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SUMMARY & CONCLUSIONS 

Researchers have proposed a multitude of software 
reliability growth models (SRGM), many of which possess 
complex parametric forms. In practice, SRGM should exhibit a 
balance between predictive accuracy and other statistical 
measures of goodness of fit, yet past studies have not always 
performed such balanced assessment. This paper proposes a 
framework for SRGM possessing a bathtub-shaped fault 
detection rate and derives stable and efficient expectation 
conditional maximization algorithms to fit these models. The 
illustrations compare multiple bathtub-shaped and classical 
models with respect to predictive and information theoretic 
measures. Our results indicate that SRGM possessing a bathtub-
shaped fault detection rate outperformed classical models on 
both types of measures. The proposed framework and models 
may therefore be a reasonable compromise between model 
complexity and predictive accuracy. 

1 INTRODUCTION 

Many software reliability growth models have been 
proposed and several of the earliest models [1] were relatively 
simple, while recent models have become progressively more 
complex. Software practitioners advocate for simple models, 
but this has not deterred the proliferation of complex models. 
One valid criticism of complex models is their disregard for 
measures of statistical goodness of fit, including predictive 
accuracy. Moreover, some researchers inaccurately claim to 
employ predictive measures. Not considering a variety of 
measures is unethical because of the potential for harm to life 
and property if failures are underestimated in real systems. 

Several software reliability researchers have developed 
mathematical frameworks to establish relationships between 
multiple models. Noteable examples include the work of 
Langberg and Singpurwalla [2] who showed how some models 
can be derived by assigning specific prior distributions in a 
Bayesian context. Miller [3] showed that several models are 
special cases of exponential order statistics models. Yamada et 
al. [4] proposed a two-step model fitting procedure, which first 
fit a curve to testing effort data followed by the mean value 
function of an NHPP SRGM to the fault discovery process. 
Gokhale et al. [5] demonstrated that several NHPP models with 
bounded mean value function are special cases of the enhanced 
NHPP possessing time-varying test coverage. Kuo et al. [6] 
proposed a framework to incorporate both testing effort and 

fault detection rate into SRGM capable of characterizing a wide 
range of possible fault detection trends. Huang et al. [7] 
presented an NHPP model and derived several existing models 
through a parametric family of power transformations. Kapur et 
al. [8] presented two Generalized Imperfect Non-homogeneous 
Poisson Process (GINHPP) models to account for imperfect 
debugging and error generation, and demonstrated existing 
NHPP SRGM as special cases. Inoue and Yamada [9] 
developed a generalized discrete software reliability growth 
model following a binomial process capable of considering 
program size.  

This paper presents a framework for software reliability 
models possessing a bathtub shaped fault detection rate. Several 
bathtub hazard rates from the hardware reliability literature [10] 
are included. The three stages of the bathtub are adapted to the 
detection of software faults during testing, including (i) a burn-
in phase characterized by the discovery and correction of 
superficial faults such as typos and elementary syntax errors; 
(ii) requirements verification, which exposes more complicated 
logical errors that require more detailed rework; and (iii) code 
comprehension characterized by a learning curve [11], where a 
significant amount of code has been tested, enabling testers to 
focus on improving code coverage in order to expose and 
correct remaining defects. To justify a bathtub-shaped fault 
detection rate, information theoretic and predictive measures of 
goodness of fit are computed. This analysis also considers 
reduced forms of the bathtub model, including classical SRGM 
[1], [12] and presents a visual taxonomy of the relationships 
between the models. 

This paper extends [13], which presented a single software 
reliability growth model possessing a bathtub-shaped fault 
detection rate. Our primary contributions include (i) A 
framework for SRGM possessing bathtub-shaped fault 
detection rate and (ii) stable and efficient expectation 
conditional maximization (ECM) algorithms to enable 
application of these models. Our results indicate that, for the 
data sets considered, a software reliability growth model 
possessing a bathtub-shaped fault detection rate performed best 
with respect to both information theoretic and predictive 
measures of goodness of fit. The proposed framework coupled 
with efficient ECM algorithms 2 and goodness of fit assessment 
may therefore be beneficial to the software reliability 
assessment process. 

