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A B S T R A C T   

Simulation of cm-scale tumor growth has generally been constrained by the computational cost to numerically 
solve the associated equations, with models limited to representing mm-scale or smaller tumors. While the work 
has proven useful to the study of small tumors and micro-metastases, a biologically-relevant simulation of cm- 
scale masses as would be typically detected and treated in patients has remained an elusive goal. This study 
presents a distributed computing (parallelized) implementation of a mixture model of tumor growth to simulate 
3D cm-scale vascularized tissue at sub-mm resolution. The numerical solving scheme utilizes a two-stage par
allelization framework. The solution is written for GPU computation using the CUDA framework, which handles 
all Multigrid-related computations. Message Passing Interface (MPI) handles distribution of information across 
multiple processes, freeing the program from RAM and the processing limitations found on single systems. On 
each system, Nvidia’s CUDA library allows for fast processing of model data using GPU-bound computing on 
fewer systems. The results show that a combined MPI-CUDA implementation enables the continuum modeling of 
cm-scale tumors at reasonable computational cost. Further work to calibrate model parameters to particular 
tumor conditions could enable simulation of patient-specific tumors for clinical application.   

1. Introduction 

Representation of tumor growth in clinically-relevant contexts has 
generally been explored via three main types of models: continuum 
models that simulate tissue-scale behavior, discrete models that define 
individual cells and their interactions, and hybrid models utilizing a 
combination of both approaches. These efforts have been traditionally 
constrained by the computational cost to numerically solve the associ
ated equations, with the results limited to representing mm-sized or 
smaller tumors. For discrete models the challenge has been to simulate 
billions of cells and their interactions, while for continuum models the 
cost of representing cm-scale domains becomes computationally pro
hibitive. In particular, models based on continuum mixture theory to 
simulate tumor growth have been developed [1–5] and analyzed [6–8], 
building upon earlier work to represent tumor tissue as different phases 
of a mixture [9–29]. However, more complex continuum models have 
struggled to achieve high performance simulations at patient-scale (cm) 
resolution. 

Lorenzo et al. used a continuum two-phase model to simulate a 

prostate tumor with 2.66 cm3 volume from CT-scan [30]. Antonopoulos 
et al. represented a 4.2 cm3 domain for 3 simulated months with 
2.2 mm3 resolution [31]. While both models reached cm scale, multi
species representation and vascularization were not incorporated. Wise 
et al. developed an adaptive multigrid framework for simulating a 
continuum multispecies tumor model using a single-core computer 
process, finding that time required to simulate a single day of tumor 
evolution at 1*10−2 days per time step increases from ~12 min during 
early time steps to ~400 min by end of simulation [32]. In Ref. [33] the 
model of [1] was coupled with a lattice-free random walk angiogenesis 
model [34–37]. Recently, a mixture model with continuum 3D repre
sentation of tumor, vasculature, and extracellular matrix (ECM) was 
presented in Refs. [38,39]. Open Multi-Processing (OpenMP) paralleli
zation benefits were offset in Ref. [38] by increased model complexity: 
early model performance was 156 min per simulated day to ~280 min 
per simulated day for 1*10−2 days per time step. In these models, 
coupling of tumor and vasculature in a biologically realistic 3D repre
sentation to simulate clinically-relevant tumor growth incurs a high 
computational cost. Consequently, the numerical implementation to 
solve the coupled equations has hindered these models from reaching 
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practical application, especially in terms of simulating patient tumor 
response to potential courses of treatment in a timely manner to drive 
clinical decision-making. 

Outside of the context of continuum models, several parallelized 
implementations have been developed over the past decade to improve 
performance. In Ref. [40], a tumor model parallelization saw a 5.2x 
performance increase over a single-process approach using eight pro
cessors. OpenMP implementations have improved tumor modeling 
performance, as shown in Refs. [41,42]. An early effort at parallelizing a 
Cellular Potts model used Message Passing Interface (MPI) but remained 
a 2D simulation [43]. Models have benefitted from multiple approaches, 
including an MPI-based parallel solver named NAStJA [44–46] and 
Compute Unified Device Architecture (CUDA) based solvers [47,48]. A 
near 30x uplift over CPU-based implementations using a CUDA-based 
solver was seen in Ref. [47]. Likewise, cellular automata tumor 
modeling has benefited from CUDA and CPU-based parallelization ap
proaches [49–51]. A tumor simulation using finite element methods 
leveraged an MPI framework to attain ~4x performance improvement 
by spanning the simulation across 16 processes [52]. Performance gains 
for a finite-element method were also realized using Galois, a software 
package that employs an amorphous data-parallelism model [53]. 
Recently, a hybrid model was parallelized using the framework to 
simulate ~1 cm3 melanoma evolution [54]. Of note, Antonopoulos 
et al.’s continuum model in MATLAB emphasized macroscopic tumor 
phenomena, simulating a cubic 4.2 cm length domain at 2 mm3 resolu
tion. By simulating fewer equations at a lower resolution than in 
Ref. [38], the model was capable of simulating ~3 months of tumor 
evolution in 10–12min [31]. 

Complementing these previous efforts, this study presents a distrib
uted computing implementation of the mixture model in Refs. [38,39] 
via a combined MPI-CUDA implementation to simulate cm-scale vas
cularized 3D tumor growth tissue at sub-millimeter resolution. 

