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1. Introduction and main results

The LP-boundedness properties of Riesz transforms in wide geometric settings have
been extensively studied by a large number of authors for many years. The large liter-
ature on this topic includes techniques from the Calderén-Zygmund theory of singular
integrals and probabilistic and analytic Littlewood-Paley theory. For some of this lit-
erature we refer the reader to [4], [14] and [8]. On the other hand, the probabilistic
approach of R.F. Gundy and N.Th. Varopoulos [28] which represents the Riesz trans-
forms as conditional expectations of martingale transforms, combined with the sharp
martingale inequalities of D.L. Burkholder, provides a powerful tool to obtain not only
LP bounds with constant that do not depend on the geometry of the ambient space
but often give sharp, or nearly sharp, bounds. The martingale techniques also apply to
Riesz transforms on Wiener space providing explicit bounds. For an incomplete list of
references to this now very large literature, we refer to [8] and [12]. In addition to pro-
viding universal and explicit LP bounds, the martingale transform techniques extend to
multipliers beyond Riesz transforms. For some of this literature, we refer to [6]. A com-
mon thread in the Gundy-Varopoulos constructions has been to build the martingale
transforms on stochastic processes of the form (X;, Y;) where X; is either a diffusion or a
process arising from a Markovian semigroup on R™ or on a manifold M (such as the Lévy
multipliers studied in [9]), and where Y; is either a one dimensional Brownian motion on
R killed upon hitting 0 (harmonic extensions) or T'—t for some fixed time T, in the case
of space-time (heat extension) constructions as in [7]. The goal of this paper is to prove
boundedness of multipliers obtained when the “vertical” process Y; is more general than
those just mentioned. More precisely, we will study multipliers that arise as conditional
expectations of martingale transforms which are built on the process (X;,n;) where the
vertical diffusion has a generator of the form given in (5). As we show in Section 4 (see
Remark 4.7), our construction unifies both the original constructions with (Xy,Y;) of
Gundy-Varopoulos, which gives sharp inequalities for first order Riesz transforms [13],
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and the construction for (X;, T — t) from [5], which gives sharp inequalities for second
order Riesz transforms, into one by a limiting procedure.

The last two decades or so have seen a great amount of works dealing with nonlocal
operators (generators of Lévy processes) from the PDE point of view (see e.g. the recent
book [36]). In particular, the paper [20] has been instrumental in interpreting fractional
powers of the Laplacian in R™ in terms of a suitable “harmonic” extension. Note that
in the language of probability, this result had been proved in [35]. This latter result has
been put in a more general (and flexible) framework by Stinga and Torrea in [40]. It is
beyond the scope of this paper to review the amount of works using such technique. Our
contributions here lie at the interface of probabilistic methods and harmonic analysis.
More precisely, in the present paper, combining the Gundy-Varopoulos approach to Riesz
transforms and a probabilistic approach to the result of Stinga and Torrea, we obtain
new results about the boundedness in LP of three types of operators:

o Multipliers of the type ®(—A + V'), where A is a diffusion operator and V' a non-
negative bounded smooth potential;

o Generalized Riesz transforms of the type ®(—A+V)X,;, where the X,’s are first-order
differential operators that commute with —A + V;

» Generalized second order Riesz transforms of the type ®(—A + V)X, X;.

We note that using methods from harmonic analysis many results about LP-estimates
for Schrédinger operators are already available in the literature in some settings and
various more general assumptions on the potential V', see for instance [2,39]. However,
those methods rely heavily on the geometry of the underlying space and yield dimension
dependent LP-bounds. The probabilistic method we are using here uses stronger assump-
tions on the potential V' but on the other hand yields dimension independent LP-bounds
and relies very little on the geometry of the underlying space.

When V = 0 among other things, we prove the following general multiplier theo-
rem. Let A be a locally subelliptic (in the sense of Fefferman-Phong) diffusion operator
on a smooth manifold M which is essentially self-adjoint on the space of smooth and
compactly supported functions with respect to a measure p on M. We assume that A
generates a diffusion process ((Xt)¢>0, (Pz)zenr) which is not explosive. If @ is a bounded
Borel function on [0, +00) the operator ®(—A) may be defined on L?(M, 1) by using
the spectral theorem. By using martingale transforms, we will then prove the following
theorem.

Theorem 1.1. If there exists a finite complex Borel measure a on R>q such that for every
x € [0, 4+00),
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then, for every p > 1 and f € LP(M, u),

[2(=A)fll, < 2(p™ — D] ([0, +00))|.f I
where p* = max{p, I%}.

In Theorem 3.6 below, we actually prove a more general result that also applies
to Schrodinger operators. The representation (1) is related to the theory of Stieltjes
transforms, see [29,44], and is possible to invert. We note that Theorem 1.1 can also be
proved using Bernstein theorem, since the function z — \/%H is completely monotone.
However, the method we propose is general and is easily adapted to study different
multipliers as generalized first order or second order Riesz transforms.

Concerning the study of generalized first order and second order Riesz transforms on
Lie groups of compact type, using a variation of the method to construct multipliers, we
obtain the following result.

Theorem 1.2. Let G be a n-dimensional Lie group of compact type endowed with a bi-
invariant Riemannian structure. Let Xq,--- ,X, be an orthonormal frame of the Lie
algebra of G and denote by A the Laplace Beltrami operator on G. Let ® : (0, +00) — C
be a complex Borel function.

(1) If there exists a finite complex Borel measure o on [0,+00) such that for every
x € (0,+00),

then, for every 1 <i<n,p>1, and f € LP

s

(-1l < cot (57 ) lal(0, o<1 ©)

(2) If there exists a finite complex Borel measure o on [0,+00] such that for every
x € (0,400)

“+o0
d
o) = [ olm) ,
), vV +m2(vVz +m2—m)
then, for every 1 <i,j<d,p>1, and f € L?

o5, + 2200

< (p* = Dlal([0, +oo])[| flp- (3)

p
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Theorem 1.2 is sharp. Indeed, in (2), if one choses « to be the Dirac distribution at
0, one gets

[z <ot () sl

which is the sharp bound for the Riesz transform, see [13] and [31]. In (3), if one choses
a to be the Dirac distribution at 400, one gets

1

o v x| <gom-nisly

[\)

which is the sharp bound for the second order Riesz transform, see [5] and [24].
Finally, using techniques developed in [8] to handle the study of Riesz transforms on
vector bundles, we obtain the following result.

