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SUMMARY & CONCLUSIONS

Researchers have proposed a multitude of software
reliability growth models (SRGM), many of which possess
complex parametric forms. In practice, SRGM should exhibit a
balance between predictive accuracy and other statistical
measures of goodness of fit, yet past studies have not always
performed such balanced assessment. This paper proposes a
framework for SRGM possessing a bathtub-shaped fault
detection rate and derives stable and efficient expectation
conditional maximization algorithms to fit these models. The
illustrations compare multiple bathtub-shaped and classical
models with respect to predictive and information theoretic
measures. Our results indicate that SRGM possessing a bathtub-
shaped fault detection rate outperformed classical models on
both types of measures. The proposed framework and models
may therefore be a reasonable compromise between model
complexity and predictive accuracy.

1 INTRODUCTION

Many software reliability growth models have been
proposed and several of the earliest models [1] were relatively
simple, while recent models have become progressively more
complex. Software practitioners advocate for simple models,
but this has not deterred the proliferation of complex models.
One valid criticism of complex models is their disregard for
measures of statistical goodness of fit, including predictive
accuracy. Moreover, some researchers inaccurately claim to
employ predictive measures. Not considering a variety of
measures is unethical because of the potential for harm to life
and property if failures are underestimated in real systems.

Several software reliability researchers have developed
mathematical frameworks to establish relationships between
multiple models. Noteable examples include the work of
Langberg and Singpurwalla [2] who showed how some models
can be derived by assigning specific prior distributions in a
Bayesian context. Miller [3] showed that several models are
special cases of exponential order statistics models. Yamada et
al. [4] proposed a two-step model fitting procedure, which first
fit a curve to testing effort data followed by the mean value
function of an NHPP SRGM to the fault discovery process.
Gokhale et al. [5] demonstrated that several NHPP models with
bounded mean value function are special cases of the enhanced
NHPP possessing time-varying test coverage. Kuo et al. [6]
proposed a framework to incorporate both testing effort and
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fault detection rate into SRGM capable of characterizing a wide
range of possible fault detection trends. Huang et al. [7]
presented an NHPP model and derived several existing models
through a parametric family of power transformations. Kapur et
al. [8] presented two Generalized Imperfect Non-homogeneous
Poisson Process (GINHPP) models to account for imperfect
debugging and error generation, and demonstrated existing
NHPP SRGM as special cases. Inoue and Yamada [9]
developed a generalized discrete software reliability growth
model following a binomial process capable of considering
program size.

This paper presents a framework for software reliability
models possessing a bathtub shaped fault detection rate. Several
bathtub hazard rates from the hardware reliability literature [10]
are included. The three stages of the bathtub are adapted to the
detection of software faults during testing, including (i) a burn-
in phase characterized by the discovery and correction of
superficial faults such as typos and elementary syntax errors;
(i1) requirements verification, which exposes more complicated
logical errors that require more detailed rework; and (iii) code
comprehension characterized by a learning curve [11], where a
significant amount of code has been tested, enabling testers to
focus on improving code coverage in order to expose and
correct remaining defects. To justify a bathtub-shaped fault
detection rate, information theoretic and predictive measures of
goodness of fit are computed. This analysis also considers
reduced forms of the bathtub model, including classical SRGM
[1], [12] and presents a visual taxonomy of the relationships
between the models.

This paper extends [13], which presented a single software
reliability growth model possessing a bathtub-shaped fault
detection rate. Our primary contributions include (i) A
framework for SRGM possessing bathtub-shaped fault
detection rate and (ii) stable and efficient expectation
conditional maximization (ECM) algorithms to enable
application of these models. Our results indicate that, for the
data sets considered, a software reliability growth model
possessing a bathtub-shaped fault detection rate performed best
with respect to both information theoretic and predictive
measures of goodness of fit. The proposed framework coupled
with efficient ECM algorithms 2 and goodness of fit assessment
may therefore be beneficial to the software reliability
assessment process.