The remainder of the paper is organized as follows. Section 
II proposes a framework for bathtub-shaped SRGM, while 
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Section III presents instances. Section IV describes parameter 
estimation methods. Section V reviews methods to assess 
model goodness of fit. Section VI compares alternative bathtub 
and classical models. Section VII provides conclusions and 
future research. 

2 SOFTWARE RELIABILITY GROWTH MODELS 

The nonhomogeneous Poisson process is a stochastic 
process [14] that counts the number of events that occur by time 
𝑡𝑡. The expected value is characterized by the mean value 
function (MVF), which can take many functional forms. In 
software reliability, the NHPP counts the number of unique 
faults detected during testing. The MVF of several SRGM 
follow the general form  
                                        𝑚𝑚(𝑡𝑡) = 𝜔𝜔 × 𝐹𝐹(𝑡𝑡)                                   (1) 
where 𝜔𝜔 is the number of unique faults that would be detected 
as 𝑡𝑡 → ∞ and 𝐹𝐹(𝑡𝑡) is the cumulative distribution function 
(CDF) of a continuous probability distribution, characterizing 
the software fault detection process. 

A framework for bathtub-shaped fault detection models 
with the following CDF is proposed 

                                     𝐹𝐹(𝑡𝑡) = 1 − 𝑒𝑒−𝑏𝑏(𝑡𝑡)                               (2) 
where 𝑏𝑏(𝑡𝑡) is an arbitrary bathtub hazard function. 

3 SOFTWARE RELIABILITY GROWTH MODELS 

This section summarizes several bathtub hazard functions 
from the literature. Since many bathtub distributions simplify 
to increasing or decreasing trends, we also identify feasible 
simplifications and their relationship to other well-known 
software reliability growth models, including the Goel-
Okumoto [1] and Weibull [12] SRGM. The section concludes 
with a visual summary of the relationships between the bathtub 
models and their simplifications. This taxonomy is also used in 
the illustrations, where it enables explicit comparison of the 
goodness of fit of bathtub and simpler SRGM to objectively 
assess if the additional complexity is justified. 

3.1 Quadratic Model 

Bain [15] and Gore et al. [16] considered low order 
polynomial functions. The quadratic hazard function  

                      𝑏𝑏(𝑡𝑡) = 𝛼𝛼 + 𝛽𝛽𝛽𝛽 + 𝛾𝛾𝑡𝑡2                                (3) 

is bathtub-shaped when −2(𝛼𝛼𝛼𝛼)
1
2 ≤ 𝛽𝛽 < 0 and 𝛼𝛼, 𝛾𝛾 ≥ 0. 

Substituting Equation (3) into Equation (2) produces the mean 
value function of the SRGM with bathtub-shaped fault 
detection rate characterized by the Quadratic Model 
                           𝑚𝑚(𝑡𝑡) = 𝜔𝜔�1 − 𝑒𝑒−�𝛼𝛼+𝛽𝛽 𝑡𝑡+𝛾𝛾 𝑡𝑡2��                        (4) 

Parameters 𝛽𝛽, 𝛼𝛼, and 𝛾𝛾 respectively contribute to the three 
stages of the bathtub. Specifically, if the coefficient of the linear 
term 𝛽𝛽 is decreasing, this trend can characterize a decreasing 
fault detection rate in the earlier stages of testing as simple 
problems are detected and removed with relative ease. The 
constant 𝛼𝛼 represents the baseline fault detection rate associated 
with the second phase of the bathtub. Finally, the coefficient of 
the quadratic term 𝛾𝛾 contributes to the third phase, since this 

final term will eventually dominate the constant and linear 
terms. In the context of software fault detection, 𝛾𝛾 can 
characterize code comprehension as testers increase code 
coverage and narrow in on remaining sections of untested 
software, resolving logic issues to ensure the application 
conforms to requirements. A low value of 𝛾𝛾 may indicate that 
the software is difficult to comprehend or takes longer to 
achieve a high level of code coverage. In this final stage of 
testing, faults can no longer elude testers.  

