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Abstract

We present a method to deterministically isolate population transfer kinetics from two-dimensional
electronic spectroscopic signals. Central to this analysis is the characterization of how all possible
subensembles of excited state systems evolve through the population time. When these dynamics
are diagrammatically mapped using double-sided Feynman pathways where population time
dynamics are included, a useful symmetry emerges between excited state absorption and ground
state bleach recovery dynamics of diagonal and below diagonal cross peak signals. This symmetry
allows removal of pathways from the spectra to isolate signals that evolve according to energy
transfer kinetics. We describe a regression procedure to fit to energy transfer time constants and
characterize the accuracy of the method in a variety of complex excited state systems using
simulated two-dimensional spectra. Our results show that the method is robust for extracting
ultrafast energy transfer in multistate excitonic systems, systems containing dark states that affect
the signal kinetics, and systems with interfering vibrational relaxation pathways. This procedure
can be used to accurately extract energy transfer kinetics from a wide variety of condensed phase

systems.



I. Introduction
Two-dimensional electronic spectroscopy (2DES) is a technique used extensively over the
last two decades to study the excited state behavior of condensed phase systems!™. It has been

used to interrogate excited state dynamics in photosynthetic light harvesting complexes®!!,
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photobiological systems such as rhodopsin proteins , synthetic molecular systems and
materials systems '® 1, In 2DES, the electronic excitation energies of a system are correlated with
the detection energies, revealing how the excited states are coupled®® 2!, This coupling can be
tracked through the population time with femtosecond precision to monitor the dynamics of

processes such as exciton energy transfer (EET). 2DES is a versatile tool to unpack many aspects

of excited state system and bath interactions in molecular systems, as one can study spectral
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lineshapes®>24, coherence dynamics® “, and population kinetics in the signal analysis.

Due to the overlap of multiple peaks and dynamic contributions to 2DES signals, it remains
difficult to extract the exact kinetic rates that govern energy transfer’® ?’. The illumination of a
sample with an ultrafast laser source excites many different dynamical subensembles within the
system?” 28, These dynamics can converge onto a single lineshape when the excitation and
detection energies of the subensembles are similar, and many of these lineshapes overlap at finite
temperatures. The population time evolution at any given point on a 2D spectrum is thus generated
from many types of electronic or nuclear motion, such as EET, ground state recovery, coherence,
spectral diffusion, and vibrational relaxation®. It has been shown that 2D spectroscopy is capable
of resolving the entire energy transfer matrix of spectrally resolved complexes?’, and previous
reports have extracted population transfer tables in 2D spectra with global fitting analyses® and by

using a combination of decay associated and coherence associated spectra®’. Another method uses

a global fitting procedure based on the variable projection album to fit all spectral components to



a series of complex decaying exponentials to generate decay-associated spectra and coherence-
associated spectra’!.

In this paper, we extend an analysis method to fit to the kinetic parameters for population
transfer in two-dimensional spectra. This method has been used to differentiate the kinetics of
excitonic pathways in photosynthetic light harvesting systems*2, but it can in principle be exported
to others. The method differs from other methods in that it accounts for all possible microscopic
dynamics of the system and their relative signal contribution and removes signals that interfere
with energy transfer kinetics. The paper is outlined as follows. In Section II, we describe the theory
of nonlinear spectroscopy and how Feynman pathways allow one to calculate the relative
probability that dynamical subensembles contribute to the signal. We then enumerate the types of
Feynman pathways in excitonic systems and their relative signal strengths, spectral location, and
time evolution. We describe signal processing steps to extract time constant information and
methods to improve the accuracy. In Section III, we test the method’s accuracy using simulated
two-dimensional electronic spectra in a diverse set of systems with increasing complexity, to find
that the method is robust to molecular complexes with dark states and interfering resonant

vibrations.

