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Abstract 

We present a method to deterministically isolate population transfer kinetics from two-dimensional 

electronic spectroscopic signals. Central to this analysis is the characterization of how all possible 

subensembles of excited state systems evolve through the population time. When these dynamics 

are diagrammatically mapped using double-sided Feynman pathways where population time 

dynamics are included, a useful symmetry emerges between excited state absorption and ground 

state bleach recovery dynamics of diagonal and below diagonal cross peak signals. This symmetry 

allows removal of pathways from the spectra to isolate signals that evolve according to energy 

transfer kinetics. We describe a regression procedure to fit to energy transfer time constants and 

characterize the accuracy of the method in a variety of complex excited state systems using 

simulated two-dimensional spectra. Our results show that the method is robust for extracting 

ultrafast energy transfer in multistate excitonic systems, systems containing dark states that affect 

the signal kinetics, and systems with interfering vibrational relaxation pathways. This procedure 

can be used to accurately extract energy transfer kinetics from a wide variety of condensed phase 

systems. 
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I. Introduction  

 Two-dimensional electronic spectroscopy (2DES) is a technique used extensively over the 

last two decades to study the excited state behavior of condensed phase systems1-4.  It has been 

used to interrogate excited state dynamics in photosynthetic light harvesting complexes5-11, 

photobiological systems such as rhodopsin proteins12, 13, synthetic molecular systems14-17, and 

materials systems 18, 19. In 2DES, the electronic excitation energies of a system are correlated with 

the detection energies, revealing how the excited states are coupled20, 21. This coupling can be 

tracked through the population time with femtosecond precision to monitor the dynamics of 

processes such as exciton energy transfer (EET). 2DES is a versatile tool to unpack many aspects 

of excited state system and bath interactions in molecular systems, as one can study spectral 

lineshapes22-24, coherence dynamics3, 4, and population kinetics25, 26 in the signal analysis.  

 Due to the overlap of multiple peaks and dynamic contributions to 2DES signals, it remains 

difficult to extract the exact kinetic rates that govern energy transfer26, 27. The illumination of a 

sample with an ultrafast laser source excites many different dynamical subensembles within the 

system20, 28. These dynamics can converge onto a single lineshape when the excitation and 

detection energies of the subensembles are similar, and many of these lineshapes overlap at finite 

temperatures. The population time evolution at any given point on a 2D spectrum is thus generated 

from many types of electronic or nuclear motion, such as EET, ground state recovery, coherence, 

spectral diffusion, and vibrational relaxation29. It has been shown that 2D spectroscopy is capable 

of resolving the entire energy transfer matrix of spectrally resolved complexes27, and previous 

reports have extracted population transfer tables in 2D spectra with global fitting analyses6 and by 

using a combination of decay associated and coherence associated spectra30. Another method uses 

a global fitting procedure based on the variable projection album to fit all spectral components to 
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a series of complex decaying exponentials to generate decay-associated spectra and coherence-

associated spectra31.  

 In this paper, we extend an analysis method to fit to the kinetic parameters for population 

transfer in two-dimensional spectra. This method has been used to differentiate the kinetics of 

excitonic pathways in photosynthetic light harvesting systems32, but it can in principle be exported 

to others. The method differs from other methods in that it accounts for all possible microscopic 

dynamics of the system and their relative signal contribution and removes signals that interfere 

with energy transfer kinetics. The paper is outlined as follows. In Section II, we describe the theory 

of nonlinear spectroscopy and how Feynman pathways allow one to calculate the relative 

probability that dynamical subensembles contribute to the signal. We then enumerate the types of 

Feynman pathways in excitonic systems and their relative signal strengths, spectral location, and 

time evolution. We describe signal processing steps to extract time constant information and 

methods to improve the accuracy. In Section III, we test the method’s accuracy using simulated 

two-dimensional electronic spectra in a diverse set of systems with increasing complexity, to find 

that the method is robust to molecular complexes with dark states and interfering resonant 

vibrations.  

