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Purpose: To introduce two novel learning-based motion artifact removal
networks (LEARN) for the estimation of quantitative motion- and
B0-inhomogeneity-corrected R∗

2 maps from motion-corrupted multi-Gradient-
Recalled Echo (mGRE) MRI data.
Methods: We train two convolutional neural networks (CNNs) to
correct motion artifacts for high-quality estimation of quantitative
B0-inhomogeneity-corrected R∗

2 maps from mGRE sequences. The first CNN,
LEARN-IMG, performs motion correction on complex mGRE images, to enable
the subsequent computation of high-quality motion-free quantitative R∗

2 (and
any other mGRE-enabled) maps using the standard voxel-wise analysis or
machine learning-based analysis. The second CNN, LEARN-BIO, is trained
to directly generate motion- and B0-inhomogeneity-corrected quantitative
R∗

2 maps from motion-corrupted magnitude-only mGRE images by taking
advantage of the biophysical model describing the mGRE signal decay.
Results: We show that both CNNs trained on synthetic MR images are capable
of suppressing motion artifacts while preserving details in the predicted quanti-
tative R∗

2 maps. Significant reduction of motion artifacts on experimental in vivo
motion-corrupted data has also been achieved by using our trained models.
Conclusion: Both LEARN-IMG and LEARN-BIO can enable the compu-
tation of high-quality motion- and B0-inhomogeneity-corrected R∗

2 maps.
LEARN-IMG performs motion correction on mGRE images and relies on
the subsequent analysis for the estimation of R∗

2 maps, while LEARN-BIO
directly performs motion- and B0-inhomogeneity-corrected R∗

2 estimation. Both
LEARN-IMG and LEARN-BIO jointly process all the available gradient echoes,
which enables them to exploit spatial patterns available in the data. The high
computational speed of LEARN-BIO is an advantage that can lead to a broader
clinical application.
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1 INTRODUCTION

Multi-Gradient-Recalled-Echo (mGRE) sequences accom-
panied by correction of magnetic field inhomogeneity arti-
facts1,2 are used in different MRI applications to produce
quantitative maps related to biological tissue microstruc-
ture in health and disease (e.g., References 2-9). However,
involuntary physical motion and subtle anatomical fluc-
tuations during the mGRE signal acquisition can lead to
undesirable artifacts during the estimation of these quan-
titative maps. It is therefore important to develop methods
that reduce the sensitivity of the estimated quantitative
maps to the motion artifacts in the MR images.

A number of methods have been developed over
the years for the prevention, mitigation, or correction
of motion artifacts in MR images.10-22 Deep learning
(DL) methods have also been recently introduced for
motion-correction in MRI due to their speed and qual-
ity of reconstruction.23-28 Despite the recent activity, DL
is yet to be investigated in the context of quantitative
B0-inhomogeneity-corrected estimation of R∗

2 maps from
mGRE signals. One of the key challenges in this context
is the sensitivity of the quantitative maps to the motion
artifacts.29

In this paper, we propose two convolutional neural net-
works (CNNs) for recovering high-quality quantitative R∗

2
maps from the motion-corrupted mGRE images. Both of
our methods, referred to LEARN-IMG and LEARN-BIO,
are trained on motion-free mGRE images and their sim-
ulated motion-corrupted counterparts. LEARN-IMG fol-
lows the traditional supervised training strategy in order
to correct the motion on the complex mGRE images. The
high-quality motion-free and B0-inhomogeneity-corrected
R∗

2 maps can be subsequently computed by applying
the standard nonlinear least squares (NLLS) analysis
that also accounts for the effect of background B0
field gradients (herein we use Voxel Spread Function
[VSF] approach1) on the motion-corrected output images.
On the other hand, LEARN-BIO is trained to directly
map the magnitude-only motion-corrupted mGRE images
to motion-free and and B0-inhomogeneity-corrected R∗

2
maps. The key feature of LEARN-BIO is that it is
fully self-supervised, in the sense that it does not need
ground-truth quantitative R∗

2 maps for training. Instead,
it is trained using only the mGRE images and the bio-
physical model connecting the mGRE signal with bio-
logical tissue microstructure that includes contribution
of magnetic field inhomogeneities to the mGRE signal
decay (described in terms of a factor F(t)1), and our
knowledge of the analytical biophysical model connect-
ing the mGRE signal with biological tissue microstruc-
ture. LEARN-BIO is related to our recent method RoAR30

that trains CNNs to learn a mapping from Gaussian noise

corrupted mGRE images to noise-free R∗
2 maps. However,

unlike LEARN-BIO, RoAR does not account for motion
during training, which is the focus of the current work.