II. Theory and Analysis Method
Molecular Response Functions and Their Time Evolution
In 2DES, a nonlinear signal is generated in response to three pulses acting on the system?®
28 The pulses coherently couple the molecular dipoles and generate the third order polarization:
P3(t, ty, ty,t3) = [dty [dt, [ dtzEs(t —t3) -

Ep(t — t3 — t)E1(t — t3 — t; — t)R*(ty, tp, t3) (1)



This polarization is dependent on three distinct time variables representing the time delay between
each pulse, referred to as the coherence time ¢, the population time (or waiting time) #2, and the
detection time #3. In a semiclassical formalism, the three pulses are treated classically, and the
quantum mechanical information of the molecular system is encapsulated in the third order

response function R*:

3 —_(_L 3 _
R3(t1, 12, t5) = — (—3) s+ttt [ulta+ty), [1(6), [1(0), p(—e)]]|) (@)

Response functions describe how the ensemble of states reacts to the dipole perturbation induced
by the laser pulses®®. The molecular density matrix p is acted on by the dipole operator £2!. The
nested commutators allow all possible combinations of dipole operators to act on either side of the
density matrix, and the brackets () depict an average over the entire thermal ensemble. The
magnitude of the transition dipole moment terms u;; = (ll)i |,u|1,lJ j) determine the relative
probability of transitioning between states i and j°*. With multiple dipole interactions acting on the
density matrix, permutations from the nested commutators, and averaging over the thermal
ensemble, there is a large number of terms in the total third order response function. These terms
scale rapidly with the number of dipole-accessible electronic, vibrational, and vibronic states in
the system. Each term in the response function describes a particular subensemble, each of which
has a probability of contributing to the signal depending on intrinsic properties of the system, such
as the transition dipole moments or the transfer rate between the states coupled to the subensemble
population.

In this analysis, we use double-sided Feynman pathways to visualize and track the
components of the third order response function (Equation 2)*!-2%:3, Feynman pathways have been
used in many physical systems to visualize the behavior of many-body dynamics®¢. An example

Feynman pathway that undergoes population time dynamics is shown in Figure 1. The diagonal



lines represent pulses driving transitions on either the bra or ket side of the density matrix. Over
each time interval, the signal evolves as either a coherence or a population. For coherences, the
signal oscillates with a frequency given by the energy difference between the two states and decays
with a dephasing time Zieps:
G(t)ael®ijt=t/Taepn (3)

Here, G(t) is the Green function operator that drives time evolution to time 7, and w; =
(E; — E;)/h**2!. The coherence generated in the third time interval produces the signal, which we
represent with the dashed line. For populations, the signal strength is proportional to the population
of the subensemble at time #°. As such, the signal will increase or decrease with the microscopic
population dynamics in the system. For example, the pathway shown in Figure 1 undergoes
population dynamics during the population time 72, where excitation energy transfers from the
excitonic state a to state b with a phenomenological time constant 7.» (shown in the adjacent two
excited state system). The signal during #2 that evolves from this pathway, shown to the right, is
directly proportional to the population of exciton b that accumulates due to energy transfer from
exciton a. The signal strength is weighted by the transition dipole moments for each laser
interaction (in this case |ug|?|up|%, shown as the signal peak).

The population kinetics during the population time 2 and how the dynamics of all Feynman
pathways contribute to the signal are the principle concern of this analysis. We consider each
Feynman pathway to represent a particular dynamical subensemble of the system, carrying its own
population time kinetics due to the system’s microscopic behavior. Its relative contribution to the
total signal is determined by the dephasing times of the coherences, the kinetics of the populations
(typically during #2), and the transition dipole amplitude from the four light-matter interactions.

The 24 possible pathways for a two excited state system with a shared ground state are shown in



Figure S1. These 24 Feynman pathways constitute a basis set that can be used to describe the total
response of a larger set of states, including vibrational energy levels. Table S1 shows each

pathway’s signal evolution during 72 and their associated signal strengths.

Time Constant Extraction Method

There are symmetries in the 72 evolution of diagonal and below diagonal cross peaks of 2D
spectra that we can exploit to isolate the time constants for energy transfer. The strongest signals
in the diagonal and below diagonal peaks are the ground state bleach (GSB), stimulated emission
(SE), and excited state absorption (ESA) signals. For any given diagonal peak a and cross peak a-
b, the goal of this analysis is to remove all GSB recovery signals and extraneous ESA signals, thus
isolating the dynamics that evolve during the population time due to a-b energy transfer. These
signals can be fit exactly to kinetic equations to isolate the phenomenological time constants for
energy transfer. The following section describes the Feynman pathways (Figure 2),
approximations, and steps that this method entails.