Theorem 1.3. Let M be a complete Riemannian manifold with non-negative Weitzenbéck
curvature. Let L = dd* 4+ d*d be the Hodge-de Rham Laplace operator on the exterior
bundle of M. Let ® : (0,+00) — C be a complex Borel function. If there exists a finite
complex Borel measure o on R>q such that for every x € (0,+00),

then, for every p > 1 and every LP integrable exterior differential form n
12(£) dnlly < 6(p" — 1)]e[([0, +00))|n][,-
2. Preliminaries, extension procedure

2.1. Setting

Let A be a locally subelliptic diffusion operator (see Section 1.2 in [18] and [32] for a
definition of local subellipticity) on a smooth manifold M. For every smooth functions
f,9: M — R, we define the so-called carré du champ operator, which is the symmetric
first-order differential form defined by:

L(f,9) = 5 (A(fg) — fAg—gAf).

DN | =

A straightforward computation shows that in a local chart one has

" 9
2:: ) i, axj +2_bi@g

2
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where (0;(z)) is symmetric and nonnegative. That is, for 1 <i4,5 < n, 0;;(x) = 0,;()
and for £ € R"”, 2?3:1 0ij(x)&:&; > 0. Then in the same chart

" of 0Og
=1 J 81'7, &rj

As a consequence, for every smooth function f, I'(f) := I'(f, f) > 0. We assume that
A is symmetric with respect to some smooth measure p, which means that for every
smooth and compactly supported functions f, g € C§° (M),

/ oA fap = Al fAgdy.

M

By smooth measure p, we mean here that p is given by a density in the sense of Definition
3.90 in [23]. That is, locally, in any coordinate system x;, ;1 has a smooth density with
respect to the volume form |dxy A - - - Adz,|. There is an intrinsic distance associated to
the operator A which is defined by

d(z,y) = sup{[f(z) = f(y)l, f € CF(M), [T(f)lloc <1}, @y € M.

We assume that the metric space (M,d) is complete. In that case, from Propositions
1.20 and 1.21 in [18], the operator A is essentially self-adjoint on C§°(M).

Let now V : M — R be a non-positive lower bounded smooth potential and consider
the Schrédinger operator

L=A+V.

The operator L is also essentially self-adjoint on the space of smooth and compactly
supported functions. Indeed from Proposition 1.21 in [18], there exists a sequence h,, €
C§° (M), 0 < h,, <1 such that h, /1 and ||I'(h,)|lcc — 0. Using then the argument in
the proof of Proposition 1.20 in [18] together with the fact that V' < 0 yields the fact
that L is essentially self-adjoint on C§°(M). The self-adjoint extension of L will still be
denoted by L. The semigroup in L?(M, 1) generated by L will be denoted by (P;);>o.

We assume that A generates a diffusion process (X¢, (P;)zenr) which is not explosive.
In that case, the Schrédinger semigroup (P;);>o admits the Feynman-Kac representation
(see for instance [17, Theorem 6.20]):

Pof() = E* (el VOO f(x)) - f e C(m).

The semigroup (P;):>o hence defined is then a sub-Markov semigroup (see page 71 in
[17] for a definition and basic properties of sub-Markov semigroups).
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Remark 2.1. It is a well-known result by A. Grigor’yan [27, Theorem 1] and K.-T.
Sturm [41, Theorem 4] that a sufficient condition for A to generates a diffusion pro-
cess (Xt, (Pz)zenr) which is not explosive is that for some z¢o € M and rg > 0

+oo

[ e =+
huBleor)

To

where B(zg,r) denotes the metric ball with radius r for the distance d. This is for
instance satisfied if for some constants Cy, Cy > 0 one has pu(B(zo, 7)) < Cre2r’.

2.2. Green function at 400 of one-dimensional diffusions killed at 0

Let a,b be smooth functions on (0, 00) with @ > 0 and let

z

s'(2) = exp _/ ;((5))2 dy

Assume that

02 0
B= 2+ b(y) = 5
a(y) a7 T (y)ay, (5)
with Dirichlet boundary condition at 0. The quantities s'(z) and m(z) := W are

respectively often called the scale function and density of the speed measure associ-
ated with the diffusion B. For more on this, see [19, Section I1.9] or [38, Chapter VII,
Definitions 3.3 and 3.7].

Let n; be the diffusion process with generator B. We denote

7 =inf{t > 0, = 0},

and ¢(y) the density of 7 under P, 70 = y > 0. It is well known that under the
assumption (4), the process 7 is not explosive and hits zero with probability 1 (see for
instance [38, Ch VII Proposition 3.2]), that is,

P(7 < 400) = 1.

For later use, we assume that n can be written as a (weak) solution of a SDE
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d?’]t = b(’l’]t)dt + Cl(’l’]t)dﬁt7 t < T, (6)

where f3; is a Brownian motion on R with E(5?) = 2¢, which is independent of the
process (X;)¢>0. We first collect some preliminary results about the Green function at
+o00 of the diffusion 7 killed at 0. For computations, it is convenient to write B as

82 W (y) 0
2 2 s
21/ (y)

)
g

Yy
(y) = exp / b(w)2 dw
(w)
1
so that the assumptions in (4) imply
1
/ O / dw
(w) h(w)
0 1

The following lemma which computes the Green function of B on the half-line [0, +-00)
with Dirichlet boundary condition at 0 is then straightforward.

Lemma 2.2. Let g be a Borel function such that f0+oo h(z) f((zz))z)‘ dz < 4o00. The solution
on [0,400) of the equation

Bf =—g

with boundary conditions f(0) =0 and (f'h)(+00) = 0, is given by

where

In particular,




R. Banuelos et al. / Journal of Functional Analysis 281 (2021) 109188 9

Proof. Notice that the equation Bf = —g can be rewritten as
h (y
() + o) B F0) = 9l

where h(y) = exp (fy bw) dw). This is equivalent to

1 a(w)?

L 9(y)

Since f0+oo h(2)182)] 4z <+ 00, the first order ODE with boundary condition (f'h)(+00) =

a(z)?
0 has a unique solution

Again from the boundary condition f(0) = 0, we conclude the unique existence of the
solution f as

Our next lemma is the occupation time formula for the process 7;.

Lemma 2.3. Let G be the Green function of B on the half-line [0,+00) with Dirich-
let boundary condition at 0 as above. Then, if g is a positive Borel function such that
f0+oo h(z)ag((zz))2 dz < +oo, for every y > 0,

T

E, /g(ns)ds = f(y),

0

where f solves the equation in Lemma 2.2.
Proof. Let f be the solution of
Bf =-g

with boundary conditions f(0) = 0 and (f’h)(+o00) = 0. By It6’s formula,
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f(ne) +/tf'775 (ns)dBs + /Bfns t<T.
0

In particular, letting ¢ — 7, one obtains

T T

fmw:/MmM&:/NmM%Mm-

0 0

Denote by 7, = 7 A o, An, where o,, = inf{t > 0,7, = n}. Since a and f’ are smooth in

(0,00) and 7, is a bounded stopping time, (fg/w” f’(ns)a(ns)dﬁs) , is a martingale.
t>0

Applying the Doob’s optional stopping theorem we get

/f%M%M& _gY ﬂ%g—mm—/smmw 0.
0

This gives

Tn

f(y) =EY /mmw FEY (f(nr)).