 

II. Theory and Analysis Method 

Molecular Response Functions and Their Time Evolution 

 In 2DES, a nonlinear signal is generated in response to three pulses acting on the system20, 

28. The pulses coherently couple the molecular dipoles and generate the third order polarization:  

 𝑃ଷሺ𝑡, 𝑡ଵ, 𝑡ଶ, 𝑡ଷሻ = ׬ 𝑑𝑡ଵ ׬ 𝑑𝑡ଶ ׬ 𝑑𝑡ଷ𝐸ଷሺ𝑡 − 𝑡ଷሻ ∙ 
 𝐸ଶሺ𝑡 − 𝑡ଷ − 𝑡ଶሻ𝐸ଵሺ𝑡 − 𝑡ଷ − 𝑡ଶ − 𝑡ଵሻ𝑅ଷሺ𝑡ଵ, 𝑡ଶ, 𝑡ଷሻ (1) 
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This polarization is dependent on three distinct time variables representing the time delay between 

each pulse, referred to as the coherence time t1, the population time (or waiting time) t2, and the 

detection time t3. In a semiclassical formalism, the three pulses are treated classically, and the 

quantum mechanical information of the molecular system is encapsulated in the third order 

response function R3: 

 𝑅ଷሺ𝑡ଵ, 𝑡ଶ, 𝑡ଷሻ = − ቀ− ௜ℏቁଷ 〈𝜇ሺ𝑡ଷ+𝑡ଶ+𝑡ଵሻ ቂ𝜇ሺ𝑡ଶ+𝑡ଵሻ, ൣ𝜇ሺ𝑡ଵሻ, ሾ𝜇ሺ0ሻ, 𝜌ሺ−∞ሻሿ൧ቃ〉  (2) 

Response functions describe how the ensemble of states reacts to the dipole perturbation induced 

by the laser pulses33. The molecular density matrix ρ is acted on by the dipole operator μ21. The 

nested commutators allow all possible combinations of dipole operators to act on either side of the 

density matrix, and the brackets 〈 〉 depict an average over the entire thermal ensemble. The 

magnitude of the transition dipole moment terms 𝜇௜௝ = ൻ𝜓௜ห𝜇ห𝜓௝ൿ determine the relative 

probability of transitioning between states i and j34. With multiple dipole interactions acting on the 

density matrix, permutations from the nested commutators, and averaging over the thermal 

ensemble, there is a large number of terms in the total third order response function. These terms 

scale rapidly with the number of dipole-accessible electronic, vibrational, and vibronic states in 

the system. Each term in the response function describes a particular subensemble, each of which 

has a probability of contributing to the signal depending on intrinsic properties of the system, such 

as the transition dipole moments or the transfer rate between the states coupled to the subensemble 

population. 

 In this analysis, we use double-sided Feynman pathways to visualize and track the 

components of the third order response function (Equation 2)21, 28, 35. Feynman pathways have been 

used in many physical systems to visualize the behavior of many-body dynamics36. An example 

Feynman pathway that undergoes population time dynamics is shown in Figure 1. The diagonal 
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lines represent pulses driving transitions on either the bra or ket side of the density matrix. Over 

each time interval, the signal evolves as either a coherence or a population. For coherences, the 

signal oscillates with a frequency given by the energy difference between the two states and decays 

with a dephasing time τdeph: 

 𝐺ሺ𝑡ሻ𝛼𝑒௜ఠ೔ೕ௧ି௧/ఛ೏೐೛೓ (3) 

Here, 𝐺ሺ𝑡ሻ is the Green function operator that drives time evolution to time t, and 𝜔௜௝ =൫𝐸௜ − 𝐸௝൯/ℏ20, 21. The coherence generated in the third time interval produces the signal, which we 

represent with the dashed line. For populations, the signal strength is proportional to the population 

of the subensemble at time t35. As such, the signal will increase or decrease with the microscopic 

population dynamics in the system. For example, the pathway shown in Figure 1 undergoes 

population dynamics during the population time t2, where excitation energy transfers from the 

excitonic state a to state b with a phenomenological time constant τab (shown in the adjacent two 

excited state system). The signal during t2 that evolves from this pathway, shown to the right, is 

directly proportional to the population of exciton b that accumulates due to energy transfer from 

exciton a. The signal strength is weighted by the transition dipole moments for each laser 

interaction (in this case |𝜇௔|ଶ|𝜇௕|ଶ, shown as the signal peak).  

 The population kinetics during the population time t2 and how the dynamics of all Feynman 

pathways contribute to the signal are the principle concern of this analysis. We consider each 

Feynman pathway to represent a particular dynamical subensemble of the system, carrying its own 

population time kinetics due to the system’s microscopic behavior. Its relative contribution to the 

total signal is determined by the dephasing times of the coherences, the kinetics of the populations 

(typically during t2), and the transition dipole amplitude from the four light-matter interactions. 

The 24 possible pathways for a two excited state system with a shared ground state are shown in 
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Figure S1. These 24 Feynman pathways constitute a basis set that can be used to describe the total 

response of a larger set of states, including vibrational energy levels. Table S1 shows each 

pathway’s signal evolution during t2 and their associated signal strengths. 

