
1.  Introduction
The Argentine Basin is a region of the Atlantic sector of the Southern Ocean, bounded to the west by the 
Patagonian Shelf and to the south by the Malvinas Plateau. Figure 1 shows the bathymetry of the Basin 
and surrounding area, with the deep basin in dark blue and the shallow areas in white. The collision of two 
major western boundary currents, the Brazil and Malvinas Currents, occurs in the western edge of the Basin 
and is the site of the highest mesoscale energy and sea surface height variability in the global oceans (Chel-
ton et al., 1990; Fu et al., 2001). The Brazil-Malvinas Confluence (BMC) features SST gradients exceeding 
10°C between the two currents (Tokinaga et al., 2005), warm core eddies >5◦ C warmer and 1 psu saltier 
than adjacent waters (de Souza et al., 2006), and cold core eddies similarly cooler and fresher than adjacent 
waters (Gordon,  1989). Observations of this portion of the Argentine Basin demonstrate a rich vertical 
structure, with seven distinct water mass layers of both northern and southern origins (Valla et al., 2018). 
The confluence also drives a powerful stationary barotropic vortex, the Zapiola Anticyclone, over a rise in 
the center of the Basin (Reid, 2012; Weijer et al., 2020). The location of the BMC is itself variable due to 
inconsistencies in the Malvinas Current (Artana et al., 2016; Spadone & Provost, 2009) and has been drift-
ing south since 1993 (Combes & Matano, 2014). Large uncertainties surrounding air-sea exchanges of heat 
(Frölicher et al., 2015) persist due to atmospheric variability (Pezzi et al., 2005) and eddies and meanders 
that modify surface meteorological variables and modulate the marine atmospheric boundary layer (Souza 
et al., 2021). There are also large uncertainties surrounding air-sea exchanges of carbon due to poor obser-
vational coverage both spatially and seasonally (Gray et al., 2018) and due to the sensitive balance of strong 

Abstract  The confluence of the Malvinas and Brazil currents over the Argentine Basin give the 
region chaotic dynamics and severely limit potential predictability. To probe the forecast horizon for 
ocean surface quantities of temperature and carbon, we construct regional models of the Argentine Basin 
with biogeochemistry at 1/3° and 1/12° resolution and design a series of experiments. We add positive 
and negative zonal wind stress anomalies over small and large areas during a short period in different 
model runs. We calculate the response of the surface temperature and DIC. The 1/3° model maintains 
predictability for up to 45 days, while the 1/12° model has a shorter window of about two weeks. However, 
the 1/3° model response is only consistent with the 1/12° model for about 8 days calling into question the 
potential predictive skill of the coarser model at longer lead times.

Plain Language Summary  The Argentine Basin is a turbulent region in the Southern Ocean 
that is not well understood. We want to determine how well we can make forecasts of the region given 
some level of error in our starting point, and additionally investigate the dependence of model resolution 
on our ability to forecast. We design a series of numerical experiments where we make a change in the 
winds at the start of the model run and quantify how the heat and carbon in the surface ocean change 
compared to model runs without changing the winds. These differences are measured as time progresses. 
We determine that in the coarser resolution models, the differences decay for up to 45 days before 
increasing, whereas in the finer resolution model the differences decay for two weeks before increasing. 
This gives us a time frame during which small errors in the forecast models do not compound. However, 
a caveat is that though the coarser model will be less sensitive to errors our results also suggest that it may 
be less accurate in forecasting the true ocean dynamics.
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upwelling of natural carbon from the deep ocean competing with strong uptake of anthropogenic carbon at 
the surface both occurring in the Basin (Gruber et al., 2009).