2. Materials and methods 

2.1. Model of tumor growth 

We fully parallelize the continuum 3D model presented in Refs. [38, 
39], which used openMP. Briefly, the model simulates evolution of a 
single tumor cell phenotype in an environment with host cells and ECM. 
Tumor tissue vies for resources against healthy tissue while balancing 
the need for nutrients, metabolites, and ionic species, including oxygen, 
carbon dioxide, lactate, bicarbonate, sodium ions, chloride, and H+ ions. 
Crowding in a limited tissue space is abstracted into solid mass pressure 
and pressure from surrounding fluids. These pressures drive velocity in 

the solid tissue mass and create buildup of elastic energy on the sur
rounding ECM. Matrix degrading enzymes and myofibroblast concen
trations increase due to remodeling of surrounding ECM to compensate 
for strain induced by tumor growth. 

During tumor growth, tissue distal from vasculature can be deprived 
of resources. The tumor releases angiogenic factors to encourage growth 
of surrounding vasculature towards hypoxic tissue. Increased vessel 
leakiness has been well-documented from such relatively quick vascu
lature changes; the body compensates for edema by increasing 
lymphatic growth [55]. Therefore, the model simulates lymphatic 
growth with independent terms to the vasculature, although both are 
closely related mathematically and physiologically. However, vascula
ture effectiveness is limited physiologically by the diffusion rate of ox
ygen. Thus, interior hypoxic regions in sufficiently large tumors will 
operate at varying levels of anaerobic glycolysis, building up lactic acid. 
In a sufficiently hypoxic state, tumor cells become apoptotic or necrotic, 
represented as dead cell volume fraction. 

Numerically, this model is solved using a geometric multigrid solver. 
At its finest multigrid level, the solver uses evenly-spaced points to 
define model solution resolution. By increasing the number of points per 
side of the cubic domain and using a point-to-point distance <100 μm, 
sub-mm precision is retained while increasing the domain size beyond a 
centimeter on a side. At each point on a cubic domain, a solution for 
model variables is generated, with solution generation occurring after θ 
units of simulated time elapse. Key equations in non-dimensionalized 
form and the numerical solver are summarized further in Supplement. 

2.2. Limitations of openMP-based solver 

Three limitations of openMP-based solver in Refs. [38,39] include:  

1. When tested using 1283 grids, maximum performance was obtained 
using only 8 cores out of 32 on a 32-core processor on the University 
of Louisville Cardinal Research Cluster (CRC), potentially due to 
insufficient memory bandwidth. Further testing on an AMD 2990WX 
exhibited more promising results, indicating that nascent CPUs may 
fare better from openMP. However, limitations to core counts would 
further constrain gains.  

2. openMP is a shared-memory architecture that runs on non- 
distributed systems, limiting performance gains to a single PC, 
workstation, or High Performance Computing (HPC) node.  

3. Many PCs have insufficient RAM to hold larger tumor model spaces. 
Table 1 summarizes expected RAM footprint for varying model sizes. 

2.3. Distributed computing solution 

To simulate tumors at patient tissue cm-scales, model in Refs. [38, 
39] requires sufficient computational resources to function at a 5123 

sized domain and, according to Table 1, over 100 GB RAM are necessary. 
Because single-socket computers do not typically possess this much 
RAM, a new solution generator is required for long-term parallel 
computing. 

For this purpose, this study implements the numerical solving 

Abbreviations 

3D Three-dimensional 
AdP Administrative process 
CPU Central processing unit 
CT Computed tomography 
CUDA Compute unified device architecture 
ECM Extracellular matrix 
GCP General computation process 
GPU Graphics processing unit 
MDE Matrix degrading enzyme 
MPI Message passing interface 
openMP Open multi-processing 
PC Personal computer 
RAM Random access memory 
TAF Tumor angiogenic factors 
TGF Tumor growth factors  

Table 1 
Memory footprint for varying model sizes using model in Refs. [38,39].   

Level Size 

2563 5123 

Points on a Side 130 258 
Maximum Level size Simulated (#Points on a side) 256 512 
Upper Bound RAM Required per process with eight processes on 

the finest level with an equal distribution of level data (GB) 
3.3 25.5 

Total RAM Required for single process on the finest level (GB) 13.6 107.6 
Maximum spherical tumor diameter that could be simulated with 

50 μm point resolution (mm)  
12.8 25.6  
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scheme of [39] using a two-stage parallelization framework. First, nu
merical computations were rewritten for GPU computation using CUDA. 
This framework handles all Multigrid-related computations, including 
Gauss-Seidel red-black smoothing, restriction, prolongation, and error 
correction. MPI handles distribution of information across multiple 
processes, freeing the program from the RAM and processing limitations 
found on single-system parallelization frameworks. On each system, 
Nvidia’s CUDA library allows for faster processing of model data using 
GPU-bound computing on fewer systems. Thus, the new model frame
work is a two-part MPI-CUDA model. 

The type of simulation being considered, generally known as HPC, 
requires consistent communication between multiple data processors 
Architectures configured for Big Data, in which data processors are 
designed to perform tasks at a coarser resolution, are unideal for 
datapoint-level communication [56]. Further, common Big Data plat
forms, such as Hadoop and Apache Spark, rely on either disk-based 
queries or exhibit possess significantly more overhead than compara
ble MPI-based HPC implementations, respectively, making MPI a more 
viable distributed computing framework for our purposes [56–59]. 

