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1. Introduction and main results

The Lp-boundedness properties of Riesz transforms in wide geometric settings have 

been extensively studied by a large number of authors for many years. The large liter-

ature on this topic includes techniques from the Calderón-Zygmund theory of singular 

integrals and probabilistic and analytic Littlewood-Paley theory. For some of this lit-

erature we refer the reader to [4], [14] and [8]. On the other hand, the probabilistic 

approach of R.F. Gundy and N.Th. Varopoulos [28] which represents the Riesz trans-

forms as conditional expectations of martingale transforms, combined with the sharp 

martingale inequalities of D.L. Burkholder, provides a powerful tool to obtain not only 

Lp bounds with constant that do not depend on the geometry of the ambient space 

but often give sharp, or nearly sharp, bounds. The martingale techniques also apply to 

Riesz transforms on Wiener space providing explicit bounds. For an incomplete list of 

references to this now very large literature, we refer to [8] and [12]. In addition to pro-

viding universal and explicit Lp bounds, the martingale transform techniques extend to 

multipliers beyond Riesz transforms. For some of this literature, we refer to [6]. A com-

mon thread in the Gundy-Varopoulos constructions has been to build the martingale 

transforms on stochastic processes of the form (Xt, Yt) where Xt is either a diffusion or a 

process arising from a Markovian semigroup on Rn or on a manifold M (such as the Lévy 

multipliers studied in [9]), and where Yt is either a one dimensional Brownian motion on 

R
+ killed upon hitting 0 (harmonic extensions) or T −t for some fixed time T , in the case 

of space-time (heat extension) constructions as in [7]. The goal of this paper is to prove 

boundedness of multipliers obtained when the “vertical” process Yt is more general than 

those just mentioned. More precisely, we will study multipliers that arise as conditional 

expectations of martingale transforms which are built on the process (Xt, ηt) where the 

vertical diffusion has a generator of the form given in (5). As we show in Section 4 (see 

Remark 4.7), our construction unifies both the original constructions with (Xt, Yt) of 

Gundy-Varopoulos, which gives sharp inequalities for first order Riesz transforms [13], 
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and the construction for (Xt, T − t) from [5], which gives sharp inequalities for second 

order Riesz transforms, into one by a limiting procedure.

The last two decades or so have seen a great amount of works dealing with nonlocal 

operators (generators of Lévy processes) from the PDE point of view (see e.g. the recent 

book [36]). In particular, the paper [20] has been instrumental in interpreting fractional 

powers of the Laplacian in Rn in terms of a suitable “harmonic” extension. Note that 

in the language of probability, this result had been proved in [35]. This latter result has 

been put in a more general (and flexible) framework by Stinga and Torrea in [40]. It is 

beyond the scope of this paper to review the amount of works using such technique. Our 

contributions here lie at the interface of probabilistic methods and harmonic analysis. 

More precisely, in the present paper, combining the Gundy-Varopoulos approach to Riesz 

transforms and a probabilistic approach to the result of Stinga and Torrea, we obtain 

new results about the boundedness in Lp of three types of operators:

• Multipliers of the type Φ(−Δ + V ), where Δ is a diffusion operator and V a non-

negative bounded smooth potential;

• Generalized Riesz transforms of the type Φ(−Δ +V )Xi, where the Xi’s are first-order 

differential operators that commute with −Δ + V ;

• Generalized second order Riesz transforms of the type Φ(−Δ + V )XiXj .

We note that using methods from harmonic analysis many results about Lp-estimates 

for Schrödinger operators are already available in the literature in some settings and 

various more general assumptions on the potential V , see for instance [2,39]. However, 

those methods rely heavily on the geometry of the underlying space and yield dimension 

dependent Lp-bounds. The probabilistic method we are using here uses stronger assump-

tions on the potential V but on the other hand yields dimension independent Lp-bounds 

and relies very little on the geometry of the underlying space.

When V = 0 among other things, we prove the following general multiplier theo-

rem. Let Δ be a locally subelliptic (in the sense of Fefferman-Phong) diffusion operator 

on a smooth manifold M which is essentially self-adjoint on the space of smooth and 

compactly supported functions with respect to a measure μ on M . We assume that Δ

generates a diffusion process ((Xt)t≥0, (Px)x∈M ) which is not explosive. If Φ is a bounded 

Borel function on [0, +∞) the operator Φ(−Δ) may be defined on L2(M, μ) by using 

the spectral theorem. By using martingale transforms, we will then prove the following 

theorem.

Theorem 1.1. If there exists a finite complex Borel measure α on R≥0 such that for every 

x ∈ [0, +∞),

Φ(x) =

+∞
∫

0

(

1 − m√
m2 + x

)

dα(m), (1)
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then, for every p > 1 and f ∈ Lp(M, μ),

‖Φ(−Δ)f‖p ≤ 2(p∗ − 1)|α|([0, +∞))‖f‖p,

where p∗ = max{p, p
p−1 }.

In Theorem 3.6 below, we actually prove a more general result that also applies 

to Schrödinger operators. The representation (1) is related to the theory of Stieltjes 

transforms, see [29,44], and is possible to invert. We note that Theorem 1.1 can also be 

proved using Bernstein theorem, since the function x → m√
m2+x

is completely monotone. 

However, the method we propose is general and is easily adapted to study different 

multipliers as generalized first order or second order Riesz transforms.

Concerning the study of generalized first order and second order Riesz transforms on 

Lie groups of compact type, using a variation of the method to construct multipliers, we 

obtain the following result.

Theorem 1.2. Let G be a n-dimensional Lie group of compact type endowed with a bi-

invariant Riemannian structure. Let X1, · · · , Xn be an orthonormal frame of the Lie 

algebra of G and denote by Δ the Laplace Beltrami operator on G. Let Φ : (0, +∞) → C

be a complex Borel function.

(1) If there exists a finite complex Borel measure α on [0, +∞) such that for every 

x ∈ (0, +∞),

Φ(x) =

+∞
∫

0

dα(m)√
x + m

,

then, for every 1 ≤ i ≤ n, p > 1, and f ∈ Lp

‖Φ(−Δ)Xif‖p ≤ cot

(

π

2p∗

)

|α|([0, +∞))‖f‖p. (2)

(2) If there exists a finite complex Borel measure α on [0, +∞] such that for every 

x ∈ (0, +∞)

Φ(x) =

+∞
∫

0

dα(m)√
x + m2(

√
x + m2 − m)

,

then, for every 1 ≤ i, j ≤ d, p > 1, and f ∈ Lp

∥

∥

∥

∥

Φ(−Δ)
1

2
(XiXj + XjXi)f

∥

∥

∥

∥

p

≤ (p∗ − 1)|α|([0, +∞])‖f‖p. (3)
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Theorem 1.2 is sharp. Indeed, in (2), if one choses α to be the Dirac distribution at 

0, one gets

∥

∥

∥
(−Δ)−1/2Xif

∥

∥

∥

p
≤ cot

(

π

2p∗

)

‖f‖p

which is the sharp bound for the Riesz transform, see [13] and [31]. In (3), if one choses 

α to be the Dirac distribution at +∞, one gets

∥

∥

∥

∥

(−Δ)−1 1

2
(XiXj + XjXi)f

∥

∥

∥

∥

p

≤ 1

2
(p∗ − 1)‖f‖p

which is the sharp bound for the second order Riesz transform, see [5] and [24].

Finally, using techniques developed in [8] to handle the study of Riesz transforms on 

vector bundles, we obtain the following result.

Theorem 1.3. Let M be a complete Riemannian manifold with non-negative Weitzenböck 

curvature. Let L = dd∗ + d∗d be the Hodge-de Rham Laplace operator on the exterior 

bundle of M . Let Φ : (0, +∞) → C be a complex Borel function. If there exists a finite 

complex Borel measure α on R≥0 such that for every x ∈ (0, +∞),

Φ(x) =

+∞
∫

0

dα(m)√
x + m

,

then, for every p > 1 and every Lp integrable exterior differential form η

‖Φ(L) dη‖p ≤ 6(p∗ − 1)|α|([0, +∞))‖η‖p.

2. Preliminaries, extension procedure

2.1. Setting

Let Δ be a locally subelliptic diffusion operator (see Section 1.2 in [18] and [32] for a 

definition of local subellipticity) on a smooth manifold M . For every smooth functions 

f, g : M → R, we define the so-called carré du champ operator, which is the symmetric 

first-order differential form defined by:

Γ(f, g) =
1

2
(Δ(fg) − fΔg − gΔf) .