Setting 𝛼𝛼 and 𝛾𝛾 to zero reduces the fault detection rate to 
𝑏𝑏(𝑡𝑡) = 𝛽𝛽𝛽𝛽, indicating that the Goel-Okumoto model is a special 
case of the SRGM with bathtub-shaped fault detection rate 
characterized by the Quadratic Model. 

3.2 Competing Risk Models 

Hjorth [17] presented a distribution capable of exhibiting 
increasing, decreasing, constant, and bathtub-shaped rates 

                                      𝑏𝑏(𝑡𝑡) =
𝛼𝛼

1 + 𝛽𝛽𝛽𝛽
+ 2𝛾𝛾𝛾𝛾                           (5) 

The mean value function of the SRGM with bathtub-shaped 
fault detection rate characterized by Hjorth’s competing risk 
model also contains the Goel-Okumoto model when 𝛼𝛼 = 0. 

3.3 Modified Weibull (Lai) Model 

Lai et al. [18] proposed a modified Weibull distribution 
possessing hazard rate 

                              𝑏𝑏(𝑡𝑡) = 𝑎𝑎(𝛼𝛼 + 𝜆𝜆𝜆𝜆)𝑡𝑡𝛼𝛼−1𝑒𝑒𝜆𝜆 𝑡𝑡                        (6)  

Substituting 𝜆𝜆 = 0 and 𝑎𝑎 = 𝜆𝜆
𝛼𝛼
 reduces to the Weibull model, 

while substituting 𝜆𝜆 = 0, 𝛼𝛼 = 2, and 𝛽𝛽 = 2𝑎𝑎 produces the 
Goel-Okumoto model. 

3.4 Weibull Extension (Lee) Model 

Lee [19] proposed a three-parameter model with hazard 
rate 

                                   𝑏𝑏(𝑡𝑡) = 𝜆𝜆 𝛾𝛾 𝑡𝑡𝛾𝛾−1𝑒𝑒𝜙𝜙 𝑡𝑡                             (7)   

Substituting 𝜙𝜙 = 0, 𝜆𝜆 = 𝜆𝜆
𝛾𝛾
 reduces to the Weibull model, while 

substituting 𝜙𝜙 = 0, 𝜆𝜆 = 2  and 𝛽𝛽 = 2 𝜆𝜆 reduces to the Goel-
Okumoto model. 

3.5 Bathtub-shaped models’ framework 

Figure 1 depicts the relationships among the SRGM 
possessing a bathtub-shaped fault detection rate as well as 
simplifications that correspond to an existing model. For 
example Figure 1 illustrates how Lee’s Weibull Extension 
Model reduces to the Weibull SRGM and further simplifies to 
the Goel-Okumoto model. Similarly, the quadratic and 
competing risk models also contain the Goel-Okumoto model 
as a special case. Furthermore, Lai’s modified Weibull contains 
the Weibull and Goel-Okumoto models. 
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Figure 1 Relations among bathtub and traditional SRGM 

4 PARAMETER ESTIMATION METHODS 

This section describes various methods to estimate the 
parameters of a SRGM with the method of maximum likelihood 
estimation, including Newton’s method [20] and the ECM [22] 
algorithm as well as initial parameter estimation with the EM 
algorithm [21]. 

