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ColL: Coordinate-Based Internal Learning for
Tomographic Imaging

Yu Sun
Brendt Wohlberg

Abstract—We propose Coordinate-based Internal Learning
(ColL) as a new deep-learning (DL) methodology for continuous
representation of measurements. Unlike traditional DL methods
that learn a mapping from the measurements to the desired image,
ColL trains a multilayer perceptron (MLP) to encode the complete
measurement field by mapping the coordinates of the measure-
ments to their responses. ColL is a self-supervised method that
requires no training examples besides the measurements of the
test object itself. Once the MLP is trained, ColL generates new
measurements that can be used within most image reconstruction
methods. We validate ColL on sparse-view computed tomography
using several widely-used reconstruction methods, including purely
model-based methods and those based on DL. Our results demon-
strate the ability of CoIL to consistently improve the performance of
all the considered methods by providing high-fidelity measurement
fields.

Index Terms—Inverse problems, image reconstruction,
regularized inversion, plug-and-play priors, deep learning.

I. INTRODUCTION

HE PROBLEM of reconstructing an unknown image from
T a set of noisy measurements is fundamental to computa-
tional imaging. The task is traditionally formulated as an inverse
problem and solved using model-based optimization by lever-
aging a forward model characterizing the imaging system and
aregularizer imposing prior knowledge on the unknown image.
There has been significant progress in developing sophisticated
image priors, including those based on transform-domain spar-
sity, self-similarity, and dictionary learning [1]-[4].
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Fig. 1. The conceptual illustration of ColL in the context of sparse-view
CT. A multilayer perceptron (MLP) is used to represent the full measurement
field by learning to map the measurement coordinate (6,1) to its response .
Visual examples compare the recovered images with and without ColL for total
variation (TV). ColL is used to generate 360 views from the data consisting of
120 noisy views of 40 dB input SNR. The quantitative and visual results in this
paper highlight the ability of ColL to significantly improve the imaging quality
for several widely-used image reconstruction methods.

There has been a considerable recent interest in deep learn-
ing (DL) based solutions to imaging inverse problems [5]—[8].
The traditional DL approach involves training a convolutional
neural network (CNN) to directly perform a regularized in-
version of the forward model by exploiting redundancies in a
training dataset [9]-[12]. Model-based DL is an alternative to
traditional DL that explicitly uses knowledge of the forward
model by integrating a CNN into model-based optimization.
Two widely-used approaches in this context are plug-and-play
priors (PnP) [13] and regularization by denoising (RED) [14],
which have been used with pre-trained deep denoisers to achieve
excellent performance in a number of imaging tasks [15]-[25].
An alternative model-based DL approach is deep unfolding,
which interprets the iterations of a model-based optimization
algorithm as layers of a CNN and trains it end-to-end in a
supervised fashion [26]-[36].

There has been a considerable amount of work on DL for
imaging inverse problems, the unifying theme being that one
can train a CNN over a dataset to represent a prior for an
unknown image. In this paper, we take a fundamentally different
approach by proposing a methodology for leveraging redun-
dancy within the measurements of a single unknown image, thus
requiring no training examples besides the test-input itself. Our
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proposed Coordinate-based Internal Learning (ColL) seeks to
represent the full continuous measurement field by exploiting
the internal information within the subsampled and noisy mea-
surements. This single-shot scheme is beneficial for applications
where fully-sampled measurements are unavailable. The core of
ColL is a multilayer perceptron (MLP) that maps the measure-
ment coordinates to the corresponding sensor responses. The
measurement coordinates are the parameters corresponding to
the geometry of the imaging system that determine the response
measured by the sensors. For example, in computed tomography
(CT) two parameters characterizing the response are the view
angle 6 of the incoming ray beam and the spatial location [ of
the relevant detector on the sensor plane. By training an MLP
on the coordinate-response pairs extracted from the measure-
ments of a desired object, ColL is able to build a continuous
mapping from the coordinates to the sensor responses. Thus,
the learned MLP corresponds to a neural representation of the
full measurement field. By querying the MLP with the relevant
coordinates, ColL can generate the full field that can be used for
image reconstruction. Fig. 1 provides a conceptual illustration
of the ColL methodology. Note that ColL is not restricted to
a specific image reconstruction method, but is compatible with
a majority of methods including those based on model-based
optimization or DL.

