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Abstract—Learning accurate representations of robot models
remains a challenging problem, and is typically approached
though large, system-specific feature sets. This method inherently
introduces practical shortcomings, as interpretability and
transferability of the learned model typically decreases as more
features are introduced into the learning framework in order to
handle increasing task complexity. In this work, we examine the
problem of developing transferable learned models for dexterous
manipulation that are able to accurately predict the behavior of
physically distinct systems without retraining. We introduce the
notion of learning from visually-extracted grasp mechanics-based
features, which are formulated by combining geometrically-
inspired, analytical representations of the gripper into the feature
set to more holistically represent the state of varied systems
performing manipulation. We characterize the added utility of
using such features through simulation and incorporate them into
a classifier to predict specific phenomena, or modes of
manipulation, that occur during prehensile within-hand
movement. Four modes of manipulation—normal (rolling
contact), drop, stuck, and sliding—are defined, collected
physically, and trained via a self-supervised learning approach.
The classifier is first trained on a single sensorless underactuated
hand variant for all four modes. We then investigate the
transferability of the learned classifier on 5 different planar
gripper variants—analyzing applicability of this approach with
both online and offline evaluation.

Index Terms—Dexterous Manipulation, Generalized Learning,
Compliant Joint/Mechanism, Learning and Adaptive Systems

I. INTRODUCTION

EVELOPING robots capable of performing tasks in
human-made, unstructured environments has remained an
overarching research question in robotics for several decades.
An important building block to this question is addressing the
development of dexterous, within-hand manipulation (WIHM)
capabilities for robotic hands. Dexterous manipulation is often
characterized as the skillful, coordinated use of an end effector
to reposition or reorient an object with respect to the hand frame
[1]. An example of this ability includes the task of removing a
key from a pocket, reorienting, and inserting into a lock. In this
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Fig. 1. Geometric features can be extracted visually during
manipulation with a priori knowledge of the fingertip geometry, object
geometry, and the number of finger links. (Top) A pivot-flexure finger
manipulates a pear-shaped object with rolling contacts (Mode:
Normal). (Bottom) A three-link pivot finger manipulates a rectangular
object until sliding occurs along the left finger (Mode: Sliding).

task, not only does WIHM enable repositioning and
reorientation of the key without re-grasping or large whole-arm
motions, it also allows the robot to avoid undesired system
conditions, such as diverting away from joint singularities,
while attempting to repose the key [2]. WIHM capabilities are
especially advantageous for more capable service/home
robots—which would be required to perform a variety of daily
activities, such as folding clothes or feeding humans [3], [4].
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Fig. 2. By predicting modes of manipulation before or at the moment
they occur, the user is able to transition between modes (trigger or
avoid) for desired manipulation. Modes are typically detected when
the hand-object system is in a similar configuration as those shown.

Practical implementation of precision WIHM remains a
major challenge as coordinated finger movements with rigid,
high degree-of-freedom hands requires accurate hand-object
models, accurate parameter estimations of the environment, and
advanced control schemas, which may be impossible to derive
or estimate. An alternative to WIHM with fully actuated hands
has been through the use of soft, compliant, or underactuated
grippers that are able to passively adapt to their environment.
While this ability enables grippers to more easily handle
sensing and perception uncertainty [5], it also introduces
difficulties in modeling—the configuration of the hand is
dependent on fingertip forces, joint stiffnesses, and contact
locations, which may be impossible to accurately measure.

Due to analytical modeling difficulties, machine learning
has been introduced into manipulation for both, fully-actuated
and underactuated hands. Such approaches are able to
intrinsically estimate parameters, e.g. kinetic model parameters
or joint stiffness ratios, that can be difficult or impossible to
model via human intervention. While these approaches can be
fairly successful, they often rely on large, unstructured feature
sets for training, e.g. camera or tactile array inputs [6]. In this
approach, little intuition is provided by the learned model as to
what characteristics of the system are most valuable for the task.

In this work, we address this drawback by utilizing grounded,
mechanics-based features that are able to generalize to different
system variants. Assuming quasistatic motion of both the hand
and the object, purely geometric representations—including
finger manipulability measures, grasp quality measures, and
hand-object manipulability measures—constitute as elemental,
generalized properties of the hand-object system (Fig. 1). We
investigate how these features allow trained models to transfer
more successfully than traditional joint-based features. We use
these features to distinguish between four possible
manipulation classes for fingertip-based, prehensile
manipulation; namely, normal (rolling contact), drop, stuck,

and sliding. These classes, coined as modes of manipulation for
this work, can be predicted through a self-supervised learning
approach—which would enable the user to either trigger or
avoid modes for desired object movement (Fig. 2), as in [7], [8].

The approach of using mechanics-based features is
particularly advantageous for generalizing models among a
task. Due to reliance on the underlying mechanics of the
problem, a single classifier can be self-supervised and trained
on one gripper variant and then transferred to another similar
but distinct variant without retraining or data adaptation. We
theoretically explore this concept and show the bounds by
which hand parameters can change before mode distributions
of the features become distinct between variants. We also test
this experimentally by using estimated Cartesian motion
models to randomly manipulate different objects, and self-
tagging each of the modes when they occur. A classifier is
trained offline using a single gripper variant, and we show the
transferability of the learned model for 5 different, asymmetric
hands.

This manuscript extends our preliminary conference work
[9] in several ways. Specifically, we discuss in detail each of
the grasp mechanics-based features and their generalizability to
different systems. Moreover, we present the mathematics
required for an in-depth simulation of underactuated hands.
With this simulation, we show the extended utility of grasp
mechanics-based features, providing bounds by which a single
hand’s model is able to generalize to other gripper variants,
providing justification for our approach. Finally, this work
provides a substantial increase in experimentation and
analysis—both online and offline—for further validation.

II. RELATED WORK

In this section, we present traditional methods to modeling
within-hand manipulation. Following, we cover recent
approaches to learning manipulation and this method’s
associated drawbacks, which motivates this work.

A. Within-hand Manipulation

For several decades, a great deal of research in robot
manipulation has focused on explicitly modeling physical
interactions that occur between robots and objects in complex,
unstructured environments—from fundamentals of interactions
such as pushing [10], to object interactions in highly dynamic
and unconstrained environments. The study of these
interactions is especially entailed in the application of WIHM,
that requires coordinated finger movements while maintaining
predefined contact scenarios. Since Okada first used inverse
kinematics to plan joint trajectories for manipulator motion
almost four decades ago [11], nearly every aspect of robot
manipulation has been treated with great mathematical rigor in
the pursuit of creating more capable robots [12]-[17]. This
great volume of work elucidates many powerful relationships
between finger joint motion and object motion via classic
formulations such as contact curvatures, the Grasp Matrix, the
Hand Jacobian, and the Hand-Object Jacobian.

Leveraging these mechanical representations and assuming
that specific contact models are warranted by the task, object
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motion models can be devised. The point contact with friction
model, denoting that forces can be exerted in any direction
within the friction cone, is often used and has led to the
formulation of the Hand-Object Jacobian [ 18], which represents
the transition map from joint movement into object motion. The
work in [17] assumed stationary point contacts without rolling
or sliding, virtually fixing the location of the contact frame on
the finger to that on the object. Rolling has been taken into
account as well [19]-[21], which requires geometric knowledge
of the fingerpad and the contact to maintain precision. More
advanced contact models, such as those for soft contacts [22],
have also been introduced. Generally, all contact models are
highly subject to material parameters, such as durometer and
texture of the contact, that can change with environmental
conditions (humidity or dust). Therefore, parametric estimation
often necessitates on-board sensors, which are expensive,
inaccurate, and complicate the design and control of the hand.