Both of our approaches, LEARN-IMG and LEARN-
BIO, are trained on pairs of motion-corrupted and
motion-free MR images without requiring the ground
truth quantitative R∗

2 maps, which might be challenging to
obtain in some settings. The advantage of LEARN-IMG is
that its training is decoupled from the quantitative map-
ping procedure, which means that the training does not
need any prior knowledge of the biophysical model or
pre-estimation of the F(t) functions. Instead, LEARN-IMG
is used to produce motion-artifact-free mGRE images.
Consequently, it has the flexibility to enable the succes-
sive estimation not just R∗

2 but also various mGRE-based
quantitative maps (e.g., R2t∗,3,4 cellular density6). The key
advantage of LEARN-BIO is that by using F(t) during
training, it learns to compensate for macroscopic magnetic
field inhomogeneities to produce motion-artifact-free
and B0-inhomogeneity-corrected R∗

2 maps. As a result,
the trained LEARN-BIO can be directly applied to the
motion-corrupted mGRE images without precomputing
F(t) or using any additional fitting methods, resulting in a
much faster computation of the quantitative maps.

We train both of our CNN models on synthetic
motion-corrupted data generated using our motion simu-
lation pipeline. We show that both approaches are capable
of removing motion artifacts on synthetic as well as exper-
imental datasets and produce high-quality in vivo quanti-
tative maps. Quantitative and qualitative evaluations are
conducted to demonstrate the robustness and effectiveness
of the proposed methods.

2 METHODS

2.1 The mGRE sequences
and biophysical model

In the R∗
2 approximation, the mGRE signal from a single

voxel can be expressed as:31

S(t) = S0 ⋅ exp(−R∗
2 ⋅ t − i!t) ⋅ F(t), (1)

where t denotes the gradient echo time, S0 = S(0) is the sig-
nal intensity at t = 0, and ! is a local frequency of the MRI
signal. The complex valued function F(t) in Equation (1)
describes the effect of intra- and intervoxel macroscopic
magnetic field inhomogeneities on the mGRE signal. The
failure to account for such inhomogeneities is known to
bias and corrupt the recovered R∗

2 maps. In this paper
we use the VSF approach1 for calculating F(t). In the
VSF approach,1 effects of macroscopic magnetic field
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inhomogeneities (background gradients) on formation of
mGRE signal are evaluated from the same complex mGRE
dataset that is used for calculating tissue-specific param-
eters of a biophysical model. They are accounted for by
including in the biophysical model the term F(t) that is
calculated for each imaging voxel based on the values of
mGRE signal phase and amplitude in this and surrounding
voxels. The latter is important due to amplified signal leak-
age effects from the neighboring voxels (Fourier leakage)
in the presence of magnetic field inhomogeneities.32 In a
standard approach, the R∗

2 maps,!maps, and S0 are jointly
estimated from three-dimensional (3D) mGRE signals
acquired at different echo times t by fitting Equation (1)
with precalculated F(t) on a voxel-by-voxel basis to exper-
imental data by applying the NLLS analysis. However,
mGRE images are often affected by motion artifacts result-
ing from subject movement during MRI scan. In this paper
we propose two learning-based approaches that can com-
pute motion- and B0-inhomogeneity-corrected R∗

2 maps
from motion-corrupted mGRE data.

2.2 Motion artifacts simulation
procedure

Here we present our motion generation pipeline where
various levels of motion artifacts can be introduced into
motion-free MR images through manipulation of k-space
data, which allows us to obtain pairs of motion-free and
motion-corrupted images for training our CNNs. Specifi-
cally, denote the spatial motion-free mGRE images of N
echo times (e.g., N = 10 in our data) at slice index " as

s" = (s1
" , … , sN

" ), (2)

where each component sn
" ∈ Cy×z in s" denotes a

two-dimensional (2D) complex image extracted from
3D MR volume at slice " for one of the echo times. Let
u" ∈ Cky×kz×N denote the k-space maps of s" such that

u" = Fs" and s" = F−1u" , (3)

where F and F−1 represent the Fourier and inverse Fourier
transforms. We model the motion artifacts in the MR
images as the consequences of a series of physical motions,
such as shifts or rotations, that result in perturbations of
blocks of k-space lines during corresponding motions. We
therefore replace certain k-space lines of the motion-free
MR images with those of their motion-corrupted versions
to synthesize motion artifacts. Specifically, in our data,
for each point in kz, we collect N = 10 echoes of k-space
data along the ky direction in u" . Considering the fact that
k-space scanning in the frequency-encoding direction (ky)

is much faster than the physical movement, we assume
that all 10-echo lines along ky suffer from the same motion
effects (it takes about 50 ms to get 10 gradient echoes in our
approach—see Dataset section). We illustrate this motion
generation method in a 2D slice-based manner which can
be easily extended to 3D mGRE data by including the slice
dimension. In particular, we represent the motion artifacts
within a scan of slice " as

T = (T1, … ,TJ), (4)

where T" denotes the jth motion movement during the
k-space data collection of s" and J is the total number
of motions. Let the binary map M" indicate the frequen-
cies that are miscollected during the jth motion (with 1 in
those k-space locations and 0 otherwise), simulating the
time and duration of each sudden motion. Then, the final
k-space maps after J motions can be computed as