The main contributions of this paper are as follows:

® We propose ColL as a novel imaging methodology that
leverages coordinate-based neural representations for esti-
mating high-fidelity measurement fields [37]-[39]. Unlike
other recent coordinate-based methods that focus on rep-
resenting the unknown object, ColL represents the mea-
surement field, which can be subsequently combined with
other information sources during reconstruction.

® We propose a new MLP architecture that uses a linear
mapping strategy for the input coordinates of the network.
We observe that this input mapping strategy is effective
for representing measurement fields and achieves better
performance compared to positional encoding [37] and
random sampling [40].

e We extensively validate our method in the context of
sparse-view CT. We show that CoIL synergistically com-
bines with a majority of widely-used methods by being able
to generate high-fidelity full-view sinograms. In all our ex-
periments the methods with ColL consistently outperform
the ones without it.

The rest of the paper is organized as follows. Section II
reviews the background on inverse problems in computa-
tional imaging and coordinate-based learning. Section III in-
troduces the technical details of the proposed framework and
discusses integration of ColL into several widely-used im-
age reconstruction methods. Section IV presents the numerical
validation of ColL on sparse-view CT. Section V concludes
the paper by discussing potential applications and limitations
of ColL.

II. BACKGROUND

In this section, we review background information related
to ColL. We introduce the imaging inverse problem and review
several popular reconstruction methods. We also discuss sensor-
domain DL models and the recent progress on internal learning.
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A. The Inverse Problem in Imaging

Consider the linear measurement model

y=Ax+e, €))

where the measurement operator A € R"*"™ characterizes the
response of the imaging system and vector e € R™ represents
the noise, which is often assumed to be additive white Gaussian
(AWGN). The associated imaging inverse problem involves the
reconstruction of the image € R" from the measurements y €
R™. Due to ill-posedness, practical inverse problems are often
formulated as regularized optimization

with f(@) = g(2) + h(z), @)

T = argmin f(x),
xzcR”
where g is the data-fidelity term that quantifies the consistency
of « with y, and h is the regularizer that imposes some prior
knowledge on x. For instance, two widely used functions in the
context of imaging are the /5 norm and total variation (TV)

1
g(w)=§|lAm—y|I§ and h(z) = 7[|Dzll1, ()

where 7 > 0 controls the regularization strength and D is the
discrete gradient operator [1]. The nonsmoothness of the regu-
larizer is a common occurrence in imaging, which precludes the
use of the standard gradient descent algorithms.

The family of proximal methods are effective solvers for
nonsmooth optimization problems of form (2). Two common
algorithms are fast iterative shrinkage/thresholding algorithm
(FISTA) [41] and alternating direction method of multipliers
(ADMM) [42]-[44]. These algorithms rely on a mathematical
concept known as the proximal operator [45], defined as

.1
proxﬂh(z) = argmm{”w fz||§ +uh(:c)} , @
zeRn 2
to handle nonsmooth terms without differentiation. The param-
eter i > 0 in (4) balances the importance of the term /. Note
that the proximal operator can be interpreted as a maximum a
posterior (MAP) denoiser for AWGN with variance p.

B. Traditional Deep Learning Methods

DL has become very popular for imaging inverse prob-
lems [5]-[8] due to its excellent performance. Traditional DL
methods first bring the measurements {y,;}Y ; to the image
domain via backprojection and then use a deep CNN architec-
ture, such as UNet [46], to map the resulting low-quality images
{z;}}¥, to high-quality images {z;}Y ;. Here, N > 0 denotes
the total number of training examples. Typically, these CNNs
are trained by minimizing a loss function

1 N
(W) = 5 D L(Fu(@:), ), ®)
i=1

where F; denotes the network parametrized by v/, and function
L quantifies the discrepancy between F,(&;) and ;. Popular
choices for £ include the ¢; and /5 norms. Some other models
consider different schemes that directly map {y,} to recon-
structed images {x;}. These methods often adopt hybrid CNN
architectures that contain fully connected layers for learning

either an approximation of the inverse (AAT)~! [47] or an
inversion to some implicit image manifolds [48]. Nevertheless,
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traditional DL. methods do not explicitly impose consistency
with respect to the forward model during image reconstruction.