0
Letting n — oo, the monotone convergence theorem yields

T

fly) =EY /g(ns)ds . O

0

2.8. Extension procedure with general vertical diffusions

If f € L?(M,u) we consider its extension to the cone M x [0, +oc) defined for z €
M,y € [0,4+00) by

+o00
wmwz/mmmmu (7)
0

where we recall that P, = e* is the semigroup generated by L = A + V and that ¢ is
the density of the first hitting time 7 of zero by 7. Since A is locally subelliptic and V is
smooth, using the definition of local subellipticity for A (see Definitions 1.6 and 1.8 in
[18]) one deduces that L is itself locally subelliptic. Therefore P, f is a smooth function
for every f € L*(M, u) (see Proposition 1.23 in [18]).
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Denoting

“+oo

K(y,A) == / g (y)dt = EY (™), (®)
0

we have that BIC(-,A) = AMC(-, A). In particular, since B is an elliptic operator, we de-
duce that (-, \) is a smooth function (see page 18 in [19] for more details, including a
representation formula for (-, A)).

We note that the spectral theorem shows that in the L? sense

The starting point of our approach is the following generalization of a result by Stinga
and Torrea (see [40]).

Theorem 2.4. Let f € C§°(M). In the pointwise sense Uy satisfies

(L+B)U;=0 in M x (0,+00)
u-,0=f on M.

We shall give a probabilistic proof of this result which is based on a martingale that
shall be used several times in this paper.

Lemma 2.5. Let f € C§°(M). Consider the process
Mtf = efOtAT V(X“)duUf (Xt/\n 7]t/\r)~

The process Mtf is a martingale with quadratic variation

tAT tAT
<Mf>t -9 / leOS V(Xu)duF(Uf)(Xs,’l?s)dS-i-Q / leos V(Xu,)duayUf(Xs’ns)2a(ns)2d8,
0 0

oUy OU
where T(Uy) = 327 0ij 55~ asz-'

Proof. First note that
M = el VR,

Assume that the process (X, n:)i>0 starts at (z,y) € M x (0,00). Since the processes
X and n; are independent, it follows from the Feynman-Kac formula that
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oo
B (e VOt (X)) = / B (e VO £(X,)) go(y)ds
0

= /Psf(w)qs(y)ds =Us(z,y),
0

where we recall that ¢s(y) is the density of 7 under 19 =y > 0. Denote by (F;);>0 the
natural filtration of (X;,n;). From the strong Markov property we have

E (M-,]—c ‘ ]:s/\‘r) =E (efoT V(Xu)duf(X‘r)l‘rSs | ]:s/\r) + E (efOT V(Xu)duf(XT>1T>s | -7:5/\7)

= ej(;r V(XU)duf(X'r)l'rfs + ej; ! V(Xu)duUf(Xs/\Tv 773/\7)17'>s
= Msf/\‘r'

We conclude that Mtf is a martingale. The quadratic variation of Mtf is computed as in
[38, p. 324] or [15, p. 181]. Indeed, from Itd’s formula, the bounded variation part of Mtf
is zero. Hence

n tAT n
M} =Ug(w,9)+ ) / elo VX < Zvijamj> Up(Xs,ns)dBy
=1 0

j=1
tAT

+/ej'osV(Xu)du@yUf(XS7ns)a(ns)dﬁs7
0

where (v;;(x)) is the square root of the symmetric nonnegative matrix (o;;(x)) and
B, = (B},--+,B}") is a Brownian motion on R™ with generator A = Y7, 86—52. Thus

(M7); immediately follows. O
We are now in position to prove Theorem 2.4.

Proof of Theorem 2.4. Since Mtf = el V(X“)d“Uf(XMT,nMT) is a martingale, it fol-
lows from Itd’s formula that the bounded variation part of Mtf is zero, i.e.,

tAT

elo VEXIdu ([, 4 BYU (X, ns)ds = 0.

We conclude that

tAT

1 s
(L+B)Us(x,y) = lim elo VEXDdu ([, 4 BYU(X,,n.)ds =0. O
0
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2.4. Martingale inequalities

In this section, we recall some results on the martingale inequalities used in this
paper. Suppose that (2, F,P) is a complete probability space, filtered by F = {F;}i>0,
a family of right continuous sub-o-fields of F. Assume that Fy contains all the events
of probability 0. Let X and Y be adapted, real-valued martingales which have right-
continuous paths with left-limits (r.c.Ll.). The martingale Y is differentially subordinate
to X if [Yo| < [ Xo| and (X)), —(Y'), is a nondecreasing and nonnegative function of ¢. The
martingales X; and Y; are said to be orthogonal if the covariation process (X,Y), =0
for all ¢.

We always assume that the martingales are LP bounded for 1 < p < co and by X we
mean X. By || X||, we mean sup,. || X¢||p = || Xoo||p- This is often applied to stopped
martingales. Hence || X||, = || X+ ||, where 7 is a stopping time. We use the notation || f]|,
for the LP-norms of functions defined on M with respect to the measure p. This is clear
in each occurrence and should not create any confusion.

In the following, we recall the sharp inequalities of martingale transforms proved by
Baniuelos and Wang [13], as well as an extension by Bafiuelos and Osgkowski [12].

Theorem 2.6 ([13, Theorems 1 and 2]). Let X and Y be two martingales with continuous

paths such that Y 1is differentially subordinate to X. Fix 1 < p < oo and set p* =
max{p, ;£ }. Then

1Yl < (" = DX,

Furthermore, suppose that the martingales X and Y are orthogonal. Then

™
Wl < cor(( 5 ) 1

Both of these inequalities are sharp.

Theorem 2.7 ([12, Theorem 2.2]). Let X andY be two martingales with continuous paths
such that 'Y is differentially subordinate to X. Consider the process

t
"t s
Ly e
0

where (Vi)i>0 s a non-positive adapted and continuous process. For 1 < p < oo, we have
the sharp bound

12]lp < (" = DIIXTlp-
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3. Multiplier theorems

The martingale transform method to construct multipliers is very versatile and allows
one to deal with a very general setup. We work under the assumptions and with the
notations of Section 2. In particular, let G be the Green function of B on the half-line
[0, +00) with Dirichlet boundary condition at 0 (see Lemma 2.2). Before going further,
in order to put the next results in perspective, we discuss the well-known Hérmander-
Mikhlin theorem in R™. Let us assume that A = Z?:l 8‘9—; is the Laplace operator in
R"™ and that V = 0. Recall the Hérmander-Mikhlin theorem:

Theorem 3.1 (/25, Theorem 5.2.7]). Let m € L™ (R™\{0}) be a complez-valued bounded
function on R™\{0} that satisfies:

(a) Either the Mikhlin’s condition

[Fm(&)] < Alg|~"

for all multi-indices || < {%} +1.