The addition of compliance to the system through either
hardware (soft, underactuated) or software (impedance control
[23], soft synergies [24]) can help mitigate uncertainties that
would otherwise lead to task failure. Both approaches introduce
passive adaptability to the system, which permits a grasp to be
maintained under reasonable external disturbances [25]. For
example, in [26], this concept is leveraged for in-hand
manipulation with simple control over just two degrees of
actuation. Though, due to this compliance, precision
manipulation remains difficult to accurately model or simulate,
since the output space is of higher dimension than the input
space [21], [27], [28].

Two promising approaches to planar precision manipulation
with underactuated hands have been introduced in our previous
works by either using rough gripper models and an MPC visual
servoing framework [29], or learning a state transition model of
the gripper [30]. Although object precision was increased in
both works, manipulation was focused in a specific region of
the workspace. Moreover, the models learned were system
specific and transfer was not addressed in either of these works
providing inspiration for this manuscript—to learn transferrable
representations of the gripper to aid in generalizing
manipulation.

B. Learning Manipulation Policies

Learning control policies for dexterous manipulation is a
well-studied research area when analytical representations are
unavailable. This approach enables the robot to formulate its
own representative model without hand-tuned, human
intervention. Reinforcement Learning (RL) has shown to be a
promising approach to this problem, especially for compliant
systems, e.g. [31]. A major drawback to RL is the amount of
data required to train the model. As presented in [6], over “a
hundred years” of object manipulation was collected in
simulation for WIHM of a cube. Though some approaches have
addressed this caveat, e.g. by learning from online videos [32]
or guiding the manipulation strategies by combining imitation
learning of a human expert [33], [34], simulators, which are
often not representative of real-world contact scenarios, are
normally required to develop these learned models. In addition

TABLEI
NOMENCLATURE
Symbol Description
General:
q Particular hand configuration: ¢ € R* or R®
a Configuration of the actuators: a € R?
BF.O Pose of the base frame, finger frame, or object frame,

respectively: B, F,0 € SE(2)
v Velocity = (v, vy, vg) € se(2) of the object w.r.t. B

Jacobian of the i finger of the hand: left finger is index 1

13
J and right finger is index 2. J, is the Hand Jacobian.
G Grasp Matrix: G € R®** in the two-finger, planar case
H Hand-Object Jacobian: H € R3** or R3*5
» Object point cloud (P, € R?*¥) w.r.t. O or fingerpad

point cloud (P; € R¥*N) w.r.t. F
Grasp Mechanics-based Features:
Cartesian velocity reference of the object: v, in the x-

v direction and v, in the y-direction.
w' Manipulability measure of the i finger: w;' is the
penalized manipulability measure
g Singular values (SV) of G: gpax max SV, g, min SV
h Singular values of H: A, max SV, £,,;,, min SV

Curvature of the contact point on the i finger: c} is

fingerpad curvature and ¢ is object curvature

to these drawbacks, the input dimensionality used in multilayer
perceptrons can be extremely large and will therefore lack
interpretability and generalizability for a more enlightened
approach to manipulation. For example, in [6], the input vector
was a video stream from 3 cameras (thus, 3 x 640 x 480 =
921,600 pixels/features).

Aside from learning the entire system model for precision
manipulation, detecting object phenomena such as sliding has
also been reported in the literature. Previous works have learned
from tactile “images” to detect the coefficient of friction at the
point of incipient slippage [35], [36] and can therefore plan
trajectories to avoid slip conditions [37], [38]. Unfortunately,
due to the nature of this approach, prior exploration with the
object is necessary, which may be infeasible for time-sensitive
or mission critical tasks. By leveraging mechanics, slip
conditions can also be avoided by ensuring reasonable grasp
quality measure values during manipulation [39]. Nevertheless,
compliant, soft, and underactuated hands are often not equipped
with the sensing modalities required to detect such phenomena,
providing inspiration and purpose for this work.

III. GRASP MECHANICS-BASED FEATURES

In this work, we leverage traditional mechanical models of
manipulation to define features generalizable to different hand
variants. Specifically, we extract the most common
manipulability measures associated with the hand, the object,
and the contacts: a Jacobian-based manipulation measure, a
penalized Jacobian-based manipulability measure, the singular
values of the Grasp Matrix, the singular values of the Hand-
Object Jacobian, and the contact curvatures. By learning from
these features, which are grounded geometrically to the state of
the gripper, we are able to analyze which traditional grasp-
mechanics measures are able to best represent the hand-object
state. A summary of this manuscript’s nomenclature is
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presented in Table I. For the remainder of this manuscript, we

will refer to the left finger as index 1 and the right as index 2.
For the following formulations, let’s assume the planar

manipulator has n serial-link fingers, each having j* joints per

finger. The configuration of a single finger, q* € R/ ’ represents
its current joint angles. Therefore, the hand configuration, q €

RZi=1 " , fully describes the state of the hand and denotes the
angles associated with each of the joints (Fig. 1). In traditional
modeling for grasping and manipulation, the Hand Jacobian,
sometimes referred to as the Manipulator Jacobian, is denoted
as J, = blkdiag(J*, ...,J¥), where J' is the Jacobian for a
single, serial-link finger. It is important to note that in
underactuated or compliant systems, the configuration of the
gripper cannot be fully described by the state of the actuators,
a. That is, it is likely the dim(a) < dim (q), so we must
properly denote their differences.

A. Finger Manipulability Measures

The current configuration of a serial-link finger determines
its manipulability, i.e. how the tip of the finger is able to move
given an actuation input about each of the joints, and is
represented by the finger Jacobian. This representation is a
function from joint input velocity to fingertip velocity:

yi=J4 &)

where y' € R? in the planar case (y* € R? in the spatial case),
Jt € R®J" in the planar case (J € R3*/in the spatial case), and
g e R/ ‘. In this work, we utilize both, two-link and three-link

serial manipulators in the plane. From this, we can formulate
the two finger Jacobians:

Two-link finger:

icoiy— |"da—ds —Jds
ORS PR Al @)
Three-link finger:
~Ja—=Jg—=Jc —=Ip—=Jc —dc

TCORE AN A0 A A A Al BC)
Ja = lisin (qf)
Js = lhsin (qf + q3)
Jc = lsin (q1 + g3 + q3)
Jp = licos (1)
Jg = lscos (¢} + q5)
Jr = licos (q1 + q3 + q3)

where, more specifically q' = [q!, ..., q]i-]T, which represents
the joint configuration for a single finger, i. From this Jacobian,

we can represent its manipulability measure, w!, for each
finger in the hand [40]:

w' = [det (Ji * transpose(Ji)) (4)

As w' approaches zero, this is indicative of the individual
mechanism nearing a singularity—which effectively limits the
ability to instantaneously move in any direction.

A penalized manipulability measure is also proposed, as it
better encapsulates limits of a finger’s workspace by
incorporating a priori knowledge of the hard stops, i.e. a finger
link cannot rotate fully around a joint, but typically has a range
in which it can operate [41]. Fundamentally, this measure
enables the mechanism to determine where mechanical
constraints are located and to stay well within the workspace.
The penalized manipulability measure, w;;, is the product of a

penalty value, ¢(g") and the manipulability measure from (4).