As computing power has increased in recent decades, ocean model simulations have increased in resolution 
from coarse (∼1◦ ) to eddy-permitting (∼0.25◦ ) to eddy-resolving (∼0.1°). However, ocean in situ observa-
tional coverage has not kept pace spatially or temporally and high resolution models that utilize data as-
similation suffer from decreased predictive skill (Jacobs et al., 2021). Absent assimilation, increasing model 
resolution in ocean simulations can reduce some biases and introduce others (Chassignet et al., 2020), and 
the effects of increasing resolution on heat transport, currents, sea level variability, and other quantities has 
been studied at the global climate level (e.g., Griffies et al., 2015) and also in subregions of interest during 
shorter time scales (e.g., Ezer & Mellor, 2000; Guo et al., 2003). Predictability can be investigated without 
hindcasting; the method of perturbing a model with some impulse anomaly and quantifying the response 
relative to an unperturbed model run has been used extensively in climate studies (Good et al., 2011; Hansen 
et al., 2011; Hasselmann et al., 1993; Marshall et al., 2017). Predictability of ocean biogeochemical (BGC) 
variables has been probed using ensemble methods with 1° ocean models (Frölicher et al., 2020; Krumhardt 
et al., 2020) and estimated through surface wind stress sensitivity experiments (Ridder et al., 2013; Ridder 
& England, 2014). However, these studies are typically focused on interannual to decadal prediction using 
coarser climate models and emphasize statistical skill as much as deterministic skill.

Using ensemble methods, Kim et al.  (2009) assess the predictability of the coastal ocean off Oregon on 
shorter time scales in a model with 2 km grid spacing, and find that the deterministic response is stronger 
than instability growth over the 3–7 days forecast intervals they considered. Investigating loss of predicta-
bility by instability growth was similarly investigated for the California Current using perturbation methods 
by Moore et al. (2009) and Verdy et al. (2014). Moore et al. (2009) found that a tangent linear assumption for 
a ∼20 km resolution model of the region was valid for about 30 days. The wind stress perturbation experi-
ment described in Section 3 of Verdy et al. (2014) provides a template for analyzing regional deterministic 
predictive capability and we apply this procedure to a model of the Argentine Basin and surrounding area. 
The choice of a wind stress perturbation has implications for the ocean response. Our interest, however, is 
not in the exact form of the response, but rather in the growth rate due to nonlinearities. It is this growth 
that amplifies model errors and limits predictability, and we hypothesize arises equally from errors in mo-
mentum or buoyancy fluxes.

Our goal in this paper is to implement techniques from these prior studies and apply them to a general 
circulation model of the Argentine Basin with biogeochemistry to investigate predictability of physical and 
BGC variables at the surface via a series of wind stress anomaly perturbation experiments at both eddy-per-
mitting and eddy-resolving resolutions. We want to quantify the time scale of the linear response of sea 
surface temperature (SST) and surface dissolved inorganic carbon (DIC) at 1/3° and 1/12° horizontal reso-
lutions to determine approximately how long small errors introduced though the atmospheric state at each 
resolution stay small. Further analysis probes the difference in the response of these models to assess the 
prospect of forecast skill degradation with coarser resolution models. We choose DIC because it is a primary 
component of the carbon system and directly related to air-sea carbon fluxes. However, we have repeated 
the calculations presented with other BGC variables (oxygen, nitrate, net primary production, chlorophyll, 
and particulate organic carbon) both in the surface cell and the mean of the upper 100 m. The results in all 
cases are similar and are discussed in Section 3.2.

2.  Methods
We construct a regional configuration of the MIT general circulation model [MITgcm, evolved from Adcroft 
et al. (2011) and Marshall et al. (1997)] with the Nitrogen version of the Biogeochemistry with Light, Iron, 
Nutrients, and Gases model [N-BLING; evolved from Galbraith et al. (2010)] at two different resolutions. 
We describe the physical and BGC setup in Section 2.1, the experiment design in Section 2.2, and the meth-
od of decomposing the perturbed response into linear and nonlinear signals in Section 2.3.
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2.1.  Physical and BGC Model Configuration

We use two model configurations, one at 1/3° and another at 1/12° zonal resolution that are identical to 
those in Swierczek et al. (2021). Meridional spacing is chosen to maintain Δx = Δy. This corresponds to cell 
widths of 32 km at the northern boundary and 19 km at the southern boundary for the 1/3° model, and 8 
and 5 km for the 1/12° respectively. The 1/3° (1/12°) model has 52 (104) vertical levels that vary in height 
from 4.2 to 400 m (2.1–200 m), with 33 (66) levels in the upper 750 m. The domain extends from 70°W to 
8°W and from 60°S to 30°S and includes a 1° /restoring layer along each lateral boundary. Model time-step-
ping is achieved with a third order Adams-Bashforth scheme that features implicit vertical diffusion and 
viscosity, a nonlinear free surface, exact volume conservation, and z* time-varying vertical coordinates of 
Adcroft and Campin (2004). Bathymetry is derived from ETOPO1 (Amante and Eakins, 2009; NOAA Na-
tional Geophysical Data Center, 2009). We use 30-min time steps in the 1/3° model and 2 min in the 1/12°. 
Parameterizations of mixed layer and viscosity are implemented using the GGL90 (Gaspar et al., 1990) and 
modified Leith schemes (Adcroft et al., 2011), respectively.

