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Abstract—Traditional software reliability growth models en-
able quantitative assessment of the software testing process by
characterizing fault detection in terms of testing time or effort.
However, the majority of these models do not identify specific
testing activities underlying fault discovery and thus can only
provide limited guidance on how to incrementally allocate effort.
Although there are several novel studies focused on covariate
software reliability growth models, they are limited to model
development, application, and assessment.

This paper presents a non-homogeneous Poisson process soft-
ware reliability growth model incorporating covariates based
on the discrete Cox proportional hazards model. An efficient
and stable expectation conditional maximization algorithm is
applied to identify the model parameters. An optimal test activity
allocation problem is formulated to maximize fault discovery. The
proposed method is illustrated through numerical examples on
a data set from the literature.
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I. INTRODUCTION

Traditional software reliability growth models (SRGM) [1]
characterize the fault discovery process during testing as a
non-homogeneous Poisson process (NHPP). These models
predict future faults as a function of testing time or effort,
enabling inferences such as the number of faults remaining,
additional time required to achieve a specified reliability,
and optimization problems such as optimal release [2] and
effort allocation [3]. However, the vast majority of these
NHPP SRGM do not identify the underlying software testing
activities that lead to fault discovery. Thus, effort allocation
based on these models can only provide general guidance
on the amount of effort to invest and limited information
regarding the effectiveness of specific testing activities.

More recently, bivariate NHPP SRGM [4] and covariate
models [5], which are capable of characterizing faults dis-
covered as a function of multiple software testing activities
such as calendar time, number of test cases executed, and
test execution time have been proposed. Covariate models are
an especially attractive alternative to testing effort models [6]
because they introduce a single additional parameter per metric
and do not require sequential model fitting procedures. How-
ever, covariate models do require stable and efficient numerical
methods. To realize the full potential of covariate models, gen-
eralized optimization procedures such as test activity allocation

are needed to guide the distribution of limited resources among
specific test activities in order to maximize fault discovery,
correction, and improved reliability.

Related research on covariate models includes the work of
Rinsaka et al. [5] who combined the proportional hazards
model and nonhomogeneous Poisson process to provide a
generalized fault detection process possessing time-dependent
covariate structure. Shibata et al. [7] subsequently extended
this to a cumulative Bernoulli trial process. Okamura et
al. [8] proposed a multi-factor software reliability model based
on logistic regression and an efficient algorithm to estimate
the model parameters. Okamura et al. [9] combined Poisson
regression-based fault prediction and generalized linear mod-
els [10] with metrics-based software reliability growth models.
Shibata et al. [11] implemented these methods in the M-SRAT
(Metrics-based Software Reliability Assessment Tool).

Covariate models exhibit substantially improved prediction
capabilities over NHPP software reliability growth model.
Therefore, to enhance the utility of covariate models and
encourage their use in practice, this paper makes the following
primary contributions

• A software reliability growth model possessing a discrete
Cox proportional hazard rate to incorporate covariates.
This approach is analogous to the model introduced
in [7], which is based on a discrete time model of
Kalbfleisch and Prentice [12]. However, formulation and
estimation of the proposed model ensures that the counts
of software faults in disjoint intervals of the point process
are independent random variables possessing a Poisson
distribution with non-homogeneous rates, which is an
assumption of a NHPP by design.

• A generalization of the testing effort allocation prob-
lem [13] to covariate models referred to as the optimal
testing activity allocation problem to maximize fault
discovery within a budget constraint.

The illustrations apply the model to a real data set from
the literature with the expectation conditional maximization
(ECM) algorithms and then solves the optimal testing activity
allocation problem. The results indicate that periodic applica-
tion of testing activity allocation could more effectively guide
the type and amount of specific testing activities throughout
the software testing process in order to discover more faults



despite limited resources.
The remainder of the paper is organized as follows: Sec-

tion II discusses proportional hazards modeling incorporating
covariates and formulates the optimal test activity allocation
problem to maximize fault discovery. Section III describes
model estimation, assessment, and selection. Section IV il-
lustrates the proposed approach, while Section V provides
conclusions and future research.