Figure 2A-B shows the SE, ESA, GSB, and GSB recovery population and their subsequent
population time evolution for a mock exciton e, diagonal peak and exciton es-e» below diagonal
cross peak. For the stimulated emission pathways, the population time dynamics evolve differently
between diagonal and below diagonal peaks. The diagonal SE pathway decays with population
time due to loss of exciton e. population as it transfers to exciton es, the ground state, or to other
states in the system. Assuming monoexponential kinetics for energy transfer and ground state

recovery, the exciton a loss kinetics for the SE pathways may be modeled as exp(—tz /‘L'ag) +

Ynza Anexp(—t,/Tan), Where g represents the ground state recovery, and n runs over all



excitons in the system. The cross peak SE pathway increases with population time as eq-e» energy
transfer occurs but then will decrease as the population subsequently leaves exciton es.

At both the e, diagonal and eq-e» cross peak, the ground state bleach and bleach recovery
pathways undergo the same time evolution in the population time with a time constant given by
the relaxation from exciton a to the ground state. The only difference between the GSB signals of
each region is the interaction of the third pulse. The diagonal pathway produces a |e,){(g]|
coherence while the cross peak pathway produces a |e,){g| coherence. For clarity, the bleach
recovery traces are plotted in Figure 2 with a similar time scale as the energy transfer dynamics.
However, recovery to the ground state typically occurs on much slower timescales in most
molecular systems (on the order of nanoseconds), meaning they will contribute minimally to short
time signals. The presence of features such as conical intersections can speed up the bleach

12,37 50 we include bleach

recovery and bring the time constant into the energy transfer regime
recovery dynamics here to preserve the generalizability of the method. For coherence pathways
(Figure 2C), signals associated with coherences will be nearly symmetric about zero (depending
on the speed of dephasing and oscillatory frequency) and therefore should not contribute
significantly to the retrieved dynamics of the signals. Therefore, the signals should be primarily
due to population dynamics.

We consider excited state absorption (ESA) pathways from physical systems in two
common limiting cases: weak biexciton coupling and infinite biexciton coupling (Figure 2A-B).
In ESA pathways, the first two pulses put the system into a singly excited state, and the third pulse
drives a transition to a higher excited state. In the case of infinite biexciton coupling, there will be

no transition to the higher excited state, so the ESA pathways have no signal strength. In the

limiting case of weak biexciton coupling, we assume that the two exciton manifold states are



spanned by direct products of the single exciton states. That is, the biexciton energies are
approximately the sum of the single exciton energies.

For a standard ESA pathway on the es-es cross peak, the first two pulses drive a transition
into an e, population during 72, and the third pulse generates the biexciton state fa». This pathway
will evolve over the population time in proportion to the loss of population from exciton a (see
Figure 2B, ESA pathway, dashed line; Figure S2). Other ESA pathways on the cross peak
include exciton energy transfer (Figure 2B, ESA pathway, solid line). Here, energy will transfer
from state a to any state m over the population time, and the third pulse will generate the biexciton
state fom. The signal will thus grow negative amplitude as #2 increases according to energy transfer
kinetics and then decay to zero as the system returns to the ground state. ESA pathways for all m
states are possible except for m=b (because the biexciton state fr» is not viable). For
generalizability, we include the case m=a to be the standard pathway described at the beginning
of this paragraph, whose 72 signal evolves according to a loss kinetics. Interestingly, there are also
energy transfer ESA pathways on the diagonal peaks. On the e, diagonal (Figure 2A), energy
transfers from exciton a at the beginning of the population time to exciton #, and the third pulse
generates a biexciton state fun. Similar to the cross peak, the #2 signal grows negative amplitude as
energy transfer occurs and will decay upon ground state recovery. There will be an ESA pathway
for each n state with the exception of n=a (for the same reason described above). All of the ESA
pathways described here scale with the same transition dipole strength as the corresponding SE
and GSB pathways. However, the amplitudes of the signals are likely weaker due to lifetime
broadening of the shorter-lived biexciton coherence over #3. The shorter dephasing time spreads
the signal over a broader area on the detection axis, which reduces the contribution to each point®*

38 The relative weakness of ESA signals can be seen in the largely positive diagonal and below-



diagonal 2DES signals of photosynthetic light harvesting complexes® % 2>3%4° demonstrating that
the positive SE and GSB pathways produce stronger signals in these regions.