Overall algorithm in MPI-CUDA tumor model is identical to model in 
Refs. [38,39], save that the conditions for block generation have 
changed. Under the previous framework efficiency was defined as η =

#Points in Ft,r−1
ℓ+1

#Points in Bℓ+1 
where the set of all flagged points in level ℓ at time step t and 

solver iteration r − 1 is represented as Ft,r−1
ℓ and the set of all points 

within blocks in level ℓ is represented by Bℓ. To prolongate to a new 
level, η had to be lower than a pre-defined cutoff efficiency. In the new 
framework, the decision process is simplified to an all-or-nothing 
behavior where a single flagged point on ℓ will cause the solver to 
operate over the entirety of the domain on level ℓ + 1 (i.e., Ωℓ+1). This 
behavior can be interpreted as creating a block Bℓ+1 whose size is 
determined by prolongating block Bℓ = Ωℓ using the prolongation 
operator function Pℓ

ℓ+1(Xℓ) for some set of points X on ℓ. This decision 
can be summarized as Ft,r−1

ℓ ∕= ∅⇒Bℓ+1 = Рℓ
ℓ+1(Bℓ) = Ωℓ+1. Memory 

management is thus greatly simplified, since the solver either finishes at 
level ℓ or processes level ℓ for a given time step. Consequently, this 
decision also increases workload on levels where only a subset of Ωℓ 
requires smoothing. 

While this method simplifies memory management, it can sacrifice 
solution accuracy. Residual error is calculated as: 
⃦
⃦
⃦
⃦
⃦

Rℓ − Lℓ
(
ψt,r

ℓ
)⃦
⃦

Bℓ
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

|Bℓ|
⋅
∑

p∈Bℓ

∑

v∈V

(
Rp,v − Lp,v

)2
√

(1)  

where RHS and LHS solutions are Rp,v and Lp,v, respectively, for all points 
p in block Bℓ+1 and variables v in the set of all tumor model variables V. 
Rℓ and Lℓ are the RHS and LHS model terms on ℓ, respectively and ψt,r

ℓ is 
the variable solution on ℓ at time step t and solver iteration r. When size 
of Bℓ+1 is not fit to the flagged points, sensitivity to local error is 
decreased. Thus, model error will be artificially high. This was corrected 
by redefining p to fit the set of all flagged point Ft,r−1

ℓ : 
⃦
⃦
⃦
⃦
⃦

Rℓ − Lℓ
(
ψt,r

ℓ
)⃦
⃦

Ft,r−1
ℓ

=
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1

⃒
⃒Ft,r−1

ℓ
⃒
⃒
⋅
∑

p∈Fℓ

∑

v∈V

(
Rp,v − Lp,v

)2
√

(2) 

This method allows for easy memory transfers from CPU to GPU 
while retaining solution accuracy. 

2.4. Model architecture 

Flow of information during execution differs from the previous ar
chitecture. MPI implementation has two classes of processes:  

1. Administrative process (AdP). Responsibilities include construction 
of model domain and decisions pertaining to solution convergence. 

There is only one process designated as AdP within MPI-CUDA 
runtime.  

2. General Computation Process (GCP). GCPs take up a non- 
overlapping cubic region in Ω. Each can operate on more than one 
level as designated by AdP at start of model execution. 

Algorithm 1 summarizes the process for any computation function X 
that is neither restriction nor prolongation. Before synchronization, each 
GCP must unload its corresponding GPU Pm containing unsynchronized 
data before executing X on GPU Pn. Preceding execution of function X on 
level ℓ, all data across GCPs is synchronized to avoid race conditions. Of 
note, in Algorithm 1 the binding rules for GPUs Pm and Pn are left to the 
implementer. Ideally, processes are bound in a non-overlapping fashion 
to a single GPU. That is, two GCPs g and h are the same if and only if 
mg = ng = mh = nh, but hardware limitations may require an over
lapping allocation in which multiple MPI processes share GPU resources.

Processes are applied to level ℓ sequentially filling a single region of 
the model in a manner depicted by Fig. 1, in which level ℓ, level ℓ + 1, 
and level ℓ + 2 operate over the same domain object, represented by the 
triangle. Level ℓ contains a single process. Adapting a method of hier
archical process filling proposed by Ref. [60], on level ℓ + 1 three 
additional processes are required to process level ℓ + 1. All four pro
cesses, including region 1 on level ℓ + 1, restrict to region 1. Same 
relationship exists between levels ℓ + 2 and ℓ + 1. One-eighth of domain 
covered by a single GCP unit in level ℓ is retained locally while other 7 
parts of Ωℓ+1 are sent to seven other GCPs. Thus, amount of work in
creases linearly with number of levels, since processes on each level after 
and including level ℓ have same domain size [60]. This also means that 
each GCP on a previous level must operate on the final level ℓmax. 
Scaling this approach for 3D, total amount of processes required is: 

Processes Required =

{
1, n0 > m0
8m0−n0 , n0 ≤ m0

(3)  

where n0, m0 ∈ N , n0 < m0 the finest level ℓmax has 2m0 points on a 
side, and each process holds 2n0 points per side per level with maximum 
RAM usage. Thus, for n0 = m0 − 1⇒#Processes = 8m0−(m0−1) =

8 processes. Because a portion of computational work remains on every 
finer level after a process is first introduced, processes are utilized to a 
greater degree over a non-hierarchical filling method. 

At the beginning of model execution, a single AdP is designated. AdP 
starts by defining process boundaries determined by the maximum sized 
domain that each GCP can contain. To agree with domain Ω, cubic 
domain ΩD for each GCP has side length 2k, where k ≤ ℓ0 + ℓindex. Value 
of k can be specified at runtime or be empirically derived by hardware 
availability. The resulting size is the fundamental size for each GCP. 
Consequently, coarsest level ℓ0 may define a domain Ω0 that is larger 
than a single GCP. 