II. PROPORTIONAL HAZARDS MODELLING
INCORPORATING COVARIATES

This section describes the formulation of a discrete Cox
proportional hazards model incorporating covariates.

Testing occurs in discrete intervals i = 1, 2, . . . , n. An
NHPP software reliability model assumes that the point pro-
cess possesses independent Poisson distributed increments. In
other words, the number of faults detected over these n disjoint
time intervals are independent. Suppose that we are interested
in investigating the effect of p software test activities on fault
detection. We denote the vector of software test activities in
the ith testing interval by xi = (xi1, xi2, . . . , xip) for i =
1, 2, . . . , n. The dependence of the functions on the parameters
of the distribution of T and coefficients of the p software test
activities in the model, denoted β = (β1, β2, . . . , βp)

T, must
be estimated from data.

The Cox proportional hazards model for a discrete pro-
cess [7] is

hi,xi;θ,β = 1− (1− h0i;θ)g(xi;β), (1)

for i = 1, 2, . . . , n, where h0i;θ is known as the baseline hazard
function and traditionally possesses the form

g(xi;β) = exp(β1xi1 + β2xi2 + · · ·+ βpxip). (2)

Proof. From the definition of the discrete time hazard
function

1− hi,xi;θ,β =
Si,xi;θ,β

Si−1,xi−1;θ,β

=

(
S0
i;θ

S0
i−1;θ

)g(xi;β)
(3)

However, 1− h0k;θ =
S0
k;θ

S0
k−1;θ

. Therefore, Equation (3) is equal
to

1− hi,xi;θ,β = (1− h0i;θ)g(xi;β) (4)

and Equation (1) follows �.
From Equation (4),

n−1∏
k=1

(1− h0k;θ)g(xk;β) =

n−1∏
k=1

(1− hk,xk;θ,β)

=

n−1∏
k=1

Sk,xk;θ,β

Sk−1,xk−1;θ,β

= Sn−1,xn−1;θ,β (5)

so that

pi,xi;θ,β = hi,xi;θ,βSi−1,xi−1;θ,β

=
(
1− (1− h0i;θ)g(xi;β)

) i−1∏
k=1

(1− h0k;θ)g(xk;β)

(6)

follows from Equations (1) and (5).
The Cox model incorporates covariates x into the hazard

rate and therefore assesses the effects they may have on fault
detection. If the faults are assumed to be Poisson distributed,
then a likelihood analysis can be performed using data avail-
able for estimation. Hence, it is possible to infer the effect of
a covariate on fault detection despite the presence of multiple
covariates.

Mean value function: The mean number of faults detected
through the nth interval is

Hn;ω,θ,β = ω

n∑
i=1

pi,xi;θ,β (7)

A. Baseline hazard functions

The baseline hazard function in discrete time interval i
possessing parameters θ is

h0i;θ =
p0i,θ
S0
i−1,θ

(8)

where p0.,θ and S0
.,θ = 1−F 0

.,θ respectively denote the baseline
probability mass function and survival function of the discrete
time distribution T at the baseline levels of software test
activities in the model.

1) Negative binomial of order two (NB): The negative
binomial hazard rate

h0i;b =
ib2

1 + b(i− 1)
(9)

is an example of hazard a function that can be substituted
into Equation (6) to obtain various Cox proportional hazards
models. Here b is the probability of detecting a fault and hence,
b ∈ (0, 1) and 2 indicates the order.