For every set of ESA pathways on a diagonal peak a and below diagonal cross peak a-b,
all pathways not corresponding to the 72 evolution of stimulated emission pathways will evolve
with the same kinetics on the diagonal and cross peak. This is illustrated in an example three
exciton system in Figure S2A-B. The exciton 3 diagonal has two ESA pathways (downhill energy
transfer to excitons 1 and 2), and the exciton 3-1 cross peak has two ESA pathways (loss of exciton
3 and downhill energy transfer to exciton 2). Between these two peaks, the exciton 3-2 energy
transfer pathways evolve according to the same kinetics. We consider these pathways to be
extraneous for the 3-1 cross peak because they do not correspond to exciton 3-1 energy transfer.
In contrast, the remaining pathways evolve differently between the diagonal and cross peak. The
3-1 energy transfer pathway on the diagonal evolves with the same kinetics as the SE pathway on
the cross peak (but with a negative sign, see Figure S2D). Similarly, the exciton 3 cross peak
pathway evolves according to the diagonal SE pathway (but again, with a negative sign, see Figure
S2C). This example can be inductively generalized to any n exciton system. The symmetry
between the extraneous pathways and the asymmetry between relevant energy transfer pathways
allow us to remove extraneous ESA pathways unrelated to energy transfer between the two
excitons.

We take advantage of these symmetries in the bleach recovery and ESA pathways to
remove their contribution to the signal evolution. At each peak, the pathways scale with the same
transition dipole strength, but the strength is different between peaks. We correct for this difference

by first normalizing each signal:

norm(Sig(T)) = sig(Tf)-Sig(Ty)| v
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Here, Ti and Ty are the initial and final 7 values for each time interval. The normalization step
removes the amplitude differences between the diagonal and cross peaks but keeps the difference
curvature due population transfer rates. We subtract the normalized diagonal signal from its
corresponding normalized lower diagonal cross peak signal to remove the bleach recovery
contribution, maintain the stimulated emission kinetics, and keep only the ESA pathways that
correspond to SE kinetics (Figure S2). Because the relevant ESA traces evolve equally and
oppositely to the SE kinetics on the corresponding peak, the subtraction step will be additive for
these kinetics. The time constant for the subtracted signal is a parameter that can be used to fit to
energy transfer time constants.

The schematic of steps for isolating the kinetic rate constants is shown in Figure 3. For
clarity, we use sequential exciton numbering, where exciton 1 is the lowest energy. First, diagonal
and cross peak regions of the excitonic peaks are averaged using circular windows. Averaging
over finite regions removes the bath dynamics from the signal such as vibrational relaxation and
spectral diffusion (see Figure S5). These dynamics affect the lineshape evolution in the spectra,
and averaging removes this effect so that the signal evolves in time exclusively from excitonic
dynamics. Then, a population time interval is selected for curve fitting, typically from times
between 50 and 100 fs to about half the experimental time, typically ~1000 fs. The fitting
procedure is then performed starting with energy transfer between the lowest two excitonic states.
The 2 diagonal and 2-1 cross peak are normalized according to Equation 4 and then subtracted
from one another. If necessary, the 7.2 time constant can be obtained from the exciton 1 diagonal.
The bleach recovery signal is removed in the subtraction. The stimulated emission signals and
remaining ESA signals evolve according to 2-1 energy transfer. Thus, the fit time constant for the

subtracted signal must be the energy transfer time constant ;.
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The procedure then moves to the next highest excitonic state. The time constant 73z (‘3
loss,” or transfer from exciton 3 to other states) is estimated as the short time constant in a

biexponential fit to the 3 diagonal. This 731 value must satisfy the other energy transfer time

