforts, this study presents a distrib-
uted computing implementation of the mixture model in Refs. [38,39]
via a combined MPI-CUDA implementation to simulate cm-scale vas-
cularized 3D tumor growth tissue at sub-millimeter resolution.

2. Materials and methods
2.1. Model of tumor growth

We fully parallelize the continuum 3D model presented in Refs. [38,
39], which used openMP. Briefly, the model simulates evolution of a
single tumor cell phenotype in an environment with host cells and ECM.
Tumor tissue vies for resources against healthy tissue while balancing
the need for nutrients, metabolites, and ionic species, including oxygen,
carbon dioxide, lactate, bicarbonate, sodium ions, chloride, and H' ions.
Crowding in a limited tissue space is abstracted into solid mass pressure
and pressure from surrounding fluids. These pressures drive velocity in

Computers in Biology and Medicine 134 (2021) 104507

the solid tissue mass and create buildup of elastic energy on the sur-
rounding ECM. Matrix degrading enzymes and myofibroblast concen-
trations increase due to remodeling of surrounding ECM to compensate
for strain induced by tumor growth.

During tumor growth, tissue distal from vasculature can be deprived
of resources. The tumor releases angiogenic factors to encourage growth
of surrounding vasculature towards hypoxic tissue. Increased vessel
leakiness has been well-documented from such relatively quick vascu-
lature changes; the body compensates for edema by increasing
lymphatic growth [55]. Therefore, the model simulates lymphatic
growth with independent terms to the vasculature, although both are
closely related mathematically and physiologically. However, vascula-
ture effectiveness is limited physiologically by the diffusion rate of ox-
ygen. Thus, interior hypoxic regions in sufficiently large tumors will
operate at varying levels of anaerobic glycolysis, building up lactic acid.
In a sufficiently hypoxic state, tumor cells become apoptotic or necrotic,
represented as dead cell volume fraction.

Numerically, this model is solved using a geometric multigrid solver.
At its finest multigrid level, the solver uses evenly-spaced points to
define model solution resolution. By increasing the number of points per
side of the cubic domain and using a point-to-point distance <100 pm,
sub-mm precision is retained while increasing the domain size beyond a
centimeter on a side. At each point on a cubic domain, a solution for
model variables is generated, with solution generation occurring after ¢
units of simulated time elapse. Key equations in non-dimensionalized
form and the numerical solver are summarized further in Supplement.

2.2. Limitations of openMP-based solver
Three limitations of openMP-based solver in Refs. [38,39] include:

1. When tested using 128° grids, maximum performance was obtained
using only 8 cores out of 32 on a 32-core processor on the University
of Louisville Cardinal Research Cluster (CRC), potentially due to
insufficient memory bandwidth. Further testing on an AMD 2990WX
exhibited more promising results, indicating that nascent CPUs may
fare better from openMP. However, limitations to core counts would
further constrain gains.

2. openMP is a shared-memory architecture that runs on non-
distributed systems, limiting performance gains to a single PC,
workstation, or High Performance Computing (HPC) node.

3. Many PCs have insufficient RAM to hold larger tumor model spaces.
Table 1 summarizes expected RAM footprint for varying model sizes.

2.3. Distributed computing solution

To simulate tumors at patient tissue cm-scales, model in Refs. [38,
39] requires sufficient computational resources to function at a 5123
sized domain and, according to Table 1, over 100 GB RAM are necessary.
Because single-socket computers do not typically possess this much
RAM, a new solution generator is required for long-term parallel
computing.

For this purpose, this study implements the numerical solving

Table 1
Memory footprint for varying model sizes using model in Refs. [38,39].
Level Size
256° 512°
Points on a Side 130 258
Maximum Level size Simulated (#Points on a side) 256 512

Upper Bound RAM Required per process with eight processes on 3.3 25.5
the finest level with an equal distribution of level data (GB)

Total RAM Required for single process on the finest level (GB) 13.6 107.6

Maximum spherical tumor diameter that could be simulated with 12.8 25.6
50 um point resolution (mm)

D.A. Goodin and H.B. Frieboes

scheme of [39] using a two-stage parallelization framework. First, nu-
merical computations were rewritten for GPU computation using CUDA.
This framework handles all Multigrid-related computations, including
Gauss-Seidel red-black smoothing, restriction, prolongation, and error
correction. MPI handles distribution of information across multiple
processes, freeing the program from the RAM and processing limitations
found on single-system parallelization frameworks. On each system,
Nvidia’s CUDA library allows for faster processing of model data using
GPU-bound computing on fewer systems. Thus, the new model frame-
work is a two-part MPI-CUDA model.

The type of simulation being considered, generally known as HPC,
requires consistent communication between multiple data processors
Architectures configured for Big Data, in which data processors are
designed to perform tasks at a coarser resolution, are unideal for
datapoint-level communication [56]. Further, common Big Data plat-
forms, such as Hadoop and Apache Spark, rely on either disk-based
queries or exhibit possess significantly more overhead than compara-
ble MPI-based HPC implementations, respectively, making MPI a more
viable distributed computing framework for our purposes [56-59].

Overall algorithm in MPI-CUDA tumor model is identical to model in
Refs. [38,39], save that the conditions for block generation have
changed. Under the previous framework efficiency was defined as 5 =
#Points in FY !
#Points in By,q

solver iteration r — 1 is represented as F;”land the set of all points

where the set of all flagged points in level # at time step t and

within blocks in level # is represented by B,. To prolongate to a new
level, n had to be lower than a pre-defined cutoff efficiency. In the new
framework, the decision process is simplified to an all-or-nothing
behavior where a single flagged point on ¢ will cause the solver to
operate over the entirety of the domain on level £ + 1 (i.e., Q/.). This
behavior can be interpreted as creating a block B,.; whose size is
determined by prolongating block B, = Q, using the prolongation
operator function P}_; (X,) for some set of points X on ¢. This decision

can be summarized as F;"' # @=B;,; = P, (Bs) = Qs1. Memory
management is thus greatly simplified, since the solver either finishes at
level Z or processes level ¢ for a given time step. Consequently, this
decision also increases workload on levels where only a subset of Q,
requires smoothing.

While this method simplifies memory management, it can sacrifice
solution accuracy. Residual error is calculated as:

1
m_%wiﬁl%—%f e

Ry — Le(W7)

pEByvEV

where RHS and LHS solutions are R, , and L, ,, respectively, for all points
p in block By, and variables v in the set of all tumor model variables V.
R, and L, are the RHS and LHS model terms on ¢, respectively and y" is
the variable solution on # at time step t and solver iteration r. When size
of B,y is not fit to the flagged points, sensitivity to local error is
decreased. Thus, model error will be artificially high. This was corrected
by redefining p to fit the set of all flagged point F;r’l:

1
T 22 o ~ L)’ @

pEF, veEV

R = L) [

This method allows for easy memory transfers from CPU to GPU
while retaining solution accuracy.

2.4. Model architecture

Flow of information during execution differs from the previous ar-
chitecture. MPI implementation has two classes of processes:

1. Administrative process (AdP). Responsibilities include construction
of model domain and decisions pertaining to solution convergence.

Computers in Biology and Medicine 134 (2021) 104507

There is only one process designated as AdP within MPI-CUDA
runtime.

2. General Computation Process (GCP). GCPs take up a non-
overlapping cubic region in Q. Each can operate on more than one
level as designated by AdP at start of model execution.

Algorithm 1 summarizes the process for any computation function X
that is neither restriction nor prolongation. Before synchronization, each
GCP must unload its corresponding GPU Py, containing unsynchronized
data before executing X on GPU P;,. Preceding execution of function X on
level 7, all data across GCPs is synchronized to avoid race conditions. Of
note, in Algorithm 1 the binding rules for GPUs Py, and P, are left to the
implementer. Ideally, processes are bound in a non-overlapping fashion
to a single GPU. That is, two GCPs g and h are the same if and only if
mg =ng=my =np, but hardware limitations may require an over-
lapping allocation in which multiple MPI processes share GPU resources.