The remainder of the paper is organized as follows. Section
IT proposes a framework for bathtub-shaped SRGM, while
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Section III presents instances. Section IV describes parameter
estimation methods. Section V reviews methods to assess
model goodness of fit. Section VI compares alternative bathtub
and classical models. Section VII provides conclusions and
future research.

2  SOFTWARE RELIABILITY GROWTH MODELS

The nonhomogeneous Poisson process is a stochastic
process [ 14] that counts the number of events that occur by time
t. The expected value is characterized by the mean value
function (MVF), which can take many functional forms. In
software reliability, the NHPP counts the number of unique
faults detected during testing. The MVF of several SRGM
follow the general form

m(t) = w X F(t) (D
where w is the number of unique faults that would be detected
as t » oo and F(t) is the cumulative distribution function
(CDF) of a continuous probability distribution, characterizing
the software fault detection process.

A framework for bathtub-shaped fault detection models
with the following CDF is proposed

F(t)=1—-e"®
where b(t) is an arbitrary bathtub hazard function.

3 SOFTWARE RELIABILITY GROWTH MODELS

)

This section summarizes several bathtub hazard functions
from the literature. Since many bathtub distributions simplify
to increasing or decreasing trends, we also identify feasible
simplifications and their relationship to other well-known
software reliability growth models, including the Goel-
Okumoto [1] and Weibull [12] SRGM. The section concludes
with a visual summary of the relationships between the bathtub
models and their simplifications. This taxonomy is also used in
the illustrations, where it enables explicit comparison of the
goodness of fit of bathtub and simpler SRGM to objectively
assess if the additional complexity is justified.

3.1 Quadratic Model

Bain [15] and Gore et al. [16] considered low order
polynomial functions. The quadratic hazard function

b(t) = a + ft + yt? 3)

is bathtub-shaped when —Z(ay)% <B <0 and a,y =0.
Substituting Equation (3) into Equation (2) produces the mean
value function of the SRGM with bathtub-shaped fault
detection rate characterized by the Quadratic Model

m(t) = (1 - e~(x+F e 7)) 4)

Parameters 8, a, and y respectively contribute to the three
stages of the bathtub. Specifically, if the coefficient of the linear
term S is decreasing, this trend can characterize a decreasing
fault detection rate in the earlier stages of testing as simple
problems are detected and removed with relative ease. The
constant « represents the baseline fault detection rate associated
with the second phase of the bathtub. Finally, the coefficient of
the quadratic term y contributes to the third phase, since this

final term will eventually dominate the constant and linear
terms. In the context of software fault detection, ¥y can
characterize code comprehension as testers increase code
coverage and narrow in on remaining sections of untested
software, resolving logic issues to ensure the application
conforms to requirements. A low value of y may indicate that
the software is difficult to comprehend or takes longer to
achieve a high level of code coverage. In this final stage of
testing, faults can no longer elude testers.

Setting & and y to zero reduces the fault detection rate to
b(t) = Bt, indicating that the Goel-Okumoto model is a special
case of the SRGM with bathtub-shaped fault detection rate
characterized by the Quadratic Model.

3.2 Competing Risk Models

Hjorth [17] presented a distribution capable of exhibiting
increasing, decreasing, constant, and bathtub-shaped rates

DO =57 5)

The mean value function of the SRGM with bathtub-shaped

fault detection rate characterized by Hjorth’s competing risk
model also contains the Goel-Okumoto model when a = 0.

3.3 Modified Weibull (Lai) Model

+ 2yt

Lai et al. [18] proposed a modified Weibull distribution
possessing hazard rate

b(t) = ala + A)t¥ et (6)

Substituting 1 = 0 and a = % reduces to the Weibull model,

while substituting 1 =0, a = 2, and f = 2a produces the
Goel-Okumoto model.

3.4 Weibull Extension (Lee) Model

Lee [19] proposed a three-parameter model with hazard
rate

b(t) = Ay t¥"te®t @)
Substituting ¢ = 0,1 = % reduces to the Weibull model, while

substituting ¢ = 0, A =2 and = 2 1 reduces to the Goel-
Okumoto model.