A straightforward computation shows that in a local chart one has

Δ =
n

∑

i,j=1

σij(x)
∂2

∂xi∂xj
+

n
∑

i=1

bi(x)
∂

∂xi
,
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where (σij(x)) is symmetric and nonnegative. That is, for 1 ≤ i, j ≤ n, σij(x) = σji(x)

and for ξ ∈ R
n, 

∑n
i,j=1 σij(x)ξiξj ≥ 0. Then in the same chart

Γ(f, g) =
n

∑

i,j=1

σij(x)
∂f

∂xi

∂g

∂xj
.

As a consequence, for every smooth function f , Γ(f) := Γ(f, f) ≥ 0. We assume that 

Δ is symmetric with respect to some smooth measure μ, which means that for every 

smooth and compactly supported functions f, g ∈ C∞
0 (M),

∫

M

gΔfdμ =

∫

M

fΔgdμ.

By smooth measure μ, we mean here that μ is given by a density in the sense of Definition 

3.90 in [23]. That is, locally, in any coordinate system xi, μ has a smooth density with 

respect to the volume form |dx1 ∧ · · · ∧ dxn|. There is an intrinsic distance associated to 

the operator Δ which is defined by

d(x, y) = sup {|f(x) − f(y)|, f ∈ C∞(M), ‖Γ(f)‖∞ ≤ 1} , x, y ∈ M.

We assume that the metric space (M, d) is complete. In that case, from Propositions 

1.20 and 1.21 in [18], the operator Δ is essentially self-adjoint on C∞
0 (M).

Let now V : M → R be a non-positive lower bounded smooth potential and consider 

the Schrödinger operator

L = Δ + V.

The operator L is also essentially self-adjoint on the space of smooth and compactly 

supported functions. Indeed from Proposition 1.21 in [18], there exists a sequence hn ∈
C∞

0 (M), 0 ≤ hn ≤ 1 such that hn ↗ 1 and ‖Γ(hn)‖∞ → 0. Using then the argument in 

the proof of Proposition 1.20 in [18] together with the fact that V ≤ 0 yields the fact 

that L is essentially self-adjoint on C∞
0 (M). The self-adjoint extension of L will still be 

denoted by L. The semigroup in L2(M, μ) generated by L will be denoted by (Pt)t≥0.

We assume that Δ generates a diffusion process (Xt, (Px)x∈M ) which is not explosive. 

In that case, the Schrödinger semigroup (Pt)t≥0 admits the Feynman-Kac representation 

(see for instance [17, Theorem 6.20]):

Ptf(x) = E
x

(

e
∫

t

0
V (Xs)dsf(Xt)

)

, f ∈ C∞
0 (M).

The semigroup (Pt)t≥0 hence defined is then a sub-Markov semigroup (see page 71 in 

[17] for a definition and basic properties of sub-Markov semigroups).
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Remark 2.1. It is a well-known result by A. Grigor’yan [27, Theorem 1] and K.-T. 

Sturm [41, Theorem 4] that a sufficient condition for Δ to generates a diffusion pro-

cess (Xt, (Px)x∈M ) which is not explosive is that for some x0 ∈ M and r0 > 0

+∞
∫

r0

r dr

ln μ(B(x0, r))
= +∞,

where B(x0, r) denotes the metric ball with radius r for the distance d. This is for 

instance satisfied if for some constants C1, C2 > 0 one has μ(B(x0, r)) ≤ C1eC2r2

.

2.2. Green function at +∞ of one-dimensional diffusions killed at 0

Let a, b be smooth functions on (0, ∞) with a > 0 and let

s′(z) = exp

⎛

⎝−
z

∫

1

b(y)

a(y)2
dy

⎞

⎠ .

Assume that

∞
∫

1

s′(z)dz = ∞,

1
∫

0

s′(z)dz < ∞. (4)

We consider a one-dimensional diffusion operator on (0, +∞)

B = a(y)2 ∂2

∂y2
+ b(y)

∂

∂y
, (5)

with Dirichlet boundary condition at 0. The quantities s′(z) and m(z) := 1
s′(z)a(z)2 are 

respectively often called the scale function and density of the speed measure associ-

ated with the diffusion B. For more on this, see [19, Section II.9] or [38, Chapter VII, 

Definitions 3.3 and 3.7].

Let ηt be the diffusion process with generator B. We denote

τ = inf{t > 0, ηt = 0},

and qt(y) the density of τ under Py, η0 = y > 0. It is well known that under the 

assumption (4), the process η is not explosive and hits zero with probability 1 (see for 

instance [38, Ch VII Proposition 3.2]), that is,

P (τ < +∞) = 1.

For later use, we assume that η can be written as a (weak) solution of a SDE
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dηt = b(ηt)dt + a(ηt)dβt, t < τ, (6)

where βt is a Brownian motion on R with E(β2
t ) = 2t, which is independent of the 

process (Xt)t≥0. We first collect some preliminary results about the Green function at 

+∞ of the diffusion η killed at 0. For computations, it is convenient to write B as

B = a(y)2 ∂2

∂y2
+ a(y)2 h′(y)

h(y)

∂

∂y
,

where h is a nonnegative function such that a(y)2 h′(y)
h(y) = b(y). Note that one can choose

h(y) = exp

⎛

⎝

y
∫

1

b(w)

a(w)2
dw

⎞

⎠

so that the assumptions in (4) imply

1
∫

0

dw

h(w)
< +∞,

+∞
∫

1

dw

h(w)
= +∞.

The following lemma which computes the Green function of B on the half-line [0, +∞)

with Dirichlet boundary condition at 0 is then straightforward.

Lemma 2.2. Let g be a Borel function such that 
∫ +∞

0
h(z) |g(z)|

a(z)2 dz < +∞. The solution 

on [0, +∞) of the equation

Bf = −g

with boundary conditions f(0) = 0 and (f ′h)(+∞) = 0, is given by

f(y) =

+∞
∫

0

G(y, z)g(z)dz,

where

G(y, z) =
h(z)

a(z)2

z∧y
∫

0

dw

h(w)
.

In particular,

G(+∞, z) := lim
y→+∞

G(y, z) =
h(z)

a(z)2

z
∫

0

dw

h(w)
= s(z)m(z).
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Proof. Notice that the equation Bf = −g can be rewritten as

a(y)2f ′′(y) + a(y)2 h′(y)

h(y)
f ′(y) = −g(y),

where h(y) = exp
(

∫ y

1
b(w)

a(w)2 dw
)

. This is equivalent to

1

h(y)
(f ′h)′(y) = − g(y)

a(y)2
.

Since 
∫ +∞

0
h(z) |g(z)|

a(z)2 dz<+∞, the first order ODE with boundary condition (f ′h)(+∞) =

0 has a unique solution

f ′(y)h(y) =

+∞
∫

y

h(z)
g(z)

a(z)2
dz.

Again from the boundary condition f(0) = 0, we conclude the unique existence of the 

solution f as

f(y) =

y
∫

0

1

h(z)

+∞
∫

z

h(w)
g(w)

a(w)2
dw dz

=

+∞
∫

0

w∧y
∫

0

dz

h(z)

h(w)

a(w)2
g(w)dw. �

Our next lemma is the occupation time formula for the process ηt.

Lemma 2.3. Let G be the Green function of B on the half-line [0, +∞) with Dirich-

let boundary condition at 0 as above. Then, if g is a positive Borel function such that 
∫ +∞

0
h(z) g(z)

a(z)2 dz < +∞, for every y > 0,

Ey

⎛

⎝

τ
∫

0

g(ηs)ds

⎞

⎠ = f(y),

where f solves the equation in Lemma 2.2.

Proof. Let f be the solution of

Bf = −g

with boundary conditions f(0) = 0 and (f ′h)(+∞) = 0. By Itô’s formula,
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f(ηt) = f(η0) +

t
∫

0

f ′(ηs)a(ηs)dβs +

t
∫

0

Bf(ηs)ds, t < τ.

In particular, letting t → τ , one obtains

f(η0) =

τ
∫

0

g(ηs)ds −
τ

∫

0

f ′(ηs)a(ηs)dβs.

Denote by τn = τ ∧ σn ∧ n, where σn = inf{t ≥ 0, ηt = n}. Since a and f ′ are smooth in 

(0, ∞) and τn is a bounded stopping time, 
(

∫ t∧τn

0
f ′(ηs)a(ηs)dβs

)

t≥0
, is a martingale. 

Applying the Doob’s optional stopping theorem we get

E
y

⎛

⎝

τn
∫

0

f ′(ηs)a(ηs)dβs

⎞

⎠ = E
y

⎛

⎝f(ητn
) − f(η0) −

τn
∫

0

Bf(ηs)ds

⎞

⎠ = 0.

This gives

f(y) = E
y

⎛

⎝

τn
∫

0

g(ηs)ds

⎞

⎠ + E
y (f(ητn

)) .