For process n operating over a subset of Ωℓ, denoted Ωn
ℓ, a set of GPUs 

is paired with process n to process Ωn
ℓ. For this study, we assume Ωn

ℓ is 
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cubic. If required by hardware constraints, Ωn
ℓ is subdivided into sub

domains ωℓ
j that are sufficiently reduced to fit in GPU RAM. Subdomains 

have following properties for m subdomains on level ℓ:  

1. ωℓ
j ⊆Ωn

ℓ, j ∈ {1, …,m}

2. ωℓ
1 ∩ ωℓ

2 ∩ … ∩ ωℓ
m = ∅  

3. ωℓ
1 ∪ ωℓ

2 ∪ … ∪ ωℓ
m = Ωn

ℓ  

4. ωℓ
j ∕= ∅, j ∈ {1, …, m}

If a single GPU has enough RAM to hold Ωn
ℓ, then m = 1. Because of 

stencil operations, a one-point shell layer around each subdomain is 
required. Next, GPUs receive relevant constant terms from the model, e. 
g., point spacing on level ℓ and domain dimensions. Finally, function X is 
called on all GPUs. After computation, data are unloaded as required to 
allow data to synchronize between all Ωn

ℓ on Ωℓ. Due to memory 
transfers from GPU to CPU, this process constitutes the bulk of this 
method’s overhead. 

2.5. Data synchronization 

When syncing data across GCPs, there are three vectors that must be 
defined: (1) a syncing vector, S→, (2) a process vector, N→, that points 
from self to an adjacent GCP, and (3) a data vector, D→, for directing 
synchronized information to the correct cubic feature (i.e., face, edge, or 
corner). Because processes are arranged as cubes in a Cartesian grid, 
there are 26 possible syncing directions for each GCP. Described by 
graph theory, each GCP forms a star graph S26 with its neighbors. Any 
MPI send-and-receive operation is a two-step process, in which any link 
(u, vm) for m ∈ {1, 2, …, 26} from center node of star graph u to vertex vm 
must be traversed in both directions. For maximum performance, perfect 
matching is desirable, meaning that on level ℓ, half of GCPs are sending 
data and half of the GCPs are receiving data during the synchronization 
command. In addition, at any given moment of synchronization, any 
chain of successive links on ℓ must be acyclic to prevent hanging. Syn
chronization process in this model, therefore, has two objectives: (1) 
creation of a unified timing structure that ensures synchronization 
across all nodes on level ℓ without program hanging and (2) derivation 
of D→ and N→ at each link in star graph. 

On each GCP every value in a 3x3x3 syncing stencil is cycled through 
in a preset order. With the center process of the stencil as the center of a 
GCP’s domain, each stencil cell represents a cubic feature. A syncing 
vector S→ points from the origin to the cubic feature represented by an 
index of the stencil, representing a link on the star graph. MPI syn
chronization commands used in this framework do not resume execution 

until sending and receiving operation is completed. Thus, by cycling 
through all possible syncing vectors in a set order on all GCPs, every S→ at 
a given step of the syncing process will be parallel, ensuring that the 
vector field of all syncing vectors has zero curl and, hence, fulfilling 
objective 1. For a given S→, the GCPs send data in a checkerboard 
pattern, with one half of the GCPs acting as senders and the other half as 
receivers. For a sending GCP s operating in Ωs

ℓ and a receiving GCP r 

operating in Ωr
ℓ, s sends the cubic feature indicated by S→ = D→s = N→s to 

the receiver whose D→r = N→r = − S→. Then, the sending/receiving roles 
are reversed so that a cubic feature Ωr

ℓ is sent to Ωs
ℓ, giving both s and r 

the data required to update their respective cubic feature. This process is 
repeated for all S→ such that any GCP n on ℓ can perform stencil oper
ations anywhere in Ωn

ℓ. 

While D→ and N→ are parallel to S→ for interior synchronization events, 
syncing events on the border of Ωℓ involve cubic features that do not 
correspond to the syncing stencil. In these situations, vectors N→ and D→

are derived from projections of S→, thus linking objective 2 to objective 
1. This allows the model to consistently synchronize information across 
all GCPs on ℓ without interaction from AdN and without forming cyclic 
subgraphs. 

In the case of restriction, information must be consolidated from 
GCPs that exist on levels greater than or equal to ℓ + 1 to GCPs that 
operate on both level ℓ and level ℓ + 1. As represented in Fig. 1, the 
filling method creates 2x2 squares of GCP domains. Each square con
tains a single GCP (Gℓ) whose operating domain spans partitions of both 
ℓ and ℓ + 1. Gℓ’s domain is at the minimum (i,j) corner of the 2x2 
square. Restriction is performed locally on each GCP on ℓ + 1, and the 
results are consolidated along the j-axis first followed by the i-axis at the 
corresponding Gℓ. For each 2x2 square, this process moves all restriction 
information to each Gℓ while parallelizing the restriction process. 
Likewise, prolongation involves distributing level ℓ data to all the cor
responding GCPs on level ℓ + 1. Distribution process reverses the 
consolidation process by distributing first from the Gℓ along the i-axis 
and then the j-axis. Prolongation calculations are then done locally on all 
GCPs on level ℓ + 1. On level ℓ + 2 the restriction and prolongation 
processes scale to include nodes from both level ℓ (Gℓ) and nodes on 
level ℓ + 1 (Gℓ+1). For this 3D model the preceding restriction and 
prolongation processes were scaled to a 2x2x2 cube region for each Gℓ. 