(b) Or the Hérmander’s condition

sup R~"+2h / |8gm(§)\2 dé < A? < o0
R>0
R<|¢|<2R

for all multi-indices || < {%} +1.

Then the operator T, whose symbol is m is bounded in LP(R™) for any p € (1,+00),
with an operator norm depending on n, A, p, ||m||so-

Remark 3.2. We point out there are sharper versions of the previous theorem replacing
the Lebesgue spaces by Lorentz spaces (see e.g. [26]) and also more general variants (see

e.g. [22]).
In our framework, we want to study boundedness properties of the multiplier ®(—L)
where

+oo

B(\) = / G(+00, 9)0,K(y, \)2a(y)*dy.
0

From now on and throughout the paper we will make the following standing assump-
tions on the functions involved in ®:

¢ a is bounded on (0, +00);
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o The functions G(+o00,y) and G(z,y) defined in Lemma 2.2 are both of at most
polynomial growth when y, z — +00;

 The functions K and 0,k defined by (8) are both rapidly decreasing when y, A\ —
+0o0.

To apply the previous theorem, we define m(¢) = ®(|£]?) and to simplify the discussion
we will consider only the Mikhlin’s condition, since the conclusion of the discussion will
be the same for Hérmander’s case. It is clear that if K(y,|£|?) satisfies a Mikhlin-type
condition (i.e. enough derivatives in £ decay away from zero), then the Leibniz rule
(together with dominated convergence) implies that so is m. Therefore, Theorem 3.1
gives that ®(—L) is bounded on LP for every p € (1,00). Notice however that the
constant in the estimate depends on the dimension n. In connection to other probabilistic
(martingale) proofs of Theorem 3.1, we mention that in [34, Theorem 1.1], McConnell
gave a probabilistic proof under the assumption that |y| < n + 1 in the context of
functions taking values in a Banach spaces with the UMD (unconditional martingale
difference sequence) property. There too, the constants depend on the dimension even
in the case when the UMD space is R.

In this section, we will prove a Gundy-Varopoulos representation for ®(—L) therefore
allowing us to prove the boundedness in LP with an explicit constant independent of
the dimension (see Theorem 3.4). In some special cases of diffusion B, one can compute
explicitly G and K, allowing to check the previous decay assumptions and then leading
to some special multipliers.

3.1. Construction of the martingale transform associated to a multiplier
We consider then the multiplier defined for f € C§°(M) by
Wf=2o(-L)f,

where

+oo
2 = [ Gloo,1)0,K(u N Paly)*dy. (10)
0

We again note that due to the growth assumptions on G and 9,/C, the function @ is
bounded. Moreover, using the extension function Uy defined in (7), one can see that W
satisfies the following integration by parts formula: for every f,g € C§° (M),

+oo

/ngduz //%Uf(x,y)ayUg(x,y)GHoo,y)a(y)2du(x)dy-
M 0 M



16 R. Banuelos et al. / Journal of Functional Analysis 281 (2021) 109188

Let now P*¥ be the probability measure associated with the stochastic process (Xi, 1)
starting at the point (z,y) with € M and y > 0, define a measure P¥ by

PY((Xonrs tins) € ©) = / PPY((Xonr tions) € ©)dp(a)

for any Borel set © € M x R*. In particular, since y is invariant for the semigroup for
any Borel set © € M, PY(X, € ©) = u(0). From this it follows that for any nonnegative

(or integrable function) f on M, we have EY(f =Julf . In particular, for
any 1 < p < oo, the L norm of the random Varlable Z = f ( T) equals the LP(M, )
norm of the function f. In this case we will just write || f(X:)||ze = || fllLr ()

Theorem 3.3. We have the following Gundy-Varopoulos type representation for W : for
every f € C°(M) and z € M,

T

lim EY [ elo V<Xu>d"/e‘fos VXDdug Ur(Xg,ms)a(ns) dfs | Xy =

1
Wf(x) - 5 Yo—+00

0

Proof. Note first that as a consequence of Lemma 2.3, since X and 7 are independent,
we have

/F on)d // (9, 2)F (2, 2)dp(z)dz, (1)

0

for all Borel function F on M x RT such that [;, [;° :((ZZ))Q |F(z, z)|dzdu(x) < oo.
Let f,g € C§°(M). We observe that

M = ef§ VXDdug(x ),
Applying Itd’s formula (9) for Mg and the It6 isometry, one has

T

/ gla)EP [ eld VX / e~ i VXDg, U (X, ng)a(ns)dB, | Xe = x| du(x)
M 0

T

— E¥o g(XT)efJ V(Xu)du/e— I V(X“)duayUf(Xs,ns)a(ns)dﬁs
0
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= 2E¥ (/8yUg(stns)ayUf(stns)a(ns)zdS)
0

+oo
=2 G(y0,y)0y Uy (2, 9)0,Uy (x,y)a(y)? du(x) dy,
/]

where the last inequality is due to (11). Since Uy(z,y) = K(y, —L)f(z) and L is self-
adjoint, we have

/ 0,U, (2, )8, U (2, y)dpu() = / 0(2)0,K (v, ~L)3,K (v, ~L) f(x)dps(z)
M

M

and therefore

+oo

[ [ 6w0.09,04(.9)0,0s @ p)dutw)a(w)? dy
0 M

+oo
- / o) / G0 )0, Ky, —L)0,K(y, — L) f (2)a(y)*dy du(x).
M 0

We conclude that for every g € C§° (M)

[ st (e’”“"“" [t v, Uy (X man)ds, | X, = ) dp(x)
M 0

+oo
- / o) / Gy, )0, Ky, —L)3, Ky, — L) f(x)a(y)?dy du(z).
M 0

Therefore,

E¥° (6[07— V(Xu)du/e—f(f V(Xu)duayUf(Xsa ns)a(ns)dﬁs ‘ X‘r = 1’)

0

+o00
=2 [ Glun.9)0,C(0. D)0, K(y. ~ L) (w)aly)dy.