RunFunction(X, g, £, m, n) {
Select GPU P,

If GPU P,, contains unloaded data addressed to GCP g {
Unload Q, data from P,
Synchronize Q, with all GCPs on level ¢

}
Select GPU P,
Load level ¢ data associated with GCP g onto GPU P

RunXonP,
}

Processes are applied to level ¢ sequentially filling a single region of
the model in a manner depicted by Fig. 1, in which level 7, level £+ 1,
and level # + 2 operate over the same domain object, represented by the
triangle. Level ¢ contains a single process. Adapting a method of hier-
archical process filling proposed by Ref. [60], on level £+ 1 three
additional processes are required to process level £+ 1. All four pro-
cesses, including region 1 on level £+ 1, restrict to region 1. Same
relationship exists between levels # + 2 and ¢ + 1. One-eighth of domain
covered by a single GCP unit in level ¢ is retained locally while other 7
parts of Q. are sent to seven other GCPs. Thus, amount of work in-
creases linearly with number of levels, since processes on each level after
and including level # have same domain size [60]. This also means that
each GCP on a previous level must operate on the final level £pqy.
Scaling this approach for 3D, total amount of processes required is:

1, ng > myg
8™ g < my

Processes Required = { 3

where ng, mp € N, ng < mg the finest level ¢, has 2™ points on a
side, and each process holds 2™ points per side per level with maximum
RAM usage. Thus, for ny = mo— 1=#Processes = 8mo—(mo-1) —
8 processes. Because a portion of computational work remains on every
finer level after a process is first introduced, processes are utilized to a
greater degree over a non-hierarchical filling method.

At the beginning of model execution, a single AdP is designated. AdP
starts by defining process boundaries determined by the maximum sized
domain that each GCP can contain. To agree with domain Q, cubic
domain Qp, for each GCP has side length 2%, where k < £ + Zingex- Value
of k can be specified at runtime or be empirically derived by hardware
availability. The resulting size is the fundamental size for each GCP.
Consequently, coarsest level £y may define a domain Qg that is larger
than a single GCP.

For process n operating over a subset of Q,, denoted Q}, a set of GPUs
is paired with process n to process Q}. For this study, we assume Q7 is

D.A. Goodin and H.B. Frieboes

Level £

Level £ + 1

Computers in Biology and Medicine 134 (2021) 104507

Level £ + 2

6 10 12 16

2 9 4 15

Goi1 Gy

1

5 8 11 14

1 7 3 13

~

Gy

Gy Gy

Fig. 1. Multilevel Nodal Geometry on sequential levels 7, £+ 1, and ¢ + 2. Processes on level Z, # + 1, and ¢ + 2 operate over equally sized datasets regardless if
operating on Q, Q,.1, and Q. 5, respectively. This is because the simulated distance between points is halved on level # + 1 and halved again on level £+ 2, thus
the density of information keeps pace with the addition of more GCPs. This approach is extended in this work to a three-dimensional simulation domain. During
restriction, GCPs locally restrict their domain data and consolidate their information in the -i and -j direction to nodes marked with G, or G,,;. Prolongation reverses

this process by transferring G, data along the +i and +j direction.

cubic. If required by hardware constraints, Q7 is subdivided into sub-
domains a)jf that are sufficiently reduced to fit in GPU RAM. Subdomains
have following properties for m subdomains on level ¢:

[ay

.wfggn,je{L...,m}
Lofnesn..Nneh =

LofUajU...Uaf, =QF

A W ON

If a single GPU has enough RAM to hold Q7}, then m = 1. Because of
stencil operations, a one-point shell layer around each subdomain is
required. Next, GPUs receive relevant constant terms from the model, e.
g., point spacing on level # and domain dimensions. Finally, function X is
called on all GPUs. After computation, data are unloaded as required to
allow data to synchronize between all Q} on Q,. Due to memory
transfers from GPU to CPU, this process constitutes the bulk of this
method’s overhead.

2.5. Data synchronization

When syncing data across GCPs, there are three vectors that must be
—
defined: (1) a syncing vector, S, (2) a process vector, ﬁ, that points

from self to an adjacent GCP, and (3) a data vector, 3, for directing
synchronized information to the correct cubic feature (i.e., face, edge, or
corner). Because processes are arranged as cubes in a Cartesian grid,
there are 26 possible syncing directions for each GCP. Described by
graph theory, each GCP forms a star graph Sy with its neighbors. Any
MPI send-and-receive operation is a two-step process, in which any link
(u,vm) form € {1,2,...,26} from center node of star graph u to vertex vy,
must be traversed in both directions. For maximum performance, perfect
matching is desirable, meaning that on level Z, half of GCPs are sending
data and half of the GCPs are receiving data during the synchronization
command. In addition, at any given moment of synchronization, any
chain of successive links on £ must be acyclic to prevent hanging. Syn-
chronization process in this model, therefore, has two objectives: (1)
creation of a unified timing structure that ensures synchronization
across all nodes on level £ without program hanging and (2) derivation

of D and N at each link in star graph.

On each GCP every value in a 3x3x3 syncing stencil is cycled through
in a preset order. With the center process of the stencil as the center of a
GCP’s domain, each stencil cell represents a cubic feature. A syncing

-
vector S points from the origin to the cubic feature represented by an
index of the stencil, representing a link on the star graph. MPI syn-
chronization commands used in this framework do not resume execution

until sending and receiving operation is completed. Thus, by cycling

through all possible syncing vectors in a set order on all GCPs, every S at
a given step of the syncing process will be parallel, ensuring that the
vector field of all syncing vectors has zero curl and, hence, fulfilling

objective 1. For a given ?, the GCPs send data in a checkerboard
pattern, with one half of the GCPs acting as senders and the other half as
receivers. For a sending GCP s operating in Q} and a receiving GCP r

. - =g v
operating in Q7, s sends the cubic feature indicated by S = D; = N, to

— — —
the receiver whose D, = N, = — S. Then, the sending/receiving roles
are reversed so that a cubic feature Q, is sent to Q, giving both s and r
the data required to update their respective cubic feature. This process is

repeated for all S such that any GCP n on ¢ can perform stencil oper-
ations anywhere in QF.

While D and N are parallel to 'S’ for interior synchronization events,
syncing events on the border of Q, involve cubic features that do not

correspond to the syncing stencil. In these situations, vectors N and D

are derived from projections of ?, thus linking objective 2 to objective
1. This allows the model to consistently synchronize information across
all GCPs on 7 without interaction from AdN and without forming cyclic
subgraphs.

In the case of restriction, information must be consolidated from
GCPs that exist on levels greater than or equal to # + 1 to GCPs that
operate on both level # and level £+ 1. As represented in Fig. 1, the
filling method creates 2x2 squares of GCP domains. Each square con-
tains a single GCP (G,) whose operating domain spans partitions of both
¢ and £+ 1. G/’s domain is at the minimum (i,j) corner of the 2x2
square. Restriction is performed locally on each GCP on ¢ + 1, and the
results are consolidated along the j-axis first followed by the i-axis at the
corresponding G,. For each 2x2 square, this process moves all restriction
information to each G, while parallelizing the restriction process.
Likewise, prolongation involves distributing level ¢ data to all the cor-
responding GCPs on level ¢+ 1. Distribution process reverses the
consolidation process by distributing first from the G, along the i-axis
and then the j-axis. Prolongation calculations are then done locally on all
GCPs on level £+ 1. On level £+ 2 the restriction and prolongation
processes scale to include nodes from both level # (G,) and nodes on
level £+ 1 (Gyy1). For this 3D model the preceding restriction and
prolongation processes were scaled to a 2x2x2 cube region for each Gy.