Letting n → ∞, the monotone convergence theorem yields

f(y) = E
y

⎛

⎝

τ
∫

0

g(ηs)ds

⎞

⎠ . �

2.3. Extension procedure with general vertical diffusions

If f ∈ L2(M, μ) we consider its extension to the cone M × [0, +∞) defined for x ∈
M, y ∈ [0, +∞) by

Uf (x, y) =

+∞
∫

0

Ptf(x)qt(y)dt, (7)

where we recall that Pt = etL is the semigroup generated by L = Δ + V and that qt is 

the density of the first hitting time τ of zero by η. Since Δ is locally subelliptic and V is 

smooth, using the definition of local subellipticity for Δ (see Definitions 1.6 and 1.8 in 

[18]) one deduces that L is itself locally subelliptic. Therefore Ptf is a smooth function 

for every f ∈ L2(M, μ) (see Proposition 1.23 in [18]).
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Denoting

K(y, λ) :=

+∞
∫

0

e−λtqt(y)dt = E
y(e−λτ ), (8)

we have that BK(·, λ) = λK(·, λ). In particular, since B is an elliptic operator, we de-

duce that K(·, λ) is a smooth function (see page 18 in [19] for more details, including a 

representation formula for K(·, λ)).

We note that the spectral theorem shows that in the L2 sense

Uf (x, y) = K(y, −L)f(x).

The starting point of our approach is the following generalization of a result by Stinga 

and Torrea (see [40]).

Theorem 2.4. Let f ∈ C∞
0 (M). In the pointwise sense Uf satisfies

{

(L + B)Uf = 0 in M × (0, +∞)

U(·, 0) = f on M.

We shall give a probabilistic proof of this result which is based on a martingale that 

shall be used several times in this paper.

Lemma 2.5. Let f ∈ C∞
0 (M). Consider the process

Mf
t = e

∫

t∧τ

0
V (Xu)duUf (Xt∧τ , ηt∧τ ).

The process Mf
t is a martingale with quadratic variation

〈Mf 〉t = 2

t∧τ
∫

0

e2
∫

s

0
V (Xu)duΓ(Uf )(Xs, ηs)ds + 2

t∧τ
∫

0

e2
∫

s

0
V (Xu)du∂yUf (Xs, ηs)2a(ηs)2ds,

where Γ(Uf ) =
∑n

i,j=1 σij
∂Uf

∂xi

∂Uf

∂xj
.

Proof. First note that

Mf
τ = e

∫

τ

0
V (Xu)duf(Xτ ).

Assume that the process (Xt, ηt)t≥0 starts at (x, y) ∈ M × (0, ∞). Since the processes 

Xt and ηt are independent, it follows from the Feynman-Kac formula that
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E
x,y

(

e
∫

τ

0
V (Xu)duf(Xτ )

)

=

∞
∫

0

E
x

(

e
∫

s

0
V (Xu)duf(Xs)

)

qs(y)ds

=

∞
∫

0

Psf(x)qs(y)ds = Uf (x, y),

where we recall that qs(y) is the density of τ under η0 = y > 0. Denote by (Ft)t≥0 the 

natural filtration of (Xt, ηt). From the strong Markov property we have

E
(

Mf
τ | Fs∧τ

)

= E

(

e
∫

τ

0
V (Xu)duf(Xτ )1τ≤s | Fs∧τ

)

+ E

(

e
∫

τ

0
V (Xu)duf(Xτ )1τ>s | Fs∧τ

)

= e
∫

τ

0
V (Xu)duf(Xτ )1τ≤s + e

∫

s∧τ

0
V (Xu)duUf (Xs∧τ , ηs∧τ )1τ>s

= Mf
s∧τ .

We conclude that Mf
t is a martingale. The quadratic variation of Mf

t is computed as in 

[38, p. 324] or [15, p. 181]. Indeed, from Itô’s formula, the bounded variation part of Mf
t

is zero. Hence

Mf
t = Uf (x, y) +

n
∑

i=1

t∧τ
∫

0

e
∫

s

0
V (Xu)du

( n
∑

j=1

vij∂xj

)

Uf (Xs, ηs)dBi
s

+

t∧τ
∫

0

e
∫

s

0
V (Xu)du∂yUf (Xs, ηs)a(ηs)dβs,

(9)

where (vij(x)) is the square root of the symmetric nonnegative matrix (σij(x)) and 

Bt = (B1
t , · · · , Bn

t ) is a Brownian motion on Rn with generator Δ =
∑n

i=1
∂2

∂x2
i

. Thus 

〈Mf 〉t immediately follows. �

We are now in position to prove Theorem 2.4.

Proof of Theorem 2.4. Since Mf
t = e

∫

t∧τ

0
V (Xu)duUf (Xt∧τ , ηt∧τ ) is a martingale, it fol-

lows from Itô’s formula that the bounded variation part of Mf
t is zero, i.e.,

t∧τ
∫

0

e
∫

s

0
V (Xu)du(L + B)Uf (Xs, ηs)ds = 0.

We conclude that

(L + B)Uf (x, y) = lim
t→0

1

t

t∧τ
∫

0

e
∫

s

0
V (Xu)du(L + B)Uf (Xs, ηs)ds = 0. �
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2.4. Martingale inequalities

In this section, we recall some results on the martingale inequalities used in this 

paper. Suppose that (Ω, F , P ) is a complete probability space, filtered by F = {Ft}t≥0, 

a family of right continuous sub-σ-fields of F . Assume that F0 contains all the events 

of probability 0. Let X and Y be adapted, real-valued martingales which have right-

continuous paths with left-limits (r.c.l.l.). The martingale Y is differentially subordinate 

to X if |Y0| ≤ |X0| and 〈X〉t −〈Y 〉t is a nondecreasing and nonnegative function of t. The 

martingales Xt and Yt are said to be orthogonal if the covariation process 〈X, Y 〉t = 0

for all t.

We always assume that the martingales are Lp bounded for 1 < p < ∞ and by X we 

mean X∞. By ‖X‖p we mean supt>0 ‖Xt‖p = ‖X∞‖p. This is often applied to stopped 

martingales. Hence ‖X‖p = ‖Xτ ‖p where τ is a stopping time. We use the notation ‖f‖p

for the Lp-norms of functions defined on M with respect to the measure μ. This is clear 

in each occurrence and should not create any confusion.

In the following, we recall the sharp inequalities of martingale transforms proved by 

Bañuelos and Wang [13], as well as an extension by Bañuelos and Osȩkowski [12].

Theorem 2.6 ([13, Theorems 1 and 2]). Let X and Y be two martingales with continuous 

paths such that Y is differentially subordinate to X. Fix 1 < p < ∞ and set p∗ =

max{p, p
p−1 }. Then

‖Y ‖p ≤ (p∗ − 1)‖X‖p.

Furthermore, suppose that the martingales X and Y are orthogonal. Then

‖Y ‖p ≤ cot

(

π

2p∗

)

‖X‖p.

Both of these inequalities are sharp.

Theorem 2.7 ([12, Theorem 2.2]). Let X and Y be two martingales with continuous paths 

such that Y is differentially subordinate to X. Consider the process

Zt = e
∫

t

0
Vsds

t
∫

0

e−
∫

s

0
VvdvdYs,

where (Vt)t≥0 is a non-positive adapted and continuous process. For 1 < p < ∞, we have 

the sharp bound

‖Z‖p ≤ (p∗ − 1)‖X‖p.
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3. Multiplier theorems

The martingale transform method to construct multipliers is very versatile and allows 

one to deal with a very general setup. We work under the assumptions and with the 

notations of Section 2. In particular, let G be the Green function of B on the half-line 

[0, +∞) with Dirichlet boundary condition at 0 (see Lemma 2.2). Before going further, 

in order to put the next results in perspective, we discuss the well-known Hörmander-

Mikhlin theorem in Rn. Let us assume that Δ =
∑n

i=1
∂2

∂x2
i

is the Laplace operator in 

R
n and that V = 0. Recall the Hörmander-Mikhlin theorem:

Theorem 3.1 ([25, Theorem 5.2.7]). Let m ∈ L∞(Rn\{0}) be a complex-valued bounded 

function on Rn\{0} that satisfies:

(a) Either the Mikhlin’s condition

|∂γ
ξ m(ξ)| ≤ A|ξ|−|γ|

for all multi-indices |γ| ≤
[

n
2

]

+ 1.

(b) Or the Hörmander’s condition

sup
R>0

R−n+2|γ|
∫

R<|ξ|<2R

|∂γ
ξ m(ξ)|2 dξ ≤ A2 < ∞

for all multi-indices |γ| ≤
[

n
2

]

+ 1.

Then the operator Tm whose symbol is m is bounded in Lp(Rn) for any p ∈ (1, +∞), 

with an operator norm depending on n, A, p, ‖m‖∞.