 

Time Constant Extraction Method  

 There are symmetries in the t2 evolution of diagonal and below diagonal cross peaks of 2D 

spectra that we can exploit to isolate the time constants for energy transfer. The strongest signals 

in the diagonal and below diagonal peaks are the ground state bleach (GSB), stimulated emission 

(SE), and excited state absorption (ESA) signals. For any given diagonal peak a and cross peak a-

b, the goal of this analysis is to remove all GSB recovery signals and extraneous ESA signals, thus 

isolating the dynamics that evolve during the population time due to a-b energy transfer. These 

signals can be fit exactly to kinetic equations to isolate the phenomenological time constants for 

energy transfer. The following section describes the Feynman pathways (Figure 2), 

approximations, and steps that this method entails.  

 Figure 2A-B shows the SE, ESA, GSB, and GSB recovery population and their subsequent 

population time evolution for a mock exciton ea diagonal peak and exciton ea-eb below diagonal 

cross peak. For the stimulated emission pathways, the population time dynamics evolve differently 

between diagonal and below diagonal peaks. The diagonal SE pathway decays with population 

time due to loss of exciton ea population as it transfers to exciton eb, the ground state, or to other 

states in the system. Assuming monoexponential kinetics for energy transfer and ground state 

recovery, the exciton a loss kinetics for the SE pathways may be modeled as 𝑒𝑥𝑝൫−𝑡ଶ/𝜏௔௚൯ +∑ 𝐴௡𝑒𝑥𝑝ሺ−𝑡ଶ/𝜏௔௡ሻ௡ஷ௔ , where τag represents the ground state recovery, and n runs over all 
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excitons in the system. The cross peak SE pathway increases with population time as ea-eb energy 

transfer occurs but then will decrease as the population subsequently leaves exciton eb. 

 At both the ea diagonal and ea-eb cross peak, the ground state bleach and bleach recovery 

pathways undergo the same time evolution in the population time with a time constant given by 

the relaxation from exciton a to the ground state. The only difference between the GSB signals of 

each region is the interaction of the third pulse. The diagonal pathway produces a |𝑒௔⟩⟨𝑔| 
coherence while the cross peak pathway produces a |𝑒௕⟩⟨𝑔| coherence. For clarity, the bleach 

recovery traces are plotted in Figure 2 with a similar time scale as the energy transfer dynamics. 

However, recovery to the ground state typically occurs on much slower timescales in most 

molecular systems (on the order of nanoseconds), meaning they will contribute minimally to short 

time signals. The presence of features such as conical intersections can speed up the bleach 

recovery and bring the time constant into the energy transfer regime12, 37, so we include bleach 

recovery dynamics here to preserve the generalizability of the method. For coherence pathways 

(Figure 2C), signals associated with coherences will be nearly symmetric about zero (depending 

on the speed of dephasing and oscillatory frequency) and therefore should not contribute 

significantly to the retrieved dynamics of the signals. Therefore, the signals should be primarily 

due to population dynamics.  

 We consider excited state absorption (ESA) pathways from physical systems in two 

common limiting cases: weak biexciton coupling and infinite biexciton coupling (Figure 2A-B). 

In ESA pathways, the first two pulses put the system into a singly excited state, and the third pulse 

drives a transition to a higher excited state. In the case of infinite biexciton coupling, there will be 

no transition to the higher excited state, so the ESA pathways have no signal strength. In the 

limiting case of weak biexciton coupling, we assume that the two exciton manifold states are 
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spanned by direct products of the single exciton states. That is, the biexciton energies are 

approximately the sum of the single exciton energies. 

 For a standard ESA pathway on the ea-eb cross peak, the first two pulses drive a transition 

into an ea population during t2, and the third pulse generates the biexciton state fab. This pathway 

will evolve over the population time in proportion to the loss of population from exciton a (see 

Figure 2B, ESA pathway, dashed line; Figure S2). Other ESA pathways on the cross peak 

include exciton energy transfer (Figure 2B, ESA pathway, solid line). Here, energy will transfer 

from state a to any state m over the population time, and the third pulse will generate the biexciton 

state fbm. The signal will thus grow negative amplitude as t2 increases according to energy transfer 

kinetics and then decay to zero as the system returns to the ground state. ESA pathways for all m 

states are possible except for m=b (because the biexciton state fbb is not viable). For 

generalizability, we include the case m=a to be the standard pathway described at the beginning 

of this paragraph, whose t2 signal evolves according to a loss kinetics. Interestingly, there are also 

energy transfer ESA pathways on the diagonal peaks. On the ea diagonal (Figure 2A), energy 

transfers from exciton a at the beginning of the population time to exciton n, and the third pulse 

generates a biexciton state fan. Similar to the cross peak, the t2 signal grows negative amplitude as 

energy transfer occurs and will decay upon ground state recovery. There will be an ESA pathway 

for each n state with the exception of n=a (for the same reason described above). All of the ESA 

pathways described here scale with the same transition dipole strength as the corresponding SE 

and GSB pathways. However, the amplitudes of the signals are likely weaker due to lifetime 

broadening of the shorter-lived biexciton coherence over t3. The shorter dephasing time spreads 

the signal over a broader area on the detection axis, which reduces the contribution to each point33, 