4.1 Maximum Likelihood Estimation 

Maximum-likelihood estimation maximizes the likelihood 
function or joint distribution of the failure data. Typically, the 
log-likelihood function is maximized. Failure count or grouped 
data consists of a vector of times 𝐓𝐓 = 〈𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑛𝑛〉 at which the 
intervals ended and failure counts 𝐊𝐊 = 〈𝑘𝑘1, 𝑘𝑘2, … , 𝑘𝑘𝑛𝑛〉 for these 
intervals 

The log-likelihood function of a failure count dataset is 
𝐿𝐿𝐿𝐿(𝜔𝜔, Θ|𝐓𝐓, 𝐊𝐊) = ∑ 𝑘𝑘𝑖𝑖log(𝜔𝜔) +𝑛𝑛

𝑖𝑖=1 ∑ 𝑘𝑘𝑖𝑖log�𝑒𝑒−𝑏𝑏(𝑡𝑡𝑖𝑖−1) −𝑛𝑛
𝑖𝑖=1

𝑒𝑒−𝑏𝑏(𝑡𝑡𝑖𝑖)� − 𝜔𝜔�1 − 𝑒𝑒−𝑏𝑏(𝑡𝑡𝑛𝑛)� − ∑ ln(𝑘𝑘𝑖𝑖)!                (8)𝑛𝑛
𝑖𝑖=1   

where Θ is the vector of model parameters contained in 𝐹𝐹(𝑡𝑡). 
The maximum likelihood estimate (MLE) of the numerical 

values of the parameters that best fit the data is found by 
numerically solving the system of simultaneous equation 

                                              
𝜕𝜕
𝜕𝜕Θ

𝐿𝐿𝐿𝐿(Θ) = 0                                (9) 

Models of the form given in Equation (1) possess a closed 
form 

                                                  𝜔𝜔� =
∑ 𝑘𝑘𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝐹𝐹(𝑡𝑡𝑛𝑛)                                 (10) 

which can be substituted into Equation (8) to reduce the set of 
simultaneous equations by one. 

For example, the log-likelihood of the SRGM with 
bathtub-shaped fault detection rate characterized by the 
Quadratic Model is 𝐿𝐿𝐿𝐿(𝜔𝜔, α, β, γ|𝐓𝐓, 𝐊𝐊) 

= �𝑘𝑘𝑖𝑖log(𝜔𝜔) +
𝑛𝑛

𝑖𝑖=1

�𝑘𝑘𝑖𝑖log �𝑒𝑒−(𝛼𝛼+𝛽𝛽�𝑡𝑡𝑖𝑖−1+𝜆𝜆𝑡𝑡𝑖𝑖−1
2 �)

𝑛𝑛

𝑖𝑖=1

− 𝑒𝑒−(𝛼𝛼+𝛽𝛽�𝑡𝑡𝑖𝑖−1+𝜆𝜆𝑡𝑡𝑖𝑖
2�)�

− 𝜔𝜔�1 − 𝑒𝑒−�𝛼𝛼+𝛽𝛽𝑡𝑡𝑛𝑛+𝜆𝜆𝑡𝑡𝑛𝑛2��

−�log(𝑘𝑘𝑖𝑖)!
𝑛𝑛

𝑖𝑖=1

                                              (11) 

with 

                                  𝜔𝜔� =
∑ 𝑘𝑘𝑖𝑖𝑛𝑛
𝑖𝑖=1

1 − 𝑒𝑒−�𝛼𝛼+𝛽𝛽𝑡𝑡𝑛𝑛+𝜆𝜆𝑡𝑡𝑛𝑛2�
                           (12) 

so that the reduced log-likelihood is 𝑅𝑅𝑅𝑅𝑅𝑅(α, β, γ|𝐓𝐓, 𝐊𝐊) 

= �𝑘𝑘𝑖𝑖log �
∑ 𝑘𝑘𝑖𝑖𝑛𝑛
𝑖𝑖=1

1 − 𝑒𝑒−(𝛼𝛼+𝛽𝛽𝑡𝑡𝑛𝑛+𝜆𝜆𝑡𝑡𝑛𝑛2)
�

𝑛𝑛

𝑖𝑖=1

+�𝑘𝑘𝑖𝑖log �𝑒𝑒−(𝛼𝛼+𝛽𝛽�𝑡𝑡𝑖𝑖−1+𝜆𝜆𝑡𝑡𝑖𝑖−1
2 �)