: 1 1 1 . .
constants 732 and 73; according to k3; = — =t The 3 diagonal and below diagonal cross
3L 31 32

peaks are then normalized, and one cross peak is selected to be subtracted from the diagonal.
Typically, the 3-1 cross peak is chosen to ensure a good fit to the subtracted time constant because
the peak signal monotonically increases over short experimental times, rather than the 3-2 cross
peak, which often has flatter curvature due to energy transfer in and out of exciton 2. The
normalized diagonal and cross peak signals are subtracted from one another, and the remaining
signal is fit to a set of kinetic parameters. These parameters are typically a monoexponential decay
function in excitonic signals, though other functions can be used if they better fit the data. The
subtracted fit is used as an empirical constraint for the numerical procedure. Solutions to
differential equations for energy transfer are numerically calculated to fit to the diagonal and cross
peak stimulated emission signals, which are also normalized, subtracted, and fit to the same kinetic
parameters. The resulting time constant value is compared to the experimental data. The
calculation is repeated for all short time values of 73; and 732 under the constraint of 73z, and the
combination that best matches the experimental subtracted time constant is selected as the best fit
for energy transfer. (Note: 72; has already been calculated, as it is used as a parameter in the
differential equation.) The numerical fitting procedure is done for higher energy levels as
necessary.

This entire analysis, starting from the normalization of the 2 diagonal and 2-1 cross peak,
is then repeated with different time intervals until the time interval spans the entire experimental

time, typically ~2000 fs. For each time interval, the goodness of fit for the numerical signals is
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evaluated by calculating the root-mean-squared difference between the experimental subtracted
2D signals and the numerically calculated subtracted signals. There is a range of best-fitting time
intervals are averaged over to produce the final time constant values for EET. This final averaging
step minimizes error due to the arbitrary choice of time interval. In the Supporting Information,
we discuss how this method can be extended to other systems.

We demonstrate this process with data from the Fenna-Matthews-Olson (FMO) complex
from green sulfur bacteria in reducing conditions. This analysis has been conducted in a previous
study without the final population time interval average®?. Figure 4A shows a two-dimensional
spectrum of FMO at population time 800 fs. The three diagonal peaks represent excitons 4, 2, and
1, which constitute a major energy transfer pathway through the complex?. The time traces are
averaged using a 70 cm™! circular window. Figure 4B-E depicts the signal subtraction process
using a population time window range from 100 to 2000 fs. Figure 4B is the monoexponential fit
to the normalized 2 diagonal subtracted from the normalized 2-1 cross peak, which isolates the 72;
time constant. Figure 4C is the fit to the averaged exciton 4 diagonal peak, where the short time
constant 7;=225 fs is estimated as the exciton 4 loss time constant. The monoexponential fit to the
normalized 4 diagonal subtracted from the normalized 4-1 cross peak (Figure 4D) is then
reproduced in the numerical simulation (Figure 4E) such that 74; and 72> satisfy the 7z constraint.
After repeating this process over population time end points from 600 to 2000 fs, we find that the
lowest root-mean-square error falls in the range from 1700 to 2000 fs (Figure 4F). After averaging

over this range, we obtain the final averaged time constants 72/ave=453 fs, 7424v=409 fs, and

T1ave—=496 f5.
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III1. Results
Global Response and Method Accuracy for Excitonic Systems

We simulated two-dimensional spectra of multi state systems by calculating each
component of the total response in the time domain, following the procedure laid out in Ref. 2.
All combinations of Feynman pathways from a system with two excited states (Figure S1) were
used to form a basis set to model systems with multiple excited states, taking care not to double
count pathways. We then Fourier transformed the #; and #; axes of the total response to obtain
and @s. Unless stated otherwise, the spectra were simulated near the limit of infinite biexciton
coupling. Three classes of energy transfer systems were simulated, shown in Figure 5, to
understand the accuracy of this method under differing excited state structures. The first system
(Figure S5A) is a standard excitonic model, featuring downhill energy transfer between three
electronic excited states. All states are dipole allowed from the ground state and have a ground
state recovery time 7 that is at least an order of magnitude higher than the energy transfer times.
The second system (Figure 5B) is the dark state system, where a fourth electronic state is added
with no transition dipole moment between the state and the ground state. Excitons are allowed to
transfer between this state and the three bright excited electronic states, however, so its presence
will affect the EET kinetics of the three bright excitons. In this analysis, we include systems with
a dark state between excitons 1 and 2 and between excitons 2 and 3 and show that the dark state
only affects the extracted kinetics of adjacent excitons. In the third system (Figure 5C), a
vibrational energy level is added to each excited state whose energy gap is resonant with the
adjacent exciton energy gap. In this system, vibrational relaxation within one exciton will create
below diagonal cross peak signals that constructively interfere with EET signals (see Figure S5).