38. The relative weakness of ESA signals can be seen in the largely positive diagonal and below-
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diagonal 2DES signals of photosynthetic light harvesting complexes6, 8, 25, 39, 40, demonstrating that 

the positive SE and GSB pathways produce stronger signals in these regions. 

 For every set of ESA pathways on a diagonal peak a and below diagonal cross peak a-b, 

all pathways not corresponding to the t2 evolution of stimulated emission pathways will evolve 

with the same kinetics on the diagonal and cross peak. This is illustrated in an example three 

exciton system in Figure S2A-B. The exciton 3 diagonal has two ESA pathways (downhill energy 

transfer to excitons 1 and 2), and the exciton 3-1 cross peak has two ESA pathways (loss of exciton 

3 and downhill energy transfer to exciton 2). Between these two peaks, the exciton 3-2 energy 

transfer pathways evolve according to the same kinetics. We consider these pathways to be 

extraneous for the 3-1 cross peak because they do not correspond to exciton 3-1 energy transfer. 

In contrast, the remaining pathways evolve differently between the diagonal and cross peak. The 

3-1 energy transfer pathway on the diagonal evolves with the same kinetics as the SE pathway on 

the cross peak (but with a negative sign, see Figure S2D). Similarly, the exciton 3 cross peak 

pathway evolves according to the diagonal SE pathway (but again, with a negative sign, see Figure 

S2C). This example can be inductively generalized to any n exciton system. The symmetry 

between the extraneous pathways and the asymmetry between relevant energy transfer pathways 

allow us to remove extraneous ESA pathways unrelated to energy transfer between the two 

excitons.  

 We take advantage of these symmetries in the bleach recovery and ESA pathways to 

remove their contribution to the signal evolution. At each peak, the pathways scale with the same 

transition dipole strength, but the strength is different between peaks. We correct for this difference 

by first normalizing each signal: 

 norm൫𝑆𝑖𝑔ሺ𝑇ሻ൯ = ௌ௜௚ሺ்ሻିௌ௜௚ሺ்೔ሻหௌ௜௚൫்೑൯ିௌ௜௚ሺ்೔ሻห (4) 
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Here, Ti and Tf are the initial and final t2 values for each time interval. The normalization step 

removes the amplitude differences between the diagonal and cross peaks but keeps the difference 

curvature due population transfer rates. We subtract the normalized diagonal signal from its 

corresponding normalized lower diagonal cross peak signal to remove the bleach recovery 

contribution, maintain the stimulated emission kinetics, and keep only the ESA pathways that 

correspond to SE kinetics (Figure S2). Because the relevant ESA traces evolve equally and 

oppositely to the SE kinetics on the corresponding peak, the subtraction step will be additive for 

these kinetics. The time constant for the subtracted signal is a parameter that can be used to fit to 

energy transfer time constants.  

 The schematic of steps for isolating the kinetic rate constants is shown in Figure 3. For 

clarity, we use sequential exciton numbering, where exciton 1 is the lowest energy. First, diagonal 

and cross peak regions of the excitonic peaks are averaged using circular windows. Averaging 

over finite regions removes the bath dynamics from the signal such as vibrational relaxation and 

spectral diffusion (see Figure S5). These dynamics affect the lineshape evolution in the spectra, 

and averaging removes this effect so that the signal evolves in time exclusively from excitonic 

dynamics. Then, a population time interval is selected for curve fitting, typically from times 

between 50 and 100 fs to about half the experimental time, typically ~1000 fs. The fitting 

procedure is then performed starting with energy transfer between the lowest two excitonic states. 

The 2 diagonal and 2-1 cross peak are normalized according to Equation 4 and then subtracted 

from one another. If necessary, the τ1L time constant can be obtained from the exciton 1 diagonal. 