B. Optimal test activity allocation to maximize fault discovery

Similar to the concept of effort allocation [6] in NHPP
software reliability growth models, it is possible to employ
covariate models to guide resource allocation. Generalization
of the testing effort concept to covariate models, requires
division of resources across multiple activities, each of which
possesses an effectiveness characterized by the parameter βi
but may also impose unique cost and time requirements. Ex-
amples associated with traditional software reliability testing
include alternative black-box testing methods [14], with costs
characterized by the hourly rates charged by skilled employees
or consultants, whereas examples in the context of software
security testing include traditional software reliability testing
methods relevant to security as well as static and dynamic
testing tools and techniques for exposing vulnerabilities.



Given n intervals of observed data and a budget of B
resources to allocate to p activities (covariates), maximizing
the total number of faults or vulnerabilities detected, so that
they can be corrected prior to release is formulated as

argmax Ĥ(n+1);ω,θ,β (10)

subject to
p∑
j=1

cjxj,(n+1) ≤ B

cj
(
xj,(n+1) − xj,(n)

)
= Bj ≥ 0

where cj > 0 is the cost associated with an additional unit
of activity j. In practice, the model can be fit to data from
the first i intervals and Equation (10) solved based on the
maximum likelihood estimates of the model and the budget to
be allocated to activities during interval (i+ 1).

III. MODEL ESTIMATION, ASSESSMENT, AND SELECTION

This section describes model estimation, assessment, and
selection methods. Estimation methods include maximum like-
lihood estimation (MLE) and the expectation conditional max-
imization algorithm. Initial parameter estimation and measures
of goodness of fit for model selection are also discussed.

A. Maximum likelihood estimation

For the purpose of estimation and inferential procedures,
the likelihood function of the process needs to be constructed.
The likelihood function is merely the joint distribution of the
sample of observed values. In this case, the observed values are
data: (yi,xi, i = 1, 2, . . . , n), where n is the number of testing
intervals. As mentioned in Section II, an NHPP software
reliability model assumes that the point process possesses
independent Poisson distributed increments. In other words,
the number of faults detected over these disjoint time intervals
are independent. Hence, the likelihood function of the NHPP
SRGM given in Equation (6) is

L(θ, β, ω) = Pr (Y1 = y1, Y2 = y2, . . . , Yn = yn)

=

n∏
i=1

exp (−ωpi,xi;θ,β)
(ωpi,xi;θ,β)

yi

yi!

= exp

(
−ω

n∑
i=1

pi,xi;θ,β

)
ω
∑n
i=1 yi

n∏
i=1

pyii,xi;θ,β

yi!
, (11)

and the corresponding log-likelihood function is

LL(θ,β, ω) = −ω
n∑
i=1

pi,xi;θ,β +

n∑
i=1

yi ln(ω) (12)

+

n∑
i=1

yi ln(pi,xi;θ,β)−
n∑
i=1

ln(yi!).

incorporates the covariates xi through pi,xi;θ,β. The maximum
likelihood estimates of the model parameters can be obtained
by solving ∂l

∂ω = 0, ∂l
∂θ = 0, and ∂l

∂βj
= 0, j = 1, 2, . . . , p.

B. Expectation conditional maximization algorithm

This section describes the expectation conditional maxi-
mization [15], [16] algorithm to identify the maximum likeli-
hood estimates of a model.

The steps to obtain the CM steps of the ECM algorithm of
a covariate based NHPP SRGM are as follows:

• (S.1) Step one specifies the log-likelihood function as
described in Equation (12).

• (S.2) Step two reduces the log-likelihood function from ν
to (ν−1) parameters by differentiating the log-likelihood
function with respect to ω, equating the result to zero, and
solving for ω to produce

ω̂ =

∑n
i=1 yi∑n

i=1 pi,xi;θ,β
, (13)

which is then substituted into the log-likelihood function
to obtain the reduced log-likelihood (RLL) function.

• (S.3) Step three derives the conditional maximization
steps for the remaining (ν−1) parameters by computing
partial derivatives

∂RLL

∂θ
= 0 (14)

and
∂RLL

∂β
= 0 (15)

where θ denotes all parameters except ω and β are the
coefficients of the p covariates.