3.5 Bathtub-shaped models’ framework

Figure 1 depicts the relationships among the SRGM
possessing a bathtub-shaped fault detection rate as well as
simplifications that correspond to an existing model. For
example Figure 1 illustrates how Lee’s Weibull Extension
Model reduces to the Weibull SRGM and further simplifies to
the Goel-Okumoto model. Similarly, the quadratic and
competing risk models also contain the Goel-Okumoto model
as a special case. Furthermore, Lai’s modified Weibull contains
the Weibull and Goel-Okumoto models.
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Figure 1 Relations among bathtub and traditional SRGM
4 PARAMETER ESTIMATION METHODS

This section describes various methods to estimate the
parameters of a SRGM with the method of maximum likelihood
estimation, including Newton’s method [20] and the ECM [22]
algorithm as well as initial parameter estimation with the EM
algorithm [21].

4.1 Maximum Likelihood Estimation

Maximum-likelihood estimation maximizes the likelihood
function or joint distribution of the failure data. Typically, the
log-likelihood function is maximized. Failure count or grouped
data consists of a vector of times T = (ty, t,, ..., t,,) at which the
intervals ended and failure counts K = (k4, k,, ..., k,,) for these
intervals

The log-likelihood function of a failure count dataset is

LL(w,0|T,K) = ¥, kilog(w) + X, k;log(e 2D —
e ) — (1 —eP@)) — ¥ In(k;)! (8)

where 0 is the vector of model parameters contained in F (t).
The maximum likelihood estimate (MLE) of the numerical

values of the parameters that best fit the data is found by
numerically solving the system of simultaneous equation

9
SgLL® =0 9)

Models of the form given in Equation (1) possess a closed
form
n
n L.
i=1"
—_— 10
F(t) 1o

which can be substituted into Equation (8) to reduce the set of
simultaneous equations by one.

For example, the log-likelihood of the SRGM with
bathtub-shaped fault detection rate characterized by the
Quadratic Model is LL(w, a, B, Y| T, K)

o=

n n
= Z kilog(w) + Z kilog (e—<a+ﬁ(ti_1+u§_1))
i=1 i

i=1
_ e—(a+ﬁ(ti_1+/1ti2)))

—w(1- —(a+pty+At3)
o(1-e )

= log(k)! an
i=1
with
n
n k.
~ _ i=1"™1
@ = o(arBtaracd) 12)
so that the reduced log-likelihood is RLL(a, B, Y| T, K)
_ Z ol S ki
= L\ T st Btaracd)
i=1 n
+ Z k;log (e—(a+ﬁ(ti_1+;1ri2_1))
i=1
n
i=1
n
= log(ky)! (13)
i=1

Traditionally, the Newton-Raphson method [20] was
employed to identify the MLE, but may not converge when the
initial estimates are not close to the maximum.

4.2 Initial Parameter Estimation

The EM algorithm [23] provides a systematic calculus-
based method to identify initial parameter estimates for some or
all parameters of a model. For a mean value function of the form
specified in Equation (1), the observed number of faults are an
initial estimate of the number of faults such w(® = n. Initial
estimates of the remaining parameters (0) can be determined by
maximizing the log-likelihood function of the probability

density function
n

0
00 = ) S5loslf(t;0)] = 0
i=1
and solving to obtain closed-form expressions.
For example, the initial parameter estimates of the SRGM
with bathtub-shaped fault detection rate characterized by the
Quadratic Model are

(14)

a=0 (15)
n n
1
B=) -2 (16)
i=1 * i=1
n n
_ Z 1 1 17
V=, 2 B .7t 17)
i=1 i=1

The parameters f§ and y can be estimated in multiple ways.
The first is to solve Equations (16) and (17) as a pair of
simultaneous equations. An alternative is to substitute the
closed form solution for § on the right-hand side of Equation
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(16) into Equation (17), solving for y, and then substituting the
estimate of y into Equation (16) to determine . A second
alternative substitutes y into Equation (16) and proceeds in a
similar manner.