𝑛𝑛

𝑖𝑖=1

− 𝑒𝑒−(𝛼𝛼+𝛽𝛽�𝑡𝑡𝑖𝑖−1+𝜆𝜆𝑡𝑡𝑖𝑖
2�)� −�𝑘𝑘𝑖𝑖

𝑛𝑛

𝑖𝑖=1

−�log(𝑘𝑘𝑖𝑖)!                                              (13)
𝑛𝑛

𝑖𝑖=1

 

Traditionally, the Newton-Raphson method [20] was 
employed to identify the MLE, but may not converge when the 
initial estimates are not close to the maximum. 

4.2 Initial Parameter Estimation 

The EM algorithm [23] provides a systematic calculus-
based method to identify initial parameter estimates for some or 
all parameters of a model. For a mean value function of the form 
specified in Equation (1), the observed number of faults are an 
initial estimate of the number of faults such 𝜔𝜔(0) = 𝑛𝑛. Initial 
estimates of the remaining parameters (Θ) can be determined by 
maximizing the log-likelihood function of the probability 
density function 

                             Θ(0) = �
𝜕𝜕
𝜕𝜕Θ

log[𝑓𝑓(𝑡𝑡𝑖𝑖; Θ)] = 0
𝑛𝑛

𝑖𝑖=1

                 (14) 

and solving to obtain closed-form expressions. 
For example, the initial parameter estimates of the SRGM 

with bathtub-shaped fault detection rate characterized by the 
Quadratic Model are 
                                                     𝛼𝛼 = 0                                         (15) 

                                         𝛽𝛽 = �
1
𝑡𝑡𝑖𝑖
− 2𝛾𝛾

𝑛𝑛

𝑖𝑖=1

�𝑡𝑡𝑖𝑖

𝑛𝑛

𝑖𝑖=1

                        (16) 

                                        𝛾𝛾 = �
1
𝑡𝑡𝑖𝑖2
− 𝛽𝛽

𝑛𝑛

𝑖𝑖=1

�
1

2𝑡𝑡𝑖𝑖

𝑛𝑛

𝑖𝑖=1

                        (17) 

The parameters 𝛽𝛽 and 𝛾𝛾 can be estimated in multiple ways. 
The first is to solve Equations (16) and (17) as a pair of 
simultaneous equations. An alternative is to substitute the 
closed form solution for 𝛽𝛽 on the right-hand side of Equation 
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(16) into Equation (17), solving for 𝛾𝛾, and then substituting the 
estimate of 𝛾𝛾 into Equation (16) to determine 𝛽𝛽. A second 
alternative substitutes 𝛾𝛾 into Equation (16) and proceeds in a 
similar manner. 

4.3 Expectation Conditional Maximization Algorithm 

This section provides a brief overview of the expectation 
conditional maximization algorithm [24], which is an extension 
of the EM algorithm that simplifies computation by dividing a 
single M-step into 𝑝𝑝 conditional-maximization (CM)-steps, 
where 𝑝𝑝 denotes the number of model parameters. The CM-
steps are the partial derivatives of the loglikelihood function  𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕Θ𝑖𝑖
 

or reduced log-likelihood function 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕Θ𝑖𝑖

. The ECM algorithm 
updates one parameter at a time holding all others constant, 
reducing the maximum likelihood estimation process to 𝑝𝑝 
distinct 1-dimensional problems. Thus, in each CM-step, the 
ECM algorithm searches a single dimension of the parameter 
space to improve the loglikelihood monotonically. Successive 
CM-steps determine 𝛩𝛩𝑖𝑖

(𝑗𝑗), which is the updated value of the 𝑖𝑖𝑡𝑡ℎ 
parameter in the 𝑗𝑗𝑡𝑡ℎ iteration. 