The bleach recovery signal is removed in the subtraction. The stimulated emission signals and 

remaining ESA signals evolve according to 2-1 energy transfer. Thus, the fit time constant for the 

subtracted signal must be the energy transfer time constant τ21.  
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 The procedure then moves to the next highest excitonic state. The time constant τ3L (‘3 

loss,’ or transfer from exciton 3 to other states) is estimated as the short time constant in a 

biexponential fit to the 3 diagonal. This τ3L value must satisfy the other energy transfer time 

constants τ32 and τ31 according to 𝑘ଷ௅ = ଵఛయಽ = ଵఛయభ + ଵఛయమ. The 3 diagonal and below diagonal cross 

peaks are then normalized, and one cross peak is selected to be subtracted from the diagonal. 

Typically, the 3-1 cross peak is chosen to ensure a good fit to the subtracted time constant because 

the peak signal monotonically increases over short experimental times, rather than the 3-2 cross 

peak, which often has flatter curvature due to energy transfer in and out of exciton 2. The 

normalized diagonal and cross peak signals are subtracted from one another, and the remaining 

signal is fit to a set of kinetic parameters. These parameters are typically a monoexponential decay 

function in excitonic signals, though other functions can be used if they better fit the data. The 

subtracted fit is used as an empirical constraint for the numerical procedure. Solutions to 

differential equations for energy transfer are numerically calculated to fit to the diagonal and cross 

peak stimulated emission signals, which are also normalized, subtracted, and fit to the same kinetic 

parameters. The resulting time constant value is compared to the experimental data. The 

calculation is repeated for all short time values of τ31 and τ32 under the constraint of τ3L, and the 

combination that best matches the experimental subtracted time constant is selected as the best fit 

for energy transfer. (Note: τ21 has already been calculated, as it is used as a parameter in the 

differential equation.) The numerical fitting procedure is done for higher energy levels as 

necessary.  

 This entire analysis, starting from the normalization of the 2 diagonal and 2-1 cross peak, 

is then repeated with different time intervals until the time interval spans the entire experimental 

time, typically ~2000 fs. For each time interval, the goodness of fit for the numerical signals is 
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evaluated by calculating the root-mean-squared difference between the experimental subtracted 

2D signals and the numerically calculated subtracted signals. There is a range of best-fitting time 

intervals are averaged over to produce the final time constant values for EET. This final averaging 

step minimizes error due to the arbitrary choice of time interval. In the Supporting Information, 

we discuss how this method can be extended to other systems.  

 We demonstrate this process with data from the Fenna-Matthews-Olson (FMO) complex 

from green sulfur bacteria in reducing conditions. This analysis has been conducted in a previous 

study without the final population time interval average32. Figure 4A shows a two-dimensional 

spectrum of FMO at population time 800 fs. The three diagonal peaks represent excitons 4, 2, and 

1, which constitute a major energy transfer pathway through the complex25. The time traces are 

averaged using a 70 cm-1 circular window. Figure 4B-E depicts the signal subtraction process 

using a population time window range from 100 to 2000 fs. Figure 4B is the monoexponential fit 

to the normalized 2 diagonal subtracted from the normalized 2-1 cross peak, which isolates the τ21 

time constant. Figure 4C is the fit to the averaged exciton 4 diagonal peak, where the short time 

constant τ1=225 fs is estimated as the exciton 4 loss time constant. The monoexponential fit to the 

normalized 4 diagonal subtracted from the normalized 4-1 cross peak (Figure 4D) is then 

reproduced in the numerical simulation (Figure 4E) such that τ41 and τ42 satisfy the τ4L constraint. 

After repeating this process over population time end points from 600 to 2000 fs, we find that the 

lowest root-mean-square error falls in the range from 1700 to 2000 fs (Figure 4F). After averaging 

over this range, we obtain the final averaged time constants τ21ave=453 fs, τ42ave=409 fs, and 

τ41ave=496 fs.  
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III. Results  

Global Response and Method Accuracy for Excitonic Systems  

 We simulated two-dimensional spectra of multi state systems by calculating each 

component of the total response in the time domain, following the procedure laid out in Ref. 28. 

All combinations of Feynman pathways from a system with two excited states (Figure S1) were 

used to form a basis set to model systems with multiple excited states, taking care not to double 

count pathways. We then Fourier transformed the t1 and t3 axes of the total response to obtain ω1 

and ω3. Unless stated otherwise, the spectra were simulated near the limit of infinite biexciton 

coupling. Three classes of energy transfer systems were simulated, shown in Figure 5, to 

understand the accuracy of this method under differing excited state structures. The first system 

(Figure 5A) is a standard excitonic model, featuring downhill energy transfer between three 

electronic excited states. All states are dipole allowed from the ground state and have a ground 

state recovery time τg that is at least an order of magnitude higher than the energy transfer times. 