4.3 Expectation Conditional Maximization Algorithm

This section provides a brief overview of the expectation
conditional maximization algorithm [24], which is an extension
of the EM algorithm that simplifies computation by dividing a
single M-step into p conditional-maximization (CM)-steps,
where p denotes the number of model parameters. The CM-

steps are the partial derivatives of the loglikelihood function %
v

or reduced log-likelihood function %. The ECM algorithm

L
updates one parameter at a time holding all others constant,

reducing the maximum likelihood estimation process to p
distinct 1-dimensional problems. Thus, in each CM-step, the
ECM algorithm searches a single dimension of the parameter
space to improve the loglikelihood monotonically. Successive
CM-steps determine Qi(} ) , which is the updated value of the i*"
parameter in the j¢" iteration.

Without loss of generality, the CM-step which updates the

it" parameter in the j" iteration takes

ip+i — [@UtD) U+D G+1) o) 6))
o = (072,00, .., 001",00,...00)  (18)

as input, holds all values but Qi(j ) constant, and maximizes the
partial derivative of the log-likelihood or reduced loglikelihood
function with respect to ©; to produce ©/P*(*+1) containing
Qij *1. Each CM-step monotonically improves the maximum
likelihood estimate. After applying the CM-step for each

parameter, a convergence criterion such as

|RLL; — RLL; ;| < ¢ (19)
is tested, where € > 0 is an arbitrarily small constant. If
satisfied, the ECM algorithm terminates. For example, the CM-
steps of the SRGM with bathtub-shaped fault detection rate

characterized by the Quadratic Model are computed from
Equation (13).

(ea _ e‘(X‘a)) (62){—0:(6—0 _ e‘T))

(X’

i=1 et—e? (20)

n e t;—e Tt  eX(eTT+e O)t,

' —0t2 —T42 5
) et —e0 (22)

where y = a + Bt, +yt2, T = Bti_; + yt2,, 0 = Bt; + yt?.
Thus, when the CM-step for a in Equation (20) is applied all
instances of § and y in y, T, and ¢ are held constant at their most
recent estimates and the expression is solved for a. Similarly,
the CM-step for 5 in Equation (21) holds all instances of a and
y constant and solves for .

5 MODEL ASSESSMENT

Model assessment evaluates how well a model performs on
a data set. Two complementary measures are the Akaike
Information Criterion (AIC) and Predictive Mean Square Error
(PMSE). The AIC is an information theoretic method to
compare multiple models on a single data set, while PMSE
measures the disagreement between a model’s predictions and
future observations. Ideally, a single model will perform best
on both measures. When no single best model emerges, the user
must make a subjective decision based on factors such as
amount of data, stage of testing, and predictive horizon.

5.1 Akaike Information Criterion

The Akaike Information Criterion is an information
theoretic measure of a model’s statistical goodness-of-fit to a
dataset. It is grounded in the concept of entropy, offering a
relative measure of the information lost when a given model is
applied. The AIC quantifies the tradeoff between a model’s
characterization of the observed data and the model’s
complexity. The AIC of model i is a function of the maximized
log-likelihood and the number of model parameters, p.

AIC; = 2p — 2LL(8|T,K) (23)
The term 2p is a penalty function, which deters a model

with an unnecessary number of parameters that may fits the
observed data well, but compromise its predictive power.

5.2 Predictive Mean Square Error

The k-step predictive mean square error of the mean value
function measures a model’s predictive power. It is calculated
by fitting a model to the data in the first n - k intervals and
computing

n

PMSE =

i=(n—-k)+1

(K; — 1 (t))? (24)
which is the sum of squares differences between the cumulative
number of faults observed K; = }'_; k; and the cumulative
faults predicted by the fitted mean value function (7 (t;)) for
the last k observations not used to fit the model.

6 ILLUSTRATIONS

This section illustrates the application of the ECM
algorithm to an SRGM with bathtub-shaped fault detection rate.
A comparative analysis of bathtub-shaped fault detection rate
models and their simplified forms is then performed to assess
these models with respect to information theoretic and
predictive measures of goodness of fit.