• (S.4) Step four cycles through the (ν − 1) CM-steps
holding the other (ν−2) parameters constant, applying a
numerical root finding algorithm to determine the max-
imum likelihood estimates θ̂/ω. This process continues
until a user specified convergence criterion is achieved.

• (S.5) Step five computes the MLE of ω by substituting
the estimates of θ and β into Equation (13), producing
the MLE for all ν parameters of the model.

Steps (S.1) through (S.5) can be applied to different hazard
functions introduced in Section II-A. Step (S.4) reduces a
(ν − 1)-dimensional problem to (ν − 1) single-dimensional
problems, enabling the application of a stable numerical
method in each CM-step. Coupled with the monotonicity of
the ECM algorithm, this ensures convergence to the maximum
likelihood, which is especially important in an open source
implementation [17].

C. Initial parameter estimation

The initial parameter estimates [18] of parameter ω is

ω(0) = n (16)

The remaining parameters of the distribution function F (•; θ),
which corresponds to the term

∑n
i=1 pi,xi;θ,β in Equation (7)

are computed as

θ(0) :=

n∑
i=1

∂

∂θ
log [f(; θ,β)] = 0. (17)



D. Goodness of fit measures

This section summarizes some goodness of fit measures to
assess how well a model characterizes a failure data set.

1) Akaike Information Criterion: The Akaike Information
Criterion [19] is an information theoretic measure of a model’s
goodness of fit. The AIC quantifies the tradeoff between model
precision and complexity. The AIC of model i is a function
of the maximized log-likelihood and the number of model
parameters (ν).

AICi = 2ν − 2LL(xi; ω̂, θ̂, β̂) (18)

The term 2ν of Equation (18) is a linearly increasing penalty
function for the number of parameters, while LL(xi; ω̂, θ̂, β̂)
is the log-likelihood function of failure data with covariates
xi evaluated at the maximum likelihood estimate. Model j
preserves information better than model i and is preferred with
statistical significance if AICi,j = AICi −AICj > 2.0 [20].

2) Bayesian Information Criterion: The Bayesian informa-
tion criterion of model i is a function of the maximized log-
likelihood, number of model parameters ν, and the sample size
n

BICi = −2LL(xi; ω̂, θ̂, β̂) + ν log(n) (19)

The penalty term of the BIC is therefore proportional to the
number of parameters ν multiplied by the logarithm of the
sample size n.

3) Sum of Squares Error (SSE): The sum of squares error,
also known as the residual sum of squares, for failure count
data is

SSE =

n∑
i=1

(Ĥi;ω,θ,β − Yi)2 (20)

where Yi =
∑i
j=1 yj is the cumulative number of faults

observed in the first i time intervals.
4) Predictive Sum of Squares Error (PSSE): PSSE com-

pares the predictions of a model with data not used to perform
model fitting. The predictive sum of squares error for failure
count data is

PSSE =

n∑
i=n−`+1

(Ĥi;ω,θ,β − Yi)2 (21)

where the maximum likelihood estimates of the model param-
eters are determined from the first n− ` intervals.

IV. ILLUSTRATIONS

This section demonstrates the model and optimal covariate
allocation. The DS1 data set [7] is employed, which contains
n = 17 weeks of observations. The data set possess three
covariates, including execution time (E) in hours, failure
identification work (F) in person hours, and computer time
failure identification (C) in hours.

The first example compares goodness of fit measures at-
tained by the negative binomial model on all possible subsets
of covariates contained in the DS1 data set. The second
example assesses optimal effort allocation.

A. Goodness of fit model assessment

This section systematically compares the models with neg-
ative binomial hazard function considering all eight possible
combinations of three covariates in data set DS1.