2.6. Performance timing 

All timing results for openMP vs. CUDA test and MPI tests were ob
tained using time.h clock statements and operated on a reference ho
mogenous tumor shape with heterogeneous vasculature created for this 

Fig. 1. Multilevel Nodal Geometry on sequential levels ℓ, ℓ + 1, and ℓ + 2. Processes on level ℓ, ℓ + 1, and ℓ + 2 operate over equally sized datasets regardless if 
operating on Ωℓ, Ωℓ+1, and Ωℓ+2, respectively. This is because the simulated distance between points is halved on level ℓ + 1 and halved again on level ℓ + 2, thus 
the density of information keeps pace with the addition of more GCPs. This approach is extended in this work to a three-dimensional simulation domain. During 
restriction, GCPs locally restrict their domain data and consolidate their information in the -i and -j direction to nodes marked with Gℓ or Gℓ+1. Prolongation reverses 
this process by transferring Gℓ data along the +i and +j direction. 
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model runtime. Computer used for comparing openMP to MPI-CUDA 
framework has AMD 2990WX 32-core processor, two Titan RTX GPUs 
with computation load placed allocated to the non-display GPU, and 
128 GB of DDR4 RAM at 2666 MHz. Both GPUs were set to WDDM 
mode. CUDA test case consists of two MPI processes: one AdP and one 
GCP. When running on a single PC, negligible overhead occurs from 
process communication thus a two process MPI-CUDA runtime is akin to 
a single process CUDA task, differing only in slight overhead due 
convergence decisions and process initialization steps. Furthermore, 
MPI-CUDA runtime was configured to run on a single, non-display Titan 
RTX GPU. Parameters other than time step size and tolerance were same 
as [39]. Time step size and tolerance for openMP and CUDA-only tests 
was θ = 5*10−3, and τℓmax = 1*10−3, respectively. Lastly, each of the 
University of Kentucky’s Lipscomb Compute Cluster (LCC) nodes used 
for MPI tests comprises two 20-core Intel Xeon 6230 processors, 192 GB 
of RAM, and four Nvidia V100 32 GB GPUs. 

2.7. Simulation of cm-scale tumors with sub-mm resolution 

Two large tumors were simulated: (1) ~1 cm tumor in a 2563 

domain, and (2) ~2 cm tumor in a 5123 domain. The two simulated 
tumors are identical in shape to the performance tests, being homoge
neously defined with an initial volume fraction ϕ̃V = 0.65. The shape 
was defined using a combination of sinusoidal functions and bivariate 
normal distributions (as shown in Graphical Abstract). The initial con
ditions are included in Supplement. This domain size was derived from 
the diffusivity of oxygen (10−5 cm2/s [61,62]). Both 2563 and 5123 

simulations operated with resolution of 50 μm lengths (1.25 * 
10−4 mm3). Eight nodes on the LCC with eight CUDA-solving processes 
per node were used for both simulations. Screenshots were taken for the 
initial state, 167 time steps into the simulation (5 simulated days) and 
267 time steps into the simulation (8 simulated days). Table 2 lists 
computational solver parameters used for both domains. 

To increase model metabolite stability in the charge-balance equa
tion, sodium concentrations were introduced throughout the model 
domain. A small increase in concentration of carbon dioxide, lactate, 
bicarbonate, and H+ at the borders was applied to ensure convergence. 
As shown in Fig. 7, the distance traveled by molecules before being 
absorbed by blood vasculature is significantly smaller than the distance 
between the tumor and the domain borders. This change, then, does not 
significantly affect the outcome by later points in the simulation. Before 
vasculature formation, the molecular species travel closer to the model 

borders, as noted in the smaller 2563 case. To more accurately simulate a 
larger tumor mass and to provide sufficient oxygen and glucose to the 
model domain, more mature vascularization was created at the model 
borders and within the domain. Biological variables and parameters for 
long term 2563 and 5123 simulations are in Supplement. 

2.8. Statistics 

All timing results were obtained for at least n = 3 simulation runs, 
with error bars representing 95% confidence interval (CI) of average 
value. 

3. Results 

3.1. Comparison of openMP and single MPI-CUDA process: CUDA 
contribution to model speedup 

Tumor simulated for openMP vs. CUDA-only test was a 1283 domain 
with initial condition in Supplementary Fig. 1A. Domain size was cubic 
with 4 mm side length; thus, resolution of simulation was 31.25 μm 
(from diffusivity of oxygen, 10−5 cm2/s [61,62]). Parameter values were 
unchanged from Refs. [38,39]. Each coarser level ℓ − 1 has twice the 
distance between points as its corresponding finer level ℓ. From Fig. 2A, 
a 14.7x performance increase of CUDA over openMP was seen for 
first-time step. In the second time step, our CUDA framework was 7.9x 
times faster than openMP. Due to corrections made in MPI-CUDA 
framework, this approach converged with fewer cycles than original 
openMP implementation. It is probable that convergence would be 
improved in openMP-based code if flux term changes were applied. 
However, we verified performance improvement by evaluating time per 
smoothing step. Fig. 2B shows 10.7x improvement over original openMP 
implementation. Further, because of adaptive grid methods described in 
Ref. [39] that were used in openMP Multigrid algorithm, only a subset of 
the domain was solved over on the finest two levels of simulation; thus, 
openMP spends more time doing less computational work than our 
CUDA framework. Finally, because AMD 2990WX possess 32 cores, it is 
difficult to find current single socket computers capable of equivalent 
performance. Although it is possible that AMD 2990WX memory 
bandwidth may not fully utilize all CPU cores as effectively on a 
multi-die CPU system, the distinction is unlikely to close the perfor
mance gap. Consequently, it is reasonable to expect that performance 
improvements of CUDA over openMP will scale across other platforms. 