The second system (Figure 5B) is the dark state system, where a fourth electronic state is added 

with no transition dipole moment between the state and the ground state. Excitons are allowed to 

transfer between this state and the three bright excited electronic states, however, so its presence 

will affect the EET kinetics of the three bright excitons. In this analysis, we include systems with 

a dark state between excitons 1 and 2 and between excitons 2 and 3 and show that the dark state 

only affects the extracted kinetics of adjacent excitons. In the third system (Figure 5C), a 

vibrational energy level is added to each excited state whose energy gap is resonant with the 

adjacent exciton energy gap. In this system, vibrational relaxation within one exciton will create 

below diagonal cross peak signals that constructively interfere with EET signals (see Figure S5). 

We discuss the effect that each of these additions has on the population time traces in the 
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Supporting Information. We will show that while dark state kinetics and vibrational relaxation 

affect the cross peak signal growth, the analysis method still accurately extracts the kinetic 

parameters for exciton energy transfer.  

 We test the method’s accuracy in the two limiting ESA cases and the assumption that 

coherence pathways don’t impact the method. We characterize the accuracy of the standard system 

parameters when the relative contribution the signal strength of excited state absorption and 

coherence pathways is increased (Figure 6). The former is done by increasing the dipole ratio 

μfe/μeg, where μeg is the dipole moment of the ground to excited state transition, and μfe is the dipole 

moment from the first excited state to the biexciton state. Figure 6A shows the error in the standard 

three exciton system as the μfe/μeg dipole ratio ranges from zero to one. In most cases, the error 

falls below 15%, demonstrating that the method works between the two limiting cases of infinite 

and weak biexciton coupling. For coherence pathways, dephasing times in the hundreds of 

femtoseconds range (which are typical dephasing times for vibrational and vibronic coherences41-

43) might interfere with the exponential pathways involving energy transfer. The presence of long-

lived coherent signals observed in multiple photosynthetic systems5, 41, 44-46 might affect the time 

constant extraction. Figure 6B shows the error as the dephasing time for excited state coherences 

is increased from below 100 fs to 500 fs. The dephasing time has little effect on the accuracy for 

any of the three EET time constants. The coherence pathways modulate the signal in the population 

time, but they do little to affect the monotonic signal kinetics and therefore the exponential fits. 

This result will hold true for both excited state electronic or vibronic coherences and ground state 

vibrational coherences.  

  We now compare the method’s accuracy for the systems shown in Figure 5 using multiple 

kinetic schemes for energy transfer. Tables S7-10 show the percent errors for each time constant 
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for the standard system, two dark state systems, and the vibrational system. For the standard system 

(Table S7), we find that the method is accurate for energy transfer systems with subpicosecond 

kinetics, as all but one time constant is fit to within 15% accuracy. The τ31 time constants are all 

fit within 10% accuracy, and the τ21 constants are all extracted within 5% accuracy. In schemes 

with picosecond energy transfer constants, the method tends to inaccurately calculate the slow time 

constant with errors above 20%. However, the accuracy of the subpicosecond time constants 

remains within 15%  (Table S7). This effect is likely due to the regression more accurately fitting 

signals that evolve several e-folds through the population time (as experimental timeframes 

typically range from 0 to 2000 fs). We should note that for the standard system, averaging over 

multiple time intervals does not significantly improve the accuracy of the method.  

 We find that dark states only affect the accuracy of the time constants for adjacent excitons 

that are directly involved in energy transfer with the dark states. Table S8 shows the method 

accuracy for multiple kinetic schemes when a dark state is added between excitons 1 and 2. For 

each scheme, the energy transfer to (τ2d) and from (τd1) the dark state is changed to test how the 

dark state kinetics affect the method’s accuracy. All τ21 errors are greater than 15%. This error is 

due to the kinetic sink effect between excitons 2 and 1. However, τ31 and τ32 remain accurate for 

all schemes where energy is allowed to flow to and from the dark state, with many of the errors 

falling below 5%. This result is notable because the presence of dark states on lower exciton 

manifolds does not disrupt the accuracy of the calculation for higher excitonic states despite the 

fact that the fit to τ31 and τ32 relies on knowledge of τ21 (see Section II). Table S9 shows the method 

accuracy when a dark state is added between excitons 2 and 3. In this model, τ21 remains accurate 

for all kinetic schemes within 5%. However, τ32 and τ31 are each off by >30% for every scheme 

for the same kinetic sinking effect described above. In the method, τ31 and τ32 are simultaneously 
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calculated to reproduce the time constant of the subtracted signal (see Figure 3, step 7). An error 

in one time constant due to the kinetic trap would therefore introduce an error in the other time 

constant. For both dark state systems, averaging over multiple time intervals does not improve the 

method accuracy. We should note that the method is only accurate when excitons are allowed to 

flow in and out of the dark state. Tables S8-9 show the method is highly inaccurate for all time 

constants when energy does not flow back. Thus, in systems containing dark states that couple to 

the excitonic states, knowledge of the electronic states and their couplings must be known a priori 

to know which calculated time constants will be accurate.  