Remark 3.2. We point out there are sharper versions of the previous theorem replacing 

the Lebesgue spaces by Lorentz spaces (see e.g. [26]) and also more general variants (see 

e.g. [22]).

In our framework, we want to study boundedness properties of the multiplier Φ(−L)

where

Φ(λ) =

+∞
∫

0

G(+∞, y)∂yK(y, λ)2a(y)2dy.

From now on and throughout the paper we will make the following standing assump-

tions on the functions involved in Φ:

• a is bounded on (0, +∞);
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• The functions G(+∞, y) and G(z, y) defined in Lemma 2.2 are both of at most 

polynomial growth when y, z → +∞;

• The functions K and ∂yK defined by (8) are both rapidly decreasing when y, λ →
+∞.

To apply the previous theorem, we define m(ξ) = Φ(|ξ|2) and to simplify the discussion 

we will consider only the Mikhlin’s condition, since the conclusion of the discussion will 

be the same for Hörmander’s case. It is clear that if K(y, |ξ|2) satisfies a Mikhlin-type 

condition (i.e. enough derivatives in ξ decay away from zero), then the Leibniz rule 

(together with dominated convergence) implies that so is m. Therefore, Theorem 3.1

gives that Φ(−L) is bounded on Lp for every p ∈ (1, ∞). Notice however that the 

constant in the estimate depends on the dimension n. In connection to other probabilistic 

(martingale) proofs of Theorem 3.1, we mention that in [34, Theorem 1.1], McConnell 

gave a probabilistic proof under the assumption that |γ| ≤ n + 1 in the context of 

functions taking values in a Banach spaces with the UMD (unconditional martingale 

difference sequence) property. There too, the constants depend on the dimension even 

in the case when the UMD space is R.

In this section, we will prove a Gundy-Varopoulos representation for Φ(−L) therefore 

allowing us to prove the boundedness in Lp with an explicit constant independent of 

the dimension (see Theorem 3.4). In some special cases of diffusion B, one can compute 

explicitly G and K, allowing to check the previous decay assumptions and then leading 

to some special multipliers.

3.1. Construction of the martingale transform associated to a multiplier

We consider then the multiplier defined for f ∈ C∞
0 (M) by

Wf = Φ(−L)f,

where

Φ(λ) =

+∞
∫

0

G(+∞, y)∂yK(y, λ)2a(y)2dy. (10)

We again note that due to the growth assumptions on G and ∂yK, the function Φ is 

bounded. Moreover, using the extension function Uf defined in (7), one can see that W

satisfies the following integration by parts formula: for every f, g ∈ C∞
0 (M),

∫

M

gWfdμ =

+∞
∫

0

∫

M

∂yUf (x, y)∂yUg(x, y)G(+∞, y)a(y)2 dμ(x)dy.
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Let now P x,y be the probability measure associated with the stochastic process (Xt, ηt)

starting at the point (x, y) with x ∈ M and y > 0, define a measure P y by

P
y((Xt∧τ , ηt∧τ ) ∈ Θ) =

∫

M

P
x,y((Xt∧τ , ηt∧τ ) ∈ Θ)dμ(x)

for any Borel set Θ ∈ M × R
+. In particular, since μ is invariant for the semigroup for 

any Borel set Θ ∈ M , P y(Xτ ∈ Θ) = μ(Θ). From this it follows that for any nonnegative 

(or integrable function) f on M , we have Ey(f(Xτ )) =
∫

M
f(x)dμ(x). In particular, for 

any 1 < p < ∞, the Lp norm of the random variable Z = f(Xτ ) equals the Lp(M, μ)

norm of the function f . In this case we will just write ‖f(Xτ )‖Lp = ‖f‖Lp(M,μ).

Theorem 3.3. We have the following Gundy-Varopoulos type representation for W : for 

every f ∈ C∞
0 (M) and x ∈ M ,

Wf(x) =
1

2
lim

y0→+∞
E

y0

⎛

⎝e
∫

τ

0
V (Xu)du

τ
∫

0

e−
∫

s

0
V (Xu)du∂yUf (Xs, ηs)a(ηs) dβs | Xτ = x

⎞

⎠ .

Proof. Note first that as a consequence of Lemma 2.3, since X and η are independent, 

we have

E
y

⎛

⎝

τ
∫

0

F (Xs, ηs)ds

⎞

⎠ =

+∞
∫

0

∫

M

G(y, z)F (x, z)dμ(x)dz, (11)

for all Borel function F on M × R
+ such that 

∫

M

∫ ∞
0

h(z)
a(z)2 |F (x, z)|dzdμ(x) < ∞.

Let f, g ∈ C∞
0 (M). We observe that

Mg
τ = e

∫

τ

0
V (Xu)dug(Xτ ).

Applying Itô’s formula (9) for Mg
τ and the Itô isometry, one has

∫

M

g(x)Ey0

⎛

⎝e
∫

τ

0
V (Xu)du

τ
∫

0

e−
∫

s

0
V (Xu)du∂yUf (Xs, ηs)a(ηs)dβs | Xτ = x

⎞

⎠ dμ(x)

= E
y0

⎛

⎝g(Xτ )e
∫

τ

0
V (Xu)du

τ
∫

0

e−
∫

s

0
V (Xu)du∂yUf (Xs, ηs)a(ηs)dβs

⎞

⎠
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= 2E
y0

⎛

⎝

τ
∫

0

∂yUg(Xs, ηs)∂yUf (Xs, ηs)a(ηs)2ds

⎞

⎠

= 2

+∞
∫

0

∫

M

G(y0, y)∂yUg(x, y)∂yUf (x, y)a(y)2 dμ(x) dy,

where the last inequality is due to (11). Since Uf (x, y) = K(y, −L)f(x) and L is self-

adjoint, we have

∫

M

∂yUg(x, y)∂yUf (x, y)dμ(x) =

∫

M

g(x)∂yK(y, −L)∂yK(y, −L)f(x)dμ(x)

and therefore

+∞
∫

0

∫

M

G(y0, y)∂yUg(x, y)∂yUf (x, y)dμ(x)a(y)2 dy

=

∫

M

g(x)

+∞
∫

0

G(y0, y)∂yK(y, −L)∂yK(y, −L)f(x)a(y)2dy dμ(x).

We conclude that for every g ∈ C∞
0 (M)

∫

M

g(x)Ey0

⎛

⎝e
∫

τ

0
V (Xu)du

τ
∫

0

e−
∫

s

0
V (Xu)du∂yUf (Xs, ηs)a(ηs)dβs | Xτ = x

⎞

⎠ dμ(x)

=2

∫

M

g(x)

+∞
∫

0

G(y0, y)∂yK(y, −L)∂yK(y, −L)f(x)a(y)2dy dμ(x).

Therefore,

E
y0

⎛

⎝e
∫

τ

0
V (Xu)du

τ
∫

0

e−
∫

s

0
V (Xu)du∂yUf (Xs, ηs)a(ηs)dβs | Xτ = x

⎞

⎠

=2

+∞
∫

0

G(y0, y)∂yK(y, −L)∂yK(y, −L)f(x)a(y)2dy.

The conclusion follows by taking the limit y0 → +∞. �
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3.2. Boundedness in Lp(μ)

Theorem 3.4. The operator W defined by (10) is bounded in Lp. Moreover, if the potential 

V ≡ 0, we have for every f ∈ Lp(M, μ)

‖Wf‖p ≤ 1

2
(p∗ − 1)‖f‖p.

And, if the potential V is not zero, then

‖Wf‖p ≤ 3

2
(p∗ − 1)‖f‖p.

Proof. Let f ∈ C∞
0 (M). One can write

Wf(x) =
1

2
lim

y0→+∞
E

y0

⎛

⎝e
∫

τ

0
V (Xu)du

τ
∫

0

e−
∫

s

0
V (Xu)dudYs | Xτ = x

⎞

⎠ ,

where

Yt =

t
∫

0

∂yUf (Xs, ηs)a(ηs)dβs.

If V ≡ 0, the martingale Y is differentially subordinate to the martingale Uf (X, η), see 

Lemma 2.5. One can conclude by using Theorem 2.7 with Vt = 0.

Next we deal with the case V �= 0 and adapt a method used in the proof of Theorem 

1.1 in [8]. If V �= 0, then Uf (X, η) is not a martingale anymore. However, the martingale 

Y is differentially subordinate to the martingale

Nt :=
n

∑

i=1

t∧τ
∫

0

( n
∑

j=1

vij∂xj

)

Uf (Xs, ηs)dBi
s +

t∧τ
∫

0

∂yUf (Xs, ηs)a(ηs)dβs,

where we recall that (vij(x)) is the square root of the matrix (σij(x)). From Itô’s formula, 

one also has

Nt = Uf (Xt∧τ , ηt∧τ ) − Uf (X0, η0) − 2

t∧τ
∫

0

(Δ + B)Uf (Xs, ηs)ds.