(=175 -a))

Gy ®

-xIlj

(@) =1-e

Here, l}'Jr and l}_ represent the upper and lower bounds on joint
j, respectively, and x is a weighting factor that is tuned to
determine how quickly manipulability drops off near the joint
limits. This penalty function is calculated for each finger, and
is applied to determine w;;,

wh = nlw! (6)

The two finger manipulability measures, w' and w}, are
used as mechanics-based features for mode detection in this
work. We provide an illustration of these measures in Fig. 3,
where it is important to note the similarities of the data
distributions as properties of the fingers change.

B. Grasp Quality Measures

A grasp quality measure based on the Grasp Matrix is utilized
for representing the manipulability of the object, given the
current contact configuration. The Grasp Matrix is commonly
leveraged as a representation for relating the velocity of the
contact to the velocity of the object. Determined by the contact
normal directions, in addition to the relative location of the
object’s fixed frame, the Grasp Matrix is formulated strictly by
the geometry of the object and the position of the contacts—
force sensing is not required. The model has a desirable quality
that, even though the upper bound of its singular values is
unbounded, the minimum singular value has a lower bound of
zero regardless of the dimensions of the object. This occurs
when two or more contact normals are collinear, parallel
vectors with respect to the object frame, 0. This quality can be
a be useful indicator for when the object is likely to drop. A
metric based off of singular values of the Grasp Matrix is
therefore invariant across systems of different dimensions.

The Grasp Matrix, G, in the velocity domain represents a map
from external contact velocities, Z, to object frame velocity, v.
We can represent this as:

7=GTv (7)
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Fig. 3. Free swing manipulability workspaces for both proposed manipulability measures. (Top) Free swing trajectories for three two-link planar
fingers used in this work. (Bottom) Free swing trajectory of the three-link planar finger used in this work. Unlike the penalized manipulability
measure, the standard manipulability measure does not account for joint hard stops.

The shape of G is not absolute as it depends on the contact
model used for manipulation. In the planar case with a point
contact model and ¢ number of contacts, z € R%*¢, v € se(2),
thus G € R3*2¢, Similarly, for the spatial case not covered in
this work, 2 € R3¢, v € se(3), and G € R®*3¢. In this work, we
will assume a point contact with friction model, forming the
basis, b, which states that a force can be applied along the x-
and y-axes of the contact accordingly so long as it is within the
friction cone. Additionally, we must calculate the vector, p_.i,
denoting the positional relationship between the contact frame,
ct, for the i™ finger and the object frame, 0. The rotational
relationship, 65, between the contact frame, ct, and 0O is also
computed. For the two-finger, two-contact case in this work:

1 0
b, = [0 1] ®)
G )0 e (051
cos (05:) —sin (i
o = [sin (9:;) cos (0;) ] ©)
pe = o) 1o

where 05 = 0, — 09, and 0, 8, are the angle offsets of the
i™ contact frame and the object frame, respectively. Finally,
with these calculated for each contact, we can formulate the
Grasp Matrix, G:

R i 0
T — c 3%x3
Adggcli = [[—pciy pcix]RCi 1] eER (11)
G = [Ad;;31b61 Ad;;Clszz] € R34 (12)

From G € R3*%, there exist three singular values that
describe the state of the contacts with respect to the object. In

our feature set, we will denote the maximum singular value as
Pmax and the minimum singular value as g,;y.

C. Hand-Object Manipulability Measure

The Hand-Object Jacobian [18] is a map that describes the
relationship between actuation input, g, and object velocity, v.
Although this cannot be directly utilized in underactuated
hands, due to the inability to control each of the joints
individually, ie. dim(a) <dim (q), it’s geometric
representation of the hand-object system can provide insight as
to where the object can move given the current hand
configuration. This Hand-Object Jacobian, H, assumes a point
contact with friction model and is formulated by combining the
Grasp Matrix, G, and the Hand Jacobian, J,. Let’s examine y €
R?*, or the vector of all fingertip velocities of the hand from
(1). Let’s now also assume, that y = z € R?¥, the object contact
velocities from (7). Assuming a point contact with friction
model, this further suggests that the location of the contact does
not move with respect to the object frame during manipulation,
and virtually attaches the finger to the object. With this
assumption, we combine (1) and (7),

v=(G"*pg = Hg (13)
where (GT)* is the pseudo-inverse of the transposed Grasp
Matrix. In the planar case with two-links and two contacts, H €
R3**, Here, the singular values of H represent how close the
hand-object system is to a singular configuration, i.e. the ability
for the object to move instantaneously in any direction. Similar
to those used for G, we will use the maximum singular value,
Amax, and the minimum singular value ,4,,;,, as features.

D. Curvature of Contact

As described by Montana [42], the geometric conditions of
contact are important as they enable differentiation between
contact stability and spatial stability—necessary measures to
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track during manipulation. To this end, we propose extracting
the local conditions of the contact point for both, the fingerpad
and object.

The object point cloud, 7, and fingerpad point cloud, %, as
further described in Sec. V.C, are used for calculating the
curvature at the contacts. Let’s require that the point clouds are
contiguous; that is, neighboring indices indicate neighboring
points in the cloud. Given %, (p,) and Pr (pf), determined by
the KD-Tree to be the two closest points to one another in
separate clouds, we calculate the curvature of the contact by
evaluating their relationship to neighbors at each contact point.
The curvature is therefore equal to the reciprocal of the radius
of the circle that fits three neighboring points in the same point
cloud. For example, let’s calculate the curvature for the object.
Given neighboring points on the object, p_, = p, — 1 and
P+o = Po + 1, we calculate the Euclidean distance between
each of the three sets of points, (P, (p,), Po(Pr0) Po(P-0))
providing distances f;, 55, and 5. Then,

&=m+%+m a4
A= VIBs(Bs = BD(Bs — B)(Bs — Bs)] (15)
ol = ﬁlﬁﬁg 16)

where ¢! from (16) is the curvature of the object at the i™
contact point. We can similarly calculate the curvature of
fingerpad at the i contact point. These curvatures are included
as mechanics-based features in this work to aid in determining
object stability.

IV. BOUNDING FEATURE GENERALIZABILITY

The goal of this section is to investigate the bounds of which
grasp mechanics-based features are able to better estimate the
state of the hand-object system as physical parameters of the
hand change, e.g. link lengths or spring ratios. We compare
these bounds to a more traditional feature set used for
learning—the joint or motor configuration of the robot. This is
accomplished by modeling the mechanics of quasistatic,
underactuated manipulation for a two-fingered hand. After
modeling, we sequentially vary parameters of the hand-object
system beyond that of its original symmetric configuration and
run statistical analyses that indicate whether or not the features
likely come from similar distributions between different hand
variants. In order to maintain brevity and tractability of these
results, this section will focus on studying solely finger
manipulability measures, and will leave the additional features
from Sec. III.B, III.C, and III.D to be discussed in Sec. VII.
Physical characteristics of the hand are referenced in Fig. 4.A.