Without loss of generality, the CM-step which updates the 
𝑖𝑖𝑡𝑡ℎ  parameter in the 𝑗𝑗𝑡𝑡ℎ iteration takes 

        Θ𝑗𝑗𝑗𝑗+𝑖𝑖 = �Θ1
(𝑗𝑗+1), Θ2

(𝑗𝑗+1),  … , Θi−1
(𝑗𝑗+1), Θi

(𝑗𝑗), … , Θp
(𝑗𝑗)�       (18) 

as input, holds all values but 𝛩𝛩𝑖𝑖
(𝑗𝑗) constant, and maximizes the 

partial derivative of the log-likelihood or reduced loglikelihood 
function with respect to Θ𝑖𝑖 to produce   Θ𝑗𝑗𝑗𝑗+(𝑖𝑖+1) containing 
𝛩𝛩𝑖𝑖
𝑗𝑗+1. Each CM-step monotonically improves the maximum 

likelihood estimate. After applying the CM-step for each 
parameter, a convergence criterion such as 

                                 �𝑅𝑅𝑅𝑅𝐿𝐿𝑗𝑗 − 𝑅𝑅𝑅𝑅𝐿𝐿𝑗𝑗−1� < 𝜀𝜀                          (19)   
is tested, where 𝜀𝜀 > 0 is an arbitrarily small constant. If 
satisfied, the ECM algorithm terminates. For example, the CM-
steps of the SRGM with bathtub-shaped fault detection rate 
characterized by the Quadratic Model are computed from 
Equation (13). 

          𝛼𝛼 = �𝑘𝑘𝑖𝑖

𝑛𝑛

𝑖𝑖=1

�𝑒𝑒𝛼𝛼 − 𝑒𝑒−(𝜒𝜒−𝛼𝛼)� �𝑒𝑒
2𝜒𝜒−𝛼𝛼(𝑒𝑒−𝜎𝜎 − 𝑒𝑒−𝜏𝜏)

(𝑒𝑒𝜒𝜒−1)2 �

𝑒𝑒−𝜏𝜏 − 𝑒𝑒−𝜎𝜎
      (20) 

   𝛽𝛽 = �𝑘𝑘𝑖𝑖

𝑛𝑛

𝑖𝑖=1

(1 − 𝑒𝑒−𝜒𝜒)

𝑒𝑒−𝜎𝜎𝑡𝑡𝑖𝑖 − 𝑒𝑒−𝜏𝜏𝑡𝑡𝑖𝑖−1
1 − 𝑒𝑒−𝜒𝜒 + 𝑒𝑒𝜒𝜒(𝑒𝑒−𝜏𝜏 + 𝑒𝑒−𝜎𝜎)𝑡𝑡𝑛𝑛

(𝑒𝑒𝜒𝜒−1)2
𝑒𝑒−𝜏𝜏 − 𝑒𝑒−𝜎𝜎      (21)  

 𝛾𝛾

=
∑ 𝑘𝑘𝑖𝑖𝑛𝑛
𝑖𝑖=1 (1 − 𝑒𝑒−𝜒𝜒) �𝑒𝑒

−𝜎𝜎𝑡𝑡𝑖𝑖2 − 𝑒𝑒−𝜏𝜏𝑡𝑡𝑖𝑖−12

1 − 𝑒𝑒−𝜒𝜒 + 𝑒𝑒𝜒𝜒(𝑒𝑒−𝜎𝜎 − 𝑒𝑒−𝜏𝜏)𝑡𝑡𝑛𝑛2
(𝑒𝑒𝜒𝜒−1)2 �

𝑒𝑒−𝜏𝜏 − 𝑒𝑒−𝜎𝜎   (22) 

where 𝜒𝜒 = 𝛼𝛼 + 𝛽𝛽𝑡𝑡𝑛𝑛 + γ𝑡𝑡𝑛𝑛2,  𝜏𝜏 = 𝛽𝛽𝑡𝑡𝑖𝑖−1 + γ𝑡𝑡𝑖𝑖−12 ,  𝜎𝜎 = 𝛽𝛽𝑡𝑡𝑖𝑖 + γ𝑡𝑡𝑖𝑖2. 
Thus, when the CM-step for α in Equation (20) is applied all 
instances of 𝛽𝛽 and 𝛾𝛾 in 𝜒𝜒, 𝜏𝜏, and 𝜎𝜎 are held constant at their most 
recent estimates and the expression is solved for 𝛼𝛼. Similarly, 
the CM-step for 𝛽𝛽 in Equation (21) holds all instances of 𝛼𝛼 and 
𝛾𝛾 constant and solves for 𝛽𝛽. 