We now note that from Theorem 2.4

(Δ + B)Uf = −V Uf .
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Therefore,

Nt = Uf (Xt∧τ , ηt∧τ ) − Uf (X0, η0) + 2

t∧τ
∫

0

V (Xs)Uf (Xs, ηs)ds.

Suppose f ≥ 0. Then, the above equality yields that Uf (Xt∧τ , ηt∧τ ) is a non-negative 

sub-martingale. It follows from Lenglart-Lépingle-Pratelli [33, Theorem 3.2, part 3)] that

∥

∥

∥

∥

∥

∥

Uf (X0, η0) − 2

τ
∫

0

V (Xs)Uf (Xs, ηs)ds

∥

∥

∥

∥

∥

∥

p

≤ p ||Uf (Xτ , ητ )||p = p ||f(Xτ )||p = p ||f ||p,

where we used the fact that the Lp norm of the random variable f(Xτ ) equals the 

Lp(M, μ) norm of the function f , as pointed earlier. For a general f , since V is non-

positive, we note that

∣

∣

∣

∣

∣

∣

Uf (X0, η0) − 2

τ
∫

0

V (Xs)Uf (Xs, ηs)ds

∣

∣

∣

∣

∣

∣

≤ U|f |(X0, η0) − 2

τ
∫

0

V (Xs)U|f |(Xs, ηs)ds.

This yields that we always have

‖Nτ ‖p ≤ (p + 1)||f ||p.

Therefore by Lemma 2.7

‖Yτ ‖p ≤ (p∗ − 1)||Nτ ||p ≤ (p + 1)(p∗ − 1)||f ||p.

We conclude from the Gundy-Varopoulos type representation of W and contraction of 

the conditional expectation that

‖Wf‖p ≤ 1

2
(p + 1)(p∗ − 1)‖f‖p.

For 1 < p ≤ 2, this gives the inequality in the statement of the theorem. The similar 

inequality in the range p > 2 is obtained by using the fact that the Lp adjoint operator 

of W is itself. �

3.3. Specific choices for the vertical diffusion

In this section we give explicit expressions of the operator W depending upon the 

choices of the function b. It suffices to compute the function K(y, λ) defined in (8) and 

the Green function associated to the operator B. For computations, it may be easier to 

use an alternative representation of the multiplier. Recall that
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Φ(λ) =

+∞
∫

0

G(+∞, y)∂yK(y, λ)2a(y)2dy.

Lemma 3.5.

Φ(λ) =
1

2
− λ

+∞
∫

0

G(+∞, y)K(y, λ)2dy.

Proof. From the definition of K(y, λ) in (8), we have that BK(·, λ) = λK(·, λ), see page 

18 in [19]. Moreover, K(y, λ) converges to 1 as y → 0 and K(y, λ) → 0 as y → ∞. Thus, 

using integration by parts one obtains

+∞
∫

0

G(+∞, y)∂yK(y, λ)2a(y)2dy

= K(y, λ)∂yK(y, λ)G(+∞, y)a(y)2
∣

∣

∣

+∞

0
−

+∞
∫

0

K(y, λ)∂y(a(y)2G(+∞, y)∂yK(y, λ))dy

= −
+∞
∫

0

K(y, λ)∂yK(y, λ)dy −
+∞
∫

0

K(y, λ)G(+∞, y)BK(y, λ)dy

=
1

2
− λ

+∞
∫

0

G(+∞, y)K(y, λ)2dy.

Here the second equality follows from the definition of G(+∞, y) which gives

∂y(a(y)2G(+∞, y)) = ∂y

⎛

⎝h(y)

y
∫

0

dw

h(w)

⎞

⎠ = a(y)2 h′(y)

h(y)
G(+∞, y) + 1. �

3.3.1. Brownian motion with negative drift

Assume that a(y) = σ and b(y) = −2m, where m ≥ 0 and σ > 0. One computes that

K(y, λ) = e
− y

σ

(

√

λ+ m2

σ2
− m

σ

)

,

see for instance [16, page 69] or [19, page 295]. Taking h(x) = e− 2m

σ2
(x−1) in Lemma 2.2

yields

G(y, z) =
1

2m
e− 2m

σ2
z

(

e
2m

σ2
(y∧z) − 1

)

.
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In particular,

G(+∞, z) =
1

2m
(1 − e− 2m

σ2
z).

For this choice of a and b, we can now rewrite the operator W defined in (10) as

Wf =
1

4

(

I − m

σ

(

−L +
m2

σ2

)−1/2
)

f.

We are now in position to conclude the proof of Theorem 1.1. We actually state a 

slightly stronger version including the potential V .

Theorem 3.6. Let Φ : [0, +∞) → C be a bounded Borel function. If there exists a finite 

complex Borel measure α on R≥0 such that for every x ∈ [0, +∞),

Φ(x) =

+∞
∫

0

(

1 − m√
m2 + x

)

dα(m),

then, for every p > 1 and f ∈ Lp(M, μ),

‖Φ(−L)f‖p ≤ 6(p∗ − 1)|α|(R≥0)‖f‖p.

If V ≡ 0, this bound can be improved to

‖Φ(−L)f‖p ≤ 2(p∗ − 1)|α|(R≥0)‖f‖p.

Proof. It follows from the expression of W and Theorem 3.4 that for every m ≥ 0

∥

∥

∥

(

I − m
(

−L + m2
)−1/2

)

f
∥

∥

∥

p
≤ 6(p∗ − 1)‖f‖p.

Thus, we have

‖Φ(−L)f‖p ≤ 6(p∗ − 1)|α|(R≥0)‖f‖p.

When V ≡ 0 the bound can be improved thanks to Theorem 3.4. �

3.3.2. Bessel processes

Assume that a(y) = 1 and b(y) = γ
y , where −1 < γ < 1. Set γ = 1 − 2s, then one 

computes that

Ks(y, λ) =
21−s

Γ(s)
ysλs/2Ks(yλ1/2),
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where Ks(x) is the MacDonald function (Bessel function of the second kind) defined as 

follows

Ks(x) =
1

2

(x

2

)s
+∞
∫

0

e−t− x2

4t

t1+s
dt.

Taking h(y) = yγ in Lemma 2.2, it follows that G(+∞, y) = y
2s . Using the formula

+∞
∫

0

yα−1Kν(y)2dy =

√
π

4Γ
(

1+α
2

)Γ
(α

2

)

Γ
(α

2
− ν

)

Γ
(α

2
+ ν

)

that holds for α > 2ν > 0 (see [1]), one gets Wf = 1
2(2−γ) f .

Remark 3.7 (Bessel processes with negative drift). Interestingly, some (partially) explicit 

computations may also be carried out in a class of processes extensively studied by Pit-

man & Yor in [37]. Those processes introduced by S. Watanabe in [43], and generalizing 

the Bessel processes, are sometimes called Bessel processes with negative (or descending) 

drift. Assume that a(y) = 1 and

b(y) =
2ν + 1

y
− 2δ

K1+ν(δy)

Kν(δy)

with ν, δ > 0. In that case, direct computations show that the multiplier W takes the 

form

W =
1

2
+

L(−L + δ2)ν

δ2ν

+∞
∫

0

Kν

(

y
√

−L + δ2
)2 Iν(δy)

Kν(δy)
y dy.

4. Generalized Riesz transforms

In this section we will construct other operators arising from martingale transforms. 

We work with all the assumptions and notations of Section 2.1 but assume furthermore 

that the operator Δ admits a representation

Δ = −
n

∑

i=1

X∗
i Xi,

where the Xi’s are smooth vector fields on M , X∗
i denotes the formal adjoint of Xi with 

respect to μ. We denote as before L = Δ + V , where V : M → R is the non-positive 

bounded smooth potential and (Pt)t≥0 the heat semigroup with generator L. Note that 

we can write
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Δ =
n

∑

i=1

X2
i + X0,

for some smooth vector field X0 and that from the celebrated Hörmander theorem [30], 

a sufficient condition for the local subellipticity of Δ is then that the vector fields 

X0, X1, · · · , Xn satisfy the bracket generating condition, see page 6 in [18].

Let (Xt)t≥0 be the diffusion process on M with generator 
∑n

i=1 X
2
i +X0 starting from 

the distribution μ. We assume that (Xt)t≥0 is nonexplosive and can be constructed via 

the Stratonovitch stochastic differential equation

dXt = X0(Xt)dt +
n

∑

i=1

Xi(Xt) ◦ dBi
t,

where Bt = (B1
t , · · · , Bn

t ) is a Brownian motion on Rn with generator Δ =
∑n

i=1
∂2

∂x2
i
.