ũ"[J] =
(

I −
J∑

"=1
M"

)
⊙ u" +

J∑
"=1

M" ⊙ FT"(s"), (5)

where I denotes a binary map with all ones and ⊙ denotes
the element-wise multiplication of two maps. As a result,
our synthetic motion-corrupted images with J motions can
be computed as

s̃"[J] = F−1(ũ"[J]). (6)

By changing the total number of motions J in addition to
the location and duration of each physical motion indi-
cated by M" , one can control the type and level of motion
artifacts introduced to the motion-free images, and thus
synthesize a variety of realistic motion-corrupted images.
Notably, motion artifact generation can be conducted
sequentially as the relationship between motion-corrupted
images s̃"[" − 1]with the first " − 1 motions and s̃"["]with
the first j motions in T is

s̃"["] = F−1((I − M")⊙ F(s̃"[" − 1]) + M" ⊙ FT"(s")).
(7)

This k-space lines-replacement-based motion arti-
facts generation pipeline is used to simulate the
motion-corrupted data for training our CNNs. Specifically,
we focus on the artifacts introduced by in-plane transla-
tional and 3D rotational movements where the subject is
assumed to lie still during the examination with several
swift translations or rotations of the head occurring dur-
ing the process. It is important to note that although the
effect of global motion on the acquired k-space data is well
established where translational motion induces a linear
phase shift and rotational motion causes the same degree
of rotation in the k-space data, our pipeline is actually
more flexible as we can allow the k-space manipulation for
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F I G U R E 1 Illustration of the motion corruption simulation pipeline for given example images s" . We assume all N echoes at the given
slice " are corrupted by the same motion artifacts. T1 models the first shift and rotation when certain k-space lines at u" , indicated by M1,
are replaced by the k-space lines of the moved object, generating the first N echoes of motion-corrupted images s̃"[1]. Similarly, the second
motion represented by T2 and M2 further corrupts s̃"[1] by generating images s̃"[2] with stronger artifacts. The process can be repeated a
desired number of times

more motion types (i.e., deformation and scaling) of dif-
ferent organs and we are not restricted to global motions.
Figure 1 illustrates an example where the motion artifacts
are due to two consecutive rigid motions.

2.2.1 Method 1: LEARN-IMG

As defined in Equation (2), given the motion-free complex
spatial mGRE images of N echo times at slice " as s" , we
represent the corresponding absolute value of S0 and true
R∗

2 maps as
p" = (S0,R∗

2). (8)

Let {Re(̂s"), Im(̂s")} = !({Re(s̃"), Im(s̃")}) denote our
neural network LEARN-IMG that computes an esti-
mate ŝ" of the unknown motion-free s" given the
motion-corrupted mGRE signal s̃" . The operators Re(⋅)
and Im(⋅) denote the real and imaginary parts of a com-
plex number, and vector ! denotes the trainable set of
weights in the CNN. The 3D convolutional structure of
LEARN-IMG allows it to take both the complex statisti-
cal relationships between pixels and the echo times into
account, and therefore enhances the motion correction
performance and robustness of the model. As illustrated
in Figure 2A, the training of our network is carried out by
minimizing the empirical loss over a training set consisting
of L slices {(s̃" , s")}"=1,… ,L, as follows

min
!

L∑
"=1

(!({Re(s̃"), Im(s̃")}), {Re(s"), Im(s")}), (9)

where  measures the discrepancy between the vector-
ized estimates ŝ" generated by the LEARN-IMG and the

ground-truth s" on both imaginary and real channels.
Common choices for  include the "1 and the "2 dis-
tances. This minimization problem can be solved by using
stochastic gradient-based optimization algorithms such as
Adam.33,34

Our CNN architecture processes the 3D volumet-
ric image of the whole brain by applying the model
slice by slice. Once the optimal set of parameters !∗

are learned from minimizing the optimization problem
on the training dataset, which consists of many slices,
the trained network !∗ can be applied to unseen data
to perform motion-correction tasks. As illustrated in
Figure 2A, the output of a LEARN-IMG network on the
motion-corrupted images s̃" is the motion-corrected com-
plex mGRE data ŝ" , decomposed with its real and imagi-
nary components. The unknown motion-free quantitative
maps p" of input signals s̃" can then be obtained by feed-
ing the output signals ŝ" into the standard NLLS analysis,
where both magnitude and phase images are needed to
compute F(t) values used during NLLS fitting. Notice this
NLLS approach is only used for the quantitative maps com-
putation during the test stage, not for the training of our
CNN model.