5 MODEL ASSESSMENT 

Model assessment evaluates how well a model performs on 
a data set. Two complementary measures are the Akaike 
Information Criterion (AIC) and Predictive Mean Square Error 
(PMSE). The AIC is an information theoretic method to 
compare multiple models on a single data set, while PMSE 
measures the disagreement between a model’s predictions and 
future observations. Ideally, a single model will perform best 
on both measures. When no single best model emerges, the user 
must make a subjective decision based on factors such as 
amount of data, stage of testing, and predictive horizon. 

5.1 Akaike Information Criterion 

The Akaike Information Criterion is an information 
theoretic measure of a model’s statistical goodness-of-fit to a 
dataset. It is grounded in the concept of entropy, offering a 
relative measure of the information lost when a given model is 
applied. The AIC quantifies the tradeoff between a model’s 
characterization of the observed data and the model’s 
complexity. The AIC of model 𝑖𝑖 is a function of the maximized 
log-likelihood and the number of model parameters, 𝑝𝑝. 
                              𝐴𝐴𝐴𝐴𝐶𝐶𝑖𝑖 = 2𝑝𝑝 − 2𝐿𝐿𝐿𝐿�θ��𝐓𝐓, 𝐊𝐊�                         (23)  

The term 2𝑝𝑝 is a penalty function, which deters a model 
with an unnecessary number of parameters that may fits the 
observed data well, but compromise its predictive power. 

5.2 Predictive Mean Square Error 

The k-step predictive mean square error of the mean value 
function measures a model’s predictive power. It is calculated 
by fitting a model to the data in the first 𝑛𝑛 –  𝑘𝑘 intervals and 
computing 

                         𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = � (𝐾𝐾𝑖𝑖 − 𝑚𝑚� (𝑡𝑡𝑖𝑖))2
𝑛𝑛

𝑖𝑖=(𝑛𝑛−𝑘𝑘)+1

                 (24) 

which is the sum of squares differences between the cumulative 
number of faults observed 𝐾𝐾𝑖𝑖 = ∑ 𝑘𝑘𝑖𝑖𝑖𝑖

𝑗𝑗=1  and the cumulative 
faults predicted by the fitted mean value function (𝑚𝑚� (𝑡𝑡𝑖𝑖)) for 
the last k observations not used to fit the model. 

6 ILLUSTRATIONS 

This section illustrates the application of the ECM 
algorithm to an SRGM with bathtub-shaped fault detection rate. 
A comparative analysis of bathtub-shaped fault detection rate 
models and their simplified forms is then performed to assess 
these models with respect to information theoretic and 
predictive measures of goodness of fit. 

6.1 Quadratic LL-ECM Application 

This first example explains how the ECM algorithm is 
applied in the context of the SRGM with bathtub-shaped fault 
detection rate characterized by the Quadratic Model on the PL/I 
data set [27], which consists of over 1.3 million lines of code 
and exhibited 328 faults over nineteen (𝑛𝑛 =  19) weeks of 
testing. As noted in Section IV, the EM algorithm provides 
closed form expressions for the initial value of the parameters. 
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Starting from the initial estimate of 𝑎𝑎(0) = 0 and solving 
Equations (16) and (17) produces initial estimates for the 
remaining parameters, including 𝛽𝛽(0) = 0.010203 and 𝛾𝛾(0) =
0.000954. The initial value of the log-likelihood function 
specified in Equation (11) is therefore 1328.43. The first 
iteration applies Equation (20), holding 𝛽𝛽 and 𝛾𝛾 constant and 
solving for 𝛼𝛼(1) = 0.012757, which increases the 
loglikelihood value to 1334.94. Successive CM-steps update 𝛾𝛾 
and 𝛽𝛽 with Equations (22) and (21) respectively. 