C. Deep Denoising Priors

The family of denoising-driven approaches represents an al-
ternative to traditional DL by combining iterative model-based
algorithms with deep denoisers as priors. These methods draw
inspiration from the equivalence between proximal operator and
image denoiser. One popular framework is PnP, which general-
izes proximal methods, such as FISTA and ADMM, by replac-
ing the proximal operator with an arbitrary AWGN denoiser
D, : R™ — R"™, with ¢ > 0 controling the denoising strength.
This simple replacement enables PnP to use advanced denoisers,
including those based on CNNs [49]-[51], for regularizing the
inverse problem. The PnP algorithms have been shown to be
effective in various imaging applications [52]-[56]. However,
D, may not correspond to any explicit & in (2), in which case
PnP loses its interpretation as optimization. Theoretical analysis
of PnP has also been proposed [20]-[24], [57]-[59].

RED [14] is a related framework that uses the operator

H(x) = 7(x — Dy(x)), 6)

within many kinds of iterative algorithms [14], [18], [25], [60].
RED with deep denoisers has been reported to be effective in im-
age super-resolution [61], phase retrieval [62], and tomographic
imaging [18]. It has been shown that when the denoiser D,, is
locally homogeneous and has a symmetric Jacobian [14], [63],
H () corresponds to the gradient of the following regualrizer

h(z) = %wT(a: — Dy (x)). %
RED has recently been theoretically analyzed for general denois-
ers that may not be associated with any explicit regularizer [18],
[25], [60], [64].

D. Other Model-Based Deep Learning

Deep unfolding is another widely used model-based DL
methodology, originally proposed in [65] for sparse coding. The
central idea of deep unfolding is that one can unfold an iterative
algorithm and train it end-to-end as a deep neural netowork [26]—
[29]. This enables integration of the physical information into
the architecture in the form of data-consistency blocks that
are combined with trainable CNN regularizers [30]-[34]. By
training the corresponding model-based network end-to-end,
one obtains a regularizer optimized for a specific problem.
Excellent performance of deep unfolding has been reported in a
number of imaging applications [31], [66], and recent work has
addressed the computational and memory complexity of training
such networks [35], [36].

Another family of DL methods has used generative adversar-
ial networks (GAN) for regularizing inverse problems [67]-[69]

zZ =argmin |AG(z) —y[l3 and Z=G(2), (8)

zeR*>
where G is a pre-trained GAN, and z € R~ is the encoding in
the latent space. The optimization in (8) implicitly imposes the
regularization by restricting the solution Z to the range of a
GAN G. By searching for the optimal encoding z, one can
obtain an estimate & = G(2) in the domain defined by GAN that
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has the smallest distance to the true x. The recovery properties
under GANs have been analyzed in the context of compressive
sensing [67]-[69]. For more information on this topic, see the
recent review [70].

It is worth pointing out that ColL is complementary to all
these prior works, since it seeks to learn the measurement field
given measurements of a single unknown image. As shown in
Section IV, ColL can be naturally combined with the majority
of reconstruction algorithms used in computational imaging.

E. Deep Learning for Measurement Synthesis

An interest in developing DL-based approaches for measure-
ment synthesis has recently emerged. An end-to-end scheme
that used in image super-resolution is commonly adopted to
first linearly interpolate the measurements to the same scale as
that of the target measurements and then use a CNN to map the
intermediate output to the final refined results [71], [72]. GANs
have been employed to synthesize missing measurements that
are corrupted by the metal artifacts [73]-[76]. The effectiveness
of these approaches has been shown in different imaging modal-
ities [77]-[79]. Nevertheless, most deep synthesis methods re-
quire a dataset of fully-sampled measurements for supervised
training. A scan-specific CNN model that avoids training on
a large dataset has been recently proposed [80], but still re-
quires fully-sampled measurements of the object as ground truth.
ColL is fundamentally different from the existing methods for
measurement synthesis since it learns a representation of the
full measurement field from the measurements of an unknown
object without any ground truth.