Remark 4.1. For instance, if M is a Euclidean space, then a standard sufficient condition 

so that (Xt)t≥0 is nonexplosive and can be constructed via the above Stratonovitch 

stochastic differential equation is that the vector fields X0, X1, · · · , Xn have globally 

bounded derivatives, see for instance [17, Theorem 6.29]. In that case, if the vector fields 

X0, X1, · · · , Xn also satisfy the bracket generating condition, then Δ is locally subelliptic 

and essentially self-adjoint.

As before, see (6), we will consider the one-dimensional diffusion on (0, +∞) given by

dηt = b(ηt)dt + a(ηt)dβt, t < τ

where βt is a Brownian motion on R with E(β2
t ) = 2t which is independent from (Xt)t≥0.

4.1. Operators arising from martingale transforms

We introduce now the class of operators under consideration. For any 1 ≤ i, j ≤ n, 

we consider the operators

Tif =

+∞
∫

0

a(y)G(+∞, y)∂yK(y, −L)XiK(y, −L)fdy,

and

Sijf =

+∞
∫

0

G(+∞, y)K(y, −L)X∗
jXiK(y, −L)fdy.
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Theorem 4.2. We have the following Gundy-Varopoulos type representations: for every 

f ∈ C∞
0 (M) and x ∈ M

Tif(x) =
1

2
lim

y0→+∞
E

y0

⎛

⎝e
∫

τ

0
V (Xu)du

τ
∫

0

e−
∫

s

0
V (Xu)duXiUf (Xs, ηs)dβs | Xτ = x

⎞

⎠ ,

Sijf(x) =
1

2
lim

y0→+∞
E

y0

⎛

⎝e
∫

τ

0
V (Xu)du

τ
∫

0

e−
∫

s

0
V (Xu)duXiUf (Xs, ηs)dBj

s | Xτ = x

⎞

⎠ .

Proof. The proof is similar to the proof of Theorem 3.3, we present it for completeness. 

It suffices to show the first expression of Ti. The same proof also works for Sij . Let 

f, g ∈ C∞
0 (M). We recall Mg

τ = e
∫

τ

0
V (Xu)dug(Xτ ). Applying Itô’s formula for Mg

t gives 

that

Mg
t = Ug(X0, η0) +

n
∑

i=1

t∧τ
∫

0

e
∫

s

0
V (Xu)duXiUg(Xs, ηs)dBi

s

+

t∧τ
∫

0

e
∫

s

0
V (Xu)du∂yUg(Xs, ηs)a(ηs)dβs.

(12)

By the Itô isometry, one has

∫

M

g(x)Ey0

⎛

⎝e
∫

τ

0
V (Xu)du

τ
∫

0

e−
∫

s

0
V (Xu)duXiUf (Xs, ηs)dβs | Xτ = x

⎞

⎠ dμ(x)

= E
y0

⎛

⎝g(Xτ )e
∫

τ

0
V (Xu)du

τ
∫

0

e−
∫

s

0
V (Xu)duXiUf (Xs, ηs)dβs

⎞

⎠

= 2E
y0

⎛

⎝

τ
∫

0

∂yUg(Xs, ηs)XiUf (Xs, ηs)a(ηs)ds

⎞

⎠

= 2

+∞
∫

0

∫

M

a(y)G(y0, y)∂yUg(x, y)XiUf (x, y)dμ(x) dy,

where the last equality is due to (11). Since Uf (x, y) = K(y, −L)f(x) and L is self-adjoint, 

then
∫

M

∂yUg(x, y)XiUf (x, y)dμ(x) =

∫

M

g(x)∂yK(y, −L)XiK(y, −L)f(x)dμ(x)

and
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+∞
∫

0

∫

M

a(y)G(y0, y)∂yUg(x, y)XiUf (x, y)dμ(x) dy

=

∫

M

g(x)

+∞
∫

0

a(y)G(y0, y)∂yK(y, −L)XiK(y, −L)f(x)dy dμ(x).

The rest of the proof thus immediately follows. �

4.2. Boundedness in Lp(μ)

Corollary 4.3. Let 1 ≤ i ≤ n. For all 1 < p < ∞ and all f ∈ C∞
0 (M) we have

‖Tif‖p ≤ 3

2
(p∗ − 1)‖f‖p.

Moreover, if the potential V ≡ 0, then

‖Tif‖p ≤ 1

2
(p∗ − 1)‖f‖p.

Proof. When V ≡ 0, the operator Ti can be rewritten as

Tif(x) =
1

2
lim

y0→+∞
E

y0

⎛

⎝

τ
∫

0

Ai(X, ∂y)T Uf (Xs, ηs) · (dBs, dβs) | Xτ = x

⎞

⎠ ,

where Ai is an (n +1) ×(n +1) matrix with the entry a(n+1),i = 1 and otherwise 0. Notice 

that the martingale 
∫ t∧τ

0
Ai(X, ∂y)T Uf (Xs, ηs) · (dBs, dβs) is differentially subordinate 

to the martingale Uf (Xt∧τ , ηt∧τ ). It follows from Theorem 2.6 that

‖Tif‖p ≤ 1

2
(p∗ − 1)‖f‖p.

When V �= 0, then the same method as for the proof of Theorem 3.4 implies the 

desired estimate. �

Corollary 4.4. Let 1 ≤ i, j ≤ n. For all 1 < p < ∞ and all f ∈ C∞
0 (M) we have

‖Sijf‖p ≤ 3

2
(p∗ − 1)‖f‖p.

Moreover, if the potential V ≡ 0, then

‖Sijf‖p ≤ 1

2
(p∗ − 1)‖f‖p.
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Proof. Similarly as for Ti, when V ≡ 0 one can write Sij as

Sijf(x) =
1

2
lim

y0→+∞
E

y0

⎛

⎝

τ
∫

0

Aij(X, ∂y)T Uf (Xs, ηs) · (dBs, dβs) | Xτ = x

⎞

⎠ ,

where Aij is an (n + 1) × (n + 1) matrix with the entries ai,j = 1 and otherwise 0. Since 
∫ t∧τ

0
Ai(X, ∂y)T Uf (Xs, ηs) · (dBs, dβs) is differentially subordinate to Uf (Xt∧τ , ηt∧τ ), 

then Theorem 2.6 yields

‖Sijf‖p ≤ 1

2
(p∗ − 1)‖f‖p. �

4.3. Euclidean spaces and Lie groups of compact type

We now apply our results to the case of Euclidean spaces and Lie groups of compact 

type. In those cases, for the transforms we are interested in, the operators Xi’s and X∗
i ’s 

do commute with L. As a consequence, one has

Tif =

+∞
∫

0

a(y)G(+∞, y)∂yK(y, −L)K(y, −L)Xifdy,

and

Sijf =

+∞
∫

0

G(+∞, y)K(y, −L)2 X∗
jXifdy.

4.3.1. Brownian motion with negative drift as vertical diffusion

Consider the Euclidean spaces Rn. We assume that the potential V in the operator 

L is null. In this case, Xi = ∂xi
commutes with the Laplace operator L = Δ.

Lemma 4.5. Let 1 ≤ i, j ≤ n and σ > 0, m ≥ 0. For the choice B = σ2 ∂2

∂y2 − 2m ∂
∂y , one 

has

Tif = −1

4

(

−Δ +
m2

σ2

)−1/2

∂xi
f

and

Sijf = −1

4

(
√

−Δ +
m2

σ2
− m

σ

)−1
(

−Δ +
m2

σ2

)−1/2

∂xi
∂xj

f.
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Proof. Since ∂xi
commutes with Δ, the operator Ti becomes

Tif =

⎛

⎝

+∞
∫

0

1 − e
2m

σ2
y

2m

(
√

−Δ +
m2

σ2
− m

σ

)

e
− 2y

σ

√

−Δ+ m2

σ2 dy

⎞

⎠ ∂xi
f

=
1

2m

(
√

−Δ +
m2

σ2
− m

σ

)

⎛

⎝

σ

2

(
√

−Δ +
m2

σ2

)−1

−
(

2

σ

√

−Δ +
m2

σ2
− 2m

σ2

)−1
⎞

⎠ ∂xi
f

=
σ

4m

⎛

⎝

(
√

−Δ +
m2

σ2
− m

σ

) (
√

−Δ +
m2

σ2

)−1

− I

⎞

⎠ ∂xi
f

= −1

4

(

−Δ +
m2

σ2

)−1/2

∂xi
f.