A. Mechanics of Underactuated Manipulation

Underactuated hands can be modeled in terms of energy with
kinematic, frictional, and actuation constraints. That is, the
configuration of the hand after actuation can be determined by
solving for the minimum energy configuration objective,

1 if i i \2
u =§Zij(qj — djo)
i

(17)

Object

12—l

2+ Al

12 +Al
2 -l

I ]
1 1
! Actuator |
] ]

I

Fig. 4. (A) Annotation of hand parameters required for modeling
underactuated manipulation mechanics. (B) Proximal and distal link
lengths in simulation are changed by the same value, Al, as to maintain
unit length during simulation.

where q]".0 is the rest angle of each joint, q;: is the current angle
of each joint, k! is the spring stiffness of each joint, and U is the
total elastic energy of the hand. This is formulated as an
optimization problem, guided by both equality and inequality
constraints. The quasistatic moment about the finger’s proximal
joint, M;, on finger iis created by both normal, fy, and
tangential, f7, contact forces,

MY = uf gpp X fif + Ul opp X ff (18)
where uie ff 18 a vector from the proximal joint to the fingertip
and X is the cross product. In this formulation, we assume that
the normal force vector extends along the line joining both
contact points to the object. We then define the moment at the
finger’s distal joint, M3, created by contact forces,

(19)

M; = uLZ,eff X fy + uLZ,eff X fr

where ué‘eff is a vector from the distal joint to the fingertip.
Through this analytical modeling of M and M}, we represent

the moment balance at the finger’s proximal joint,

0= Tir{ —kidq + M}, (20)

where T! is the force created by the tendon, wrapped about a
pulley of radius rﬁ, kﬁ is the proximal spring stiffness, Aqi =
q1i — qi, is the proximal joint angle w.r.t. its rest orientation,
and M i, is the out of plane component of the proximal moment
vector representing the magnitude of its torque. We similarly
model the moment balance at the finger’s distal joint,
0 =Tiry — kbAq5 + ML, 1)

where Aq = q} — qéyo is the distal joint angle w.r.t. its rest
orientation.

In addition to moment balance constraints, the forces applied

to the object must be in equilibrium with one another in order
to maintain a stable grasp. That is,
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(22)
(23)

0=fix+ fixt fix+ [
Oszy+ ny+ fNy+ ny

where fiy, fiz f,\‘}y, and fTiy are the x and y components of the
normal and tangential forces, respectively. During
manipulation, we must also satisfy kinematic loop closure,

0= |Julers — ud ol — do (24)

where ué_eff is the position of the left fingertip w.r.t the base
frame, B, and ug‘e rr 1s similarly the position of the right
fingertip. Here, d,, is the diameter of the object in contact with
the fingertips. The last equality constraint represents the tendon
or transmission constraint of underactuated mechanisms,
dictating the coupled actuation between both joints,
0 =ridAqt +riAql —rida (25)

where 7} is the radius of the actuator pulley, and Aa' is the
difference between the resting and set angle of the actuator.

Finally, an inequality constraint on each finger must also be
satisfied such that contact normal and tangential forces satisfy
Coulomb’s Law,

0= Ifil - woll il 26)

where u, =1 and is a conservative coefficient of friction
estimate between rubber fingerpads and a solid object [43].

From these constraints, which are guided by the mechanics
of manipulation, we solve for the equilibrated joint
configuration, q*, and contact forces on each finger, fi and f,
by solving the optimization problem,

(q*,f,@,fT") = arg;nin U(q) s.t. (18-26) 27)

B. Mode Characterization in Simulation

Following these formulations, we create a simulation
modeling the motion of an object given an actuation input.
Although our simulation can represent any underactuated two-
fingered hand-object variant, we decide to limit the parameter
variation to just three characteristics in order to maintain
tractability of the results. Specifically, we begin with a
symmetric two-fingered hand (base variant) and sequentially
change link lengths of the right finger, joint stiffnesses of the
right finger, and object diameters, while keeping object contact
locations constant. To avoid highly asymmetric cases, we
choose to incorporate a variational term, Al, where, if this term
is added to one link, it is conversely subtracted from the other
in order to maintain unit length of the finger (Fig. 4.B).

We collect observations of the hand-object system when
actuated and save two feature sets of its state. Particularly, these
feature vectors consist of both types of finger manipulability
measures in addition to the joint configurations of the hand.
Concretely, we represent these as feature sets, &8, =
(w!, w? w},w}) and 8, = (91, 43,97, 95) , which are then
both tagged with a mode of manipulation, as determined by the
results of the optimization process:

1.) Drop - The hand is unable to provide force closure (i.c.
when frictional fingertip contacts can equilibrate an
external wrench perturbation) on an object of 20 grams,
with gravity pointing into the manipulation plane.

2.) Stuck - The object is no longer able to move in the
direction dictated by actuation forces, creating an
excessively large internal object force. This normally
occurs at joint limits.

3.) Sliding - The object exhibits sliding contacts when
normal forces lie outside of the friction cone, as
determined by p, and fingertip forces from (27).

4.) Normal - The object is manipulable within the gripper’s
workspace and modes 1-3 are not satisfied.

We complete the simulation with a total of 867 hand-object
variants. Each variant is actuated with a total of 900 distinct
actuation pairs, and from each pair, the two feature vectors and
mode of manipulation is recorded. Table II provides a summary
of the simulated hand parameters.

TABLEII
SIMULATION HAND PARAMETERS
Symbol Value | Symbol Value
I 6cm Al [-2.4 —2.4]em (17 total)
13 dcm d, [2.0 - 6.0]cm (17 total)
kl/k} 2.0 k2 /k? [2, 2.5, 3] (3 total)
d, 6¢cm ri/ri 1.2

C. Bounding Feature Distributions by Statistical Testing

The goal of this simulation is to provide general bounds by
which grasp mechanics-based features are able to better
generalize to different hands compared to joint-based features.
More specifically, we approach this study by analyzing the data
distributions of each of those feature sets with respect to the
modes realized within those distributions, while varying hand-
object parameters. It further follows that if mode distributions
do not greatly change between hand variants, we are likely able
to better transfer learned models to other hands without retuning
or retraining with new data.

We perform this analysis by sequentially conducting a One-
Way Multivariate Analysis of Variance (MANOVA) test while
increasing the difference between tested hand variants. Due to
this sequential testing, we adjust the p-value required to reject
the null hypothesis according to the Bonferroni correction
method, starting with a value of 0.05 at the first variation of
testing. This analysis is conducted as follows: given an object
diameter and a right finger stiffness ratio, we select three hand
variants—two with +Al, and one where Al is equal to zero (the
base variant). We run MANOVA and according to the p-value,
decide whether to reject the null hypothesis. For this type of
statistical analysis, the null hypothesis tests whether the mode
data from the three hand variants come from the same
distributions. If the p-value is less than the Bonferroni adjusted
threshold, we can reject the null hypothesis, meaning that there
is sufficient evidence that the three hand variants do not come
from the same data distributions. Performing these tests for all
simulated hand-object variants, we compare the p-values of
both the mechanics-based feature set, 8,,, and the joint-based
feature set, 8. The results are presented in Fig. 5.
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Fig. 5. MANOVA mode distribution testing of grasp mechanics-based features and position-based features. Green cells generally indicate the
extended bounds by which mechanics-based features are able to transfer beyond that of their position-based counterpart (blue cells). Red cells
indicate that neither of the feature sets likely share data distributions with the base variant (solid black cell).

These results indicate the general bounds by which hand
properties can change without varying the feature data
distributions for each of the four modes of manipulation. More
intuitively, Fig. 5 shows that, when starting at the base variant
(solid black cell), the green cells are able to extend beyond that
of the blue cells, where the green cells denote mechanics-based
features and the blue cells denote both, position-based and
mechanics-based features. Alternatively, red cells indicate hand
variants where both null hypotheses were rejected, i.e. neither
feature sets can sufficiently represent the base variant’s data.