Model accuracy was ensured by comparing model input to openMP 
numerical solutions in Refs. [38,39]. To ensure model consistency across 
varying numbers of MPI thread counts, initial conditions and end-state 
after two time steps were compared between separate runs using 
SHA-256 hash. All algorithm behavior is represented in first two-time 
steps; thus, comparing first two time steps is sufficient to confirm solu
tion integrity. This hash was created with printouts of volume fractions, 
pressures, metabolites, growth factors, and other model variables. 
Matching hashes implied that integrity of solving process was not 
impacted during development or by varying thread counts. This analysis 
also confirmed that MPI synchronization produced equivalent results for 
1, 8, and 64 GCPs. 

3.2. MPI contribution to model speedup 

To confirm that MPI increases performance over a single GCP MPI- 
CUDA instance, the LCC was used. Using same initial condition (Sup
plementary Fig. 1B) and resolution of 31.25 μm, domain size was 
increased to a cube with 2563 interior points (2583 including border 
points). Thus, domain size was cubic with 8 mm side length. All 
computational parameter values differing from Refs. [38,39] are in 
Table 3. 

Triplicate tests were performed at three different numbers of MPI 
processes: 

Table 2 
Computational parameters from Ref. [39] used for tumor simulations. Initial 
values are set pre-model runtime. Values not listed are same as [39].  

Parameter Description Value 
Assigned for 
cm-Scale 
Runs 

2563 5123 

ℓglobal  Finest level that always spans Ω  2 
ℓmax  Finest grid used for Ω  4 
σ  Tolerance reduction factor from level ℓ to ℓ + 1  1.10 
θ  Time step size (days) 3*10−2 

γ  Cycle Index (1 for V-cycle, 2 for W-cycle) 1 
τℓmax  Solution Tolerance for level ℓmax  2*10−3 

v0, v1 , v2,

vb  

Preset number of smoothing steps 4,2,2,2 

rmax  Maximum number of Smoothing Steps before 
Divergence Exception is raised 

15 45 

Cℓ  Maximum gradient difference allowed for Universal 
Gradient Test for the FLAG routine on ϕV.  

0.05 

dℓ  Number of cells inward from the bound to include in 
near-boundary extra smoothing steps (for zero- 
indexed level ℓ)  

2ℓ   
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1. Two process MPI-CUDA case: one AdP and one GCP. This test was 
akin to that used on AMD 2990WX test and baseline for cases 2 & 3.  

2. Nine process MPI-CUDA case: one AdP and eight GCPs. For an eight 
GCP setup the finest model domain was split into octants, with each 
process operating over a single octant. In this setup, each LCC Re
striction operation from ℓmax to ℓmax − 1 maps eight GCPs to a single 
GCP for processing. One LCC node was used with two MPI-CUDA 
processes assigned to two of the four available cluster GPUs.  

3. Sixty-five process MPI-CUDA case: one AdP and 64 GCPs. For this 
setup, an extra layer of 64 nodes is added at the finest level. 
Restricted information is sent to layer ℓ − 1 containing eight of the 
64 GCPs. Further restrictions to levels ℓ − 2 and coarser behave 
identically to case 2. Four LCC nodes were used with four MPI-CUDA 
processes assigned to each of the 16 available GPUs. 

Single process case used same test case in openMP vs. CUDA test but 
scaled to larger domain. Eight-GCP and 64-GCP cases were distributed to 
two and four nodes, respectively. To measure effect of process density of 
each GPU on performance, for two groups, (1) 8 GCPs and one AdP and 
(2) 64 GCPs and one AdP, the number of nodes available was doubled; 
thus, 8-GCP-Low-Density test had two nodes with four GCPs per node 
while 64-GCP-Low-Density test had eight nodes with eight GCPs per 
node. 

Averaging the ratios in timing results when moving from 8 GCPs to 
64 GCPs for time steps 2 and 3 in Fig. 3, a total improvement of 5.3x is 
observed. Multi-process allocation can bottleneck due to competition for 
memory bandwidth and simulation speeds. In eight-GCP case, four GPUs 
held two GCPs each; 16 GPUs held four processes each in the 64-GCPs 
case. To quantify performance lift by redistributing processes across 
more GPUs, two extra runs were performed with eight GPUs running one 
process apiece, increasing performance by 1.2x over the original case. 
This decreased the performance impact of switching to 64 processes 
from 2.8x in four GPU case to 2.4x in the eight GPU case. Similar to 8- 

process case, moving to 64 processes at 2 processes per GPU (for a 
total of 32 GPUs) increased performance 1.3x over 64-process runtime 
with 4 processes per GPU (16 GPUs). In total 64-GCP-Low-Density dis
tribution outperforms CUDA-only distribution (1-GCP) by 6.7x. Com
bined with gains with CUDA over openMP, MPI-CUDA framework has 
capacity to simulate larger tumor masses in a distributed manner at 
speeds not possible under the previous framework. Furthermore, larger 
scale simulations benefit from increased resource availability, making 
64 GCPs the selected distribution method for 2563 domain and 5123 

domain simulations. However, there are diminished gains for scaling 
across more nodes, suggesting that this approach may weakly scale to 
project size. 

3.3. Simulation of cm-scale tumors 

The 2563 simulation that ran on 32 V100 GPUs took about 2 h real 
time to simulate 5 simulated days with an average time per time step of 
43.2 s. An additional 93.8 min were required to reach 8 simulated days. 
For 5123 simulation, same 32 V100 GPU setup took ~31.5 h to reach 5 
simulated days at average rate of 11.3 min per time step. Additional 
26.5 h were required to reach 8 simulated days. Here, average rate per 
time step increased to 15.9 min per time step. 