We discuss the effect that each of these additions has on the population time traces in the
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Supporting Information. We will show that while dark state kinetics and vibrational relaxation
affect the cross peak signal growth, the analysis method still accurately extracts the kinetic
parameters for exciton energy transfer.

We test the method’s accuracy in the two limiting ESA cases and the assumption that
coherence pathways don’t impact the method. We characterize the accuracy of the standard system
parameters when the relative contribution the signal strength of excited state absorption and
coherence pathways is increased (Figure 6). The former is done by increasing the dipole ratio
el Leg, Where [eg 18 the dipole moment of the ground to excited state transition, and /. is the dipole
moment from the first excited state to the biexciton state. Figure 6A shows the error in the standard
three exciton system as the ./ ieg dipole ratio ranges from zero to one. In most cases, the error
falls below 15%, demonstrating that the method works between the two limiting cases of infinite
and weak biexciton coupling. For coherence pathways, dephasing times in the hundreds of
femtoseconds range (which are typical dephasing times for vibrational and vibronic coherences®*!"
43) might interfere with the exponential pathways involving energy transfer. The presence of long-

lived coherent signals observed in multiple photosynthetic systems> 4!+ 44-46

might affect the time
constant extraction. Figure 6B shows the error as the dephasing time for excited state coherences
is increased from below 100 fs to 500 fs. The dephasing time has little effect on the accuracy for
any of the three EET time constants. The coherence pathways modulate the signal in the population
time, but they do little to affect the monotonic signal kinetics and therefore the exponential fits.
This result will hold true for both excited state electronic or vibronic coherences and ground state
vibrational coherences.

We now compare the method’s accuracy for the systems shown in Figure 5 using multiple

kinetic schemes for energy transfer. Tables S7-10 show the percent errors for each time constant
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for the standard system, two dark state systems, and the vibrational system. For the standard system
(Table S7), we find that the method is accurate for energy transfer systems with subpicosecond
kinetics, as all but one time constant is fit to within 15% accuracy. The 73; time constants are all
fit within 10% accuracy, and the 72/ constants are all extracted within 5% accuracy. In schemes
with picosecond energy transfer constants, the method tends to inaccurately calculate the slow time
constant with errors above 20%. However, the accuracy of the subpicosecond time constants
remains within 15% (Table S7). This effect is likely due to the regression more accurately fitting
signals that evolve several e-folds through the population time (as experimental timeframes
typically range from 0 to 2000 fs). We should note that for the standard system, averaging over
multiple time intervals does not significantly improve the accuracy of the method.

We find that dark states only affect the accuracy of the time constants for adjacent excitons
that are directly involved in energy transfer with the dark states. Table S8 shows the method
accuracy for multiple kinetic schemes when a dark state is added between excitons 1 and 2. For
each scheme, the energy transfer to (74) and from (7z;) the dark state is changed to test how the
dark state kinetics affect the method’s accuracy. All 72; errors are greater than 15%. This error is
due to the kinetic sink effect between excitons 2 and 1. However, 73; and 732 remain accurate for
all schemes where energy is allowed to flow to and from the dark state, with many of the errors
falling below 5%. This result is notable because the presence of dark states on lower exciton
manifolds does not disrupt the accuracy of the calculation for higher excitonic states despite the
fact that the fit to 73; and 732 relies on knowledge of 72/ (see Section II). Table S9 shows the method
accuracy when a dark state is added between excitons 2 and 3. In this model, 72; remains accurate
for all kinetic schemes within 5%. However, 732 and 73/ are each off by >30% for every scheme

for the same kinetic sinking effect described above. In the method, 737 and 732 are simultaneously
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calculated to reproduce the time constant of the subtracted signal (see Figure 3, step 7). An error
in one time constant due to the kinetic trap would therefore introduce an error in the other time
constant. For both dark state systems, averaging over multiple time intervals does not improve the
method accuracy. We should note that the method is only accurate when excitons are allowed to
flow in and out of the dark state. Tables S8-9 show the method is highly inaccurate for all time
constants when energy does not flow back. Thus, in systems containing dark states that couple to
the excitonic states, knowledge of the electronic states and their couplings must be known a priori
to know which calculated time constants will be accurate.