F. Deep Internal Learning

Deep internal learning explores the internal information of
the test signal for learning a neural network prior without
using any external data. One successful approach is to ex-
ploit the patch-wise similarity within images, leading to sig-
nificant results for spatial and temporal super-resolution [81],
[82]. Another widely adopted approach is deep image prior
(DIP), which optimizes a CNN to parameterize the reconstructed
image [83]-[85]. Coordinate-based neural representation is a
recent alternative that encodes a spatial field into the weights
of a MLP, which is trained to map coordinates (e.g., (z,y, 2))
to the pixel values (e.g., [0, 1]). It has been quite successful
in computer vision and graphics, but has not been widely ex-
plored in computational imaging. The coordinate-based MLPs
have been used to represent images [40], [86], scenes [37],
[38], and three-dimensional (3D) shapes [37], [38], [87]-[89].
Neural radiance field (NeRF) [37] is a recent model that has
significantly improved the representation power of MLPs by
first expanding the input coordinates into a Fourier spectrum
(see Section III-A for detailed discussion). Its formulation has
been adapted for improving scene resolutions [39], dealing with
multiple lightening conditions [90], removing occluders [38],
and handling small deformations [91]. Although there have been
some early attempts in representing medical images [40], the us-
age of coordinate-based representation has never been explored
for representing measurement fields in tomographic imaging,
where the measurements are not the direct samples of the signal
of interest but rather the aggregations along the sampling rays.
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Illustration of the CoIL workflow for a tomographic imaging system with free parameters v € R". First, a set of N > 0 measurements are acquired by

the system under different realization of v. Then, the coordinate-response pairs {(v;, ;) } fV: ; are used to train a coordinate-based MLP M, : v — 7 for encoding
the full measurement field. Once the training is finished, the encoded field is extracted from M with an arbitrary resolution by querying the relevant coordinates.
In the final stage, the ColL field and the actual measurements are jointly used for image reconstruction using a user-defined method.
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Visualization of the coordinate-based MLP used in the CoIL methodology. The network My = N, o () is a concatenation of a single Fourier feature

mapping (FFM) layer ~(v) and a conventional MLP NVy. As training on example pairs {(v;, ri)}é\f:l, M  is able to learn a continuous mapping from a coordinate
to its response. Hence, M becomes an implicit neural representation of the full-measurement field.

This work addresses this gap by proposing ColL as anovel image
reconstruction methodology that leverages an MLP to represent
the measurement fields.

III. COORDINATE-BASED INTERNAL LEARNING

In this section, we present the details of the ColL. methodology
that leverages the power of coordinate-based learning for ad-
dressing imaging inverse problems. Fig. 2 illustrates the general
workflow of ColL for a given imaging system. We first explain
the proposed MLP network and then discuss its integration into
several common image reconstruction methods.

A. Measurement-Field Encoding With MLP

The coordinate-based MLP is the central component of ColL.
The network can be expressed as

Mgy :v—r with veR” rekR,

where v represents the coordinate in the given imaging system,
and r is the corresponding sensor response. The network can
be conceptually separated into two parts, where the first part
is a single Fourier feature mapping (FFM) layer (v) that is

Fig. 4. Eight 512 x 512 images from the scans of two patients in the AAPM
human phantom dataset [99] were used for testing.

pre-defined before training, and the second part is a standard
MLPAN; : v(v) — rwhose parameters ¢ needs to be optimized.
A visual illustration of the complete network architecture is
provided in Fig. 3. While the numerical studies presented in
this paper focus on CT, ColL is also applicable to other imaging
modalities by simply changing the coordinate-response pairs
in the MLP representation. For example, one can potentially
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Illustration of the benefit of including the Fourier feature mapping (FEM) layer into ColL. We plot sinograms and their FBP reconstructions in the first

and second row, respectively. The proposed FFM in ColL is compared against No FFM strategy (which does not have any FFM layer), positional encoding (Pos
Enc) [37], and random Gaussian sampling (Random) [40]. The four MLPs are used to generate 360 views from the PP = 120 projections with I = 40 dB noise.
Both sinograms and images are labeled with the SNR values with respect to the ground truth shown in the right-most column. The bounding boxes highlight areas
of significant visual difference. This comparison shows the benefit of using the FFM layer with linear spacing in the Fourier space.

integrate ColL into optical diffraction tomography (ODT) [92]—
[94] by letting v denote the sensor location and the angle of the
incident light and letting r have two elements corresponding to
the real and imaginary components of the light-field.