2.2.2 Method 2: LEARN-BIO

Let p̂" = "(Mag(s̃")) denote our model LEARN-BIO,
which computes the estimates p̂" of the unknown true
values of p" given the magnitude value of the mGRE sig-
nal s̃" . The operator Mag(⋅) denotes the magnitude of
the complex data and vector " denotes the trainable set
of weights in the CNN. The network takes absolute data
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F I G U R E 2 Comparison of two approaches for training the motion-correction models. (A) In LEARN-IMG, the model ! is optimized
so that {Re(̂s"), Im(̂s")} = !({Re(s̃"), Im(s̃")}) is close to the corresponding ground-truth multi-Gradient-Recalled Echo (mGRE) data
{Re(s"), Im(s")}. Standard nonlinear least squares approach is applied to the motion-corrected output ŝ = {Re(̂s"), Im(̂s")} to estimate
unknown motion-free quantitative maps p" = (S0,R∗

2). (B) In the self-supervised approach LEARN-BIO, the model " is trained to directly
estimate motion-free quantitative maps p" given measurement mGRE data Mag(s̃") and the biophysical model . The loss if formulated so
that Mag(̂s") = Mag(("(Mag(s̃")); f")) is close to corresponding ground-truth mGRE data Mag(s")

Mag(s̃") as its N-channel input and produces p̂" = (Ŝ0, R̂
∗
2)

as its two-channel output. The major difference between
LEARN-BIO and the previously described LEARN-IMG
is that the former directly learns to predict motion-free
quantitative R∗

2 maps. LEARN-BIO is trained using a
self-supervised learning strategy, illustrated in Figure 2B,
where the model " is trained only using the mGRE
data. We adopt a widely used definition of self-supervised
learning where a model is trained using a pretext (or aux-
iliary) task, but tested on the actual desired task.30,35-40

In the context of our work, the desired task is the esti-
mation of R∗

2 maps, while the pretext task is the gen-
eration of high-quality mGRE images. In LEARN-BIO,
self-supervised learning is enabled by using the analyti-
cal biophysical model s" = (p"; f") in Equation (1) to
relate the mGRE images and the quantitative R∗

2 maps into
a loss function and solving the corresponding optimization
problem on a training dataset {(s̃" , s")}"=1,… ,L

min
"

L∑
"=1

 (
Mag(("(Mag(s̃")); f")),Mag(s")

)
, (10)

where f" denotes matrices containing F-function val-
ues precalculated from the training mGRE images
s" using the VSF method. Therefore, the training of
LEARN-BIO is exclusively reliant on the measurement
data s" instead of the ground-truth data p" , and is
classified as a self-supervised method for using the
supervision of measurements themselves through the
signal model  and the prior induced by the CNN to
solve the model-fitting and motion-correction problem
together.

As illustrated in Figure 2B, the output of our
LEARN-BIO network for the "th data element yields the
quantitative maps p̂" = "(Mag(s̃")), which serve as an
intermediate result for our optimization problem defined
in Equation (10). The network is trained to find the
best parameters " ∗ such that its prediction {p̂"} can
well describe the measured mGRE signals and reduce
the motion artifacts at the same time. The detailed net-
work structures of LEARN-BIO and LEARN-IMG are
illustrated in Figure S1. As described below, the train-
ing of our CNNs is done by simulating the motion
artifacts.
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2.3 Motion correction
with LEARN-IMG and LEARN-BIO

LEARN-IMG and LEARN-BIO are trained to remove
motion artifacts from motion-corrupted mGRE data in
order to produce high-quality R∗

2 maps. This can be
achieved by solving the optimization problem defined in
Equations (9) and (10) using paired mGRE images {s̃" , s"},
where {s"} are the images that are not contaminated by
motion artifacts and {s̃"} are the corresponding synthetic
motion-corrupted images consisting of different levels of
motion artifacts. We show below that our CNNs only
trained on synthetic data can achieve excellent perfor-
mance on previously unseen experimental data.

2.4 In vivo brain dataset

For validating our method, we selected 20 different
MRI scans with no visible motion artifacts (qualitatively
inspected) from the previously published brain image
data6 as the motion-free source to generate the synthetic
motion-corrupted mGRE images. These brain image data
are collected from 20 healthy volunteers (age range 26–76)
using a Siemens 3T Trio MRI scanner and a 32-channel
phased-array head coil. Studies were conducted with the
approval of the local IRB of Washington University. All vol-
unteers provided informed consent. The data was obtained
using a 3D version of the mGRE sequence with N = 10 gra-
dient echoes followed by a navigator echo17 used to reduce
artifacts induced by physiological fluctuations during the
scan. Sequence parameters were flip angle FA = 30◦, voxel
size of 1 × 1 × 2 mm3, first echo time t1 = 4 ms, echo
spacing Δt = 4 ms (monopolar readout), repetition time
TR = 50 ms, and the total imaging time for each acquisi-
tion was around 10 min.

In addition, experimental brain mGRE image data of
four volunteers (ages: 32, 67, 71, and 78 years) with clear
visible motion artifacts were selected for evaluating the
correction of real motions of our CNN models that trained
on syntactic data.

