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Abstract- Traditional software reliability growth models
only consider defect discovery data, yet the practical concern
of software engineers is the removal of these defects. Most at-
tempts to model the relationship between defect discovery and
resolution have been restricted to differential equation-based
models associated with these two activities. However, defect
tracking databases offer a practical source of information on
the defect lifecycle suitable for more complete reliability and
performance models. This paper explicitly connects software
reliability growth models to software defect tracking. Data
from a NASA project was employed to develop differential
equation-based models of defect discovery and resolution as
well as a distributional model of defect resolution. Illustra-
tions compare the predictive and computational performance
of alternative approaches. The results suggest that the simple
distributional approach achieves the best tradeoff between
these two performance measures.

I. INTRODUCTION

Software reliability growth models (SRGM) [1] comple-
ment the software testing process in order to quantify the
decreasing trend in times between the discovery of defects
and the corresponding increase in reliability. Myriad papers
call out the limitations of these models such as the assumption
made by nonhomogeneous Poisson process (NHPP) SRGM
that discovered defects are corrected immediately and no ad-
ditional defects introduced. The relative magnitude of papers
offering incremental advancements overshadows more inno-
vative studies that attempt to establish concrete connections
to the activities performed as part of software engineering
processes. Despite these efforts, theory and practice have
diverged, missing opportunities to drive meaningful advances.
Marginal modeling efforts that do not explicitly validate
underlying theories and poor data collection practices are
two primary impediments. Modelers need to characterize the

activities performed by processes and practitioners need to
implement controls to capture data more consistently and
accurately. The ideal outcome is a virtuous cycle in which
modelers equip practitioners with practical inferences of high
concern to inform process improvement and practitioners
enhance data collection to support the livelihood of modelers.

Early studies that have attempted to characterize software
defect discovery and resolution include the work of Schnei-
dewind [2] who modeled defect discovery with a discrete
exponential mean value function and resolution with a time
lag. Xie and Zhao [3] subsequently extended Schneidewind’s
model, assuming a defect resolution rate proportional to the
number of defects discovered but not yet resolved and also
demonstrated the applicability of the Poisson thinning process
to model the difference between defects discovered but not yet
resolved. Ohba [4] proposed the inflexion S-shaped model
to characterize the fact that some defects may need to be
discovered and resolved before others can be discovered,
while Yamada and Osaki [S5] introduced the delayed S-
shaped model, which incorporates a time delay to model
this dependence. Yamada et al. [6] proposed two SRGM
with imperfect debugging, where new defects are sometimes
introduced when resolving others.

More recent studies include the work of Huang et al. [7]
showed how several existing SRGM can be derived by
applying the time-dependent delay function, while Lo and
Huang [8] proposed an integrated defect discovery and res-
olution process modeling framework, in which the defect
resolution process is expressed in terms of a time-varying
resolution intensity and the difference between the number
of defects discovered and resolved. Inoue and Yamada [9]
proposed a modeling framework for alternative debugging
scenarios based on an absorbing continuous-time Markov
chain to characterize the time between defect discovery and
resolution. Cinque et al. [10] proposed debugging-workflow-



aware SRGM to leverage debugging data managed by com-
panies in bug tracking systems in order to improve accu-
racy when debugging fails to completely satisfy modelling
assumptions. Vizarreta et al. [11] found that the inflection S-
shaped model best characterized the defect resolution of four
releases of an open source software defined network controller
and subsequently [12] quantified the cumulative distribution
function of time to resolution according to defect severity.

This paper develops defect resolution models based on
a data set from a NASA project [13]. Specifically, a
differential-equation based model from the framework of Lo
and Huang [8] as well as a distributional model of the
defect lifecycle. These models are created from information
within the defect tracking database. The distributional model
employs censoring to estimate model parameters when some
defects have been discovered but not yet resolved, which is
necessary to apply the models and make predictions during
the testing and defect resolution process. Illustrations compare
the predictive accuracy and computational efficiency of the
proposed models. Our results indicate that the distributional
model achieves the fastest run time and lowest predictive
error, suggesting it may be a suitable alternative to models
based on a system of differential equations.

The remainder of the paper is organized as follows: Sec-
tion II explains the need to distinguish defect discovery and
resolution times, while Section III covers defect discovery and
resolution models. Section IV illustrates the defect resolution
models whereas Section V concludes and suggests future
research directions.