2.6. Performance timing
All timing results for openMP vs. CUDA test and MPI tests were ob-

tained using time.h clock statements and operated on a reference ho-
mogenous tumor shape with heterogeneous vasculature created for this

D.A. Goodin and H.B. Frieboes

model runtime. Computer used for comparing openMP to MPI-CUDA
framework has AMD 2990WX 32-core processor, two Titan RTX GPUs
with computation load placed allocated to the non-display GPU, and
128 GB of DDR4 RAM at 2666 MHz. Both GPUs were set to WDDM
mode. CUDA test case consists of two MPI processes: one AdP and one
GCP. When running on a single PC, negligible overhead occurs from
process communication thus a two process MPI-CUDA runtime is akin to
a single process CUDA task, differing only in slight overhead due
convergence decisions and process initialization steps. Furthermore,
MPI-CUDA runtime was configured to run on a single, non-display Titan
RTX GPU. Parameters other than time step size and tolerance were same
as [39]. Time step size and tolerance for openMP and CUDA-only tests
was 0 = 5*1073, and T = 1%1073, respectively. Lastly, each of the
University of Kentucky’s Lipscomb Compute Cluster (LCC) nodes used
for MPI tests comprises two 20-core Intel Xeon 6230 processors, 192 GB
of RAM, and four Nvidia V100 32 GB GPUs.

2.7. Simulation of cm-scale tumors with sub-mm resolution

Two large tumors were simulated: (1) ~1cm tumor in a 2563
domain, and (2) ~2cm tumor in a 5123 domain. The two simulated
tumors are identical in shape to the performance tests, being homoge-

neously defined with an initial volume fraction (~l5v = 0.65. The shape
was defined using a combination of sinusoidal functions and bivariate
normal distributions (as shown in Graphical Abstract). The initial con-
ditions are included in Supplement. This domain size was derived from
the diffusivity of oxygen o> em?/s [61,62]). Both 256° and 5123
simulations operated with resolution of 50 pm lengths (1.25 *
10~*mm®). Eight nodes on the LCC with eight CUDA-solving processes
per node were used for both simulations. Screenshots were taken for the
initial state, 167 time steps into the simulation (5 simulated days) and
267 time steps into the simulation (8 simulated days). Table 2 lists
computational solver parameters used for both domains.

To increase model metabolite stability in the charge-balance equa-
tion, sodium concentrations were introduced throughout the model
domain. A small increase in concentration of carbon dioxide, lactate,
bicarbonate, and H' at the borders was applied to ensure convergence.
As shown in Fig. 7, the distance traveled by molecules before being
absorbed by blood vasculature is significantly smaller than the distance
between the tumor and the domain borders. This change, then, does not
significantly affect the outcome by later points in the simulation. Before
vasculature formation, the molecular species travel closer to the model

Table 2
Computational parameters from Ref. [39] used for tumor simulations. Initial
values are set pre-model runtime. Values not listed are same as [39].

Parameter Description Value
Assigned for
cm-Scale
Runs
256° 5123

global Finest level that always spans Q 2

max Finest grid used for Q 4

4 Tolerance reduction factor from level £ to ¢ + 1 1.10

0 Time step size (days) 3%1072

4 Cycle Index (1 for V-cycle, 2 for W-cycle) 1

T Solution Tolerance for level £y 2%1073

Vo, V1, V2, Preset number of smoothing steps 4,2,2.2

Vb
Tmax Maximum number of Smoothing Steps before 15 45
Divergence Exception is raised
Cy Maximum gradient difference allowed for Universal 0.05
Gradient Test for the FLAG routine on ¢y.
d, Number of cells inward from the bound to include in 2¢

near-boundary extra smoothing steps (for zero-
indexed level ¢)

Computers in Biology and Medicine 134 (2021) 104507

borders, as noted in the smaller 256° case. To more accurately simulate a
larger tumor mass and to provide sufficient oxygen and glucose to the
model domain, more mature vascularization was created at the model
borders and within the domain. Biological variables and parameters for
long term 256° and 5122 simulations are in Supplement.

2.8. Statistics

All timing results were obtained for at least n =3 simulation runs,
with error bars representing 95% confidence interval (CI) of average
value.

3. Results

3.1. Comparison of openMP and single MPI-CUDA process: CUDA
contribution to model speedup

Tumor simulated for openMP vs. CUDA-only test was a 128" domain
with initial condition in Supplementary Fig. 1A. Domain size was cubic
with 4 mm side length; thus, resolution of simulation was 31.25 pm
(from diffusivity of oxygen, 10> cm?/s [61 ,621). Parameter values were
unchanged from Refs. [38,39]. Each coarser level # — 1 has twice the
distance between points as its corresponding finer level #. From Fig. 2A,
a 14.7x performance increase of CUDA over openMP was seen for
first-time step. In the second time step, our CUDA framework was 7.9x
times faster than openMP. Due to corrections made in MPI-CUDA
framework, this approach converged with fewer cycles than original
openMP implementation. It is probable that convergence would be
improved in openMP-based code if flux term changes were applied.
However, we verified performance improvement by evaluating time per
smoothing step. Fig. 2B shows 10.7x improvement over original openMP
implementation. Further, because of adaptive grid methods described in
Ref. [39] that were used in openMP Multigrid algorithm, only a subset of
the domain was solved over on the finest two levels of simulation; thus,
openMP spends more time doing less computational work than our
CUDA framework. Finally, because AMD 2990WX possess 32 cores, it is
difficult to find current single socket computers capable of equivalent
performance. Although it is possible that AMD 2990WX memory
bandwidth may not fully utilize all CPU cores as effectively on a
multi-die CPU system, the distinction is unlikely to close the perfor-
mance gap. Consequently, it is reasonable to expect that performance
improvements of CUDA over openMP will scale across other platforms.

Model accuracy was ensured by comparing model input to openMP
numerical solutions in Refs. [38,39]. To ensure model consistency across
varying numbers of MPI thread counts, initial conditions and end-state
after two time steps were compared between separate runs using
SHA-256 hash. All algorithm behavior is represented in first two-time
steps; thus, comparing first two time steps is sufficient to confirm solu-
tion integrity. This hash was created with printouts of volume fractions,
pressures, metabolites, growth factors, and other model variables.
Matching hashes implied that integrity of solving process was not
impacted during development or by varying thread counts. This analysis
also confirmed that MPI synchronization produced equivalent results for
1, 8, and 64 GCPs.

3.2. MPI contribution to model speedup

To confirm that MPI increases performance over a single GCP MPI-
CUDA instance, the LCC was used. Using same initial condition (Sup-
plementary Fig. 1B) and resolution of 31.25pm, domain size was
increased to a cube with 256° interior points (258° including border
points). Thus, domain size was cubic with 8 mm side length. All
computational parameter values differing from Refs. [38,39] are in
Table 3.

Triplicate tests were performed at three different numbers of MPI
processes:

D.A. Goodin and H.B. Frieboes

A 800

mopenMP (32 threads)

a o N
o O o
o o o

Average Time Per Step (sec)
S
o
o

o MPI-CUDA (single process)

300
200
100
0 [[
First Second

Time per Execution Step

Computers in Biology and Medicine 134 (2021) 104507

B swo
mopenMP (32 threads)
'g 700 B MPI-CUDA (single process)
)
o 600
Qo
» 500
o
o 400
£
i= 300
S
g 200
) . .
z 100
0
First Second
Time per Smoothing Step

Fig. 2. Performance comparison for first two time steps between openMP and single-process MPI-CUDA instance in 128° domain. (A) Execution time; (B) V-cycle

solvers. Error bars are 95%.

Table 3
Computational parameter values for CUDA-MPI tests. All other parameters were
retained from Refs. [38,39].

Computational Description openMP vs. MPI- MPI-
Parameter CUDA Single CUDA
Process LCC
ng,.. Edge length of finest 128 256
cubic domain Q.
Domain Size Side length of Q/, 0.4 0.8
(mm)
4 Tolerance reduction 4.0
factor from level £ to ¢ +
1
(7. Solution Tolerance for 0.001

level oy

1. Two process MPI-CUDA case: one AdP and one GCP. This test was
akin to that used on AMD 2990WX test and baseline for cases 2 & 3.