Open ocean boundary and initial conditions for the two models are provided by the BGC Southern Ocean 
State Estimate (BSOSE (Verdy & Mazloff, 2017)), a data assimilation ocean–sea ice coupled product that 
gives a 1/6° solution of the Southern Ocean for the period 2013–2018. We use monthly fields from itera-
tion 122 of BSOSE for lateral forcing of both physical and BGC fields. ERA5 (Copernicus Climate Change 
Service (C3S),  2017; Hersbach et  al.,  2020) atmospheric reanalysis provides hourly surface forcing. The 
Coordinated Ocean-Ice Reference Experiments (CORE) Corrected Normal Year Forcing Version 2.0 da-
tasets (available at https://data1.gfdl.noaa.gov/nomads/forms/core/COREv2/CNYF_v2.html) (Large & 
Yeager, 2009) give monthly river runoff estimates. Our models do not feature sea ice, tides, or mesoscale 
eddy parameterizations.

N-BLING (Galbraith et al.,  2010) is a BGC model of intermediate complexity for the ocean that is cou-
pled with the MITgcm. Section 2.2 of Verdy and Mazloff (2017) provides a schematic and description for 
N-BLING. We use atmospheric pCO2 estimates from the Cape Grim station (obtained from http://www.
csiro.au/greenhouse-gases). Both physical and BGC model parameters can be found both in Swierczek 
et al. (2021) and in the repository reference in the Code Availability section.

Figure 1.  Bathymetry of Argentine Basin and surrounding area with model domain outlined in white, and large and 
small wind stress anomaly areas outlined in black. 1,000-m contours are shown. The large wind stress anomaly area 
covers where the Malvinas Current branches off from the Antarctic circumpolar current (ACC) (55° W, 55° S) and the 
Brazil-Malvinas Confluence (55° W, 38° S), both turbulent areas, while the small perturbation is selected away from 
those areas.

https://data1.gfdl.noaa.gov/nomads/forms/core/COREv2/CNYF_v2.html
http://www.csiro.au/greenhouse-gases
http://www.csiro.au/greenhouse-gases
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2.2.  Description of Experiment

We conduct a series of experiments featuring surface wind stress anomalies applied over a small and large 
area of our model domain. The large area anomaly covers a box from 60°W to 25°W and 57°S to 39°S. The 
small area anomaly covers a box from 38°W to 36°W and 44°S to 42°S. These wind anomaly areas are plotted 
in dotted lines in Figure 1 with the model domain outlined in white. The large area anomaly is chosen to 
hit the ocean with a substantial impulse that covers all unstable regions. The small area anomaly location is 
chosen to avoid the highly turbulent BMC and determine the sensitivity to a small perturbation in a more 
stable region.

For each resolution, the models are initialized on December 1, 2016 and run to the end of December for 
a spinup period and the final state is stored. From this December 31st 2016 model state we run the model 
five times. The first model run is a control run where we keep the unaltered ERA5 atmospheric forcing. 
The second features a strengthening of the surface wind stress forcing by 0.1 N/m2 over the large area one 
hour after restarting (midday on December 31st) and lasting for one hour. The third model run features a 
weakening of the surface wind stress by 0.1 N/m2 over the large area having the same starting time and 
duration. The fourth and fifth models have the same strengthening and weakening of wind stress as the 
second and third models but occur over the small area instead. All models are run for four months and diag-
nostics are recorded every 6 hr. The amplitude of the perturbation is negligible with respect to the regional 
mesoscale variability. The deterministic response to this perturbation is therefore of little interest. However, 
the growth of this small response to a non-negligible size is of primary interest with regards to limiting 
predictability, as we hypothesize that this is a reasonable amplitude perturbation that may arise from errors 
in the model inputs and numerics.