1) Fourier Feature Mapping: Although neural networks are
known to be universal function approximators [95], it has been
found that standard MLPs perform poorly in representing high-
frequency variations [37], [96]. In our experiments, we also
observed such issues when we directly applied NV, to learning the
mapping v — 7 (see No FFM in Fig. 5). In order to overcome
the limitations of standard MLPs, we include the FFM layer
to expand the input coordinate v as a combination of different
frequency components

sin (k1mv) , cos (kymv),
V(v) = : ) ©))

sin (kpmv), cos (kpmv)

where sin and cos compute element-wise sinusoidal and cosinu-
soidal values, respectively, and {k;}7 ; determine the frequen-
cies in the mapping. The FFM layer pre-defines the frequency
components so that the network N, can actively select the
ones that are the most useful for encoding sensor responses
by learning the weights in the first layer. By manipulating the
coefficients k; and total number of components L > 0, we can
explicitly control the expanded spectrum and thus impose some
implicit regularization. The FEM layer was first introduced in
NeRF as positional encoding of spatial coordinates [37], and
a follow-up work [40] has further explored its functionality
by using a concept known as neural tangent kernels [97]. The
original formulation of «(v) in [37] sets k; as an exponential
function k; = 2°~! with L = 10. We discovered that the pres-
ence of very high-frequency components leads to the overfitting
of the MLP to the noise in the measurements. We thus adopted
a linear sampling k; = 7i/2 in the Fourier space that leads to a
higher number of frequency components in the low-frequency
regions. Our empirical results show that our strategy can effec-
tively improve M in representing high-frequency variations
and preventing overfitting to noise (see Fig. 5 for examples).

We also compare our linear-expansion strategy with the recent
random-projection mapping [40]

~v(v) = (cos(2rBw), sin(2rBv)) , (10)
where B € RV is a random matrix with each entry sampled
from i.i.d. Gaussian distribution N (0, 0?). Numerical evalua-
tions in Section I'V-B show that our formulation achieves better
performance for higher noise level and fewer projections.

2) MLP Architecture: The network implementing N is
composed of 17 fully-connected (FC) layers. The first 16 layers
have 256 hidden neurons whose outputs are activated by the
rectified linear unit (ReLLU), while the last layer has 128 hidden
neurons without any activation. We include 7 skip connections
after every even-numbered (fewer than 16) FC layer to concate-
nate the original input of V, with the intermediate outputs. The
use of the skip connections has been shown to be beneficial for
fast training [87] and better accuracy [88]. Note that although
My is a fully connected network, its input corresponds to a
single coordinate, which enables element-wise processing of all
the measurements. Additional evaluations of several other ar-
chitectures that can be used as alternatives to ColL are provided
in the supplement.

3) Additional Implementation Details: ColL trains a sepa-
rate MLP to represent the full measurement field for each test
objects. This means that the training pairs {(v;,r;)}Y, are
obtained by extracting the measurements of the test object only,
without any training dataset. The network M is trained by
using Adam [98] to minimize the standard ¢5-norm loss

1 N
(W) = 5 D [ Mo(wi) = 7ill3. (11
i=1

We implement a decreasing learning rate, which decays expo-
nentially as the training epoch increases, to smooth our optimiza-
tion. Although M is a MLP, the network has a significantly
smaller size (= 4.2 MB on disk) compared to the standard
UNet architecture (= 108 MB on disk) used in many DL-based
models.
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B. Image Reconstruction in ColL

After training, one can generate an arbitrary number of mea-
surements by querying M, using the relevant coordinates. We
will refer to the corresponding measurement field as ColL field.
The ColL field can be easily integrated into the majority of
image reconstruction methods. Here, we discuss the integration
of ColL into four widely-used methods.

1) Linear Reconstruction: Filtered backprojection (FBP) is
a classic method for bringing the measurements into the image
domain [100]. Since the ColL field is essentially a set of mea-
surements, we can directly feed the field as input to FBP for
image reconstruction. A slightly different way to apply FBP
is to form a combined input that includes both the original
measurements and those generated by ColL. The key benefit
of the latter approach is that it directly uses the real data while
also complementing it with ColL measurements.

2) Model-Based Optimization: Model-based methods re-
construct images by solving optimization problems of form (2).
The ColL field can be incorporated into the formulation by
including an additional “data-fidelity” term g in the objective

f(@) = (1 —a)g(x) + ag(x) +h(z). (12)

New data-fidelity

Here, the parameter 0 < v < 1 controls the tradeoff between the
real data and the generated field. In practice, we can fine-tune
the value of « to obtain a good balance between two terms. For
example, consider the least-squares function

() = | Az — My @)]3 (13)
where A € R"*" corresponds to the sampling geometry of the
ColL field, v represents all the query coordinates for the trained
MLP M, (). Since the network is pre-trained, one can directly
use any existing image regularizer and solve the optimization
problem with a standard iterative algorithm, such as FISTA or
ADMM.