Table I summarizes the goodness of fit of the negative
binomial hazard rate function for each possible combination
of covariates possessing ν parameters. Preferred combinations
of covariates with respect to the LLF, AIC, BIC, SSE, and
PSSE are indicated in bold. While the model fit using all three
covariates achieves the highest log-likelihood value, only SSE
prefers EFC on DS1, whereas the F covariate is preferred by
AIC and BIC, while PSSE suggests EF. The SSE and PSSE
provide conflicting results. Specifically, SSE prefers all three
covariates one DS1, whereas PSSE is lowest for a model with
EF covariates. However, some combinations of one or more
covariate also attain a relatively low SSE and PSSE, suggesting
that practical model selection [21] requires a tradeoff between
information theoretic and predictive measures of goodness of
fit.

TABLE I: Goodness of fit measures for negative binomial
hazard function model on DS1

β ν DS1
LLF AIC BIC SSE PSSE

- 2 −36.41 76.82 78.49 208.35 3.99
E 3 −32.31 70.62 73.12 70.16 3.16
F 3 −28.80 63.60 66.10 25.94 1.16
C 3 −31.96 69.91 72.41 81.73 11.12
EF 4 −28.05 64.11 67.44 18.33 0.96
FC 4 −28.37 64.75 68.08 20.77 2.19
EC 4 −28.97 65.95 69.28 33.02 10.18
EFC 5 −27.29 64.58 68.74 11.89 2.44

B. Optimal test activity allocation

This section illustrates optimal test activity allocation for-
mulated in Section II-B in the context of the negative binomial
model on DS1. In practice, optimal test activity allocation
can be applied to the model with the subset of covariates
determined by the user based on their subjective preference
for one or more measures of goodness of fit. For the sake
of illustration, the negative binomial model was fit to each
combination of covariates with the first n − 1 intervals. The
amount of effort originally allocated in the nth interval of
DS1 was E = 7.6, F = 24, and C = 8. Thus, we optimally
allocate a budget of B = 39.6 resources to each subset of
covariates, according to the fitted models. For simplicity, each
covariate was assumed to possess unit cost (ci = 1.0), but
the formulation in Section II-B is capable of considering non
uniform costs.

Table II lists each combination of one or more covariate,
the estimated number of faults that would occur with optimal
allocation (Ĥ∗

n;ω,θ,β) using Equation (10), and the percent
of the budget allocated to the available covariates. Table II
indicates that optimal allocation of effort to the model with
all three covariates dedicates 38.03% of the budget to activity
E and the remaining 61.97% to activity C, which respectively
correspond to 15.06 and 24.54 units of the original budget.



The estimated number of faults is 1.55, whereas allocating
effort according to the nth interval of DS1 (E = 7.6,
F = 24, and C = 8) estimates only 0.92 faults. These
results suggest that optimal allocation could expose nearly
1.7 times as many faults, indicating more efficient allocation
could have conserved significant resources. For the sake of
comparison, we increased the original allocations reported in
the nth interval by a common factor greater than one until the
number of faults estimated was equal to the optimal allocation.
That is, each of the three covariates was multiplied by the same
factor until 1.55 faults were achieved. It was determined that
a total budget of 79.2 would be required to identify the same
number of faults with this allocation strategy, requiring two
times as much effort.

TABLE II: Optimal covariate effort allocation to DS1 with
negative binomial hazard function

β Ĥ∗
n;ω,θ,β %E %F %C

E 6.63 100 − −
F 2.61 − 100 −
C 0.41 − − 100
EF 5.30 100 − −
FC 1.97 − 5.70 94.30
EC 0.62 40.75 − 59.25

EFC 1.55 38.03 − 61.97

V. CONCLUSIONS AND FUTURE RESEARCH

This paper presents a covariate software reliability growth
model and formulates the optimal test activity allocation
problem to maximize fault discovery. Expectation conditional
maximization algorithms were derived and applied to a data set
from the literature. The optimal test activity allocation problem
was then solved to illustrate how it could efficiently increase
the number of faults discovered by distributing limited testing
resources among the testing activities performed.

Future research will develop additional optimization prob-
lems for covariate models to guide activities during the testing
process.
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