 In the final step of the analysis, multiple time intervals are averaged to minimize errors due 

to arbitrary choice of population time intervals (Figure 3, step 8). This step does not improve the 

accuracy of the standard and dark state systems, but it markedly improves the accuracy of the 

vibrational system. Table S10 shows the method accuracy for multiple kinetic schemes when the 

slow relaxation of resonant vibrations interferes with below diagonal energy transfer cross peaks 

(see Figure S6), as described in the previous section. The analysis method remains accurate to 

10% for all time constants after averaging over multiple population time intervals. For the 

vibrationsl system, we find that the fits with the smallest least squares fit to the subtracted signal 

and those which most accurately extract the energy transfer time constants occur when shorter time 

intervals are averaged (e.g. from 50–1050 fs to 50 –1775 fs). This range is long enough to capture 

multiple energy transfer e-folds but short enough to minimize the effect of picosecond signal 

changes due to vibrational relaxation. This result is in contrast to the purely electronic standard 

and dark state kinetic systems, where the smallest least squares error and most accurate time 

constant fits occur over larger time intervals. In experimental molecular spectra, there will be slow 

signals due to vibrational relaxation and other nuclear motion not completely removed from the 
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signal averaging47, 48. It is necessary to average over the time intervals to most accurately extract 

the kinetic time constants. The need to average over shorter time intervals could therefore show 

the presence of interfering Stokes shift signals in experimental 2D measurements. 

 For all system types, the error in the time constant τ21 is smaller than τ31 and τ32. (Tables 

S7-10). This result is due to a combination of two effects. The first is the relatively smaller number 

of kinetic pathways involving 2-1 energy transfer. For the 2 diagonal and 2-1 cross peak, there are 

no competing kinetic pathways that influence the signal. Conversely, exciton migration through 

both the exciton 3-2-1 pathway and the direct 3-1 pathway both cause the 3 diagonal to decrease 

and the 3-1 cross peak to increase with time. The competing pathways amplify small errors in the 

analysis because the τ31 and τ32 time constants because both τ31 and τ32 are fit simultaneously, as 

described above. The second effect is the approximation of the exciton 3 loss pathway (Figure 3, 

step 4). The τ3L time constant is estimated as the short time constant of the diagonal. The loss rate 

constrains τ32 and τ31 because the sum k32 + k31 must equal k3L, but other Feynman pathways such 

as the ESA pathways and the ground state bleach recovery contribute to signal loss on the 3 

diagonal. This approximation thus limits the possibility of reproducing the subtracted signal with 

complete accuracy. However, we have shown that the time constants are still fit within 15% 

accuracy despite these limitations.  

 

IV. Conclusion 

 We develop and characterize a method to accurately fit two-dimensional spectra to 

elementary kinetic rates for multistate energy transfer systems. We simulated two-dimensional 

spectra for standard multiexcitonic systems undergoing energy transfer, systems comprised of dark 

states that act as kinetic traps for energy transfer, and systems with resonant vibrations that undergo 
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vibrational relaxation. The method remains accurate in the efficient energy transfer regime in two 

common limiting cases for excited state absorption pathways – weak and infinite biexciton 

coupling – and when the signals are convoluted by long-lived coherence and interfering vibrational 

relaxation pathways. When dark states are present the system, the fitting is accurate for energy 

transfer between states that are not adjacent to the dark state. Extracting accurate kinetic 

information from EET systems can provide information on the subtle microscopic parameters that 

influence and system and allow for precise comparative analyses between systems with slight 

differences, such as point mutations and functional group substitutions. As such, the method is 

widely applicable to excitonic systems undergoing downhill population transfer. 