II. DEFECT DISCOVERY AND RESOLUTION: CONCEPTS

For clarity of exposition, Figure 1 shows the less detailed
case of defect times data in order to explain many of the
core concepts contained in past software defect discovery and
resolution models.
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Fig. 1: Software defect discovery and resolution concepts
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The upper curve in Figure 1 represents the total defects
discovered by the end of the i*" interval, which is the
cumulative number of defects ever discovered. This cor-
responds to the counting process N(¢) to which software
reliability growth models are typically applied. However,
basing reliability estimates on the non-discovery of additional

defects makes strong implicit assumptions about the scope
and completeness of testing. Therefore, a more pragmatic
approach also employs the data in the bottom left of the
figure with white bars, which represents the number of defects
discovered but not yet resolved according to their severity,
while the curve in the bottom right of the figure with grey
bars represents the cumulative number of defects that have
been both discovered and resolved N,.(t). Ideally, the number
of unresolved defects goes to zero soon after all defects
have been discovered, since the goal of software testing is to
both detect and remove defects. Thus, Figure 1 indicates that
models that only consider N (¢) do not properly distinguish
between detection and resolution and are therefore inadequate
to assure software reliability. To support more detailed models
of defect discovery and resolution a natural resource is the
defect tracking database, which documents the lifecycle of
individual defects, enabling explicit connections between the
software process and activities performed. Toward this end,
each model developed in the following section explains how
data from the defect tracking database can be transformed in
support of parameter estimation.

III. DEFECT DISCOVERY AND RESOLUTION: MODELS

This section describes alternative methods to model the
discovery and resolution of software defects recorded in a
defect tracking database, including novel models based on the
integrated defect discovery and resolution process modeling
framework proposed by Lo and Huang [8] as well as a
distributional resolution model developed here. These defect
resolution models enable practical inferences of interest to
the software practitioner that can be made throughout the
software testing process, including the expected time required
to remove (i) all defects discovered up to the present time ¢
and (ii) all defects discovered up to the present time ¢ as well
as all defects anticipated to be discovered.

A. Integrated defect discovery and resolution processes

In the integrated defect discovery and resolution process
modeling framework [8], the rate of defect discovery and
resolution are respectively expressed as differential equations
possessing forms
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where m(t) (m,(t)) denotes the mean value function of
the number of defects discovered (resolved) by time ¢, A\(¢)
(A\-(t)) the defect discovery (resolution) rate, and a > 0
the number of defects that would be discovered with infinite
testing. Thus, Equation (2) expresses the instantaneous rate
of change in defect resolution as the product of the defect
resolution intensity multiplied by the defects discovered but
not yet resolved by time t.

Lo and Huang [8] derived general forms of the solutions
for Equations (1) and (2) with initial conditions m(¢) = 0 and



m,(t) = 0 to produce expressions for the mean value function
of defect discovery and resolution. They subsequently applied
these general forms to explicitly show that A(t) = \.(t) = b
is the special case where the defect discovery and resolution
models are characterized by the Goel-Okumoto [14] and
Yamada Delayed S-shaped models [5] respectively. They also
derived a novel model with unequal discovery and resolution
rates A(t) = b and \,.(t) = c. However, additional discovery
and resolution models for the inflection S-shaped [4] as well
as exponential and Rayleigh [15] and Weibull [16] testing
effort functions were only specified implicitly in terms of \(¢)
and \.(t).

We applied the Goel-Okumoto, Weibull, Yamada Delayed
S-shaped, inflection S-shaped, Jelinski-Moranda [17], and Ge-
ometric model [18] to a recent NASA data set [13] and found
that the inflection S-shaped model best characterized the
defect discovery process. Therefore, we derived two explicit
forms of m,.(t) with Equation (2), assuming defect discovery
is modeled by the inflection S-shaped model, possessing mean
value function
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U F et
where, b is the constant defect discovery rate, c¢ is the
inflection parameter
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and r is the inflection rate. As r approaches 1.0, the inflection
S-shaped model reduces to m(t) = a(1 —e~%), which is the
form of the Goel-Okumoto model.