2.5 Data generation preprocessing

To obtain the paired motion-corrupted and motion-free
images for training, brain mGRE images of 20 different
MRI scans with no visible motion artifacts described above
were selected to serve as the the “motion-free” reference
images for the training and quantitative evaluation of our
CNNs. We split this data into 14 datasets (75%) for train-
ing, three for validation (15%) and three for testing (15%),
and our aforementioned motion simulation procedure was

then applied to these datasets slice by slice to generate
motion-corrupted images.

To generate a range of realistic motion artifacts for our
training dataset, we select the total number of motions
occurring during data acquisition as a random number in
the range from 1 to 10. For each motion, we simulated
random in-plane shifts within the range of 0–15 voxels fol-
lowed by a combination of three random rotations along
each axis relative to the center of a 3D mGRE data volume,
where each rotation is within the range of 0◦–15◦. While
the simulation setting above yields excellent performance
in our experimental data, it can be adjusted for different
applications. The time at which each motion occurred and
the duration it lasted were randomly generated as well. In
particular, all motions were assumed to occur randomly
throughout the whole examination process, and each of
them is assumed to last for a random duration from about
3 to 30 s, which would be equivalent to disturbing about 1
to 10 k-space lines in a single 2D slice. All random num-
bers mentioned above were uniformly generated in the
given range, introducing various levels of motion artifacts
to our training and validation dataset. Those synthesized
motion-corrupted data together with their motion-free ori-
gins were used for the training of our CNNs.

To quantitatively evaluate the performance of our
trained CNNs across different levels of motion artifacts, we
synthesized three motion types using our test dataset with
motion settings such that the corresponding artifacts intro-
duced by each can well represent the different levels of
corruption that appear in our experimental data. In partic-
ular, we manipulate 8%, 16%, and 24% of the k-space data
for each slice in our test dataset, respectively. We name
the motions generated through each of these settings as
light, moderate, and heavy motion, based on the levels of
artifacts they introduced to our motion-free mGRE data.
Those three settings were only applied to our test dataset to
generate images at certain corruption levels for validating
the robustness and capacity of our trained CNNs against
different motion levels. Examples of these three motion
type images are shown in Figure 3.

Prior to feeding the data into our CNNs, the top slices,
that include slice oversampling images and the intracra-
nial space images, and the bottom slices that include brain
stem images or highly corrupted images due to the macro-
scopic field inhomogeneities, were discarded in each data
volume. Specifically, we only used the middle brain slices
corresponding to slice 25 through 55 of a 72-slice MRI data,
20 through 50 of a 60-slice MRI data, 30 through 60 of
a 88-slice MRI data for all the experiments and numeri-
cal evaluation. This resulted in 4340 images for training,
930 for validation, and 930 for testing in the simulation.
Each dataset was also normalized to improve compatibil-
ity of our CNNs with different scanners, parameters, and
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F I G U R E 3 Illustration of synthetic motion-corrupted images. The background and skull voxels are masked out for better visualization.
The left three columns show the magnitude of the first of 10 echoes of multi-gradient-recalled echo images corrupted with light, moderate
and heavy motions, respectively. The relative error (RE) of each image is shown in its bottom left corner. The right three columns show the
absolute differences between the motion-corrupted images and the motion-free images used to synthesize them

intensity values following the strategy introduced in Ref-
erence 30, where the signal intensity of each given data
volume was divided by the mean of the signal intensity of
its middle slice in the first echo. Consequently, the estima-
tions from different approaches on S0 maps were scaled
accordingly, while R∗

2 maps were not affected.

2.6 Performance evaluation

We trained our neural networks on a GeForce RTX 2080
GPU (NVIDIA Corporation), and implemented in Ten-
sorFlow,41 using the Adam optimizer to minimize the
Euclidean distance. LEARN-BIO was trained for about
400 epochs (4 h) and LEARN-IMG for 200 epochs (24 h)
in order to achieve the best performance on the valida-
tion set. Additional details on training are provided in
the Supporting Information Appendix S1. In the training
of LEARN-BIO, the F(t) function defined in Equation (1)
was used in the loss function to account for the macro-
scopic magnetic field inhomogeneities, which is essential
in the estimation of R∗

2 maps free from B0 inhomogene-
ity artifacts. This F(t) function was precomputed using
the VSF approach1 on the corresponding ground-truth
images. Note that this F(t) function was only used during
the training stage, and is not required for testing purpose
once the CNN is trained. This means our LEARN-BIO
model is able to directly generate both motion- and
inhomogeneity-corrected R∗

2 maps from the magnitude
mGRE images.