3) End-to-End DL Models: As reviewed in Section II-B,
most end-to-end DL models are trained to directly map the
low-quality images {&; } ' ; to the high-quality images {x; } ;,
making them vulnerable to unseen outliers. For example, this
adversely influences the performance of DL, when there is a
mismatch between training and testing angles. ColL can be used
to address this issue by generating the measurement field cor-
responding to the same subsampling rate as the measurements

used for training the DL model
& = Fy(FBP(M(2))), (14)

where F,, denotes the pre-trained CNN. Alternatively, one can
include the original test image in the input by averaging the &
and FBP(M 4(v)) using a weight o

Z = Fyu((1 — @)% + aFBP(M4(D))).

Joint input

5)

This approach enables the usage of the learned measurements
by MLP with the true measurements from the imaging system.
Our results in Section IV show that this ColL-based strategy
achieves better results than training a DL model directly on the
measurements.
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4) Denoising-Driven Approches: PnP/RED algorithms can
be interpreted as extensions of model-based algorithms balanc-
ing consistency with the measurements against deep denoising
priors [22], [25]. Consider gradient-based RED (GM-RED)

" x—v[Vg(x)+7(x — Dy(x))] (16)

where v > 0 is the stepsize, and Vg is the gradient of the
data-fidelity term. Similar to the modification of model-based
optimization, one straightforward way to integrate ColL into
GM-RED is to include the gradient of g as an extra term

xt  x—(1-a)Vg(z) +aVj(z) +7(x — Dy (x))],

New data enforcement

where the new update ensures the consistency with the real
measurements as well as the field generated by ColL, with «
controlling the relative weighting. This idea is also applicable
to PnP, for example, by integrating ColL. within PnP-FISTA

&+ Dy(s —Al(1-a)Vg(s) + aVi(s))  (17a)
stz +((¢" - 1)/¢g")(z" —x) (17b)

where the acceleration parameter ¢ > 0 is updated as

1
q+<—§(1+\/1+4q2).

In the next section, we will provide results highlighting the
performance of ColL in the context of all these algorithms.

IV. NUMERICAL VALIDATIONS

We numerically validate ColL in the context of sparse-view
CT. We first substantiate the effectiveness of the proposed form
of FFM, and then demonstrate the benefits of using ColL for
image reconstruction. We consider four reconstruction methods,
FBP, FISTA-TV, GM-RED, and FBP-UNet. FBP-UNet refers to
the end-to-end model proposed in [9] and FISTA-TV refers to
the TV regularized inversion implemented using FISTA. We
integrate ColL into these algorithm by including the parameter
o as discussed in Section III-B.

A. Sparse View CT and Experimental Setup

Sparse view X-ray CT is an imaging modality that aims
to reconstruct a tomographic image from few projections. In
medical applications, it can significantly reduce the radiation
dose and hence reduce the risk of radiation exposure. The
reconstruction task in CT can be formulated as the linear inverse
problem of form (1). In our simulations, we adopt the parallel
beam geometry with a measurement operator A corresponding
to the Radon transform.

We consider the experimental setting where the X-ray beam
is emitted from the view angle 6 € [0, 7] and its radiation at-
tenuation is recorded by the detectors at different (normalized)
sensor-plane locations [ € [0, 1]. Thus, the MLP is trained to
map the location and angle (I, #) to the corresponding response
r.Fig. 4 visualizes eight 512 x 512 testimages used in all exper-
iments. These images are selected from the scans of two patients
in the APPM human phantom dataset! [99], while the scans of

The 2016 NIH-AAPM-Mayo Clinic Low Dose CT Grand Challenge.
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TABLE I
THE AVERAGE SNR OF THE SINOGRAMS GENERATED BY NO FFM, Pos ENc,
GAUSSIAN AND COIL IN THE SCENARIOS CORRESPONDING TO
P x I =1{60,90,120} x {30,40,50}