The first form of our defect resolution model assumes
defect resolution intensity A,.(¢) = b, is the same as parameter
b present in Equation (3), producing

ml(t) = a(l —e " 1 (1+¢)log (1+C>6_bt> 3)
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The second form of our defect resolution model introduces
an additional parameter through A.(¢t) = d, which implies
that the defect resolution intensity is distinct from parameter
b in Equation (3), producing
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where 2 Fy (a,b;¢,2) = > pep %%ﬁ is the hypergeomet-
ric function with (¢)r =q(¢+1)...(¢+k—1) for k > 0.
Given a defect database possessing discovery and resolution
times, T = (t1,t2,...,t,) and T7 = (7,5, ... ] ), the
defect detection model in Equation (3) is applied with T,

while the defect resolution models in Equations (5) and (6)
may be applied directly to T".

B. Distributional approach

An alternative and potentially simpler method to model
the time to correct defects is to compute the times between
discovery and resolution and fit a distribution to these statis-
tics. To make resolution time predictions possible throughout
the software testing process, it is necessary to rely on the
discovery and resolution times available up until time {.
However, at any specific time, the number of defects resolved
may be strictly less than the number of defects discovered.
This discrepancy requires the use of maximum likelihood
estimation techniques for censored data [19]. Specifically, the
problem of identifying a distribution to best fit the defect
resolution times, when only a subset of the defects discovered
has been resolved, may be estimated from the following
likelihood function

k n—k
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where k is the number of defects in the set R discovered and
resolved before time T, (n — k) is the number of defects in
the set D that have been discovered by time 7" but not yet
resolved, and @ is the vector of parameters of the distribution
being fit to the data. Moreover, 170) denotes the time between
discovery (¢;) and resolution (¢]) of the it" defect such that
t(;) = t; —t;, whereas the term 1 —F'(T' —t;) is the probability
that a defect discovered at time ¢; has not been resolved by

time 7T'.

In practice, Equation (7) can be maximized with multi-
ple alternative distributions and the one achieving the best
goodness of fit employed to make predictions. One may then
compute the mean of this distribution of best fit, which can
be interpreted as the mean time to resolve defects. In this
manner, the MVF of the number of defects resolved by time
t may be expressed as

m(t) = m(t — E[T},]) (8)

which translates the mean value function of the defect discov-
ery process to the right by the mean time to resolve defects
(E[T].

IV. ILLUSTRATIONS

This section illustrates the approaches to defect resolution
modeling developed in Section III in order to assess their
relative predictive ability and computational efficiency.

To emphasize the need for software reliability modeling
that can be used during the defect and resolution process,
two cases are considered: (i) retrospective analysis, charac-
teristic of many historical defect discovery modeling papers,
which used all available data and (ii) online analysis, which
periodically updates estimates throughout this process to
refine estimates and track progress. Section IV-A presents
a comparative retrospective analysis of the alternative defect
resolution model and explains the steps taken to apply the



Distributional approach. Section IV-B presents online predic-
tive analysis, discussing the tradeoffs between model accuracy
and computational efficiency.

A. Defect resolution models

This example examines the accuracy of the alternative
defect resolution modeling approaches.

1) Retrospective analysis: Figure 2 shows the defect dis-
covery and resolution counting processes (N (t) and N,.(t))
along with the corresponding fitted defect and resolution
models as well as the distributional approach.
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Fig. 2: Defect discovery and resolution processes with fitted
defect models

The first counting process (left step function) indicates the
times at which the defects were discovered and is accompa-
nied by the fit of the inflexion S-shaped model. The second
counting process (right step function) corresponds to the times
at which defects were resolved.

For each of the defect resolution modeling approaches,
Table I summarizes the sum of squares error (SSE) and
runtime in seconds.

TABLE I: Comparative analysis of defect resolution

intensity
Approach SSE | Runtime
Resolution process (m0(t)) | 3.77 x 10* 175.2
Resolution process (m?(t)) | 2.96 x 10° 1627.2
Distributional 3.43 x10* | 150.1

The model with the lowest SSE and runtime, namely the
distributional approach, are shown in bold.