6.1 Quadratic LL-ECM Application

This first example explains how the ECM algorithm is
applied in the context of the SRGM with bathtub-shaped fault
detection rate characterized by the Quadratic Model on the PL/I
data set [27], which consists of over 1.3 million lines of code
and exhibited 328 faults over nineteen (n = 19) weeks of
testing. As noted in Section IV, the EM algorithm provides
closed form expressions for the initial value of the parameters.
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Starting from the initial estimate of a(® =0 and solving
Equations (16) and (17) produces initial estimates for the
remaining parameters, including £#® = 0.010203 and y(© =
0.000954. The initial value of the log-likelihood function
specified in Equation (11) is therefore 1328.43. The first
iteration applies Equation (20), holding  and y constant and
solving for a™ =0.012757, which increases the
loglikelihood value to 1334.94. Successive CM-steps update y
and f with Equations (22) and (21) respectively.

Figure 2 shows the CM-steps in the § and y parameters
superimposed on a contour plot of the log-likelihood function

0.025

0.020
el 3
0.015
0.010 .
0.0005 0.0010 0.0015
Y

Figure 2 CM-steps superimposed on contour plot of log-
likelihood function of SRGM with bathtub shaped fault
detection rate

The 90° angle movements illustrate how only one parameter is
updated at a time. The a parameter is also updated, but not
shown here in order to present the process more clearly in two
dimensions. Moreover, the value of @ employed to produce the
contour plot was the maximum likelihood estimate. Thus, the
convergence of f and y shown in Figure 2 is to the overall
maximum likelihood estimate.

Figure 3 shows the monotonic improvements made by the
ECM algorithm in each of the 44 iterations until convergence
when Equation (19) is less than £ = 10715,

-120

1231

-126

Log-likelihood

-129

13349+ , ) ) q
01 5 10 15 20 25 30 35 40 44
Iterations

Figure 3 Improvement of Log-likelihood function in iterations
of ECM algorithm for SRGM with bathtub-shaped fault
detection rate

The resulting MLEs are @& = —0.024456, f =
0.026199, ¥ = 0.000691, and the corresponding value of the
log-likelihood value at these estimates is —133.494.
Substituting the maximum likelihood estimates of «, 8, and y
into Equation (12) produces the MLE of the initial number of
faults @ = 349.402.

Figure 4 shows PL/I data as well as the plot of the mean
value function produced by substituting the maximum
likelihood estimates into Equation (4).

—Counting Process
- -Quadratic Model Fit
.

0 ) 5‘) 10 15 20 25 3‘0 35 40 45
Time(t)
Figure 4 SRGM with bathtub-shaped fault detection rate
characterized by Quadratic Model fit to PL/I data

6.2 Model Assessment

Table I summarizes the Akaike Information Criterion and
the predictive sum of squares error computed with k = 2 of n =
19 weeks of data withheld from model fitting for each of the
six bathtub-shaped distributions considered. Values in bold
indicate models preferred by specific measures. The AIC
prefers the SRGM with bathtub-shaped fault detection rate
characterized by Lee’s Weibull extension. However, PMSE
prefers the SRGM with bathtub-shaped fault detection rate
characterized by Lai’s modified Weibull model.

Table 1: Goodness of fit of bathtub-shaped models

Model AIC PMSE
Quadratic 251.41 2439.23
Competing risk 430.43 2132.20
Modified Weibull (Lai) 250.12 476.23
Weibull extension (Lee) 248.33 1369.00
Goel-Okumoto 264.63 5821.29
Weibull 254.17 3013.01

7 CONCLUSIONS AND FUTURE RESEARCH

This paper proposed a framework for SRGM possessing a
bathtub-shaped fault detection rate and derived stable and
efficient expectation conditional maximization algorithms to fit
these models. The illustrations compared multiple bathtub-
shaped and classical models with respect to predictive and
information theoretic measures. Our results indicated that
SRGM possessing a bathtub-shaped fault detection rate
outperformed classical models on both types of measures. The
framework and models may therefore be a reasonable
compromise between model complexity and predictive
accuracy.

Future research will generalize the framework to
accommodate additional bathtub-shaped distributions and seek
to identify the causes of the bathtub shape such as test
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procedures and application architecture.
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