2. Nine process MPI-CUDA case: one AdP and eight GCPs. For an eight
GCP setup the finest model domain was split into octants, with each
process operating over a single octant. In this setup, each LCC Re-
striction operation from ¢y to £mex — 1 maps eight GCPs to a single
GCP for processing. One LCC node was used with two MPI-CUDA
processes assigned to two of the four available cluster GPUs.

3. Sixty-five process MPI-CUDA case: one AdP and 64 GCPs. For this
setup, an extra layer of 64 nodes is added at the finest level.
Restricted information is sent to layer £ — 1 containing eight of the
64 GCPs. Further restrictions to levels # — 2 and coarser behave
identically to case 2. Four LCC nodes were used with four MPI-CUDA
processes assigned to each of the 16 available GPUs.

Single process case used same test case in openMP vs. CUDA test but
scaled to larger domain. Eight-GCP and 64-GCP cases were distributed to
two and four nodes, respectively. To measure effect of process density of
each GPU on performance, for two groups, (1) 8 GCPs and one AdP and
(2) 64 GCPs and one AdP, the number of nodes available was doubled;
thus, 8-GCP-Low-Density test had two nodes with four GCPs per node
while 64-GCP-Low-Density test had eight nodes with eight GCPs per
node.

Averaging the ratios in timing results when moving from 8 GCPs to
64 GCPs for time steps 2 and 3 in Fig. 3, a total improvement of 5.3x is
observed. Multi-process allocation can bottleneck due to competition for
memory bandwidth and simulation speeds. In eight-GCP case, four GPUs
held two GCPs each; 16 GPUs held four processes each in the 64-GCPs
case. To quantify performance lift by redistributing processes across
more GPUs, two extra runs were performed with eight GPUs running one
process apiece, increasing performance by 1.2x over the original case.
This decreased the performance impact of switching to 64 processes
from 2.8x in four GPU case to 2.4x in the eight GPU case. Similar to 8-

800
m 1-GCP
400 =8-GCP
8-GCP-Low-Density
60 7 64-GCP
500 #64-GCP-Low-Density

400
300

Average Time Per Step (sec)
g

o
S

First Second Third
Time Step

Fig. 3. Mean performances per time step for MPI-CUDA processing a 256>
domain. Error bars are 95%.

process case, moving to 64 processes at 2 processes per GPU (for a
total of 32 GPUs) increased performance 1.3x over 64-process runtime
with 4 processes per GPU (16 GPUs). In total 64-GCP-Low-Density dis-
tribution outperforms CUDA-only distribution (1-GCP) by 6.7x. Com-
bined with gains with CUDA over openMP, MPI-CUDA framework has
capacity to simulate larger tumor masses in a distributed manner at
speeds not possible under the previous framework. Furthermore, larger
scale simulations benefit from increased resource availability, making
64 GCPs the selected distribution method for 256° domain and 5123
domain simulations. However, there are diminished gains for scaling
across more nodes, suggesting that this approach may weakly scale to
project size.

3.3. Simulation of cm-scale tumors

The 256° simulation that ran on 32 V100 GPUs took about 2 h real
time to simulate 5 simulated days with an average time per time step of
43.2's. An additional 93.8 min were required to reach 8 simulated days.
For 5122 simulation, same 32 V100 GPU setup took ~31.5h to reach 5
simulated days at average rate of 11.3 min per time step. Additional
26.5 h were required to reach 8 simulated days. Here, average rate per
time step increased to 15.9 min per time step.

Fig. 4 shows 5122 domain simulation of ~2 cm diameter tumor at 5
and 8 simulated days. Viable and dead tissues are evident. Pronounced
release of tumor angiogenic factors (TAF) is triggered by hypoxia, which
leads to angiogenesis and growth of blood vasculature (Fig. 5). However,
both blood and lymphatic vasculature concentrations decreased overall.
Cellular respiration leveraged increased oxygen supply, thereby raising
carbon dioxide concentration. ECM concentration remained relatively
stable (Fig. 6). As tumor mass compressed internally, matrix degrading
enzymes (MDE) concentration shifted away from periphery, explaining
local ECM loss at i =1.27 cm plane. Decline can also be attributed to
lower concentration of myofibroblasts in inner tumor. Because

D.A. Goodin and H.B. Frieboes

Viable
i=1.25cm

Viable Tumor

phi_V Isosurface = 0.1
phi_V Isosurface = 0.65

vy

>

N
N

=

Jj-axis (cm)

Day 5
i-axis (cm)

gy 1 2 .\
Xi's (0 PR 1 2
cm) 2 k-axis (cm)

i=1.25cm

o £ =
>= £
@ .2 2
o% ! 2
- %
~
0 0
2 1
. o
A p 1 2 o\©

k-axis (cm)

Computers in Biology and Medicine 134 (2021) 104507

Dead TAF

i=1.25cm i=1.25cm

2

N

J-axis (cm)
j-axis (cm)

=

1

1 2

0 0 1
k-axis (cm) k-axis (cm)
i=1.25cm 1.0 i=1.25cm 1.0
0.8 |
2 | | 0.8
s 06
2 2
; 04 &
=1 -~
0.2
0 2 0

1
k-axis (cm) k-axis (cm)

Fig. 4. Evolution of ~2 cm diameter tumor in 512% domain at simulated (A) 5 days and (B) 8 days. Viable, dead, and tumor angiogenic factors (TAF) are shown

(plane jk).

myofibroblasts are created by the model within ECM and become
necrotic at low oxygen levels, their concentration remained relatively
stable from 5 to 8 simulated days. Meanwhile, a layer of higher viability
tumor mass formed near vasculature in the peritumoral space. Negative
pressure from tumor and ECM necrosis shifted the viable tumor layer
towards interior regions, distancing this viable tissue from blood
vasculature. This layer became necrotic and is present at both 5 simu-
lated days and 8 simulated days. While tumor growth factor (TGF)
concentration rose in peritumoral range over the 3 simulated day period,
encouraging increased tumor proliferation at periphery, MDE concen-
tration decreased locally at i = 1.27 cm plane.

The highly hypoxic nature of the tumor resulted in a persistently high
H* and lactic acid concentration from bicarbonate buffer and anaerobic
glycolysis (Fig. 7). Glucose, being necessary for both aerobic and
anaerobic glycolysis, is scarcer in the internal tumor portions and con-
tinues to decrease in peritumoral region over time. Carbon dioxide,
being formed by aerobic glycolysis, was consumed, in part, by the bi-
carbonate buffer, increasing bicarbonate prevalence.

Simulations of ~1cm tumor in 256° domain generally yielded
similar results as the larger tumor in 5123 domain using same parameter
values (Fig. 8). After an initial drop in mass due to lag in angiogenic
response, both tumors assumed a growth pattern by 8 simulated days.
Despite an overall decrease in density in the interior portions of the

tumor, the 512° ¢, = 0.lisosurface exhibited a growth rate of 2.6%
volume per day. The more robust (blood and lymphatic) vascularization
of the smaller tumor is evident at this timepoint earlier than in larger
tumor, as are higher TAF and MDE concentrations.

4. Discussion

This study implements a distributed computing (parallelized)
implementation of the mixture model in Refs. [38,39] to simulate 3D
continuum tumor growth at cm-scale at sub-mm resolution. Compared
to previous work, the model here accounts for a richer set of biological
phenomena, simulating ECM-tumor interaction, blood and lymphatic
vasculature evolution, metabolic consequences of anaerobic respiration,
acidity induced via the bicarbonate buffer, and secretion of diffusible
factors in response to hypoxic conditions. These results highlight how

identical parameter sets perform at in different domain sizes, 256° and
5123, suggesting future work required to fine-tune parameter sets best
suited for large-scale growth.