In fact, while keeping the object diameter around that of the
base variant, and while holding the joint stiffness ratio static, Al
can change by +1.8cm without being statistically significant
from the other data distributions (Cell A in Fig. 5). Notably, this
variation cannot extend as drastically when the joint stiffness of
the finger also changes. For instance, while still rejecting the
position-based null hypothesis, we are only able to change Al
by +0.6cm comparatively, but this is when we increase the
joint-stiffness ratio from 2 to 3 (Cell B). These two cells,
interestingly, have similar p-values of 0.07 for 8,y,.

This depiction serves to broadly represent the extent of the
generalization bounds by analyzing various cells, like Cell C
where we can reject both null hypotheses, and Cell D where we
cannot reject either of the null hypotheses according to their p-
values. While this analysis is not definitive in that it does not
necessarily directly transfer to more advanced non-linear
learned regression models, it provides a general basis for
understanding the added utility of the mechanics-based features
from a statistical, data-distribution perspective, and we use this
concept to motivate the continuation of this work.

V. SELF-SUPERVISED TAGGING AND OBJECT RESET

Beyond that of statistical evaluation, we seek to test the
reliability of mechanics-based features empirically on a
physical hand-object system to further analyze their
applicability in real-world environments. We employ such
experimentation on an underactuated Yale OpenHand Model
T42, that is not equipped with joint encoders or tactile sensors

at the fingertips. Due to this limitation, we must reformulate the
definitions of the four modes of manipulation:

1.) Drop - The hand-object configuration is in a state where
the object is just about to drop and will drop shortly
thereafter the commanded next actuation.

2.) Stuck - The object is no longer able to move in the
commanded actuation direction due to the hand-object
configuration of the gripper, or the joint has reached a
physical hard stop.

3.) Sliding - The object exhibits a sliding contact with
respect to the gripper’s distal link, i.e. mechanical rolling
contact conditions are not satisfied.

4.) Normal - The object is manipulable within the gripper’s
workspace while maintaining a rolling contact, and
modes 1-3 are not satisfied.

A. Manipulation Primitives

The Model T42 is underactuated and thus mechanically
compliant, which enables passive reconfiguration post-contact
and mitigates potential overconstraint as in a fully actuated
hand. This compliance is advantageous for manipulation, as it
enables the hand to reconfigure with noisy or imprecise control
input. Though due to the nature of this mechanism, we cannot
control all degrees of freedom of the object simultaneously, but
a 2D submanifold of the object’s 3D configuration space. We
employ manipulation primitives on the hand by generating an
approximated Jacobian for an arbitrary object that relates to the
velocity, v = [vx, vy, Ug]T, of the object frame, O € SE(2), to
an actuation velocity, @ = [dy, d,]7, all with respect to the base
frame, B € SE(2) [44]. These primitive actuation sequences
are estimates of the true Jacobian, and are selected according to
the commanded Cartesian velocity reference in the x-direction,
1, and in the y-direction, v, (Fig. 6).

B. Geometric Hand-Object Representation

The geometric representation of a hand-object system can
generally be extracted through various sensing modalities, e.g.
cameras, tactile sensors, and joint encoders or IMUs. Albeit, not



SUBMISSION NUMBER: 20-0894

Fig. 6. Simple manipulation primitives enable planar motion within
the workspace of a Yale OpenHand Model T42 gripper. These
primitives enable the object to move up, down, left, or right depending
on the Cartesian velocity reference, 1.

all hands are equipped with such capabilities, as these types of
sensors are generally not required for grasping with compliant
hands. Thus, in this work, we focus on a vision-based approach
with a fixed overhead camera (30Hz). During manipulation, the
gripper configuration is tracked via ArUco markers attached to
rigid links of the hand. 4 priori knowledge of the hand includes
the number of finger links, the object geometry, and the
geometry of the fingerpads. Principally, the camera pose w.r.t.
the task can vary, as long as the markers are visible by the
camera sensor such that the 6D pose of the attached markers
can be tracked, e.g. offset from a robot wrist or on another robot.

The state of the contacts is tracked, which subsequently
allows the system to detect sliding during manipulation (Sec.
V.C), by superimposing a 2D point cloud on both, the fingertips
and the object, with respect to the marker frames attached to
each. As the hand-object configuration changes during
actuation, fundamentally changing characteristics about the
grasp such as the effective link length, the superimposed 2D
point clouds are tracked and analyzed. We solve for the contact
location between the fingerpad and the object by querying a
KD-Tree constructed with the object’s point cloud.

C. Self-Supervised Mode Detection

All four modes described in this work can be detected solely
by an overhead camera that monitors the hand-object state
during manipulation. This observation forms the basis of our
self-supervised learning approach, where we can monitor
features of the hand and of the object to determine and
autonomously tag the current mode of manipulation.

1.) Detecting Drops: Drop detection is achieved by recording
the state history of the object during manipulation. Simply, if
the object marker is no longer within the manipulation plane, or
the marker is currently absent from visual detection, the object
is declared to be dropped. To reduce the potential for drop
detection error, the history over the past 10 frames (0.3 seconds
or two hand actions) is used to determine such occurrences,
whereas this threshold is tuned heuristically during the
experimentation setup. If this condition is satisfied, the system

accesses the recorded state of the gripper 10 frames prior
(directly before the object was dropped) and self-tags a drop
observation. The object is then reset via an object reset system
(further described in Sec. V.D) and manipulation continues.

2.) Detecting Stuck: The object is considered stuck if it is no
longer manipulable in the direction desired, which is
determined by the current Cartesian velocity reference.
Typically, this mode occurs when both fingers reach hard stops,
limiting additional manipulation towards the palm (Fig. 2).
Alternatively, stuck cases are also detected when the current
configuration of the hand-object system is not able to
reconfigure, limiting the movement of the object in the
reference direction. When stuck is detected, the system self-tags
an observation and the object is reset via an object reset system
(Sec. V.D) for manipulation to continue.

3.) Detecting Sliding: Sliding is the most difficult of the four
modes to detect and is done so when kinematic rolling
conditions cannot be satisfied. In order for one surface to be
considered rolling on top of another, we choose to track two of
the three sliding constraints—the position of the point of
contact and the velocity at the point of contact must be the same
between the two bodies [45].

Consider the scenario depicted in Fig. 7. Here, for the planar
case, O € SE(2) is the object frame and F € SE(2) is the
finger frame. To maintain generality, F can be either finger
frame, where the left and right finger frames are F! and F2,
respectively. By parameterizing the object and the fingerpad
surface locally in O and F, respectively, we effectively develop
a point cloud for the object, P, € R¥*2, and for the fingerpad,
Pr € RN*2, where the interacting array index from the object
point cloud is p, and the interacting array index for the
fingerpad point cloud is p, as determined by the KD-Tree. The
value for N can be arbitrarily assigned such that points
sufficiently cover the surface of the fingerpad and the object.
For clarification, in the object point cloud, the location
P,(p,) € R? is in contact with point P;(p;) € R? from the
fingerpad point cloud. Let’s consider that the location of O is
x, = (Oy, 0y) € R?, and the location of the F is x; = (F,, F,) €
R?2, both with respect to B. We denote the 2D rotation matrices
R, and Ry for these respective frames. It follows the elementary
consideration that the location of the contact point on the object
(x5), that is with respect to the base frame, can be calculated as,

X5 = Xo + RoPo(P0) (27)
and is similarly calculated for the fingerpad, denoted x¢. To
satisfy the positional constraint of a rolling contact, within some
user-defined threshold, €, the following must be valid:

X5 — € < Xf < X5+ € (28)

The velocity constraint can be similarly constructed, where we
can differentiate the two positions, x, and x;, with respect to
time to form X, and X;. Since the body rotations are also
functions of time, we must also differentiate body rotations of
the object and fingertips to form velocity dependent rotation
matrices, R, and Ry (see [45]). We can then solve for the
velocity of the object contact about the base frame, x, by,
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Fig. 7. Sliding contacts are detected by verifying rolling contact
constraints cannot be satisfied.