We used the traditional voxel-wise NLLS approach
on the output of LEARN-IMG to produce corresponding
motion-corrected R∗

2 maps. NLLS is a standard iterative
fitting method for computing R∗

2 based on Equation (1).
The F(t) function computed using the VSF method on
motion-corrected output of LEARN-IMG was also used
before running NLLS in order to account for the effects of
macroscopic magnetic field inhomogeneities. At each iter-
ation, the regression is conducted by combining the data
from different echo times t with their F(t) values voxel by
voxel. Prior to the NLLS fitting procedures, a brain extrac-
tion tool, implemented in the Functional Magnetic Reso-
nance Imaging of the Brain Library, was used to mask out
both skull and background voxels in all MRI data,42 where
the signal model defined in Equation (1) does not apply.
NLLS, implemented in MatLab R2020a (MathWorks), was
run over only the set of unmasked voxels, optimizing for
400 iterations at each spatial point. Similarly, we applied
the same brain masks in the loss functions Equations (9)
and (10) for the training of our neural networks. Note for
LEARN-BIO, those masks were only used during the train-
ing and were not needed for testing. All the visual results
presented in this paper were also processed by these masks
for better comparison.

To demonstrate the performance of our proposed
CNNs, the predicted R∗

2 results were compared with the
ones computed from motion-corrupted mGRE data using
the NLLS approach with a corresponding F(t) function.
In the synthetic scenario, the R∗

2 maps computed from the
motion-free mGRE images through NLLS can be thought
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of as a reference, which we only use at test time to quanti-
tatively evaluate the R∗

2 results of different approaches. We
use the relative error (RE) metric and structural similarity
index (SSIM)43 as two means to quantitatively compare the
estimated result x̂ with its reference x∗. We define RE as

RE =
‖‖x∗ − x̂‖‖
‖x∗‖ × 100%, (11)

where x̂ and x∗ represent the vectorized image estima-
tion and its ground-truth reference, respectively, and || ⋅ ||
denotes the standard Euclidean norm. In the synthetic sce-
nario, to evaluate the performance of different approaches
on motion-free R∗

2 estimation, we regarded R∗
2 computed

using NLLS on motion-free mGRE data as the refer-
ence. To evaluate the motion correction performance of

LEARN-IMG on mGRE signals, we use the motion-free
mGRE images as references. Both RE and SSIM are com-
puted on the brain voxels indicated by the aforementioned
brain mask for each slice. In the experimental scenario,
where the motion-free references are not available, we
applied the models trained on the synthetic data and pro-
vided a qualitative visual comparisons of the different
approaches.

3 RESULTS

Figure 4 shows example R∗
2 maps calculated by NLLS,

LEARN-IMG and LEARN-BIO for two simulated
motion-corrupted slices in two different corruption sce-
narios (one is with moderate motions and the other is

F I G U R E 4 Motion correction
results from LEARN-IMG and
LEARN-BIO on the synthetic data.
Images represent two sets of results
obtained from the synthetic datasets
with different motion levels
(moderate in rows 1 and 2 and heavy
in rows 3 and 4). The Reference R∗

2
maps computed using nonlinear
least squares on motion-free
multi-gradient-recalled echo
(mGRE) images and the magnitude
of the first of 10 echoes of motion-free
mGRE images are shown in the first
column. Columns 2–4 show the R∗

2
maps and their absolute differences
from the R∗

2 references for different
methods. The relative error of each
R∗

2 map is shown in the bottom left
corner. Representative regions with
2× zoom are shown on the bottom
right of each R∗

2
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T A B L E 1 Average relative error (RE) and structural similarity index (SSIM) values for the R∗
2 estimation on the synthetic test data.

Results here summarize the performance of each approach at different levels of motion artifacts. We additionally provide the RE and SSIM
values for the motion-corrupted mGRE input data and the output of LEARN-IMG averaged on 10 echoes

Light Moderate Heavy

Method RE SSIM RE SSIM RE SSIM

mGRE Input 5.02% 0.96 7.31% 0.93 9.19% 0.90

LEARN-IMG 3.86% 0.98 4.91% 0.96 5.82% 0.95

R∗
2 NLLS 22.52% 0.90 28.53% 0.86 33.55% 0.82

LEARN-IMG 20.02% 0.94 22.04% 0.91 23.92% 0.90

LEARN-BIO 20.28% 0.93 21.76% 0.90 23.08% 0.89

F I G U R E 5 The statistical analysis of nonlinear least squares, LEARN-IMG and LEARN-BIO on the synthetic test data. Results
visualize the performance of R∗

2 reconstruction from each approach in dealing with different levels of motion artifacts

with heavy motions, as shown in Figure 3). Reference
mGRE images without motion artifacts are shown for
each example. It is clear that all the R∗

2 maps from NLLS
contain strong motion artifacts, while the ones from
LEARN-BIO and LEARN-IMG are of significantly higher
quality with no obvious artifacts remaining. We also
notice that while removing the artifacts, our approaches
can also preserve important microstructure details of the
R∗

2 maps, as can been seen from the exemplar zoomed
regions in Figure 4. Numerical RE results in each figure
quantitatively corroborate that our methods provide bet-
ter estimation of R∗

2 compared to NLLS, with LEARN-BIO
providing similar performance with LEARN-IMG in all
examples. Note that the RE numbers in our results should
be interpreted with care since the reference R∗

2 maps
were computed using NLLS on motion-free in vivo data.
Thus, despite the very similar RE performance compared
to LEARN-IMG, LEARN-BIO usually achieves better
motion-artifact removal as corroborated by visual evalua-
tion (see zoomed details in Figures 4 and 6). The difference

maps (|estimated - reference|) that illustrate the absolute
value of the deviation from their reference are also visu-
alized for each result. It can be seen that difference maps
of NLLS are much brighter compared to LEARN-IMG
and LEARN-BIO, especially in the heavy motion scenario
where NLLS estimations are contaminated by severe
motion artifacts.