Similarly, we have

Sijf =

⎛

⎝

+∞
∫

0

1 − e
2m

σ2
y

2m
e

− 2y
σ

√

−Δ+ m2

σ2 dy

⎞

⎠ ∂xi
∂xj

f

= − σ

4m

⎛

⎝

(
√

−Δ +
m2

σ2
− m

σ

)−1

−
(

√

−Δ +
m2

σ2

)−1
⎞

⎠ ∂xi
∂xj

f

= −1

4

(
√

−Δ +
m2

σ2
− m

σ

)−1
(

−Δ +
m2

σ2

)−1/2

∂xi
∂xj

f. �

We obtain therefore:

Proposition 4.6. Let 1 ≤ i, j ≤ n and m ≥ 0, σ > 0. Then

∥

∥

∥

∥

∥

(

−Δ +
m2

σ2

)−1/2

∂xi
f

∥

∥

∥

∥

∥

p

≤ cot

(

π

2p∗

)

‖f‖p, (13)

∥

∥

∥

∥

∥

∥

(
√

−Δ +
m2

σ2
− m

σ

)−1
(

−Δ +
m2

σ2

)−1/2

∂xi
∂xj

f

∥

∥

∥

∥

∥

∥

p

≤ (p∗ − 1)‖f‖p. (14)

Proof. Recall the Gundy-Varopoulos type representation of Ti in Theorem 4.2:

Tif(x) =
1

2
lim

y0→+∞
E

y0

⎛

⎝

τ
∫

0

∂xi
Uf (Xs, ηs)dβs | Xτ = x

⎞

⎠ .
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In a similar way we also have

Tif(x) = −1

2
lim

y0→+∞
E

y0

⎛

⎝

τ
∫

0

σ ∂yUf (Xs, ηs)dBi
s | Xτ = x

⎞

⎠ .

To see this, observe that by Itô’s formula (12) and the Itô isometry, one has for any 

y0 > 0

∫

M

g(x)Ey0

⎛

⎝

τ
∫

0

σ ∂yUf (Xs, ηs)dBi
s | Xτ = x

⎞

⎠ dμ(x)

= E
y0

⎛

⎝g(Xτ )

τ
∫

0

σ ∂yUf (Xs, ηs)dBi
s

⎞

⎠

= 2E
y0

⎛

⎝

τ
∫

0

σ ∂xi
Ug(Xs, ηs)∂yUf (Xs, ηs)ds

⎞

⎠

= 2

+∞
∫

0

∫

M

σ G(y0, y)∂xi
Ug(x, y)∂yUf (x, y)dμ(x) dy

= −2

∫

M

g(x)

+∞
∫

0

σ G(y0, y)∂yK(y, −L)∂xi
K(y, −L)f(x)dydμ(x).

Taking the limit y0 → ∞ gives the second expression of Tif . Therefore

Tif(x) =
1

4
lim

y0→+∞
E

y0

⎛

⎝

τ
∫

0

Ai(X, ∂y)T Uf (Xs, ηs) · (dBs, dβs) | Xτ = x

⎞

⎠ , (15)

where Ai is an (n + 1) × (n + 1) matrix with the entries a(n+1),i = 1, ai,(n+1) = −σ and 

otherwise 0.

With this matrix we claim that (1) the martingale Nt :=
∫ t∧τ

0
Ai(X, ∂y)T Uf (Xs, ηs) ·

(dBs, dβs) is differentially subordinate to Mf
t = Uf (Xt∧τ , ηt∧τ ) and that (2) the two 

martingales are orthogonal. That is, 〈N, Mf 〉t = 0. To verify (1) recall that

Mf
t = f(X0, η0) +

n
∑

j=1

t∧τ
∫

0

∂xj
Uf (Xs, ηs)dBj

s +

t∧τ
∫

0

∂yUf (Xs, ηs)σdβs,

and
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〈Mf 〉t = 2

n
∑

j=1

t∧τ
∫

0

(

∂xj
Uf (Xs, ηs)

)2
ds + 2

t∧τ
∫

0

(∂yUf (Xs, ηs))
2

σ2ds.

Similarly,

Nt =

t∧τ
∫

0

∂xi
Uf (Xs, ηs)dβs −

t∧τ
∫

0

∂yUf (Xs, ηs)σdBi
s

and

〈N〉t = 2

t∧τ
∫

0

(∂xi
Uf (Xs, ηs))

2
ds + 2

t∧τ
∫

0

(∂yUf (Xs, ηs))
2

σ2ds.

Thus

〈Mf 〉t − 〈N〉t = 2
∑

j �=i

t∧τ
∫

0

(

∂xj
Uf (Xs, ηs)

)2
ds,

which is a nondecreasing and nonnegative function of t. This proves the differential 

subordination property.

To prove the orthogonality we note that

〈N, Mf 〉t = − σ

t∧τ
∫

0

∂xi
Uf (Xs, ηs)∂yUf (Xs, ηs)d〈Bi〉s

+ σ

t∧τ
∫

0

∂yUf (Xs, ηs)∂xi
Uf (Xs, ηs)d〈β〉s

= 0.

We can now apply (15) and the martingale inequality in Theorem 2.6. It follows that

‖Tif‖p ≤ 1

4
cot

(

π

2p∗

)

‖f‖p

and hence by Lemma 4.5,

∥

∥

∥

∥

∥

(

−Δ +
m2

σ2

)−1/2

∂xi
f

∥

∥

∥

∥

∥

p

= 4‖Tif‖p ≤ cot

(

π

2p∗

)

‖f‖p.
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On the other hand

Sijf(x) =
1

2
lim

y0→+∞
E

y0

⎛

⎝

τ
∫

0

∂xj
Uf (Xs, ηs)dBi

s | Xτ = x

⎞

⎠

=
1

4
lim

y0→+∞
E

y0

⎛

⎝

τ
∫

0

Aij(X, ∂y)T Uf (Xs, ηs) · (dBs, dβs) | Xτ = x

⎞

⎠ ,

where Aij is an (n +1) ×(n +1) matrix with the entries ai,j = aj,i = 1 and otherwise 0. Ob-

serve that the matrix norm of Aij is 1, then the martingale 
∫ t∧τ

0
Aij(X, ∂y)T Uf (Xs, ηs) ·

(dBs, dβs) is differentially subordinate to Uf (Xt∧τ , ηt∧τ ).

It follows from Theorem 2.6 that

‖Sijf‖p ≤ 1

4
(p∗ − 1)‖f‖p

and again by Lemma 4.5,

∥

∥

∥

∥

∥

∥

(
√

−Δ +
m2

σ2
− m

σ

)−1
(

−Δ +
m2

σ2

)−1/2

∂xi
∂xj

f

∥

∥

∥

∥

∥

∥

p

≤ (p∗ − 1)‖f‖p. �

Remark 4.7. The degenerate case σ = 0 corresponds to the case where dηt = −2mdt, 

i.e. ηt = 2m(T − t), where T = τ is deterministic. This gives the space-time process 

introduced in [5]. That is, taking the limit σ → 0 in (14) with m > 0 fixed, we recover 

the main results in [5] and [42] concerning the norms of second order Riesz transforms. 

Namely that

‖2RiRj‖p =
∥

∥2(−Δ)−1 ∂xi
∂xj

∥

∥

p
≤ (p∗ − 1)‖f‖p. (16)

Indeed, formally as σ → 0 one has

(
√

−Δ +
m2

σ2
− m

σ

)−1
(

−Δ +
m2

σ2

)−1/2

∂xi
∂xj

f → 2(−Δ)−1∂xi
∂xj

f.

In the same way, we obtain that

‖R2
i − R2

j ‖p =
∥

∥(−Δ)−1 ∂xi
∂xi

− (−Δ)−1 ∂xj
∂xj

∥

∥

p
≤ (p∗ − 1)‖f‖p. (17)

For i �= j, the bounds (p∗ − 1) in (16) and (17) were shown to be the best possible in 

[24].
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When i = j, combining our methods here with the martingale inequalities from [11]

we would obtain (again by letting σ → 0) the inequality

‖R2
i f‖p =

∥

∥(−Δ)−1 ∂xi
∂xi

∥

∥

p
≤ cp‖f‖p (18)

first proved in [11]. Here, cp is the best constant found in [21] for non-symmetric martin-

gale transforms, i.e. martingale transforms where the predictable sequences take values 

in [0, 1]. Although the constant is not as nice as Burkholder’s (p∗ − 1) for general mar-

tingale transforms, it can be estimated quite well and in particular it satisfies for large 

p,

cp ≈ p

2
+

1

2
log

(

1 + e−2

2

)

+
α2

p
,

where

α2 =

[

log

(

1 + e−2

2

)]2

+
1

2
log

(

1 + e−2

2

)

− 2

(

e−2

1 + e−2

)2

.

In addition it follows easily from Burkholder’s inequality (see [21, Theorem 4.1]) that 

the constant cp satisfies the bounds

max

(

1,
p∗

2
− 1

)

≤ cp ≤ p∗

2
.