In the final step of the analysis, multiple time intervals are averaged to minimize errors due
to arbitrary choice of population time intervals (Figure 3, step 8). This step does not improve the
accuracy of the standard and dark state systems, but it markedly improves the accuracy of the
vibrational system. Table S10 shows the method accuracy for multiple kinetic schemes when the
slow relaxation of resonant vibrations interferes with below diagonal energy transfer cross peaks
(see Figure S6), as described in the previous section. The analysis method remains accurate to
10% for all time constants after averaging over multiple population time intervals. For the
vibrationsl system, we find that the fits with the smallest least squares fit to the subtracted signal
and those which most accurately extract the energy transfer time constants occur when shorter time
intervals are averaged (e.g. from 50—1050 fs to 50 —1775 fs). This range is long enough to capture
multiple energy transfer e-folds but short enough to minimize the effect of picosecond signal
changes due to vibrational relaxation. This result is in contrast to the purely electronic standard
and dark state kinetic systems, where the smallest least squares error and most accurate time
constant fits occur over larger time intervals. In experimental molecular spectra, there will be slow

signals due to vibrational relaxation and other nuclear motion not completely removed from the
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signal averaging®”- %8, It is necessary to average over the time intervals to most accurately extract
the kinetic time constants. The need to average over shorter time intervals could therefore show
the presence of interfering Stokes shift signals in experimental 2D measurements.

For all system types, the error in the time constant 72; is smaller than 73; and 732. (Tables
S7-10). This result is due to a combination of two effects. The first is the relatively smaller number
of kinetic pathways involving 2-1 energy transfer. For the 2 diagonal and 2-1 cross peak, there are
no competing kinetic pathways that influence the signal. Conversely, exciton migration through
both the exciton 3-2-1 pathway and the direct 3-1 pathway both cause the 3 diagonal to decrease
and the 3-1 cross peak to increase with time. The competing pathways amplify small errors in the
analysis because the 737 and 732 time constants because both 737 and 732 are fit simultaneously, as
described above. The second effect is the approximation of the exciton 3 loss pathway (Figure 3,
step 4). The 732 time constant is estimated as the short time constant of the diagonal. The loss rate
constrains 732 and 737 because the sum k32 + k3 must equal k3L, but other Feynman pathways such
as the ESA pathways and the ground state bleach recovery contribute to signal loss on the 3
diagonal. This approximation thus limits the possibility of reproducing the subtracted signal with
complete accuracy. However, we have shown that the time constants are still fit within 15%

accuracy despite these limitations.

IV. Conclusion

We develop and characterize a method to accurately fit two-dimensional spectra to
elementary kinetic rates for multistate energy transfer systems. We simulated two-dimensional
spectra for standard multiexcitonic systems undergoing energy transfer, systems comprised of dark

states that act as kinetic traps for energy transfer, and systems with resonant vibrations that undergo
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vibrational relaxation. The method remains accurate in the efficient energy transfer regime in two
common limiting cases for excited state absorption pathways — weak and infinite biexciton
coupling — and when the signals are convoluted by long-lived coherence and interfering vibrational
relaxation pathways. When dark states are present the system, the fitting is accurate for energy
transfer between states that are not adjacent to the dark state. Extracting accurate kinetic
information from EET systems can provide information on the subtle microscopic parameters that
influence and system and allow for precise comparative analyses between systems with slight
differences, such as point mutations and functional group substitutions. As such, the method is

widely applicable to excitonic systems undergoing downbhill population transfer.