The CUDA-MPI approach improves the model performance over the
previous openMP approach [39] by ~50x. This value comes from
accumulating the benefits seen across the smoothing test from openMP
vs. CUDA (Fig. 2B) and the step time duration between 1-GCP vs.
64-GCP test (Fig. 3). Using the 1-GCP vs. 64-GCP-Low-Density increases
total performance improvement to ~70x that of the previous openMP
approach. Because of differing testing approaches and non-equivalent
hardware, these performance improvements cannot be directly
compared to other tumor modeling approaches. Nevertheless, cumula-
tive improvements demonstrated here are in similar league to those in
Refs. [47,48,52], demonstrating immediate benefits of using CUDA-MPI
over openMP. To our knowledge, these results mark the first time a
multigrid 3D continuum tumor model has been fully parallelized. Based
on the performance metrics obtained, we anticipate future work to
simulate tumor sizes as in Ref. [54]. These improvements are also
consistent with Navier-Stokes Multigrid simulations where CPU-side
parallelization across 64 processors saw a 50x improvement in speed
[63]. A different Navier-Stokes solver using an MPI-CUDA framework
achieved a 21x performance uplift over an 8-core Intel Xeon baseline
using 2 GPUs and a 130x performance uplift using 128 GPUs [64].
Huang et al. created an MPI-CUDA framework to implement a Sparse
Equations and Least Squares method for use in seismic tomography.
Their results report a 37x performance uplift using 60 CPU cores relative
to a single core baseline; using 60 GPUs nearly doubled performance
over their 60 CPU results [65]. These values suggest that our model’s
performance benefits are on the same order of magnitude as similarly
parallelized problems.

Continuum tumor mixture models, due to the numerous interwoven
phenomena simulated, have many guiding equations, leading to multi-
ple variables and quantities to evaluate and compute. As such, the
memory required per point in model domain at level # (Q;) may be
significantly higher than the raw variable count suggested in the case of
Navier-Stokes equations. RAM constraints on GPUs become increasingly
difficult to navigate as biological precision and generalizability are
pursued by more specialized model equations. While MPI can involve

D.A. Goodin and H.B. Frieboes

A

Blood Vasculature

i=1.25cm
Bn Isosurface = 0.12
Bn Isosurface = 0.28

-2 3
n E E
> 2
© .2 ﬁ
[=] ..’lé 1 oy
0
0 1 2
k-axis (cm)
i=1.25cm
2
— 2 z
wE E
> »
H K
0% s
R ~1
0 ' 0
2 1
Agy: 1 2 o™
s m) O ‘Ya*\s 0 1 2
k-axis (cm)
c Oxygen
i=1.25cm
W02 Isosurface = 0.2
02 Isosurface = 0.6
2 |
w s
> = E]
T 2 %
[a] -E ~1
0 1 2
k-axis (cm)
i=1.25cm
2 | 0.8
@ + i
" i //./ i 0.6
© £ S »
: ‘:_ \ A .5
Q%1 A\‘ N0 N1 0.4
k4 4
0.2
0
0
0) o 2

1
k-axis (cm)

1.0
0.8
0.6

0.4

0.2

0

1.0

Computers in Biology and Medicine 134 (2021) 104507

Lymph Vasculature i=1.25cm

Ln Isosurface = 0.12 '
Ln Isosurface = 0.32 |
- 2 ’
=2 AW B ,
o
2 ™ %
= 1 3 . .
© ~1
0 0 .
2 1
gy, 1 e
s (e) 0 2 o\ 0 1 2
3 k-axis (cm)
i=1.25cm i
2 ™
-2 <
o £ E X
> 2
© 2 X
R E %, -
0 0 o
e 1
~ax;. 1 2 . \c
5 (e cm) © -‘—'A*“’ 0 1 2
k-axis (cm)
D Carbon Dioxide
i=1.25cm 1.0

co2 Isosurface = 0.2
co2 Isosurface = 0.6

—2 - E
£ A
S . @
@2 H
51 L
V) 0
2 1
gy 1 2 . \d“\
Xis S 1
0 24
(em) ¥? k-axis (cm)
i=1.25cm 1.0
zS S >
=] 3
E 1 RS
0 0
2 d.
Agy: 1 2 o™
Xis R 1
(c,,,} 0 @ k-axis (cm)

Fig. 5. Tumor vessel evolution for ~2 cm diameter tumor in 5123 domain. (A) Blood vasculature. (B) Lymphatic vasculature. (C) Oxygen (D) Carbon dioxide.

more GPUs and lower the per-GPU RAM requirements, we recognize
that this study used Titan RTX and V100 GPUs, both of which possess
over 20 GB of RAM. GPUs with lower RAM capacity individually and in
aggregate would with current technology have difficulty running highly-
detailed continuum tumor models, potentially relegating such models to
high-end desktop PCs and, in the case of cm-scale modeling, to larger
compute clusters.

While the parallelization performed on the tumor model is signifi-
cant, further development is required before deployment in a clinical
environment. First, a more finely-tuned parameter set could help ach-
ieve persistent intra-tumoral increasing concentrations, such as ECM,
required to simulate large-scale particular cancer types. Second, this
process structure has no fault tolerance. If a single GCP were to fail to
respond, the program would exit without completing the model. Fault
tolerance has already been implemented in Big Data cluster libraries,
such as Hadoop and Apache Spark [56,58]. Thus, future implementation
may draw from techniques used by these Big Data frameworks.

With the addition of Multigrid technologies such as adaptive grid

meshes, computational workload would be reduced and would increase
model performance. For some problem sizes, a CUDA-MPI framework
may not be optimal due to the overhead of passing data for processing to
GPUs. Indeed, an openMP/MPI framework has outperformed CUDA-MPI
tasks when operating on a smaller mathematical model [66]. It is sus-
pected that a tradeoff point exists, which could be a subject for future
research. Evaluation of openMP-MPI vs. CUDA-MPI at varied grid levels
may lead to further optimizations of mixed grid sizes.

Additionally, because of parallel synchronization constraints, the
adaptive grid mesh method previously used in Refs. [38,39] was dis-
carded in favor of a modified residual calculation procedure as detailed
in Methods. An adaptive grid mesh implementation would require
adaptive process assignments to subsets of non-global domains and, if
implemented at MPI level, may better utilize processing resources. In
many cases only a single V-cycle was required to converge to selected
tolerance. A minority of time steps, especially time steps directly after
and including initial time step, required more smoothing iterations to
achieve tolerance; it is likely that using a different multigrid cycle, such

D.A. Goodin and H.B. Frieboes

A

a
<

i=1.25cm 1.0

Computers in Biology and Medicine 134 (2021) 104507

B MDE

i=1.25cm

" phi_E Isosurface = 0.5 1.0
““phi_E Isosurface = 0.15
5 0. 3 0.8
= 2 s -
n £ .S, 8 E 0.6
= ") »
& 2 = %
o3t 4o L1 - L1 0.4
0 0 - 0.2
2 1
N
! <
s (e) O 2 oY 0 1 2 0 1 > 0
¥ k-axis (cm) k-axis (cm)
i=1.25cm 1.0 i=1.25cm

N

Day 8
i-axis (cm)

j-axis (cm)

2
N .
0 0 -
2 1
e 2 \c‘“\
1 2

Jj-axis (cm)

O | .
a)as (Clh) 0 .‘_@*\5 o 0 0 n) o
k-axis (cm) k-axis (cm)
C Myofibroblasts D TGF
myF Isosurface = 0.02 i=1.25cm 1.0 i=1.25cm 10
myF Isosurface = 0.08

N

Day 5
i-axis (cm)
Jj-axis (cm)

0

5 ‘ R
1 .
1 2 0

k-axis (cm)
i=1.25cm

0.8

0.6

J-axis (cm)

0.4

0.2

k-axis (cm)

1.0 i=1.25cm

0.8
2 L
s 12 E T
© g 06 E
> G Y =
o 2 Y
[= -2t ; 0.4 E
B S - %
5 0 0.2
2 1
gy, 1 °‘°\
-a, 2 o\C
Xis fem) 0 _Ya*\s 0 1 2 0 0 1 2 0
k-axis (cm) k-axis (cm)

Fig. 6. Tumor matrix evolution for ~2 cm diameter tumor in 5122 domain. (A) Extracellular matrix (ECM). (B) Matrix degrading enzymes (MDE). (C) Myofibro-

blasts. (D) Tumor growth factors (TGF).

as the F-cycle, would improve convergence performance in those cases
[67]. Some other minor performance improvements can be made, such
as consolidating the AdP with a GCP to reduce thread count by one.
From a GPU standpoint, with RAM counts on GPUs increasing signifi-
cantly over the past half-decade, 256 currently and 5122 in the future
will likely become entirely GPU-side computations within a couple GPU
generations. Further refinement could thus reduce MPI's contribution by
removing most memory transfers.