Figure 2 shows the CM-steps in the 𝛽𝛽 and 𝛾𝛾 parameters 
superimposed on a contour plot of the log-likelihood function 
 

 
Figure 2 CM-steps superimposed on contour plot of log-
likelihood function of SRGM with bathtub shaped fault 

detection rate  

The 90° angle movements illustrate how only one parameter is 
updated at a time. The 𝛼𝛼 parameter is also updated, but not 
shown here in order to present the process more clearly in two 
dimensions. Moreover, the value of 𝛼𝛼 employed to produce the 
contour plot was the maximum likelihood estimate. Thus, the 
convergence of 𝛽𝛽 and 𝛾𝛾 shown in Figure 2 is to the overall 
maximum likelihood estimate. 

Figure 3 shows the monotonic improvements made by the 
ECM algorithm in each of the 44 iterations until convergence 
when Equation (19) is less than 𝜀𝜀 = 10−15.  

 

 
Figure 3 Improvement of Log-likelihood function in iterations 

of ECM algorithm for SRGM with bathtub-shaped fault 
detection rate 

The resulting MLEs are  𝛼𝛼� = −0.024456,  𝛽̂𝛽 =
0.026199, 𝛾𝛾� = 0.000691, and the corresponding value of the 
log-likelihood value at these estimates is −133.494. 
Substituting the maximum likelihood estimates of 𝛼𝛼, 𝛽𝛽, and 𝛾𝛾 
into Equation (12) produces the MLE of the initial number of 
faults  𝜔𝜔�  =  349.402.  

Figure 4 shows PL/I data as well as the plot of the mean 
value function produced by substituting the maximum 
likelihood estimates into Equation (4). 

 

 
Figure 4  SRGM with bathtub-shaped fault detection rate 

characterized by Quadratic Model fit to PL/I data 

6.2 Model Assessment 

Table I summarizes the Akaike Information Criterion and 
the predictive sum of squares error computed with 𝑘𝑘 = 2 of 𝑛𝑛 =
19 weeks of data withheld from model fitting for each of the 
six bathtub-shaped distributions considered. Values in bold 
indicate models preferred by specific measures. The AIC 
prefers the SRGM with bathtub-shaped fault detection rate 
characterized by Lee’s Weibull extension. However, PMSE 
prefers the SRGM with bathtub-shaped fault detection rate 
characterized by Lai’s modified Weibull model. 

Table 1: Goodness of fit of bathtub-shaped models 

Model AIC  PMSE 
Quadratic  251.41  2439.23 
Competing risk  430.43  2132.20 
Modified Weibull (Lai)  250.12 476.23 
Weibull extension (Lee)  248.33 1369.00 
Goel-Okumoto  264.63 5821.29 
Weibull  254.17 3013.01 

7 CONCLUSIONS AND FUTURE RESEARCH 

This paper proposed a framework for SRGM possessing a 
bathtub-shaped fault detection rate and derived stable and 
efficient expectation conditional maximization algorithms to fit 
these models. The illustrations compared multiple bathtub-
shaped and classical models with respect to predictive and 
information theoretic measures. Our results indicated that 
SRGM possessing a bathtub-shaped fault detection rate 
outperformed classical models on both types of measures. The 
framework and models may therefore be a reasonable 
compromise between model complexity and predictive 
accuracy.  

Future research will generalize the framework to 
accommodate additional bathtub-shaped distributions and seek 
to identify the causes of the bathtub shape such as test 

Authorized licensed use limited to: University of Massachusetts - Dartmouth. Downloaded on June 29,2022 at 12:37:49 UTC from IEEE Xplore.  Restrictions apply. 



procedures and application architecture. 
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