Supporting Information

Global response simulation details; cancellation of excited stat absorption signals: nuclear signal

evolution; accuracy checks and sensitivity analysis; simulated spectra time constants; method

accuracy data: and extension of analysis method.
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Figure 1. Double-sided Feynman pathway representing a dynamical subensemble that undergoes
population transfer from state es to e» during the population time, #2. The excitation and detection
axes wr and ws are respectively given by the bra-ket energy difference during ¢/ and #3. The signal
evolution through #: is proportional to the population of excitation probed from e» that began in ea
at £2=0. As such, the pathway will evolve with the kinetics of energy transfer such that its rise time
will be given by 7. and its decay will be given by the loss of e» population, 7. The signal strength
is weighted by the transition dipole magnitudes of the four laser interactions, in this case |¢a|*|]*.
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Figure 2. Excitonic Feynman pathways between diagonal peaks and corresponding below
diagonal cross peaks possess dynamical symmetries that allow for isolation of population transfer
signals. The major contributing pathways to these peaks (A, B) are stimulated emission, excited
state absorption, ground state bleach recovery, and ground state bleach signals. The ground state
bleach recovery signals evolve with the same kinetics given by 7 on both peaks, but the
stimulated emission pathways evolve according to their respective population transfer kinetics.
The 7 time is typically much larger than energy transfer time constants, though they are plotted
here on a similar scale for clarity. One pair of excited state absorption pathways evolve with
identical #2 kinetics as the stimulated emission signals, while the others are subtracted out (see
Figure S2). The four pathways on the diagonal and cross peak have the transition dipole strength
|a]* for the diagonal and |u|?|us|? for the cross peak. The total signal of both the diagonal and cross
peaks will decay to zero as the system reaches equilibrium because the SE and ESA pathways each
decay as the excited state is depleted and because the GSB-R cancels the GSB signal. C) Coherence
pathways do not contribute to the monotonic evolution of the total signal. D) The normalized
diagonal and cross peak signals can be subtracted to remove the bleach recovery pathways and
symmetrical excited state absorption pathways. What remains is a signal whose kinetics evolve
according to population transfer. The subtracted signal can be used as a parameter to fit to energy
transfer time constants. Note: for each rephasing pathway that undergoes population evolution
during #2, there is a corresponding nonrephasing pathway that undergoes the same population time
dynamics, not shown here for brevity.
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Figure 3. Scheme for extracting kinetic time constants from two-dimensional spectroscopic
signals. Time constants are calculated from lowest to highest exciton energy. The entire procedure
is repeated for multiple time intervals, and those with the best fitting subtracted time trace are
averaged to generate the most accurate time constants.
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Figure 4. Demonstration of the analysis method using the Fenna-Matthews-Olson complex. A)
Absorptive population time spectrum at £2=800 fs. Shown are the exciton 1, 2, and 4 diagonal peaks
and their corresponding below diagonal cross peaks. Each peak region is averaged using a 70 cm’
' window. B) Fit to the normalized 2 diagonal subtracted from the normalized 2-1 cross peak
traces. The monoexponential time constant is approximately equal to the 72; energy transfer time
constant 455 fs. C) Biexponential fit to the averaged exciton 4 diagonal trace. The first time
constant is used as the 4 loss time. D) Fit to the normalized 4 diagonal subtracted from the
normalized 4-1 cross peak traces. E) Simulated subtracted signal reproduces the signal time
constant in panel (D) using 74/=504 fs and 74,=408 fs, which satisfies the constraint of 7. F) This
process is repeated using a series of population time ranges, and the root-mean-square error
between the signals in (D) and (E) are calculated. The time constants are averaged over the lowest
error region to obtain the final energy transfer time constants.
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Figure S. Three types of systems are used in global response calculations. A) Standard electronic
system with three bright excitonic states allowing downhill energy transfer and slow relaxation to
the ground state. B) Dark state system, where a fourth excitonic state is added to the standard
system. This state has no oscillator strength with the ground state but still participates in downbhill
energy transfer with other excitons. Shown is a dark state between excitons 2 and 1, but the same
analysis is also conducted using a dark state between excitons 3 and 2. C) Vibrational system,
where vibrational modes resonant with the exciton energy gap are added to the standard system.
Vibrational relaxation constructively interferes with below diagonal cross peak dynamics and
slows the signal evolution.
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Figure 6. Error analysis for interfering excited state absorption and coherence pathways in the
kinetic extraction method for a variety of time constants in the standard system. A) Percent error
for each time constant as a function of relative transition dipole magnitude between i and fleg,
which corresponds to the relative signal strength of the excited state absorption and ground state
bleach/stimulated emission pathways, respectively. B) Percent error as a function of dephasing
time for excited state electronic coherences. Long-lived coherences have little effect on the
accuracy of the method because they do not contribute to monotonic signal growth or decay.
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