Because of its low cost of failure and ideal reproducibility, in silico
simulation of clinically-relevant tumor-sized growth could help to
analyze patient treatment, especially when coupled to tumor-specific

parameters. Flexibility afforded by parameters leveraged in this model
may yield a platform for accommodating a wide range of characteristics,
anticipating tumor evolution and forecasting on patient potential out-
comes. Further, discovering which model parameters influence positive
clinical outcome could posit opportunities for novel clinical approaches
and provide a basis for further exploration. A faster turnaround would
offer a more responsive methodology of engaging with oncological hy-
pothesis testing and to focus in vitro and in vivo experimental effort.
With the complexity and scale of the model, the number of param-
eters makes assumptions inevitable. Akin to the reliance of machine
learning on high data acquisition for training sets, determining patient-

D.A. Goodin and H.B. Frieboes

A GLUCOSE B LACTATE
i=1.25cm 1.0 i=1.25cm
0.8
2
w § 06 §
> = =
©
L1 0.4 "l
0.2
0 1 2 0 0 1 2
k-axis (cm) k-axis (cm)
i=1.25cm 1.0 i=1.25cm
- 0.8
2 "
%8 06 §
©
Q% £
L1 0.4 N
0.2
0 1 2 0 1
k-axis (cm) k-axis (cm)
Fig.

A 1 cm Tumor (256 domain)
24%
20%
16%
12%
g 8%
§E N =§
2 o
2 8%
O 1%
-16%
-20%
-24%
Total Viable Dead TAF Blood Lymph. 0, CO, ECM Myo MDE TGF HCO, GLC H*' LAC
Tumor Vasc. Vasc.
B 2 cm Tumor (5123 domain)
24%
20%
16%
12%
3z 8%
% a5 p— |
0% || -
]
A A -
£ 8%
L -12%
-16%
-20%
-24% —
Total Viable Dead TAF Blood Lymph. 0, €O, ECM Myo MDE TGF HCO; GLC H' LAC

Tumor Vasc. Vasc. FB

Fig. 8. Rate of change of tumor variables (%change/day) at 8 simulated days
for (A) 256° domain and (B) 512° domain. From left to right: total tumor; viable
tumor; dead tumor; TAF (tumor angiogenic factors); blood vasculature;
lymphatic vasculature; O, (oxygen); CO, (carbon dioxide); ECM (extracellular
matrix); myoFB (myofibroblasts); MDE (matrix degrading enzymes); TGF
(tumor growth factors); GLC (glucose); LAC (lactate); H" (hydrogen ion); HCO;
(bicarbonate).

specific parameter values will require integrating in silico evaluation
with relevant clinical data. This requirement is exacerbated as more
detailed biological phenomena are considered. For example, introducing
immunotherapies and immuno-onco interactions will require additional
parameters, meaning that balancing performance with model
complexity will continue to affect larger-scale continuum tumor
modeling. Despite limitations, this study presents a first step in
achieving centimeter-scale 3D continuum tumor simulations with sub-
millimeter resolution, with future work envisioned to move this
approach closer to clinical application.

2.0

10

Computers in Biology and Medicine 134 (2021) 104507

H+ D Bicarbonate
i=1.25cm 20 i=1.25cm 1.0
2 T2 ™
E T
&2 £ S H
%] v
2 2
o ©
A1 MRS :
0 1 0 0 1 2 0
k-axis (cm) k-axis (cm)
i=1.25cm 2.0 i=1.25cm 1.0
16 0.
) ; 0.8
5 12 § 06
v w
5, 08 7, 0.4
0.4 0.2
0 0 0 1 2 0

1
k-axis (cm) k-axis (cm)

7. Evolution of metabolism-related variables for ~2 cm diameter tumor in 512% domain. (A) Glucose. (B) Lactate. (C) Hydrogen ion (H"). (D) Bicarbonate.

Conflict of interests statement

The authors declare no known conflicts of interest.

Declaration of competing interest
The authors have no competing interests to disclose.
Acknowledgements

HBF acknowledges partial support by National Institutes of Health/
National Cancer Institute grant R15CA203605 and Department of De-
fense/U.S. Army Medical Research grant W81XWH2110012. This work
was conducted in part using resources of the Research Computing group
and Cardinal Research Cluster (CRC) at University of Louisville. Authors
thank for assistance Harrison Simrall with the CRC and Steven Goodin
with matrix unrolling techniques. Authors acknowledge University of
Kentucky Center for Computational Sciences and Information Technol-
ogy Services Research Computing for support and use of Lipscomb
Compute Cluster (LCC) and associated computing resources; this mate-
rial is based upon work supported by National Science Foundation grant
1925687.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
0rg/10.1016/j.compbiomed.2021.104507.

References
[1] S.M. Wise, J.S. Lowengrub, H.B. Frieboes, V. Cristini, Three-dimensional
multispecies nonlinear tumor growth—I: model and numerical method, J. Theor.
Biol. 253 (2008) 524-543.
J.T. Oden, A. Hawkings, S. Prudhomme, General diffuse-interface theories and an
approach to predictive tumor growth modeling, Math. Model Methods Appl. Sci. 2
(20) (2010) 477-517.
V. Cristini, X. Li, J.S. Lowengrub, S.M. Wise, Nonlinear simulations of solid tumor
growth using a mixture model: invasion and branching, J. Math. Biol. 58 (2009).
A. Hawkins-Daarud, S. Prudhomme, K.G. van der Zee, J.T. Oden, Bayesian
calibration, validation, and uncertainty quantification of diffuse interface models
of tumor growth, J. Math. Biol. 67 (2013) 1457-1485.

[2]

[3]

[4]

https://doi.org/10.1016/j.compbiomed.2021.104507
https://doi.org/10.1016/j.compbiomed.2021.104507
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref1
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref1
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref1
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref2
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref2
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref2
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref3
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref3
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref4
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref4
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref4

D.A. Goodin and H.B. Frieboes

[5]

[6]

[7]

[8]

[91
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]
[26]

[27]

[28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]
[38]

[39]

V. Cristini, H.B. Frieboes, X. Li, J. Lowengrub, P. Macklin, S. Sanga, S.M. Wise,
X. Zheng, Nonlinear Modeling and Simulation of Tumor Growth, Selected Topics in
Cancer Modeling, Birkhauser, Boston, 2008, pp. 1-69.

S. Frigeri, M. Grasselli, E. Rocca, On a diffuse interface model of tumour growth,
Eur. J. Appl. Math. 26 (2015) 215-243.

C. Cavaterra, E. Rocca, H. Wu, Long-Time Dynamics and Optimal Control of a
Diffuse Interface Model for Tumor Growth, Applied Mathematics & Optimization,
2019.

P. Colli, G. Gilardi, E. Rocca, J. Sprekels, Optimal distributed control of a diffuse
interface model of tumor growth*, Nonlinearity 30 (2017) 2518.

J.P. Ward, J.R. King, Mathematical modelling of avascular-tumour growth, IMA J.
Math. Appl. Med. Biol. 14 (1997) 39-69.

C. Please, G. Pettet, D. McElwain, A new approach to modeling the formation of
necrotic regions in tumors, Appl. Math. Lett. 11 (1998) 89-94.