It is also important to mention here that the constant cp in (18) is also best possible. 

This was first proved in [11]. For this and more general results related to second order 

Riesz transforms, we refer the reader to [11] and particularly Theorems 1.4, 1.5, and 

Corollary 1.3.

On the complex plane C, which we identify with R2, the Beurling-Ahlfors operator is 

defined by Bf = (−Δ)−1∂2f , where ∂ is the Cauchy-Riemann operator ∂f = ∂f
∂x1

−i ∂f
∂x2

. 

A longstanding open problem with connections to several areas of analysis, PDE’s and 

geometry, known as Iwaniec’s conjecture [3, p. 129], asserts that

‖Bf‖p ≤ (p∗ − 1)‖f‖p, 1 < p < ∞, (19)

for all f : C → C, f ∈ C∞
0 (C).

That the constant (p∗−1) in (19) cannot be improved has been known for many years, 

see [3]. Writing the operator B = R2
1 − R2

2 + 2iR1R2 in terms of Riesz transforms we 

see from the above discussion that the real and imaginary parts of the Beurling-Ahlfors 

operator have the same norm as the martingale transforms, that is, the Burkholder 

constant p∗−1. This is in fact the same for functions taking values in a Banach space with 

the UMD property, see [24, Theorem 1.1]. Applying (16) and (17) leads to the estimate 

‖Bf‖p ≤ 2(p∗ −1)‖f‖p. This bound was first proved in [42] and [5] and later improved to 
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1.575(p∗ − 1) in [10] by martingale inequalities applied to martingales satisfying certain 

orthogonality properties. For a detailed discussion of these results we refer the reader 

to [6]. The key point in [5] and [10] is to use the martingale techniques applied to the 

space-time process. That is, build the martingales on the process (Xt, T − t) which arise 

from the heat extension rather than the Poisson extension. Given that we now know that 

the process (Xt, T − t) arises from the general Poisson extensions treated in this paper 

by letting σ → 0, it is natural to wonder if further progress on Iwaniec’s conjecture can 

be made by better choices of the vertical diffusion ηt.

It is also interesting to note that as σ → +∞ (or equivalently m → 0), we get the 

inequality

∥

∥

∥
(−Δ)

−1/2
∂xi

f
∥

∥

∥

p
≤ cot

(

π

2p∗

)

‖f‖p,

which is sharp as shown in [31] and [13]. Thus, the inequalities (13) and (14) are both 

sharp in the sense that there is no universal constant C < 1 independent of σ and m

for which the first holds with C cot
(

π
2p∗

)

on the right hand side and the second with 

C(p∗ − 1).

The previous methods can be applied to Lie groups of compact type. Let G be a Lie 

group of compact type with Lie algebra g. We recall that G is called a Lie group of 

compact type if its Lie algebra g admits an Ad-invariant inner product. In that case, 

this equips G with a bi-invariant metric. Note that Euclidean spaces are examples of Lie 

groups of compact type so that this framework is a generalization of the Euclidean one.

We consider an orthonormal basis X1, · · · , Xn of g. In this setting the Laplace-Beltrami 

operator can be written as

L =

n
∑

i=1

X2
i .

Observe that L is essentially self-adjoint on the space of smooth and compactly sup-

ported functions. Moreover, X∗
i = −Xi and Xi commutes with L. In the same manner as 

Euclidean spaces case we obtain the following result.

Proposition 4.8. Let G be a Lie group of compact type endowed with a bi-invariant Rie-

mannian structure. Let 1 ≤ i, j ≤ n and m ≥ 0. Then

∥

∥

∥
(−L + m2)−1/2Xif

∥

∥

∥

p
≤ cot

(

π

2p∗

)

‖f‖p,

∥

∥

∥

∥

(

√

−L + m2 − m
)−1

(

−L + m2
)−1/2 1

2
(XiXj + XjXi)f

∥

∥

∥

∥

p

≤ (p∗ − 1)‖f‖p.

The proof of Theorem 1.2 easily follows from Proposition 4.8 by integrating with 

respect to m.
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4.3.2. Bessel process as vertical diffusion

In this section, we work on Lie groups of compact type endowed with bi-invariant 

Riemannian structures.

Lemma 4.9. Let G be a Lie group of compact type endowed with a bi-invariant Rieman-

nian structure. Let 1 ≤ i, j ≤ n. For the choice B = ∂2

∂y2 + b(y) ∂
∂y with b(y) = γ

y , 

−1 < γ < 1, one has

Tif = − π2Γ(4s)

28ss2Γ(s)4
(−L)−1/2Xi

and

Sijf =
s

2s + 1
(−L)−1XiXj ,

where γ = 1 − 2s.

Proof. Using the Bessel process, we recall that

Ks(y, λ) =
21−s

Γ(s)
ysλs/2Ks(yλ1/2),

with γ = 1 − 2s and that G(+∞, y) = y
2s . Therefore

+∞
∫

0

G(+∞, y)∂yK(y, λ)K(y, λ)dy =
1

2

+∞
∫

0

G(+∞, y)∂y(K(y, λ)2)dy

= − 1

4s

22−2s

Γ(s)2

+∞
∫

0

y2sλsKs(yλ1/2)2dy

= − π2Γ(4s)

28ss2Γ(s)4
λ−1/2.

Similarly

+∞
∫

0

G(+∞, y)K(y, λ)2dy =
1

2s

22−2s

Γ(s)2

+∞
∫

0

y2s+1λsKs(yλ1/2)2dy =
s

2s + 1
λ−1. �

Using the Bessel process as a vertical diffusion, one deduces therefore:

Proposition 4.10. Let G be a Lie group of compact type endowed with a bi-invariant 

Riemannian structure. Let 1 ≤ i, j ≤ n. Then for every s ∈ (0, 1)
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∥

∥

∥
(−L)−1/2Xif

∥

∥

∥

p
≤ 28ss2Γ(s)4

4π2Γ(4s)
cot

(

π

2p∗

)

‖f‖p,

∥

∥

∥

∥

1

2
(XiXj + XjXi)(−L)−1f

∥

∥

∥

∥

p

≤ 2s + 1

4s
(p∗ − 1)‖f‖p.

Proof. Since as before the martingale representations for Tif and Sijf give that ‖Tif‖p ≤
1
4 cot

(

π
2p∗

)

‖f‖p and ‖Sijf‖p ≤ 1
4 (p∗ −1)‖f‖p, both inequalities follow immediately. �

Of course the constant 2s+1
4s is best for s → 1 which corresponds to 0-dimensional 

Bessel process as a vertical diffusion. On the other hand the constant 28ss2Γ(s)4

4π2Γ(4s) is optimal 

for s = 1/2 which corresponds to 1-dimensional Bessel process (=Brownian motion) as 

a vertical diffusion.

4.4. Generalized Riesz transform on vector bundles

We consider the framework introduced in Section 3.1 of [8]. Let M be a n-dimensional 

smooth complete Riemannian manifold and let E be a finite-dimensional vector bundle 

over M . We denote by Γ(M, E) the space of smooth sections of this bundle. Let ∇ denote 

a metric connection on E . We consider an operator on Γ(M, E) that can be written as

L = F + ∇0 +
n

∑

i=1

∇2
i ,

where

∇i = ∇Xi
, 0 ≤ i ≤ n,

and the Xi’s are smooth vector fields on M and F is a smooth symmetric and non-

positive potential (that is a smooth section of the bundle End(E)). We assume that L
is locally subelliptic, non-positive and essentially self-adjoint on the space Γ0(M, E) of 

smooth and compactly supported sections. We consider then a first order differential 

operator da on Γ(M, E) that can be written as

da =

n
∑

i=1

ai∇Xi
,

where a1, · · · , an are smooth sections of the bundle End(E). Assume that da commutes 

with L, i.e.

daLη = Ldaη, η ∈ Γ(M, E),
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and that

‖daη‖2 ≤ C
n

∑

i=1

‖∇Xi
η‖2, η ∈ Γ(M, E),

for some constant C ≥ 0.

The following theorem can then be proved by combining the techniques of this paper 

with the analysis performed in Section 3.1 of [8].

Theorem 4.11. Let Φ : (0, +∞) → C be a complex Borel function. If there exists a finite 

complex Borel measure α on R≥0 such that for every x ∈ (0, +∞),

Φ(x) =

+∞
∫

0

dα(m)√
x + m

,

then, for every p > 1 and η ∈ Γ0(M, E)

‖Φ(−L) daη‖p ≤ 6C(p∗ − 1)|α|(R≥0)‖η‖p.

Theorem 1.3 follows then from the previous theorem as in Section 3.2 of [8].
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