Table 1 and Figure 5 summarize the average RE and
SSIM over the whole test dataset on three motion corrup-
tion scenarios for all methods. We note that LEARN-IMG
and LEARN-BIO share very similar performance across
all corruption scenarios by providing much lower RE
than NLLS. It is also worth noting that our proposed
approaches are robust, showing about only 2% gain of
RE along with the increase of motion levels from light
to moderate, and again from moderate to heavy. While
the performance of the results from NLLS is dramatically
affected by the motion levels, showing about 6% gain
of RE along the increase of motion levels each time. As
a results, the quality gap between our approaches and
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F I G U R E 6 Motion
correction results obtained
using the experimental data
from three different subjects.
The magnitude of the first of 10
echoes of motion-corrupted
multi-gradient-recalled echo
(mGRE) images of the method
inputs are shown in the first
column and R∗

2 maps of
different methods are shown in
columns 2–4. Representative
regions with 2× zoom are
shown on the bottom right of
each R∗

2

NLLS enlarges noticeably as inputs get more and more
corrupted: from around 2% at light to around 10% at
heavy. In addition to the R∗

2, the motion-corrupted mGRE
inputs of the neural networks and the image predictions
from LEARN-IMG are also evaluated and presented in
the table. Here, the references for measuring the image
predictions are the motion-free mGRE data and the num-
bers are computed on the magnitude of the complex data.
The corresponding numerical results align with the con-
clusion over R∗

2, showing that LEARN-IMG is effective in
removing motion artifacts in the spatial domain.

Figure 6 visualizes examples of the R∗
2 calculated by

NLLS, LEARN-IMG, and LEARN-BIO for three in vivo
slices of different subjects from the experimental data with
real motion. While the motion artifacts in this data might
not follow our simulation model, we do observe similar
results to our synthetic experiments. It can be seen that
the R∗

2 maps produced by our methods are much better
than the ones from NLLS, showing that our methodology
is capable of handling the real motion artifacts while still
keeping detailed structural information. While our net-
works are trained on the middle slices, they can perform

motion correction across the whole brain volume (includ-
ing the very top and bottom slices). As shown in Figure 7,
our networks that were trained on middle slices can
remove the motion artifacts across different brain regions,
including the top (columns 1 and 2), middle (columns 3
and 4), and bottom (columns 5 and 6) slices in the exper-
imental data with real motion. Our networks outperform
the baseline method NLLS which suffers from high motion
artifacts in the estimated R∗

2 maps across the whole brain.
We hypothesize that the ability of our networks to gener-
alize across different brain regions is due to their ability to
capture similarity in the motion artifacts.

4 DISCUSSION AND
CONCLUSIONS

In this manuscript we proposed two CNN approaches,
namely LEARN-IMG and LEARN-BIO, for the robust
motion correction of R∗

2 maps from mGRE Echo MRI
data. LEARN-IMG is based on a supervised deep neural
network that conducts the motion correction on complex
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F I G U R E 7 Motion correction results obtained using the experimental data from one subject across different brain slices. The
representative top, middle, and bottom slices of a three-dimensional data volume are illustrated in columns 1-2, 3-4, and 5-6, respectively. The
magnitude of the first of 10 echoes of motion-corrupted multi-gradient-recalled echo (mGRE) images are shown in row 1 and corresponding
R∗

2 maps of different methods are shown in rows 2–4. Representative regions with 2× zoom are shown on the bottom right

mGRE images, followed by the standard NLLS fitting
approach. It decomposes the motion correction and quan-
titative maps estimation into two procedures, bringing
more flexibility to various potential applications of quan-
titative mapping. In this approach, the training of CNN
simply relies on the paired MR images. In testing, it only
takes 30 s for CNN to process the full brain data (using a
GeForce GTX 1080 Ti GPU), while NLLS fitting together
with the computation F(t) functions take about 120 min
on a modern PC (using eight cores). On the other hand,
LEARN-BIO is based on a self-supervised deep neural
network that uses a biophysical model connecting mGRE
MRI signal with underlying biological tissue microstruc-
ture. It integrates the motion correction and quantitative
mapping procedures together within one single CNN.
During the training (but not application), both paired MR
images and the F(t) functions as well as the knowledge of

the biophysical model are needed. This allows our CNN to
recognize the contribution of macroscopic magnetic field
inhomogeneities to the mGRE signal only from the mag-
nitude data. Therefore, at testing time, the information of
F(t) functions is not required, which saves a great amount
of time compared with the LEARN-IMG approach. Specif-
ically, it takes only 3 s for LEARN-BIO to predict the
motion- and B0-corrected R∗