The conclusion follows by taking the limit yo — +00. O
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3.2. Boundedness in LP(u)

Theorem 3.4. The operator W defined by (10) is bounded in LP. Moreover, if the potential
V =0, we have for every f € LP(M, )

1
IW Sl < 56" = DIl

And, if the potential V' is not zero, then

3
W £lly < 5" = DI fllp-

Proof. Let f € C§°(M). One can write
lim E% [l V(X“)d“/e_ftf VXddugy | X, =a |,
0

where

t
Y, = / 8, U (X, ms)a(n,)dBs.
0

If V =0, the martingale Y is differentially subordinate to the martingale Uy (X, n), see
Lemma 2.5. One can conclude by using Theorem 2.7 with V; = 0.

Next we deal with the case V' # 0 and adapt a method used in the proof of Theorem
1.1in [8]. If V' # 0, then Uy(X,n) is not a martingale anymore. However, the martingale
Y is differentially subordinate to the martingale

N, _Z/( Vi %)Uf( o, 7s)dB! +/a U (X, ns)a(ns)dBs,

where we recall that (v;;(x)) is the square root of the matrix (o;;(x)). From Ité’s formula,
one also has

AT
Ny = Up(Xonrstions) — Up(Xou0) — 2 / (A + B)U; (Xs, n,)ds.
0

We now note that from Theorem 2.4

(A+B)Uf =-VUy.
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Therefore,

tAT

Ny = U (Xiprs ninn) — Up(Xos o) +2 / V(XU (X, )ds.
0

Suppose f > 0. Then, the above equality yields that Us(Xiar, mia-) is a non-negative
sub-martingale. It follows from Lenglart-Lépingle-Pratelli [33, Theorem 3.2, part 3)] that

T

Uy (Xo,m0) — Z/V(Xs)Uf(Xs,ns)dS <pllUs(Xr,0:)lp = p[1F(X)llp = 2 f1lp,

0 p

where we used the fact that the LP norm of the random variable f(X;) equals the
LP(M, i) norm of the function f, as pointed earlier. For a general f, since V is non-
positive, we note that

U (Xo, 10) —2/V(XS)Uf(XS7nS)ds < Uiy(Xo, m0) —2/V(XS)U‘f|(XS,nS)ds.
0 0

This yields that we always have

IN=llp < (2 + DIIf]p-

Therefore by Lemma 2.7

Yrllp < (0" = DIINp < (p+ )" = DI f]lp-

We conclude from the Gundy-Varopoulos type representation of W and contraction of
the conditional expectation that

1W 1l < 5+ 16 = DIl

For 1 < p < 2, this gives the inequality in the statement of the theorem. The similar
inequality in the range p > 2 is obtained by using the fact that the LP adjoint operator
of W is itself. O

8.8. Specific choices for the vertical diffusion

In this section we give explicit expressions of the operator W depending upon the
choices of the function b. It suffices to compute the function K(y, \) defined in (8) and
the Green function associated to the operator B. For computations, it may be easier to
use an alternative representation of the multiplier. Recall that
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+oo
() = / G (400, 4)0,K(y, \)2a(y)?dy.
0

Lemma 3.5.

+oo
() =5~ A [ Glroo Kl N dy.
0

Proof. From the definition of K(y, A) in (8), we have that BK(-; ) = MC(-, A), see page
18 in [19]. Moreover, K(y, A) converges to 1 as y — 0 and K(y,\) — 0 as y — oc. Thus,
using integration by parts one obtains

+oo
/ G(+00, 9)8,K(y, \)2a(y)?dy

+oo
= Ky N0, NG (oo, plaly)?] T - / K (1, N3y (a(y)*C (00, )8, Ky, A))dy
0
+o00 oo
- / K (5, )0, K (3, Ny — / K(y. \)G (400, 4) BK (3, N)dy
0 0

—+oo
1
=5 A / G(+00,y)K(y, A)*dy.
0

Here the second equality follows from the definition of G(+o0,y) which gives

,(a(y)*C+o0,1)) = 0, (h<y> / %) = a2 (oo ) +1. o
0

3.8.1. Brownian motion with negative drift
Assume that a(y) = o and b(y) = —2m, where m > 0 and ¢ > 0. One computes that

Ky, ) = (o)

)

2m
o

see for instance [16, page 69] or [19, page 295]. Taking h(z) = ¢~ «* ®~Y in Lemma 2.2
yields
2m

1 m(,
G(y,z) = %6_?—'2 (6277(”/\2) - 1) .
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In particular,
G(+00,2) = L(1 —e 027
’ 2m '

For this choice of a and b, we can now rewrite the operator W defined in (10) as

—1/2
Wf_i<IZL(L+7:22) )f.

We are now in position to conclude the proof of Theorem 1.1. We actually state a
slightly stronger version including the potential V.

Theorem 3.6. Let @ : [0,4+00) — C be a bounded Borel function. If there exists a finite
complex Borel measure o on R>qo such that for every x € [0, 4+00),

0

then, for every p > 1 and f € LP(M, u),

[@(=L)fl, < 6(p" — D]l (R0 flp-

If V =0, this bound can be improved to

[@(=L)fIl, < 2(p" = De|(R0)[ fllp-

Proof. It follows from the expression of W and Theorem 3.4 that for every m > 0
|(r=mLem) ™) 1| <607 =Dl
Thus, we have

[@(=L)f[l, < 6(p" = Dlal(Rx0)[f[]p-

When V = 0 the bound can be improved thanks to Theorem 3.4. O

3.3.2. Bessel processes

Assume that a(y) = 1 and b(y) = 7, where —1 < y < 1. Set v =1 — 2s, then one
computes that

1-s

2
s s/ZK 1/2

Ks (y7 )‘) =
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where K;(z) is the MacDonald function (Bessel function of the second kind) defined as
follows

+oo 22
A e
(5) / i d

Taking h(y) = 37 in Lemma 2.2, it follows that G(+o00,y) = 5%. Using the formula

Ar (452)

+00
[ e () (54 (5 )
0

that holds for & > 2v > 0 (see [1]), one gets W f = ﬁf.

Remark 3.7 (Bessel processes with negative drift). Interestingly, some (partially) explicit
computations may also be carried out in a class of processes extensively studied by Pit-
man & Yor in [37]. Those processes introduced by S. Watanabe in [43], and generalizing
the Bessel processes, are sometimes called Bessel processes with negative (or descending)
drift. Assume that a(y) =1 and

_ 2w+l _25K1+,,(6y)

lv) y K, (dy)

with v,0 > 0. In that case, direct computations show that the multiplier W takes the
form

+o00
1 L(-L+6)" 2\ 1.(9y)
0

4. Generalized Riesz transforms

In this section we will construct other operators arising from martingale transforms.
We work with all the assumptions and notations of Section 2.1 but assume furthermore
that the operator A admits a representation

A= ixx

where the X;’s are smooth vector fields on M, X} denotes the formal adjoint of X; with
respect to . We denote as before L = A + V| where V : M — R is the non-positive
bounded smooth potential and (P;);>o the heat semigroup with generator L. Note that
we can write
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A= zn:xf + Xo,
i=1

for some smooth vector field Xy and that from the celebrated Hérmander theorem [30],
a sufficient condition for the local subellipticity of A is then that the vector fields
Xo, X1, -+, X, satisfy the bracket generating condition, see page 6 in [18].