Xg = %o + RO‘{PD (®o) 29)

We similarly calculate xf. Given the velocity threshold, €, we
develop our final constraint:

X§— €, SAF S A5t €y (30)
Thresholds €, and €, are tuned heuristically according to the
frequency of the camera and the accuracy of contact point
estimation. If constraints (28) or (30) do not hold, it further
implies that sliding occurred at the contact. Upon detection, the

state of the system is self-tagged and manipulation continues
without object reset.

D. Standardizing Object Reset

Collecting training data for dexterous manipulation is a
labor-intensive process, as constant monitoring and manual
intervention is frequently required to reset the system due to
object drops during manipulation, or from other undesired
system scenarios, e.g. actuators at torque limits. Moreover,
during reset, it is unlikely that a human can completely
standardize the initial grasp of the object, as a human placing
the object within the grasp may often cause undesired
deviations in the initial pose of the object before manipulation.
In order to collect data in a self-supervised manner, we
fabricated a system to autonomously and precisely reset the
object as to standardize the initial grasp before manipulation.

The automated reset system (Fig. 8) is comprised of an object
crane and a stabilization beam with an affixed magnet on the
end. For each of the objects tested, two magnets were affixed to
opposite sides of the body and a lightweight fishing line was
strung through the center. During the case of object drop or
stuck, the crane raised and the stabilization arm was lowered to
the reset position as to adhere to the object magnets. Once the
hand reacquired the grasp, which is standardized due to the
positioning of the magnets, the stabilization beam lifts out of
the way and the crane lowers. This provides slack to the
connection between the crane and the object, and allows the
hand to freely manipulate the object once again.

10

Object Crane

Camera

Stabilization
Beam

Model T42
Gripper

Magnets i

Arduino /§

Fig. 8. An object crane and stabilization beam with affixed magnets
accurately resets the object into the same configuration for each trial.

VI. DATA COLLECTION

We design gripper variants that are generally within the
bounds identified in Sec. IV and test the applicability of
mechanics-based features empirically, as to evaluate their
robustness in physical environments. In a self-supervised
manner, we autonomously collect and tag data on 6 gripper
variants—one variant for training and five for testing. Once a
grasp is acquired after reset, the object was manipulated with
randomly selected Cartesian velocity references that operated
for a period between 0.5 and 2.5 seconds. A “normal”
observation was collected once no other mode was detected for
more than 5 seconds. The self-supervised training data was first
collected online, randomly selected as to adhere to the leveling
of the data distributions, and was then trained and tested offline.

A total of six 3D Printed ABS objects of negligible weight
(~20g) and differing geometries in the manipulation plane were
created for experimentation (Fig. 9, 10). The center of each
object contained a hole where the object crane was attached.
For each object, magnets were affixed to opposite ends as to
enable attachment to the stabilization beam for object reset. In
the training data, only four objects were used. The other two
objects, the oval and the pear, were used as novel test objects.

Training data was collected with a single, symmetric Model
T42 gripper variant (PL-PL) with Dynamixel RX-28 actuators.
This naming convention signifies a “pivot-long proximal link,
and a pivot-long distal link” configuration. From four objects,
the two rectangles and the two circles, a total of 3500 modes
were collected for training, with an equal mode distribution
over each of the objects: 1000 normal, 1000 drop, 1000 stuck,
and 500 sliding. Data was tagged and collected until the
minimum for each mode was fulfilled. Afterward, overflow
mode observations were selected randomly and excluded from
the observation set. It is important to note sliding only occurs
on objects with flat surfaces, i.e. the rectangular objects (Fig. 2,
9). Therefore, the number of sliding points recorded for each
variant was determined by which type of objects were used
during collection. The training data workspace is presented in
Fig. 11. We note that, generally, the mode regions are
symmetric about the central axis of the gripper.

Testing data was collected by equipping the hand with 5
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Fig. 9. Manipulation was performed on 6 different gripper variants. The base variant used in training, the symmetric PL-PL gripper, was
evaluated with four different objects (small circle, large circle, small rectangle, and large rectangle). A total of 3500 points for training were
collected for the four identified modes. The five test variants (PL-PS, PS-PL, PL-PLsq, PS-FL, and PS-PS-PS) then performed manipulation
with two of the six test objects. Two novel objects were added in testing (medium oval and medium pear). During manipulation, 50 occurrences
of each mode were collected for each gripper-object combination. A quarter is placed next to the objects for size reference. *Sliding only occurs
with rectangular objects, therefore limiting the number of sliding cases.
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Fig. 10. Six objects were used for testing and training. In the
manipulation plane, object geometries are classified either as a circle,
rectangle, oval, or pear.

different finger configurations (Fig. 9). Variations incorporated
changes to the link lengths, fingerpad curvatures, joint types,
actuator models, and the number of links compared to the
original PL-PL setup. The five variants included PL-PS and PS-
PL fingers (Dynamixel RX-28), and PS-FL, PL-PLsq, and PS-

PS-PS fingers (Dynamixel XM-430). Different joint stiffness
ratios were observed for the PS-FL and PS-PS-PS setups
compared to the other four variants. Additionally, the distal
hard stop was 70° for the PS-FL variant, and the two hard stops
were 60° for the PS-PS-PS variant, compared to all other
variants with a distal hard stop of 90°. In each of the five
variants used for testing, a total of 50 observations were
collected for each mode-object pair. Since in most cases two
objects were tested and only one object recorded any sliding,
we recorded 100 normal, 100 drop, 100 stuck, and 50 sliding
for each variant.

More formally, during data collection we form a feature set,
S, comprised of features from Sec. III, and a class set, R, while
manipulating the objects. Denoted by,

8y = (U, vy, W w?, wl,wp, .

- 1 Pmin» Pmax, ’h’min: ’h'max: C}, Cé: Clg, Cg) € RM
an input feature, and

7, = (m) € {normal, drop, stuck, slide}
an output feature. The dataset is defined as,

S = {8ntn=1m R ={rn=1m

where its size, M, has the same number of normal, drop, stuck,
and sliding cases for each gripper-object combination.
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VII. RESULTS

A. Classifier Identification and Observation Reduction

We were first interested in obtaining the best cross validation
score  given the training feature set, (Siqin €
R3500x14 . .. € R3599), of the symmetric PL-PL setup. In
the self-supervised learning approach taken in this work, we
evaluated three different predictive models: Random Forests
(RF) [46], Support Vector Machines—linear kernel (SVM-1),
and Support Vector Machines-radial kernel (SVM-r). We
chose these three classifiers for their extended use in the
robotics literature, and due to the fact that other classifiers, e.g.
Neural Networks, likely need more data than what was
collected in this work. To determine the best classifier for this
data, we performed a five-fold cross validation on the training
dataset using each classifier. As presented in Table II, the RF
classifier performed the best, with an accuracy of 92.3% for all
four modes, followed by 88.6% (SVM-r) and 85.4% (SVM-1).
For the RF classifier, we calculate a classification accuracy of
85%, 94%, 95%, and 86% for the normal, drop, stuck, and
sliding cases, respectively. We note that drop and stuck cases
are often classified with higher accuracy than sliding and
normal cases. This quality is advantageous as it allows the
system to more correctly avoid potentially hazardous modes to
stay well within the workspace. For the remainder of this work,
we evaluate classification with the RF classifier by building 50
weak learners (shallow trees of depth 10) split according to a
Gini impurity measure and averaging each tree’s prediction to
determine mode classification.