 

Supporting Information 

Global response simulation details; cancellation of excited stat absorption signals; nuclear signal 

evolution; accuracy checks and sensitivity analysis; simulated spectra time constants; method 

accuracy data; and extension of analysis method.  
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Figures 
 

 
Figure 1. Double-sided Feynman pathway representing a dynamical subensemble that undergoes 
population transfer from state ea to eb during the population time, t2. The excitation and detection 
axes ω1 and ω3 are respectively given by the bra-ket energy difference during t1 and t3. The signal 
evolution through t2 is proportional to the population of excitation probed from eb that began in ea 
at t2=0. As such, the pathway will evolve with the kinetics of energy transfer such that its rise time 
will be given by τab and its decay will be given by the loss of eb population, τbL. The signal strength 
is weighted by the transition dipole magnitudes of the four laser interactions, in this case |μa|2|μb|2. 
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Figure 2. Excitonic Feynman pathways between diagonal peaks and corresponding below 
diagonal cross peaks possess dynamical symmetries that allow for isolation of population transfer 
signals. The major contributing pathways to these peaks (A, B) are stimulated emission, excited 
state absorption, ground state bleach recovery, and ground state bleach signals. The ground state 
bleach recovery signals evolve with the same kinetics given by τag on both peaks, but the 
stimulated emission pathways evolve according to their respective population transfer kinetics. 
The τag time is typically much larger than energy transfer time constants, though they are plotted 
here on a similar scale for clarity. One pair of excited state absorption pathways evolve with 
identical t2 kinetics as the stimulated emission signals, while the others are subtracted out (see 
Figure S2). The four pathways on the diagonal and cross peak have the transition dipole strength 
|μa|4 for the diagonal and |μa|2|μb|2 for the cross peak. The total signal of both the diagonal and cross 
peaks will decay to zero as the system reaches equilibrium because the SE and ESA pathways each 
decay as the excited state is depleted and because the GSB-R cancels the GSB signal. C) Coherence 
pathways do not contribute to the monotonic evolution of the total signal. D) The normalized 
diagonal and cross peak signals can be subtracted to remove the bleach recovery pathways and 
symmetrical excited state absorption pathways. What remains is a signal whose kinetics evolve 
according to population transfer. The subtracted signal can be used as a parameter to fit to energy 
transfer time constants. Note: for each rephasing pathway that undergoes population evolution 
during t2, there is a corresponding nonrephasing pathway that undergoes the same population time 
dynamics, not shown here for brevity. 
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Figure 3. Scheme for extracting kinetic time constants from two-dimensional spectroscopic 
signals. Time constants are calculated from lowest to highest exciton energy. The entire procedure 
is repeated for multiple time intervals, and those with the best fitting subtracted time trace are 
averaged to generate the most accurate time constants.  
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Figure 4. Demonstration of the analysis method using the Fenna-Matthews-Olson complex. A) 
Absorptive population time spectrum at t2=800 fs. Shown are the exciton 1, 2, and 4 diagonal peaks 
and their corresponding below diagonal cross peaks. Each peak region is averaged using a 70 cm-

1 window. B) Fit to the normalized 2 diagonal subtracted from the normalized 2-1 cross peak 
traces. The monoexponential time constant is approximately equal to the τ21 energy transfer time 
constant 455 fs. C) Biexponential fit to the averaged exciton 4 diagonal trace. The first time 
constant is used as the 4 loss time. D) Fit to the normalized 4 diagonal subtracted from the 
normalized 4-1 cross peak traces. E) Simulated subtracted signal reproduces the signal time 
constant in panel (D) using τ41=504 fs and τ42=408 fs, which satisfies the constraint of τ4L. F) This 
process is repeated using a series of population time ranges, and the root-mean-square error 
between the signals in (D) and (E) are calculated. The time constants are averaged over the lowest 
error region to obtain the final energy transfer time constants.  
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Figure 5. Three types of systems are used in global response calculations. A) Standard electronic 
system with three bright excitonic states allowing downhill energy transfer and slow relaxation to 
the ground state. B) Dark state system, where a fourth excitonic state is added to the standard 
system. This state has no oscillator strength with the ground state but still participates in downhill 
energy transfer with other excitons. Shown is a dark state between excitons 2 and 1, but the same 
analysis is also conducted using a dark state between excitons 3 and 2. C) Vibrational system, 
where vibrational modes resonant with the exciton energy gap are added to the standard system. 
Vibrational relaxation constructively interferes with below diagonal cross peak dynamics and 
slows the signal evolution.  
 



 29

 
Figure 6. Error analysis for interfering excited state absorption and coherence pathways in the 
kinetic extraction method for a variety of time constants in the standard system. A) Percent error 
for each time constant as a function of relative transition dipole magnitude between μfe and μeg, 
which corresponds to the relative signal strength of the excited state absorption and ground state 
bleach/stimulated emission pathways, respectively. B) Percent error as a function of dephasing 
time for excited state electronic coherences. Long-lived coherences have little effect on the 
accuracy of the method because they do not contribute to monotonic signal growth or decay. 
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