Let (X¢):>0 be the diffusion process on M with generator >~ ; X7 4+ X, starting from
the distribution p. We assume that (X;);>o is nonexplosive and can be constructed via
the Stratonovitch stochastic differential equation

dX;, = Xo(X;)dt + > Xi(X;) 0 dB},

i=1

. . . . 2
where B; = (B},---, By") is a Brownian motion on R" with generator A = > | %.

Remark 4.1. For instance, if M is a Euclidean space, then a standard sufficient condition
so that (X;);>0 is nonexplosive and can be constructed via the above Stratonovitch
stochastic differential equation is that the vector fields Xg, X1, -, X, have globally
bounded derivatives, see for instance [17, Theorem 6.29]. In that case, if the vector fields
X0, X1, -, X, also satisfy the bracket generating condition, then A is locally subelliptic
and essentially self-adjoint.

As before, see (6), we will consider the one-dimensional diffusion on (0, +00) given by

dng = b(n)dt + a(ne)dBy, t<T

where f3; is a Brownian motion on R with E(?) = 2¢ which is independent from (X¢):>0.
4.1. Operators arising from martingale transforms

We introduce now the class of operators under consideration. For any 1 < 4,7 < n,
we consider the operators

+oo

T.f = / a(y)G(+00,y)9,K(y, —L)X:K(y, —L) fdy,
0

and

+oo

Siif = / G (+00, 4)K(y, — L) X2 XKy, ~ L) fdy.
0
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Theorem 4.2. We have the following Gundy-Varopoulos type representations: for every
feCge(M) and x € M

T

1 .
T’Zf(x) = 5 yol_lg_loo Evo GJU V(Xu)du/e— Io V(Xu)duinf(XS7nS)dﬂS | X, =z,
0
1 . [ .
S,Ljf<[1;) = 5 yol_i>r£oo EYo efo V(Xu)du/e— 1o V(Xu)duinf(ans)ng | X, =z

0

Proof. The proof is similar to the proof of Theorem 3.3, we present it for completeness.
It suffices to show the first expression of T;. The same proof also works for S;;. Let
frg € C3°(M). We recall MY = eld V(Xu)dug(X ) Applying It6’s formula for M{ gives
that

AT

= U, (Xom) + Y / i VXD ,U, (X, ,)AB
i=1

tAT
+/e d“é) U( sans)a(ns)dﬁs'
0

By the It6 isometry, one has

T

/g(x)Eyo e.for V(Xu)du‘/e—fbS V(Xu)duinf(Xs,ns)dﬂs |X7‘ — du(m)
M 0

T

_EW | g(X,)eli VXuau / e I3 VO UL (X, 0, )dBs
0

T

= 2% /ayUg(Xsans)inf(Xsans)a(ns)dS
0
+oo

—2 [ [ a)Glun1)0,Uy . )20 (o)) dy,

0 M

where the last equality is due to (11). Since Us(x,y) = K(y, —L) f(z) and L is self-adjoint,
then

/8yUg(x7y)3€iUf(x,y)du(x) = /g(x)ay/C(y,—L)%i/C(y, —L)f(x)dp(x)
M

M

and



R. Banuelos et al. / Journal of Functional Analysis 281 (2021) 109188 25

+

o0

/ a(9)Cyo,4)8, Uy, ) %:U; (2, y)dps() dy
M

o

“+oo
_ / o) / a(9)G o, )0, K (s — L)%K (g, —L) f(2)dy dp(z).
M 0

The rest of the proof thus immediately follows. O

4.2. Boundedness in LP(u)

Corollary 4.3. Let 1 <i <n. Foralll <p < oo and all f € C§°(M) we have
IT:fl < S0 = DIl

Moreover, if the potential V =0, then

1
1Al < 567 = DIl

Proof. When V = 0, the operator T; can be rewritten as

Tif(z) =

1
2 yo—r+oo

lim EY /Ai(%,(?y)TUf(Xs,ns)~(st,dﬁs)|XT:x ,
0

where A; is an (n+1) x (n+1) matrix with the entry a(,1),; = 1 and otherwise 0. Notice
that the martingale OMT Ai(X,0,)TUs(X5,n5) - (dBs,dps) is differentially subordinate
to the martingale Uy(Xiar, Niar). It follows from Theorem 2.6 that

1
ITifllp < 5" = DI fllp-

When V' # 0, then the same method as for the proof of Theorem 3.4 implies the
desired estimate. O

Corollary 4.4. Let 1 <i,j <n. For all1 <p < oo and all f € C5°(M) we have

3
1955 fllp < 5" = DI fllp-

Moreover, if the potential V =0, then

1
1S5 fllp < 5P~ DIl
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Proof. Similarly as for T;, when V' = 0 one can write S;; as

T

1
Z 1 Y - T . _
5 yol_lg_loo]E 0 /AU(X,Gy) Up(Xs,ms) - (dBs,dBs) | Xr =z |,

Sijf(x) =

0

where A;; is an (n+ 1) x (n + 1) matrix with the entries a; ; = 1 and otherwise 0. Since
OMT Ai(%, 8y)TUf(XS,775) - (dBs,dps) is differentially subordinate to Ug(X¢ar, Near)s
then Theorem 2.6 yields

1 >k
155 fllp < 5 = DIf - ©
4.8. Euclidean spaces and Lie groups of compact type

We now apply our results to the case of Euclidean spaces and Lie groups of compact
type. In those cases, for the transforms we are interested in, the operators X;’s and X;’s
do commute with L. As a consequence, one has

+o0
Tf — / a(y)G(+00, )9, K (y, ~L)K(y, L) X: fdy,
0
and
“+o0
Sif = / G400, y)K(y, —L)? X3%, fdy.
0

4.8.1. Brownian motion with negative drift as vertical diffusion
Consider the Euclidean spaces R™. We assume that the potential V in the operator
L is null. In this case, X; = 0,, commutes with the Laplace operator L = A.