We were interested in how much data was required to
maintain high classification accuracies via self-testing. Using
all 14 features from .8,, and the RF classifier, we split the data
into two sections: one with 2800 observations (training) and the
other with 700 observations (testing), all while keeping the
number of modes in each balanced. We continually reduce the
number of data points in the training set by 100, removing
observations randomly, and test on all 700 test observations.
After training the classifier once observations were sequentially
removed, we note that the classifier performs similarly with
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Fig. 12. Validation of training data size by reducing observations.
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1200 observations as it does with 3500 observations (accuracy
reduces by 3.4%). This 1.7:1 data ratio underscores that
sufficient data was collected via self-supervision (Fig. 12).

TABLE II
FIVE-FOLD CROSS VALIDATION SCORES ON TRAINING SET
Classifier | Random Forests SVM - Linear SVM - Radial
Score 92.3+0.4% 85.4+ 0% 88.6 £ 0%

B. Classification Accuracy

For the remainder of our analysis, the RF classifier was
trained with all 3500 data points using the symmetric PL-PL
gripper variant. The particular test set, (Siest) Riest), Was
changed according to which of the five gripper variants was
being tested.

Using all 14 features from ,,, each of the test grippers were
evaluated individually (Fig. 13). The classification accuracy of
the PL-PS and PL-PLsq variants were highest, with a
classification accuracy of 90.6%. The second highest
classification accuracy was realized in the PS-PL variant with
an accuracy of 85.1%. As provided in the decision matrices in
Fig. 13 (leftmost column), the PL-PS variant was able to
classify normal, drop, and stuck with 84%, 97%, and 99%
accuracy, respectively. Classification for sliding dropped to
72%, where it had difficulty distinguishing from the normal
mode. The PL-PLsq variant did not have sliding modes, since
data was not collected with rectangular objects. Therefore, the
lowest classification accuracy was observed with the drop mode
(80% accuracy).

This high misclassification of drop is interesting, as it is
significantly lower than other variants (97%, 93%, 96%, 88%)
with the same feature set. This can be largely attributed to the
shifted workspace of the PL-PLsq gripper. As provided by the
workspace plots in the rightmost column of Fig. 13, compared
to the other variants, the modes detected for this variant are
shifted to the left of the workspace. Additionally, many drop
cases seem to occur in the middle of the workspace, where
normal classification would typically be predicted. This artefact
is due to the differing geometry of the fingerpad, as it was
difficult for the finger to manipulate on the right side of the
workspace since the “sharp” edge of the finger prevented a
rolling contact to the tip of the finger.
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Fig. 13. (Left three columns) Confusion matrices for each gripper variant given differing feature sets (described in Sec. VII.C). (Right column)
Object centroid position for modes detected within the workspace of each gripper variant. (Light Blue-Drop, Dark Blue-Normal, Yellow-Stuck,
Red-Sliding)
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Fig. 14. Feature importance measures provided by the Random Forest
Classifier via Gini impurity. Features in blue are included in Feature
Sets 1,2,3, features in red are included in Feature Sets 1,2, and features
in green are included in Feature Set 1. See Table III.

Of the other gripper variants, the 3-link PS-PS-PS performed
the worst with a total classification accuracy of 79.8%. In
general, for all variants, predicting sliding was difficult as
without tactile sensors and with differing friction within the
joints of the fingers, the classifier struggles to determine forces
applied at the contact point.

C. Feature Reduction

A benefit of the Random Forests classifier is its ability to
inherently provide “feature importance measures”, or values
that signify how much each feature contributed to the
classification decision—providing intuition as to which
features were most important during manipulation. In this work,
we use a Gini impurity measure to calculate this importance
metric, which is a standard often used in ensemble tree
classifiers. It works as follows: once a random set of features
are selected to determine a split, the Gini impurity represents
the likelihood that an accurate classification is predicted given
a random class from the distribution of labels. As these splits
are calculated for each tree in the forest, the importance
measure averages the Gini measures for each split and further
signifies the feature’s importance, or more generally, how much
“purity” they contributed to the forest. Feature importance
measures are reported in Fig. 14, where we note that the largest
contribution to classification success is attributed to the y-axis
Cartesian velocity reference (vy,), finger manipulability
measures (w!,w?), and the penalized finger manipulability
measures (1w, , wy).

Using the feature importance measures, we define 3 feature
sets (FS1, FS2, FS3) consisting of 14, 9, and 5 features,
respectively, to further test classification (Table I1I). By testing
accuracy with each feature set, we can provide greater intuition
as to what features were most important. The results from this
analysis are reported in Table IV and Fig. 13. Note that the
results from F'S7 were previously described in Sec. VIL.B.

After feature reduction, some variants such as PS-PL (FSI:
85.1%, F'S2: 85.0%, F'S3:84.4%) and the PL-PLsq (£51: 90.6%,
FS2: 89.2%, FS3: 87.6%) provided consistent classification
scores even with the reduction of features. Interestingly, the PS-

14

PS-PS variant obtained nearly the same accuracy between FS/
(79.8%) and FS2 (79.0%), even with the reduction of 5 total
features (14 features to 9 features). The PS-FL sees a sharp
decrease in classification from FS/ to F'S2, but then maintains
a similar classification accuracy for FS3. What is also
interesting to note, while the overall accuracy of the PL-PLsq
decreases, the drop accuracy increases with the reduction of
features (FS1: 80%, FS2: 90%, FS3: 95%).

TABLE III
FEATURE SETS DETERMINED BY FEATURE REDUCTION

Feature Vector

_ 1,2 o0 .2
Feature Set 1 Sy = (W, vy, W, wE W, Wy,

(FS1) s Pmin Fmarer Pomins Prmaxs cfl,c;, C]Z’ cd)
Feat(t[g’;zfeﬂ 8y = (v, vy, W w2, iy, WE, A, Ponar C5)
Fea;z;r;3§et3 5, = (vy,wl,wz,wpl,wpz)

TABLE IV
CLASSIFICATION ACCURACY WITH DIFFERING FEATURE SETS
Variant Feature Set 1 Feature Set 2 Feature Set 3
PL-PS 90.6 £ 1.2% 87.9+£0.9% 84.1+1.6%
PS-PL 85.1+0.9% 85.0+1.1% 84.4+2.1%
PL-PLsq 90.6 £2.2% 89.2+1.2% 87.6 £ 1.4%
PS-FL 84.8 +1.8% 78.3+£2.4% 77.6 £1.6%
PS-PS-PS 79.8 £0.7% 79.0 £ 1.3% 70.0 £ 0.8%

Of the five gripper variants tested, the PL-PLsq maintained
the best classification score. This success is likely attributed to
two things. First, this variant, dimensionally, is the closest
variant to the original PL-PL used in training, as the only
difference is the squared fingertip on the right finger. Second,
this variant was tested with two rounded objects (circle and
oval), and therefore no sliding occurred during manipulation,
which is normally the most difficult to classify. While evaluated
variants that were tested with sliding cases, the PS-PL
performed the best with a total classification accuracy of 84.4%
(£'S3). This variant also had the highest sliding accuracy among
any of the five variants throughout all features sets, which can
likely be attributed to the fact that this variant has the same
distal link as the training PL-PL variant. The PS-PS-PS gripper
variant performs the worst of the five variants—this variant has
a more limited workspace due to the hard stops at 60° at each
of the links. Additionally, sliding only occurs on the left side of
the workspace, since the flat surface of the right most-distal link
rarely comes in contact with the object. As depicted by the
confusion matrices in Fig. 13, in general, as the number of
features is reduced, the ability for the system to accurately
predict sliding greatly reduces. For example, in the PS-PS-PS
variant for FS1, the classification for sliding is 66%, but in F'S3
the accuracy is just 4%. This is a fairly specific case, as the
classification accuracy for sliding only differs from a maximum
of 12% for the three other gripper variants (from FS/ to F'S3).