The maximum likelihood estimates of mb(t) were a =
465.13, b = 0.004855, and ¢ = 101.605, while the max-
imum likelihood estimates of m&(t) were a = 462.617,
b = 0.004191, ¢ = 167.91, and d = 0.656773. Thus, the
unique resolution rate d in Equation (6) contributes to the
poor quality of the model fit because of the higher masking
term ¢, which corresponds to visible underprediction of the
number of defects resolved in the interval ¢ = (600, 1000) of
Figure 2.

The mean time from defect discovery to resolution of
the distributional approach was E[T,.] = 59.74, which was
determined with the special case of Equation (7), where all

data up to the time of the resolution of the n!" defect was
available. Thus, the accuracy and efficiency of the distribu-
tional approach may offer a competitive alternative to the
resolution process (m®(t)) of Equation (5).

2) Distributional approach: Seventeen possible distribu-
tions were considered, explaining why the calculation in
Table I required 150 seconds. These distributions included
the Beta, Birnbaum-Saunders, Exponential, Extreme value,
Gamma, Generalized extreme value, Generalized Pareto, In-
verse Gaussian, Logistic, Log-logistic, Lognormal, Nakagami,
Normal, Rayleigh, Rician, ¢ location-scale, and Weibull dis-
tributions. The generalized extreme value (GEV) distribution
possessing the following maximum likelihood estimates 7). ~
GEV (ji = 57.4437,6 = 22.6722,£ = —0.0959) attained the
best fit to the empirical times between defect discovery and
resolution according to AIC [20] and BIC [21] measurements,
as shown in Figure 3.
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Fig. 3: Empirical distribution of time between defect
discovery and resolution

However, this retroactive approach is only useful for model
assessment after all of the data has been collected and
remains a pervasive problem in the defect discovery modeling
literature, namely the over reliance on in sample measures of
goodness of fit and the lack of online procedures that can be
employed during the defect discovery and resolution process,
which are explicitly addressed in Section I'V-B.

B. Comparison of online predictive accuracy and computa-
tional efficiency

To further compare the alternative defect resolution models,
this section conducts an online assessment of predictive
accuracy, which also explicitly considers the computational
efficiency of each approach. Starting at time ¢ = 200, the
defect resolution processes of Equations (5) and (6) were
fit directly to the resolution time data extracted from the
defect tracking database, while the distributional approach
first identified an SRGM that best fit the available defect
detection data and then estimated the mean time to resolve
defects (E[T]) with Equation (7). In this manner each model,
was used to predict the cumulative number of defects that
would be resolved 200 time units into the future or ¢ = 400
and the percentage error computed between the actual number
of defects observed and the predicted values. This process



was repeated periodically for each model. However, Table I
determined that the model with unique defect resolution rate
(md(t)) was over an order of magnitude slower than the
distributional approach. Thus, the frequency of predictions
made by each model was chosen to be inversely portion
to their runtime. This method was implemented to allocate
approximately equal computational time to each method.
Figure 4 shows the results of online assessment of predic-
tive accuracy explicitly considering computational efficiency.
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Fig. 4: Comparison of online predictive accuracy

Figure 4 indicates that the distributional approach achieves
the lowest error as early as ¢ = 300 and remains the
most accurate throughout the remainder of the defect testing
and resolution process. Moreover, the computational effi-
ciency enables frequent updates, supporting regular online
assessment throughout. Unlike the defect resolution processes,
which rely solely on the defect resolution count data, the
distributional approach explicitly incorporates information on
defects discovered and resolved as well as those discovered
but not yet resolved.

V. CONCLUSIONS AND FUTURE RESEARCH

This paper connect software reliability growth models to
defect tracking databases. Differential-equation based and
distributional approaches were developed. A NASA defect
tracking database was employed for this purpose. Models
were applied to the full data, referred to as retrospective anal-
ysis, and the steps taken to apply the distributional approach
explained. Finally, the predictive accuracy and computational
efficiency were assessed in an online manner. The results
suggested that most of the models fit the defect resolution
data well, but that the distributional approach achieved the
best fit and also demonstrated the lowest runtime, enabling
more frequent updates, which would support online tracking
when defect detection and resolution are ongoing. The models
demonstrate the potential benefit of efforts to collect high
quality data related to the defect tracking lifecycle.

Possible future research includes developing queueing theo-
retic models of defect discovery and resolution and comparing
their accuracy and computational performance to the models
presented here.
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