Lemma 4.5. Let 1 <i,5 <n and o >0, m > 0. For the choice B = 0283—; — Qm%, one
has

and

-1
1 / m2 m m2\ '/
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Proof. Since 0., commutes with A, the operator T; becomes

2m
1—6;2_3/ _ 2y —A m?2
Sijf = /—6 ’ Tt dy | 0y,0n, f

I
|
gla
—
>
_|_
qm|§M
|
S
~
|
|
—
>
_|_
3k
N———
|

We obtain therefore:

Proposition 4.6. Let 1 <i,5 <n and m >0, c > 0. Then

27

m2\ ~1/2
H -a+1) atif‘<cot< )11 (13)
p
m -1 m2\ ~1/2
_M__;) <_A+?) O | <@ = DIIfl,  (4)
P

Proof. Recall the Gundy-Varopoulos type representation of T; in Theorem 4.2:

Tif(z)= & lim Ev /8IiUf(Xs,ns)dﬁS|XT::c

1
2 yo—+o0
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In a similar way we also have

T

1 .. i

Tif(z):—iyol_lg_looEy“ /UayUf(Xs,ns)st | X, ==z
0

To see this, observe that by Itd’s formula (12) and the Itd isometry, one has for any

Yo >0

T

/g(x)EyO /oayUf(Xs,ns)dB;‘ | X, = | du(z)
0

T

0

T

= 2% /Uaing(stns)ayUf(stns)dS
0

+oo
=2 / /UG(yo,y)&ciUg(:C,y)ayUf(x,y)du(m) dy
0 M

+o0
_ / o) / & (4o, )0, K (s — L), Ky, — L) £(2)dydp(z).
M 0

Taking the limit yy — oo gives the second expression of T; f. Therefore

1 T
: —Z Yo ) T . ) ) -
Tif(x)= 7 lim E /Al(x, 0,)TUs(Xoms) - (dBy,dBy) | Xo =z |, (15)
0
where A; is an (n+ 1) x (n + 1) matrix with the entries a(,41); = 1, @; (,+1) = —0 and

otherwise 0.

With this matrix we claim that (1) the martingale N; := OMT Ai(X,0)TU(Xs,ms) -
(dBs, dfs) is differentially subordinate to Mtf = Up(Xinrs enr) and that (2) the two
martingales are orthogonal. That is, (N, Mf); = 0. To verify (1) recall that

T

n AT tA
Mf = FXom) + 3 [ 0,05 (XenddBl+ [ 8,U5(Xeim)ods,
Jj=17 0

and
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n tAT tAT
:22/ (0, U ( S,ns))2ds+2/(ayUf(Xs,ns))%st.
j:l 0
Similarly,
tAT tAT
Ny = /amiUf(X57775)dBS_ /8yUf(XS»775)UdB§
0 0
and
tAT
2/ (02, Ug( S,ns))2d3+2/(ayUf(Xs,ns))Q(f?ds.
0 0
Thus

<Mf t_ t_2Z/ aa:]Uf sﬂ?s))2d57
J#i

which is a nondecreasing and nonnegative function of t. This proves the differential
subordination property.
To prove the orthogonality we note that

tAT

<MM%=—U/%MA&%WW%&%MQ%

tAT

+U/ayUf(XS7nS)awiUf(XS7nS)d<ﬂ>s

=0.

We can now apply (15) and the martingale inequality in Theorem 2.6. It follows that

o ) 11,

1
\Tfl, < —am(

and hence by Lemma 4.5,

m —1/2
H A+—> O, f

— 41Tl < cot

p

™
o ) 171
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On the other hand

Yo—+00

1 [ i
Syfta) =5 tm B ([ 0,U;(X.n)BL | X, =

1 T
~ i vo y T , =
1 yol—lfiloo]E /Alj(ff,(‘)y) Uf(Xs,ms) - (dBs,dBs) | Xy =2 |,

where A;; is an (n+1) x (n+1) matrix with the entries a; ; = a;; = 1 and otherwise 0. Ob-
serve that the matrix norm of A;; is 1, then the martingale fOMT A (X,0,)TUp(Xs,m5) -
(dBs, dpBs) is differentially subordinate to Us(Xiar, Miar)-

It follows from Theorem 2.6 that

1 *
1565 fllp < 7 (" = DI f1lp
and again by Lemma 4.5,
m -1 m2 71/2
—A+——;> (-a+%) w0t <t -visl o
P
Remark 4.7. The degenerate case 0 = 0 corresponds to the case where dn; = —2mdt,

ie. ;. = 2m(T — t), where T = 7 is deterministic. This gives the space-time process
introduced in [5]. That is, taking the limit ¢ — 0 in (14) with m > 0 fixed, we recover
the main results in [5] and [42] concerning the norms of second order Riesz transforms.
Namely that

12RiR; |l = ||2(=2)71 02,05, ], < (0" = DI f - (16)

Indeed, formally as ¢ — 0 one has

m2 m - m2\ ~1/?
\ A+ — - — (—A + —2) 0,05, f — 2(—A) 105,04, f.
g (o g ’

In the same way, we obtain that
||R22 - R?Hp = H(_A)_l a'riami - (_A)_l awjao:j Hp < (p* - 1)||f||p (17)

For i # j, the bounds (p* — 1) in (16) and (17) were shown to be the best possible in
[24].
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When i = j, combining our methods here with the martingale inequalities from [11]
we would obtain (again by letting ¢ — 0) the inequality

HRZ'Qf”p = H(_A)_l axiami

L <6lfl (18)

first proved in [11]. Here, ¢, is the best constant found in [21] for non-symmetric martin-
gale transforms, i.e. martingale transforms where the predictable sequences take values
in [0, 1]. Although the constant is not as nice as Burkholder’s (p* — 1) for general mar-
tingale transforms, it can be estimated quite well and in particular it satisfies for large

b,

1 1+e2 o
cp%§+210g< 5 )+p2,

where

_ | 14e2 2_~_11 14+e2 9 e 2 2
a2 = 118 Ty 2%\ 7 1+e2) -

In addition it follows easily from Burkholder’s inequality (see [21, Theorem 4.1]) that
the constant c, satisfies the bounds

*

p* p
max(l,;—l) gcp_g.

It is also important to mention here that the constant ¢, in (18) is also best possible.
This was first proved in [11]. For this and more general results related to second order
Riesz transforms, we refer the reader to [11] and particularly Theorems 1.4, 1.5, and
Corollary 1.3.

On the complex plane C, which we identify with R?, the Beurling-Ahlfors operator is
defined by Bf = (—A)~19? f, where 0 is the Cauchy-Riemann operator 0 f = g—li —ig—wa.
A longstanding open problem with connections to several areas of analysis, PDE’s and
geometry, known as Iwaniec’s conjecture [3, p. 129], asserts that

[1Bfllp < (®@" = DIIfllp, 1 <p<oo, (19)

forall f:C — C, feCg(C).