2.3.  Method of Decomposition Into Linear and Nonlinear Response

We analyze our model output using the technique described in Section 3 of Verdy et al. (2014). We define 
h0 to be the SST or surface DIC of the control run, h+  to be the corresponding field during the positive 
wind stress anomaly run, and h− to be the field from the negative wind stress anomaly run. We calculate 
the differences between the positive anomaly and the control, δh1 = h+ − h0, and between the negative 
anomaly and the control, δh2 = h− − h0 for each of SST and DIC. Decomposing the perturbed runs as Taylor 
expansions around the control run, we can isolate the odd order terms by computing 𝐴𝐴 𝐴𝐴𝐴𝐴1 = 1

2
(𝛿𝛿𝛿1 − 𝛿𝛿𝛿2) 

and the even terms with 𝐴𝐴 𝐴𝐴𝐴𝐴2 = 1
2
(𝛿𝛿𝛿1 + 𝛿𝛿𝛿2) . We can consider δH1 the linear response as long as δH2 is ap-

proximately one order of magnitude smaller than δH1. δH2 can be considered the nonlinear response in this 
case as the quadratic term is the first nonlinear term of the Taylor expansion. We will use the terms linear 
and nonlinear in describing the response even though this is approximately true only under this condition. 
We analyze the results both by looking directly at δH1 and δH2 as in Figures 2 and 3, and by taking the root 
mean square (RMS) magnitude of δH1 and δH2 averaged over the model domain minus the sponge layer as 
in Figure 4. When the response is dominated by the linear term and decaying, we consider the model to be 
“predictable.”

3.  Results of Perturbation Experiments
3.1.  Snapshots of Linear and Nonlinear Responses

Snapshots of 1, 10, 20, 30, and 40 days surface DIC responses to the large wind anomaly are shown in Fig-
ure 2. The extent of the wind anomaly is clearly visible in the 1 day snapshots. The 1/3° and 1/12° models 
one day linear responses show noticeable effects over the whole perturbation area and also outside the area 
along the South American coast north of the box, west of the Brazil Current. The linear responses of the 
1/3° model looks like a smoothed version of the 1/12° model linear response at 1 day and at 10 days. By 
30 and 40 days, however, the 1/3° model linear response has mostly decayed away while the higher order 
odd terms of the 1/12° have grown enough in the BMC and also at the southern boundary. The nonlinear 
response for the 1/3° model decays away by 10 days enough to be barely visible at the plot color scale save 
for a few spots. The 1/12° model nonlinear response is small by 10 days, mostly appearing in the BMC and 
at three eddies. Progressing from 20 to 40 days, the responses around the BMC and at the northeast of the 
domain are the most notable.
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We next discuss the small area perturbation experimental results. Figure 3 shows snapshots of δH1 and δH2 
for surface DIC at 1, 10, 20, 30, and 40 days after the wind anomaly for both resolutions. δH1 can be consid-
ered the linear response up to approximately 45 days in the 1/3° model and 15 days in the 1/12°. The 1 day 
responses for both resolutions are largely confined to the location of the wind anomaly. The linear response 
of the 1/3° model looks like a smoothed 1/12° linear response for the 10 days snapshot and the 20 days to 
a lesser extent, but by 30 days the higher order odd terms begin to dominate the linear term in the 1/12°. 
Thus the 30 and 40 days snapshots in the 1/12° are no longer ‘linear’ in the second row of panels (this will 
be discussed in Figure 4). We see instabilities growing in the BMC away from the anomaly location, and 
also three anomalies along the center of the domain that are not resolved in the 1/3° model. The linear and 
nonlinear responses in the 1/12° model appear in these eddies by the 10th day.

The 1/3° model nonlinear response does not have areas of magnitude notable enough at the chosen color 
scale after the first day, except for a few spots at 40 days. The 1/12° model nonlinear response appears over 
the wind anomaly one day after, but by 10 days is visible at the three eddies and near the BMC by 20 days. By 
30 and 40 days, there are massive areas with sharp and complicated positive and negative responses mostly 
centered around the BMC.

Figures S1 and S2 in Supporting  Information  S1 show the same snapshots for SST. The spatiotemporal 
evolution of linear and nonlinear responses for SST are largely the same as for surface DIC. The opposite 
vertical gradients of temperature and carbon cause the signs of the responses to be flipped; subsurface wa-
ters have lower temperatures but are more carbon-rich so increased mixing, for example, will show opposite 
colors in the corresponding plots.