J.P. Ward, J.R. King, Mathematical modelling of avascular-tumour growth. II:
modelling growth saturation, IMA J. Math. Appl. Med. Biol. 16 (1999) 171-211.
C. Please, G. Pettet, D. McElwain, Avascular tumour dynamics and necrosis, Math.
Methods Appl. Sci. 9 (1999) 569-579.

C.J. Breward, H.M. Byrne, C.E. Lewis, The role of cell-cell interactions in a two-
phase model for avascular tumour growth, J. Math. Biol. 45 (2002) 125-152.

D. Ambrosi, L. Preziosi, On the closure of mass balance models for tumor growth,
Math. Model Methods Appl. Sci. 12 (2002) 737-754.

C.J. Breward, H.M. Byrne, C.E. Lewis, A multiphase model describing vascular
tumour growth, Bull. Math. Biol. 65 (2003) 609-640.

H. Byrne, J. King, D. McElwain, L. Preziosi, A two-phase model of solid tumour
growth, Appl. Math. Lett. 16 (2003) 567-573.

H. Byrne, L. Preziosi, Modelling solid tumour growth using the theory of mixtures,
Math. Med. Biol. 20 (2003) 341-366.

S.J. Franks, H.M. Byrne, J.R. King, J.C. Underwood, C.E. Lewis, Modelling the early
growth of ductal carcinoma in situ of the breast, J. Math. Biol. 47 (2003) 424-452.
S.J. Franks, H.M. Byrne, H.S. Mudhar, J.C. Underwood, C.E. Lewis, Mathematical
modelling of comedo ductal carcinoma in situ of the breast, Math. Med. Biol. 20
(2003) 277-308.

T. Roose, P.A. Netti, L.L. Munn, Y. Boucher, R.K. Jain, Solid stress generated by
spheroid growth estimated using a linear poroelasticity model, Microvasc. Res. 66
(2003) 204-212.

R. Araujo, D. McElwain, A mixture theory for the genesis of residual stresses in
growing tissues I: a general formulation, SIAM J. Appl. Math. 65 (2005)
1261-1284.

R. Araujo, D. McElwain, A mixture theory for the genesis of residual stresses in
growing tissues II: solutions to the biphasic equations for a multicell spheroid,
SIAM J. Appl. Math. 66 (2005) 447-467.

M.A. Chaplain, L. Graziano, L. Preziosi, Mathematical modelling of the loss of
tissue compression responsiveness and its role in solid tumour development, Math.
Med. Biol. 23 (2006) 197-229.

A. Tosin, Multiphase modeling and qualitative analysis of the growth of tumor
cords, Netw. Heterogeneous Media 3 (2008) 43-84.

D. Ambrosi, L. Preziosi, Cell adhesion mechanisms and stress relaxation in the
mechanics of tumours, Biomech. Model. Mechanobiol. 8 (2009) 397-413.

D. Ambrosi, A. Duperray, V. Peschetola, C. Verdier, Traction patterns of tumor
cells, J. Math. Biol. 58 (2009) 163-181.

L. Preziosi, A. Tosin, Multiphase modelling of tumour growth and extracellular
matrix interaction: mathematical tools and applications, J. Math. Biol. 58 (2009)
625-656.

L. Preziosi, A. Tosin, Multiphase and multiscale trends in cancer modelling, Math.
Model Nat. Phenom. 4 (2009) 1-11.

P. Tracqui, Biophysical models of tumor growth, Rep. Prog. Phys. 72 (2009),
056701.

G. Lorenzo, M.A. Scott, K. Tew, T.J.R. Hughes, Y.J. Zhang, L. Liu, G. Vilanova,
H. Gomez, Tissue-scale, personalized modeling and simulation of prostate cancer
growth, Proc. Natl. Acad. Sci. U. S. A 113 (2016) E7663-E7671.

M. Antonopoulos, D. Dionysiou, G. Stamatakos, N. Uzunoglu, Three-dimensional
tumor growth in time-varying chemical fields: a modeling framework and
theoretical study, BMC Bioinf. 20 (2019) 442.

S.M. Wise, J.S. Lowengrub, V. Cristini, An adaptive multigrid algorithm for
simulating solid tumor growth using mixture models, Math. Comput. Model. 53
(2011) 1-20.

H.B. Frieboes, F. Jin, Y.-L. Chuang, S.M. Wise, J.S. Lowengrub, V. Cristini, Three-
dimensional multispecies nonlinear tumor growth—II: tumor invasion and
angiogenesis, J. Theor. Biol. 264 (2010) 1254-1278.

A.R. Anderson, M. Chaplain, Continuous and discrete mathematical models of
tumor-induced angiogenesis, Bull. Math. Biol. 60 (1998) 857-899.

S.R. McDougall, A.R. Anderson, M.A. Chaplain, J.A. Sherratt, Mathematical
modelling of flow through vascular networks: implications for tumour-induced
angiogenesis and chemotherapy strategies, Bull. Math. Biol. 64 (2002) 673-702.
M.J. Plank, B.D. Sleeman, A reinforced random walk model of tumour angiogenesis
and anti-angiogenic strategies, Math. Med. Biol. 20 (2003) 135-181.

M.J. Plank, B.D. Sleeman, Lattice and non-lattice models of tumour angiogenesis,
Bull. Math. Biol. 66 (2004) 1785-1819.

C.F. Ng, H.B. Frieboes, Model of vascular desmoplastic multispecies tumor growth,
J. Theor. Biol. 430 (2017) 245-282.

C.F. Ng, H.B. Frieboes, Simulation of multispecies desmoplastic cancer growth via
a fully adaptive non-linear full multigrid algorithm, Front. Physiol. 9 (2018).

11

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Computers in Biology and Medicine 134 (2021) 104507

R. Wcisto, W. Dzwinel, Particle Model of Tumor Growth and its Parallel
Implementation, Parallel Processing and Applied Mathematics : 8th International
Conference, PPAM 2009, Wroclaw, Poland, September 13-16, 2009. Revised
Selected Papers, Part I, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010,

pp. 322-331.

R. Wcisto, P. Gosztyta, W. Dzwinel, N-body parallel model of tumor proliferation,
in: Proceedings of the 2010 Summer Computer Simulation Conference, 2010,

pp. 160-167.

A. Ghaffarizadeh, S.H. Friedman, P. Macklin, BioFVM: an efficient, parallelized
diffusive transport solver for 3-D biological simulations, Bioinformatics 32 (2016)
1256-1258.

N. Chen, J.A. Glazier, J.A. Izaguirre, M.S. Alber, A parallel implementation of the
Cellular Potts Model for simulation of cell-based morphogenesis, Comput. Phys.
Commun. 176 (2007) 670-681.

M. Berghoff, J. Rosenbauer, A. Schug, Massively Parallel Large-Scale Multi-Model
Simulation of Tumor Development, 2019.

M. Berghoff, J. Rosenbauer, A. Schug, Massively Parallel Large-Scale Multi-Model
Simulation of Tumour Development Including Treatments, John von Neumann-
Institut fiir Computing, 2020. NIC Symposium 2020.

M. Berghoff, 1. Kondov, J. Hotzer, Massively parallel stencil code solver with
autonomous adaptive block distribution, IEEE Trans. Parallel Distr. Syst. 29
(2018).

J.J. Tapia, R. D’Souza, M. leee, International Conference on Systems, S.M.C.S.A.T.
X.U.S.A. Cybernetics, Data-parallel algorithms for large-scale real-time simulation
of the cellular potts model on graphics processing units, in: Conference Proceedings
- IEEE International Conference on Systems, Man and Cybernetics, 2009,

pp. 1411-1418.

J.J. Tapia, R.M. D’Souza, Parallelizing the Cellular Potts Model on graphics
processing units, Comput. Phys. Commun. 182 (2011) 857-865.

A.G. Salguero, A.J. Tomeu, M.I. Capel, B. th International Conference on Practical
Applications of Computational, P.t. Bioinformatics, Parallel cellular automaton
tumor growth model, Adv. Intell. Syst.Comput 803 (2019) 175-182.