Fig. 4 shows 5123 domain simulation of ~2 cm diameter tumor at 5 
and 8 simulated days. Viable and dead tissues are evident. Pronounced 
release of tumor angiogenic factors (TAF) is triggered by hypoxia, which 
leads to angiogenesis and growth of blood vasculature (Fig. 5). However, 
both blood and lymphatic vasculature concentrations decreased overall. 
Cellular respiration leveraged increased oxygen supply, thereby raising 
carbon dioxide concentration. ECM concentration remained relatively 
stable (Fig. 6). As tumor mass compressed internally, matrix degrading 
enzymes (MDE) concentration shifted away from periphery, explaining 
local ECM loss at i = 1.27 cm plane. Decline can also be attributed to 
lower concentration of myofibroblasts in inner tumor. Because 

Fig. 2. Performance comparison for first two time steps between openMP and single-process MPI-CUDA instance in 1283 domain. (A) Execution time; (B) V-cycle 
solvers. Error bars are 95%. 

Table 3 
Computational parameter values for CUDA-MPI tests. All other parameters were 
retained from Refs. [38,39].  

Computational 
Parameter 

Description openMP vs. MPI- 
CUDA Single 
Process 

MPI- 
CUDA 
LCC 

nℓmax  Edge length of finest 
cubic domain Ωℓmax  

128 256 

Domain Size Side length of Ωℓmax 

(mm)  
0.4 0.8 

σ  Tolerance reduction 
factor from level ℓ to ℓ +

1  

4.0 

τℓmax  Solution Tolerance for 
level ℓmax  

0.001  Fig. 3. Mean performances per time step for MPI-CUDA processing a 2563 

domain. Error bars are 95%. 
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myofibroblasts are created by the model within ECM and become 
necrotic at low oxygen levels, their concentration remained relatively 
stable from 5 to 8 simulated days. Meanwhile, a layer of higher viability 
tumor mass formed near vasculature in the peritumoral space. Negative 
pressure from tumor and ECM necrosis shifted the viable tumor layer 
towards interior regions, distancing this viable tissue from blood 
vasculature. This layer became necrotic and is present at both 5 simu
lated days and 8 simulated days. While tumor growth factor (TGF) 
concentration rose in peritumoral range over the 3 simulated day period, 
encouraging increased tumor proliferation at periphery, MDE concen
tration decreased locally at i = 1.27 cm plane. 

The highly hypoxic nature of the tumor resulted in a persistently high 
H+ and lactic acid concentration from bicarbonate buffer and anaerobic 
glycolysis (Fig. 7). Glucose, being necessary for both aerobic and 
anaerobic glycolysis, is scarcer in the internal tumor portions and con
tinues to decrease in peritumoral region over time. Carbon dioxide, 
being formed by aerobic glycolysis, was consumed, in part, by the bi
carbonate buffer, increasing bicarbonate prevalence. 

Simulations of ~1 cm tumor in 2563 domain generally yielded 
similar results as the larger tumor in 5123 domain using same parameter 
values (Fig. 8). After an initial drop in mass due to lag in angiogenic 
response, both tumors assumed a growth pattern by 8 simulated days. 
Despite an overall decrease in density in the interior portions of the 
tumor, the 5123 ϕ̃V = 0.1isosurface exhibited a growth rate of 2.6% 
volume per day. The more robust (blood and lymphatic) vascularization 
of the smaller tumor is evident at this timepoint earlier than in larger 
tumor, as are higher TAF and MDE concentrations. 

4. Discussion 

This study implements a distributed computing (parallelized) 
implementation of the mixture model in Refs. [38,39] to simulate 3D 
continuum tumor growth at cm-scale at sub-mm resolution. Compared 
to previous work, the model here accounts for a richer set of biological 
phenomena, simulating ECM-tumor interaction, blood and lymphatic 
vasculature evolution, metabolic consequences of anaerobic respiration, 
acidity induced via the bicarbonate buffer, and secretion of diffusible 
factors in response to hypoxic conditions. These results highlight how 

identical parameter sets perform at in different domain sizes, 2563 and 
5123, suggesting future work required to fine-tune parameter sets best 
suited for large-scale growth. 

The CUDA-MPI approach improves the model performance over the 
previous openMP approach [39] by ~50x. This value comes from 
accumulating the benefits seen across the smoothing test from openMP 
vs. CUDA (Fig. 2B) and the step time duration between 1-GCP vs. 
64-GCP test (Fig. 3). Using the 1-GCP vs. 64-GCP-Low-Density increases 
total performance improvement to ~70x that of the previous openMP 
approach. Because of differing testing approaches and non-equivalent 
hardware, these performance improvements cannot be directly 
compared to other tumor modeling approaches. Nevertheless, cumula
tive improvements demonstrated here are in similar league to those in 
Refs. [47,48,52], demonstrating immediate benefits of using CUDA-MPI 
over openMP. To our knowledge, these results mark the first time a 
multigrid 3D continuum tumor model has been fully parallelized. Based 
on the performance metrics obtained, we anticipate future work to 
simulate tumor sizes as in Ref. [54]. These improvements are also 
consistent with Navier-Stokes Multigrid simulations where CPU-side 
parallelization across 64 processors saw a 50x improvement in speed 
[63]. A different Navier-Stokes solver using an MPI-CUDA framework 
achieved a 21x performance uplift over an 8-core Intel Xeon baseline 
using 2 GPUs and a 130x performance uplift using 128 GPUs [64]. 
Huang et al. created an MPI-CUDA framework to implement a Sparse 
Equations and Least Squares method for use in seismic tomography. 
Their results report a 37x performance uplift using 60 CPU cores relative 
to a single core baseline; using 60 GPUs nearly doubled performance 
over their 60 CPU results [65]. These values suggest that our model’s 
performance benefits are on the same order of magnitude as similarly 
parallelized problems. 