As previously discussed, the rightmost column of Fig. 13
provides workspace plots for the 5 test gripper variants. Plotted
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Fig. 15. Five-fold cross validation accuracy of the PL-PL training
variant. Features were reduced one at a time subject to their
classification accuracy contribution (see Fig. 14).

points depict the centroid of the object when a mode was
detected. While tested objects were of various geometries, this
plot generally presents where modes were likely to occur within
the workspace. It is interesting to note how the “regions” for
different modes change according to the gripper variant,
especially how varied they are compared to the training hand,
PL-PL, in Fig. 11. For example, sliding only occurred on the
left side of the workspace for the PS-PL and PS-PS-PS variants,
and a large number of drop cases occurred in the middle of the
workspace for the PS-FL variant. These workspace plots
underscore how, where joint configuration and object center
location inside of the workspace is important, the properties of
the hand-object system must be accounted for in order to
accurately predict modes of manipulation.

D. Single-Component Feature Reduction

As stated in Sec. VII.B, some variants were not as susceptible
to higher classification errors given feature reduction
techniques, while others were more affected. It was our interest
to perform feature reduction techniques by removing one
feature at a time, instead of in sets, as to validate our approach.
We begin my removing features from least important to most
important according to the measures presented in Fig. 13.

The results to this feature reduction are presented in Fig. 15.
While performing this task on the PL-PL variant with a total of
3500 observations, we note that the cross-validation accuracy
remains around 93% while having 9 or more features.
Thereafter, when only 8 features remain, the accuracy drops to
87% and continues until 5 features remain. Once only 4 features
are used for classification, the accuracy starts to decline, as it is
difficult to determine the decision boundary. This feature
reduction test validates the decision for 14, 9, and 5 features for
FS1, FS2, and FS3, respectively (Sec. VII.C), as these are
volatile intervals when accuracy will likely drop.

E. Online Classification

Detection of modes, and their associated regions, are
somewhat fluid (as presented by the workspace plots) and in
general, we are interested to see if modes can be successfully
predicted online to promote safe manipulation. We
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Fig. 16. Online classification of two novel gripper variants. The arrow
signifies the Cartesian velocity reference and the text (Drop or Sliding)
signifies the predicted mode. (Left) A PS-FL left finger and a PS-PS-
PS right finger perform manipulation and the online classifier predicts
a drop will occur given the Cartesian velocity reference. (Right) A PS-
FL left finger and a PL-PS right finger predicts sliding will occur
during manipulation.

implemented this RF prediction model in an online framework
to evaluate classification accuracy with two novel gripper
variants not evaluated in the previous sections (Fig. 16). The
first variant was tested with the medium oval and consisted of
a PS-FL left finger and a PS-PS-PS right finger. The second
variant was tested with the small rectangle and was comprised
of a PS-FL left finger and a PL-PS right finger. As before, the
mechanics-based features used for testing were extracted online
using markers attached to rigid links of the hand. The gripper
was commanded through random Cartesian velocity references
for a period between 0.5-4.0 seconds to attempt to cover the
entire workspace. Once a mode other than normal was detected
for a period between 0.1-1.0 seconds, the Cartesian velocity
reference changed randomly to either stop manipulation or
guide the object back towards the middle of the workspace.

Online classification using the first novel variant properly
classified modes normal, drop, and stuck within its workspace
for the oval object. In addition to these three modes, the second
variant also included the “sliding” mode. To test the efficacy of
this online detection, the classifier was run on each hand 5 times
for 5 minutes. Cartesian velocity references were selected
randomly, with a goal of remaining within the manipulable
region of the gripper. For the first variant, 3 out of the 5
executions were successfully run for a total of five minutes. The
object was manipulated safely within the workspace and was
diverted towards the center of the workspace when a mode other
than normal was detected. For the other two executions, a
dropped object was detected at 3 minutes 21 seconds and 4
minutes 5 seconds. For the second variant, 4 out of the five
executions successfully completed 5 minutes of manipulation.
The final failed execution successfully manipulated the object
for 2 minutes and 34 seconds. This failure was due to the
amount of sliding the object had undergone without detection
12 seconds before task failure.

VIII. DISCUSSION AND FUTURE WORK

In this work, we showed that by learning from mechanics-
based features, which represent high-level properties of the
hand-object system, we were able to successfully transfer mode
prediction accuracies between different gripper variants. We
first provided bounds by which mechanics-based features were
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likely to better transfer than their joint-based counterparts. We
then tested this notion physically with different hand variants.
Specifically, the 92.3% five-fold cross validation accuracy of
the training variant was marginally greater than the 90.6%
classification accuracy of the PL-PLsq and PL-PS variants.
However, we did note that these features presented
shortcomings in accurately predicting sliding when stiffness
ratios changed between variants. Additional sensing modalities
such as tactile sensing at the fingertips would likely be
beneficial for classification.

The features included in FS3, or the set containing finger
manipulability measures, contribute the most to the success of
the classifier (75.2% of the Gini impurity measure). The v,
component benefits classification in that, according to the
workspace plots, it likely discriminates between the drop,
normal, and stuck regions as the y-position component passes
through all three. When coupled with the finger manipulability
measures, these values together determine where the object is
within the workspace and where it is headed, and in general, the
hand-object configuration. It is our belief that the other features
defined, such as singular values of the Hand-Object Jacobian
and the contact curvatures, are important for stable
manipulation capabilities when fingerpad curvatures change
more drastically, or different gripper types (underactuated vs.
fully actuated) are observed.

This work elucidates the beginning of what we consider a
promising approach for learning models in dexterous
manipulation. While we recognize the drawbacks and
inaccuracies in predicting sliding as the gripper becomes more
asymmetric, this approach has proven to be successful for the
other three modes, and was completed without the use of tactile
sensing. Although conceptually backed by simulation, the
majority of our analysis consisted of data that was collected
physically, which allows us to capture uncertainties of the real
world. In future work, we plan to investigate this approach
further by extending this sort of classification to the spatial
manipulation case, investigating how time series data aids in
prediction accuracy (e.g. HMMs), further modeling this
approach for deformable contacts and objects, and testing such
methods on more commercial, readily-available robot grippers.
Furthermore, we are interested in how adding single unit tactile
sensors at the fingertips may be beneficial in detecting sliding
cases when using different gripper variants.

While this approach of using mechanics-based features for
learning dexterous manipulation can be applied to any hand
design, it is particularly useful for soft, compliant, or
underactuated hands that typically do not have tactile sensors or
joint encoders. Fundamentally, dexterous manipulation extends
the workspace of the manipulator and is a valuable tool for the
future of robotics in society. We hope that the robustness
demonstrated by testing different gripper variants encourages
researchers to search for features that represent higher-level
properties of the system for a more enlightened discussion on
learning system models.
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