A.G. Salguero, A.J. Tomeu-Hardasmal, M.I. Capel, Dynamic Load Balancing
Strategy for Parallel Tumor Growth Simulations, J. Integr. Bioinf. 16 (2019).

A.J. Tomeu, A.G. Salguero, M.I. Capel, Speeding Up Tumor Growth Simulations
Using Parallel Programming and Cellular Automata, IEEE Latin America
Transactions 14 (2016).

S. Dong, Y. Yan, L. Tang, J. Meng, Y. Jiang, Simulation of 3D tumor cell growth
using nonlinear finite element method, Comput. Methods Biomech. Biomed. Eng.
19 (2016) 807-818.

M. Los, A. Klusek, M.A. Hassaan, K. Pingali, W. Dzwinel, M. Paszynski, Parallel fast
isogeometric L2 projection solver with GALOIS system for 3D tumor growth
simulations, Comput. Methods Appl. Mech. Eng. 343 (2019) 1-22.

A. Klusek, M. Los, M. Paszynski, W. Dzwinel, Efficient model of tumor dynamics
simulated in multi-GPU environment, Int. J. High Perform. Comput. Appl. 33
(2019) 489-506.

M.A. Swartz, A.W. Lund, Lymphatic and interstitial flow in the tumour
microenvironment: linking mechanobiology with immunity, Nat. Rev. Canc. 12
(2012) 210-219.

H. Asaadi, D. Khaldi, B. Chapman, C. leee International Conference on Cluster
Computing, A comparative survey of the HPC and big data paradigms: Analysis and
experiments, Proceedings - IEEE International Conference on Cluster Computing,
ICCC (2016) 423-432.

J. Dongarra, B. Tourancheau, S. Kamburugamuve, P. Wickramasinghe,

S. Ekanayake, G.C. Fox, Anatomy of machine learning algorithm implementations
in MPI, Spark, and Flink, Int. J. High Perform. Comput. Appl. 32 (2018) 61-73.
J.L. Reyes-Ortiz, L. Oneto, D. Anguita, Big Data Analytics in the Cloud: Spark on
Hadoop vs MPI/OpenMP on Beowulf, Procedia Computer Science 53 (2015)
121-130.

S. Canon, A. Gittens, E. Racah, M. Ringenburg, L. Gerhardt, J. Kottalam, J. Liu,
K. Maschhoff, A. Devarakonda, J. Chhugani, P. Sharma, J. Yang, J. Demmel,

J. Harrell, V. Krishnamurthy, M.W. Mahoney, U.S.A.D.D. Prabhat, leee
International Conference on Big Data Washington Dc, Matrix factorizations at
scale: A comparison of scientific data analytics in spark and C+MPI using three
case studies, in: 2016 IEEE International Conference on Big Data (Big Data), 2016,
pp. 204-213.

S. Reiter, A. Vogel, I. Heppner, M. Rupp, G. Wittum, A massively parallel geometric
multigrid solver on hierarchically distributed grids, Comput. Visual Sci. 16 (2013)
151-164.

L.J. Nugent, R.K. Jain, Extravascular diffusion in normal and neoplastic tissues,
Canc. Res. 44 (1984) 238-244.

H.B. Frieboes, M.E. Edgerton, J.P. Fruehauf, F.R. Rose, L.K. Worrall, R.A. Gatenby,
M. Ferrari, V. Cristini, Prediction of drug response in breast cancer using
integrative experimental/computational modeling, Canc. Res. 69 (2009)
4484-4492.

P. Benedusi, D. Hupp, P. Arbenz, R. Krause, A Parallel Multigrid Solver for Time-
Periodic Incompressible Navier-Stokes Equations in 3D, in: B. Karasozen,

M. Manguoglu, M. Tezer-Sezgin, S. Goktepe, 0. Ugur (Eds.), Numerical
Mathematics and Advanced Applications ENUMATH 2015, Springer, Cham, 2015,
pp. 265-273.

D. Jacobsen, J. Thibault, I. Senocak, An MPI-CUDA Implementation for Massively
Parallel Incompressible Flow Computations on Multi-GPU Clusters, 48th ATAA

http://refhub.elsevier.com/S0010-4825(21)00301-2/sref5
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref5
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref5
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref6
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref6
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref7
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref7
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref7
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref8
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref8
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref9
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref9
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref10
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref10
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref11
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref11
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref12
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref12
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref13
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref13
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref14
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref14
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref15
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref15
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref16
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref16
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref17
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref17
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref18
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref18
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref19
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref19
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref19
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref20
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref20
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref20
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref21
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref21
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref21
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref22
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref22
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref22
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref23
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref23
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref23
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref24
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref24
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref25
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref25
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref26
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref26
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref27
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref27
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref27
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref28
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref28
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref29
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref29
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref30
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref30
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref30
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref31
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref31
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref31
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref32
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref32
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref32
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref33
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref33
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref33
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref34
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref34
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref35
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref35
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref35
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref36
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref36
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref37
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref37
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref38
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref38
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref39
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref39
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref40
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref40
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref40
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref40
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref40
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref41
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref41
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref41
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref42
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref42
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref42
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref43
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref43
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref43
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref44
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref44
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref45
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref45
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref45
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref46
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref46
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref46
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref47
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref47
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref47
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref47
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref47
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref48
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref48
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref49
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref49
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref49
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref50
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref50
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref51
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref51
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref51
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref52
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref52
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref52
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref53
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref53
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref53
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref54
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref54
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref54
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref55
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref55
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref55
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref56
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref56
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref56
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref56
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref57
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref57
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref57
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref58
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref58
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref58
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref59
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref59
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref59
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref59
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref59
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref59
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref59
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref60
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref60
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref60
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref61
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref61
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref62
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref62
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref62
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref62
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref63
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref63
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref63
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref63
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref63
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref64
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref64

D.A. Goodin and H.B. Frieboes

Computers in Biology and Medicine 134 (2021) 104507

Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace [66] V. Loncar, L.E. Young-S, S. Skrbi¢, P. Muruganandam, S.K. Adhikari, A. Balaz,
ExpositionOrlando, 2010. FL. OpenMP, OpenMP/MPI, and CUDA/MPI C programs for solving the time-

[65] H. Huang, L. Wang, E.J. Lee, P. Chen, An MPI-CUDA Implementation and dependent dipolar Gross-Pitaevskii equation, Comput. Phys. Commun. 209 (2016)
Optimization for Parallel Sparse Equations and Least Squares (LSQR), Procedia 190-196.
Computer Science 9 (2012) 76-85.

[67]1 U. Trottenberg, C.W. Oosterlee, A. Schuller, Multigrid, Elsevier, 2000.

12

http://refhub.elsevier.com/S0010-4825(21)00301-2/sref64
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref64
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref65
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref65
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref65
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref66
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref66
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref66
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref66
http://refhub.elsevier.com/S0010-4825(21)00301-2/sref67

	Simulation of 3D centimeter-scale continuum tumor growth at sub-millimeter resolution via distributed computing
	1 Introduction
	2 Materials and methods
	2.1 Model of tumor growth
	2.2 Limitations of openMP-based solver
	2.3 Distributed computing solution
	2.4 Model architecture
	2.5 Data synchronization
	2.6 Performance timing
	2.7 Simulation of cm-scale tumors with sub-mm resolution
	2.8 Statistics

	3 Results
	3.1 Comparison of openMP and single MPI-CUDA process: CUDA contribution to model speedup
	3.2 MPI contribution to model speedup
	3.3 Simulation of cm-scale tumors

	4 Discussion
	Conflict of interests statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Supplementary data
	References