That the constant (p*—1) in (19) cannot be improved has been known for many years,
see [3]. Writing the operator B = R? — R3 + 2iR1 Ry in terms of Riesz transforms we
see from the above discussion that the real and imaginary parts of the Beurling-Ahlfors
operator have the same norm as the martingale transforms, that is, the Burkholder
constant p* —1. This is in fact the same for functions taking values in a Banach space with
the UMD property, see [24, Theorem 1.1]. Applying (16) and (17) leads to the estimate
|Bfllp < 2(p*—1)]f|lp- This bound was first proved in [42] and [5] and later improved to
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1.575(p* — 1) in [10] by martingale inequalities applied to martingales satisfying certain
orthogonality properties. For a detailed discussion of these results we refer the reader
o [6]. The key point in [5] and [10] is to use the martingale techniques applied to the
space-time process. That is, build the martingales on the process (X;, T —t) which arise
from the heat extension rather than the Poisson extension. Given that we now know that
the process (X¢, T — t) arises from the general Poisson extensions treated in this paper
by letting o — 0, it is natural to wonder if further progress on Iwaniec’s conjecture can
be made by better choices of the vertical diffusion ;.

It is also interesting to note that as o — 400 (or equivalently m — 0), we get the
inequality

20200 < ot (52 ) 151

which is sharp as shown in [31] and [13]. Thus, the inequalities (13) and (14) are both
sharp in the sense that there is no universal constant C' < 1 independent of ¢ and m
for which the first holds with C cot (%) on the right hand side and the second with

C(p* —1).

The previous methods can be applied to Lie groups of compact type. Let G be a Lie
group of compact type with Lie algebra g. We recall that G is called a Lie group of
compact type if its Lie algebra g admits an Ad-invariant inner product. In that case,
this equips G with a bi-invariant metric. Note that Euclidean spaces are examples of Lie
groups of compact type so that this framework is a generalization of the Euclidean one.

We consider an orthonormal basis X1, - - - , X;, of g. In this setting the Laplace-Beltrami
operator can be written as

n

L:Z%f.

i=1

Observe that L is essentially self-adjoint on the space of smooth and compactly sup-
ported functions. Moreover, X} = —X; and X; commutes with L. In the same manner as
FEuclidean spaces case we obtain the following result.

Proposition 4.8. Let G be a Lie group of compact type endowed with a bi-invariant Rie-

) 1l

H(\/—L—Fm2—m)_ (~L+m?) " 1(3636 + X% f

mannian structure. Let 1 < 4,5 < n and m > 0. Then

H( L+m?)~ I/Q}ﬁfH <Cot(

< (" = DIl

P

The proof of Theorem 1.2 easily follows from Proposition 4.8 by integrating with
respect to m.
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4.3.2. Bessel process as vertical diffusion
In this section, we work on Lie groups of compact type endowed with bi-invariant
Riemannian structures.

Lemma 4.9. Let G be a Lie group of compact type endowed with a bi-invariant Rieman-
nian structure. Let 1 < i,j < n. For the choice B = 88_;2 + b(y)a% with b(y) = 7,
—1 <~y <1, one has

721 (45)
Tif = ———"2 (L)~ '2%;
I = gmgr(eH T
and
Siif = ——(—L)"'%,%;
YT 2541 R
where v =1 — 2s.
Proof. Using the Bessel process, we recall that
21—5 /2 1/2
Ks(y, \) = —=—=y° XK (y\'*),
(4, ) Y (A7)

with v = 1 — 2s and that G(4o00,y) = 2. Therefore

+o0 +o0
1
[ 6o NNy = 5 [ Glroo. )0, (000 2)dy
0 0
12272 y 2 1/242
= —— SA K (yA d
5 T0) /y (yA /=) dy
0
_ ,M A 1/2,
985 52 ()4
Similarly
+0o0 +oo
/ G(+00,y)K(y A)Qdy:i%zs / PINK (A2 dy = A1 O
’ ’ 25 T'(s)? B 2s+1°
0 0

Using the Bessel process as a vertical diffusion, one deduces therefore:

Proposition 4.10. Let G be a Lie group of compact type endowed with a bi-invariant
Riemannian structure. Let 1 < 4,5 < n. Then for every s € (0,1)
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28552 ()% ™
_ _1/2 . < - 7 _—
H( L) %Zpr* Am2T (4) COt<2p*) 11z,

<28+1

p* 4s

HEE R SN = DSl

Proof. Since as before the martingale representations for T; f and S;; f give that ||T; f||, <
7 cot (%) [ £llp and [|Si; fll, < 5(»* = 1)||f||p, both inequalities follow immediately. O

Of course the constant 2‘145'1 is best for s — 1 which corresponds to 0-dimensional

285 421 (5)*
4n2T (4s)
for s = 1/2 which corresponds to 1-dimensional Bessel process (=Brownian motion) as

Bessel process as a vertical diffusion. On the other hand the constant is optimal

a vertical diffusion.
4.4. Generalized Riesz transform on vector bundles

We consider the framework introduced in Section 3.1 of [8]. Let M be a n-dimensional
smooth complete Riemannian manifold and let £ be a finite-dimensional vector bundle
over M. We denote by I'(M, &) the space of smooth sections of this bundle. Let V denote
a metric connection on £. We consider an operator on I'(M, £) that can be written as

L=F+Vo+)Y Vi
i=1
where
Vi=Vz, 0<i<n,

and the X;’s are smooth vector fields on M and F is a smooth symmetric and non-
positive potential (that is a smooth section of the bundle End(£)). We assume that £
is locally subelliptic, non-positive and essentially self-adjoint on the space I'g(M, E) of
smooth and compactly supported sections. We consider then a first order differential
operator d, on I'(M, £) that can be written as

n
da = E aiv%iv
=1

where aq, -+, a, are smooth sections of the bundle End(£). Assume that d, commutes
with L, i.e.

da&? = [’da777 ne F(Ma 5)7
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and that

Ildanl® < C Y IVxml®, 7€ T(M,E),

=1

for some constant C' > 0.

The following theorem can then be proved by combining the techniques of this paper
with the analysis performed in Section 3.1 of [8].

Theorem 4.11. Let @ : (0,4+00) — C be a complex Borel function. If there exists a finite
complex Borel measure o on R>q such that for every x € (0,400),

then, for every p > 1 and n € T'y(M,E)

[®(=L) danll, < 6C(p* —1)|af(Rxo)[nllp-
Theorem 1.3 follows then from the previous theorem as in Section 3.2 of [8].
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