2 maps for the full brain data.
Both of our methods, LEARN-IMG and LEARN-BIO,

show great performance in producing motion- and
B0-corrected R∗

2 maps that are of the same quality as
NLLS-based voxel-by-voxel analysis from motion-free
mGRE data. As shown in Figure 4 and Table 1,
LEARN-BIO and LEARN-IMG consistently gives the
best performance over the synthetic data in our different
corruption scenarios. Figures 6 and 7 further elaborates
the capability of our CNN models on experimental data,
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showing a practical application of our approaches on
removing real-world motion artifacts and keeping feature
details. Our approaches constantly outperform NLLS both
qualitatively and quantitatively, thanks to the power of
our deep neural networks.

While both of our proposed methods enable the
estimation of high-quality motion-corrected R∗

2 maps,
they have distinct trade-offs that can lead to differ-
ent applicability in practical scenarios. LEARN-BIO is
suitable for applications where one directly requires
motion-correction quantitative R∗

2 maps with low compu-
tational time. In this paper, we used LEARN-BIO with a
specific biophysical model in Equation (1) to produce R∗

2
maps, but the same approach can potentially be applied
to any biophysical model. LEARN-IMG, on the other
hand, provides motion-corrected mGRE images that can
be used in a combination with any previously developed
model that did not account for motion in the data. For
example, motion-corrected mGRE images can be used
for generating quantitative tissue-cellular-specific (R2t∗)
and Blood-Oxygen-Level-specific (R2′) maps,4,31 which
have proved useful in studying healthy aging,3 brain neu-
ronal content6 and its relationship to brain functional
connectivity,44 Alzheimer Disease,5,8 Multiple Sclero-
sis,45-47 and psychiatric disease.48 mGRE sequences are
also used to study brain tissue multicompartment struc-
ture,49-51 mapping of cerebral metabolic rate of oxygen by
combining quantitative susceptibility mapping and quan-
titative blood oxygenation level-dependent imaging,52 etc.
Therefore, LEARN-IMG can be generalized to various
applications and different quantitative map computation.
Nevertheless, this generalization capability requires apply-
ing additional quantitative-map-oriented fittings to the
motion-corrected mGRE outputs of the network, which
consequently increases the computation time compared
to LEARN-BIO. Therefore, LEARN-IMG fits applications
where different quantitative maps are required under
less-restrictive time constrains.

In this work, we have accounted for the macroscopic
magnetic field inhomogeneity effects by including in
the biophysical model the F-function term (Equation 1)
computed using the the VSF approach1 that accounts
for the presence of magnetic field inhomogeneities in
the imaging object. Since magnetic field inhomogeneities
are induced mostly by the air cavities (e.g. sinuses)
inside the head, they change with head motion, thus
affecting MRI data. This effect is not accounted for
in our current motion-correction implementation. While
detail analysis of this effect is beyond the scope of this
paper, we can estimate a potential error resulting from
this effect by recalling that only a projection (ΔB) of
the magnetic susceptibility-induced inhomogeneous mag-
netic field (ΔB) on the main magnetic field B0 actually

affects MRI signal. Hence, if the object in the MRI scan-
ner is rotated by an angle &, the ΔB would not change by
more than cos2&. For example, for & about 10◦, this change
is only about 3% and can potentially cause about 3% error
in R∗

2 estimation in the brain regions strongly affected by
the magnetic field inhomogeneities (see figure A2 in Ref-
erence 44). However, in a typical MRI session, 3D mGRE
data are acquired over about 6-min scan while motion usu-
ally does not last for more than a few seconds, affecting
only small portion of 3D dataset, and consequently result-
ing in R∗

2 estimation error significantly smaller than 3%.
It worth mentioning that while 3D motion is consid-

ered in the simulation, our network architectures takes as
its input a sequence of 2D images at different echo times.
The key benefit of using our architectures, instead of more
complex ones that consider sequences of 3D images, is the
lower computational and memory complexity. However, it
conceivable that by using more complex architectures one
can better capture the 3D motion and thus improve the
final performance. Similar to all image restoration meth-
ods, our method exhibits a common trade-off between
artifact-removal and smoothing on some images. In future
work, it might be worth exploring the potential of obtain-
ing sharper images by replacing the Euclidean loss used in
our training with other common functions (e.g., "1 loss).

In conclusion, we introduced LEARN-IMG and
LEARN-BIO as two fast and robust learning-based
methods that can utilize motion-corrupted mGRE data
to produce high-quality R∗

2 maps which are free from
B0-inhomogeneity and motion artifacts. This validates
the representation power of our CNNs in quantitative
map estimation as well as motion correction. The good
motion-reduction performance on experimental data
demonstrates a potential clinical usage of our trained
models.
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