3.2.  RMS Magnitude of Response and Skill

We calculate the RMS magnitudes of δH1 and δH2 for SST and surface DIC for every 6 hr through the model 
runs. The calculation is performed over the interior of the model domain inside of the sponge layer and the 

Figure 2.  The linear and nonlinear surface DIC responses to the large area perturbation. Columns represent snapshots of 1, 10, 20, 30, and 40 days responses. 
The rows show 1/3° model linear, 1/12° linear, 1/3° nonlinear, and 1/12° nonlinear responses respectively. The 1/3° model linear response again shows smooth 
features that decay in magnitude after the wind stress perturbation. The 1/12° model linear and nonlinear response both feature major instabilities triggered by 
the 20 days mark. Note the color scales are slightly different so the responses are visible in each row.
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results are shown in Figure 4. The solid lines show δH1 and the dotted lines show δH2. When δH1 is an order 
of magnitude larger than δH2 for each corresponding field and resolution, and is decreasing in magnitude, 
δH1 is interpretable as the linear response. We look for how many days the responses are decaying to approx-
imately determine predictability. The RMS for the large anomaly model runs are larger than the RMS for 
the small. More notably, the RMS stops decaying and begins increasing sooner in the small anomaly model 
runs than in the large. The linear responses for SST and DIC decay for as long as 48 days in the 1/3° model 
and 17 days in the 1/12° model for the large wind anomaly model runs. This is reduced to 33 and 9 days, 
respectively, in the small anomaly model runs. This suggests that this domain is naturally unstable in most 
regions and that errors will grow eventually no matter where the model is perturbed, although we only have 
tried one area for the small perturbation experiment.

Table S1 in Supporting Information S1 details the duration of the decay of the responses. It is worth noting 
that the RMS linear response of the 1/12° model SST and DIC to the small perturbation stops decaying at 
9 days but it does not begin to substantially increase until approximately 30 days, and is still larger than the 
nonlinear response for at least 15 days.

The 1/3° model is less sensitive to perturbations (e.g., from model input errors) and may be useful for ex-
tended duration forecasting, but we must evaluate the realism of the 1/3° model response. Here we consider 
the 1/12° model to be the “real ocean” as it resolves more of the physical scales. Our definition of skill is 
in terms of the proportion of variance explained and is calculated following Goddard et al. (2013) and also 
described here. We define SST+ as SST (positive perturbation run) – SST (control run). At each time step, we 
calculate the spatial variance (var) of the 1/12° SST+ field and of the difference 1/12° SST+ – 1/3° SST+. The 
skill is then 𝐴𝐴 1 − var(1∕12◦ − 1∕3◦ SST+)∕(var(1∕12◦ SST+) . Importantly, before we perform this calculation 
we apply a 1/2° (roughly 40 km) Gaussian filter to smooth both the 1/3° and the 1/12° model SST+ fields 
because our primary goal is to evaluate how well the 1/3° model can forecast the large scale structures of 

Figure 3.  The linear and nonlinear surface DIC responses to the small area perturbation. Columns represent snapshots of 1, 10, 20, 30, and 40 days responses. 
The rows show 1/3° model linear, 1/12° linear, 1/3° nonlinear, and 1/12° nonlinear responses, respectively. The 1/3° model linear response shows smooth 
features that decay in magnitude after the initial shock but remain local to the wind anomaly. The 1/12° model linear and nonlinear responses both show 
sharper features after several weeks that possibly indicate changes in front locations resulting from the wind anomaly. Note the color scales are slightly different 
so the responses are visible in each row.
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the “real ocean.” Figure 4c shows the results of this calculation, and suggests the 1/3° model can explain at 
least 50% of the variance of the ‘real ocean’ for about 8 days. We include the skill of the initial 1/12° state 
used as a persistence forecast.

We perform the same RMS and skill calculations and create additional plots (all in Supporting Informa-
tion S1) for different combinations of variables and seasons. Surface T and DIC for winter (Figures S4 in 
Supporting Information S1), upper 100 m T and DIC for summer (Figure S3 in Supporting Information S1) 
and winter (Figure S5 in Supporting Information S1), surface dissolved oxygen (DO) and chlorophyll for 
summer (Figure S6 in Supporting Information S1) and winter (Figure S8 in Supporting Information S1), 
and upper 100 m DO and chlorophyll for summer (Figure S7 in Supporting Information S1) and winter 
(Figure S9 in Supporting Information S1) are included. Based on these plots, we can conclude the following: 
(a) T, DIC, DO, and chlorophyll are more sensitive to wind stress perturbations at the surface in summer 
than in winter (see Figure 4, and S4, S6, and S8 in Supporting Information S1). In summer each responds 