Continuum tumor mixture models, due to the numerous interwoven 
phenomena simulated, have many guiding equations, leading to multi
ple variables and quantities to evaluate and compute. As such, the 
memory required per point in model domain at level ℓ (Ωℓ) may be 
significantly higher than the raw variable count suggested in the case of 
Navier-Stokes equations. RAM constraints on GPUs become increasingly 
difficult to navigate as biological precision and generalizability are 
pursued by more specialized model equations. While MPI can involve 

Fig. 4. Evolution of ~2 cm diameter tumor in 5123 domain at simulated (A) 5 days and (B) 8 days. Viable, dead, and tumor angiogenic factors (TAF) are shown 
(plane jk). 
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more GPUs and lower the per-GPU RAM requirements, we recognize 
that this study used Titan RTX and V100 GPUs, both of which possess 
over 20 GB of RAM. GPUs with lower RAM capacity individually and in 
aggregate would with current technology have difficulty running highly- 
detailed continuum tumor models, potentially relegating such models to 
high-end desktop PCs and, in the case of cm-scale modeling, to larger 
compute clusters. 

While the parallelization performed on the tumor model is signifi
cant, further development is required before deployment in a clinical 
environment. First, a more finely-tuned parameter set could help ach
ieve persistent intra-tumoral increasing concentrations, such as ECM, 
required to simulate large-scale particular cancer types. Second, this 
process structure has no fault tolerance. If a single GCP were to fail to 
respond, the program would exit without completing the model. Fault 
tolerance has already been implemented in Big Data cluster libraries, 
such as Hadoop and Apache Spark [56,58]. Thus, future implementation 
may draw from techniques used by these Big Data frameworks. 

With the addition of Multigrid technologies such as adaptive grid 

meshes, computational workload would be reduced and would increase 
model performance. For some problem sizes, a CUDA-MPI framework 
may not be optimal due to the overhead of passing data for processing to 
GPUs. Indeed, an openMP/MPI framework has outperformed CUDA-MPI 
tasks when operating on a smaller mathematical model [66]. It is sus
pected that a tradeoff point exists, which could be a subject for future 
research. Evaluation of openMP-MPI vs. CUDA-MPI at varied grid levels 
may lead to further optimizations of mixed grid sizes. 

Additionally, because of parallel synchronization constraints, the 
adaptive grid mesh method previously used in Refs. [38,39] was dis
carded in favor of a modified residual calculation procedure as detailed 
in Methods. An adaptive grid mesh implementation would require 
adaptive process assignments to subsets of non-global domains and, if 
implemented at MPI level, may better utilize processing resources. In 
many cases only a single V-cycle was required to converge to selected 
tolerance. A minority of time steps, especially time steps directly after 
and including initial time step, required more smoothing iterations to 
achieve tolerance; it is likely that using a different multigrid cycle, such 

Fig. 5. Tumor vessel evolution for ~2 cm diameter tumor in 5123 domain. (A) Blood vasculature. (B) Lymphatic vasculature. (C) Oxygen (D) Carbon dioxide.  
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as the F-cycle, would improve convergence performance in those cases 
[67]. Some other minor performance improvements can be made, such 
as consolidating the AdP with a GCP to reduce thread count by one. 
From a GPU standpoint, with RAM counts on GPUs increasing signifi
cantly over the past half-decade, 2563 currently and 5123 in the future 
will likely become entirely GPU-side computations within a couple GPU 
generations. Further refinement could thus reduce MPI’s contribution by 
removing most memory transfers. 

Because of its low cost of failure and ideal reproducibility, in silico 
simulation of clinically-relevant tumor-sized growth could help to 
analyze patient treatment, especially when coupled to tumor-specific 

parameters. Flexibility afforded by parameters leveraged in this model 
may yield a platform for accommodating a wide range of characteristics, 
anticipating tumor evolution and forecasting on patient potential out
comes. Further, discovering which model parameters influence positive 
clinical outcome could posit opportunities for novel clinical approaches 
and provide a basis for further exploration. A faster turnaround would 
offer a more responsive methodology of engaging with oncological hy
pothesis testing and to focus in vitro and in vivo experimental effort. 

With the complexity and scale of the model, the number of param
eters makes assumptions inevitable. Akin to the reliance of machine 
learning on high data acquisition for training sets, determining patient- 

Fig. 6. Tumor matrix evolution for ~2 cm diameter tumor in 5123 domain. (A) Extracellular matrix (ECM). (B) Matrix degrading enzymes (MDE). (C) Myofibro
blasts. (D) Tumor growth factors (TGF). 
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specific parameter values will require integrating in silico evaluation 
with relevant clinical data. This requirement is exacerbated as more 
detailed biological phenomena are considered. For example, introducing 
immunotherapies and immuno-onco interactions will require additional 
parameters, meaning that balancing performance with model 
complexity will continue to affect larger-scale continuum tumor 
modeling. Despite limitations, this study presents a first step in 
achieving centimeter-scale 3D continuum tumor simulations with sub- 
millimeter resolution, with future work envisioned to move this 
approach closer to clinical application. 
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