Figure 4.  The root mean square (RMS) magnitude of the summer (a) SST and (b) surface DIC responses to the large 
and small wind anomalies plotted against time. The bold colors show the large area responses and the pale colors show 
the small area responses. The blue colors represent the 1/3° models and the red represent the 1/3° models. The 1/3° 
models' response decays for longer times than the 1/12° models for both experiments. While the RMS is smaller for the 
small area wind anomaly response, that RMS stops decaying and begins to increase sooner than the response of the 
large area anomaly response. (c) Forecast skill of the 1/3° model with respect to the 1/12° model. The 1/3° model is able 
to account for at least 50% of the variance for about 8 days.
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with an initial RMS that decays for a period of time before increasing. In winter, the initial magnitude of 
the responses are smaller but the magnitudes do not decay. (b) The analysis of upper 100 m averages reveals 
smaller initial responses, and smoother evolution of the responses, but they are not markedly different from 
the surface quantities. (c) The growth rate of the magnitudes of each quantity are consistent across season 
and choice of surface or upper 100 m average.

3.3.  Conclusion of Experiment

The summer experiment concludes on May 1, 2017. We calculate the difference between the control runs 
and the perturbation runs on the final time step for each perturbation and each resolution. The results are 
shown in Figures S10 and S11 in Supporting Information S1 and corroborate the results in Figures 2–4. For 
both SST and surface DIC, the scale of the differences between the solutions is approximately 1 to 2 orders 
of magnitude larger in the 1/12° model than in the 1/3°. The locations of the largest effects are different 
between resolutions. In the 1/3° model, the major differences are at the ACC-Malvinas split and the eastern 
extent of the Zapiola Anticyclone. In the 1/12° model, the major differences are at the BMC and over the 
Argentine Abyssal Plain where the highest eddy activity occurs.

4.  Summary
In this study, we investigate the response of surface temperature and carbon to wind stress perturbations 
for models of the Argentine Basin and surrounding areas at two resolutions. We decompose this response 
into linear and nonlinear terms, and quantify the length of time that these responses decay. This provides a 
rough estimate for the maximum forecast horizon in this particular area in two circumstances, depending 
on what physical scales need to be resolved. Due to computational expense, we only perform these experi-
ments once in summer and winter. Future work may involve using an ensemble of experiments or probing 
different small areas around the domain with the wind stress anomaly in order to determine the sensitivity 
of these results to the background state.

It is determined that at least for SST and surface DIC, “small” errors (in our case small due to the short du-
ration of the perturbation) in the atmospheric state or initial conditions even over energetic subregions will 
remain small for ∼30 − 45 days in an eddy-permitting 1/3° model. In an eddy-resolving 1/12° model, this is 
shortened to ∼7 – 14 days. The spatial locations of the greatest nonlinear responses indicate that the areas 
of increased eddy activity in the eddy-resolving 1/12° model will be the first to exhibit degraded forecast 
skill under surface wind stress anomaly errors. The results suggest that the 1/3° model is able to forecast for 
long periods where small errors in the surface forcings will be damped. However, if we consider the 1/12° 
model as a stand-in for the real ocean, it is also important for the 1/3° model to give a solution that looks 
like a smoothed version of the 1/12° model solution. Figure 4 and S3–S9 in Supporting Information S1 all 
show this is only true for about one week. We conclude that the 1/3° model has long predictability, but lacks 
in deterministic skill at lead times greater than approximately one week. Meanwhile, our results suggest 
an eddy resolving model of this most energetic and turbulent ocean region has predictability for lead times 
out to two weeks. We therefore hypothesize that two weeks is a lower bound for duration of ocean surface 
property predictability at the mesoscale more generally across the globe.

Data Availability Statement
The Biogeochemical Southern Ocean State Estimate fields used for initialization and forcing are from http://
sose.ucsd.edu/BSOSE6_iter122_solution.html. The ERA5 reanalysis is available at https://www.ecmwf.int/
en/forecasts/datasets/reanalysis-datasets/era5. The codes to run the regional models in the paper are pub-
licly available in the following repository: https://doi.org/10.5281/zenodo.5576905. The latest version of the 
MITgcm is available at https://doi.org/10.5281/zenodo.4968496.
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