# Views Noise Level MLP Architectures

(P) ) No FFM  Pos Enc  Gaussian ~ ColL
30 33.95 15.25 35.52 37.34
60 40 42.62 21.79  43.88  43.68
50 46.33 23.92 48.26 48.41
30 34.93 23.68 37.08 38.56
90 40 43.82 30.56  44.95  44.72
50 48.08 35.34 50.05 50.50
30 36.24 22.91 39.68 39.34
120 40 44.81 24.37 4565  45.29
50 49.68 26.52 51.06 51.59
60 T T T T T T
60 views 90 views 120 views
= ©
i% """""""""" = B e cocscssssososooy 50 dB |
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% I~ o oS 103 -
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Input SNR (dB)
Fig. 6. Quantitative evaluation of the ColL field for different projection num-

bers (P) and noise levels (I). The plotis divided into three regions, corresponding
to P equal to 60, 90, and 120, respectively. Within each region, the average SNR
values of the generated sinograms are plotted against different input SNR values,
which are also drawn by the dotted horizontal lines for better visualization. First,
note how ColL generally produces measurement fields of better SNR than the
noise level in the measurements. Second, the figure highlights that the quality
of the generated ColL field improves as the number of views increases or the
noise level decreases.

TABLE 11
THE AVERAGE SNR OF THE SINOGRAMS GENERATED BY LINEAR, BICUBIC,
CONVNET [72], AND COIL IN THE SCENARIOS CORRESPONDING TO
P x I =4{60,90,120} x {30,40,50}

Interpolation methods

# Views Noise Level ColL
(P) (@))] Linear  Bicubic ConvNet

30 30.37 29.51 41.37 37.34

60 40 35.21 34.82 46.49 43.68

50 36.28 36.10 50.34 48.41

30 31.18 30.16 42.42 38.56

90 40 37.95 37.36 48.44 44.72

50 40.14 39.94 52.36 50.50

30 31.23 30.42 43.53 39.34

120 40 39.36 38.80 49.62 45.29

50 43.03 42.86 54.35 51.59
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Fig.7. SNRimprovements due to CoIL for each reconstruction algorithm. The

plot is divided into three regions, corresponding to 60, 90, and 120 projections,
respectively. Within each region, the average SNR improvement is plotted
against the reconstruction method. The vertical axis is in log-scale for better
visualization. Note that ColL consistently improves the average SNR values for
all the considered algorithms in every scenario.

other patients are used for training the FBP-UNet and the deep
denoiser in GM-RED. We implemented A and its adjoint A"
by using RayTrans form from the Operator Discretization Li-
brary (ODL) [101], which allows fast computation using a GPU
backend. We synthesized the test sinograms corresponding to
P € {60,90, 120} projection views, each further contaminated
by three noise levels equivalent to the input signal-to-noise ratio
(SNR) of I € {30,40,50} dB. SNR is also used as a metric to
quantify the reconstruction quality
RN [EdP )

SNR(z, ) = 201og; (|m —alh (18)
We denote the SNR values averaged over all test images as
average SNR.

For each test image, ColL trains separate MLPs to rep-
resent its full measurement field in different scenarios P x
I =1{60,90,120} x {30,40,50}. We conducted all the experi-
ments, as well as the training of all neural networks, on amachine
equipped with an Intel Xeon Gold 6130 Processor and four
Nvidia GeForce GTX 1080 Ti GPUs. It takes about 30 minutes
to train one MLP on this machine using one GPU.

B. Effectiveness of the FFM Layer

We first evaluate the effectiveness of the proposed FFM layer
used in the coordinate-based MLP. We trained and compared
three networks where: (a) the FFM layer is not implemented (No
FFM); (b) the FFM layer implements the positional encoding
where k; = 271 (Pos Enc); (c) the FFM layer implements
random projection (Gaussian); and (d) the FFM layer imple-
ments the proposed linear expansion k; = (74)/2 (CoIL). In the
simulations, we use these networks to generate the sinograms
corresponding to 360 views. We set Pos Enc/ColL to expand the
input to L = 10 frequency components and Random to project
the input to d = 256 features.

Table I summarizes the average SNR values of the sinograms
generated by the three networks in all scenarios. Here, we
use SNR as the quality metric in the sinogram space because
it enables straightforward comparison with the original mea-
surements whose noise level is characterized by input SNR.
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Fig. 8.  Visual illustration of reconstruction with and without CoIL using the several methods. ColL generates measurement fields corresponding to 360 (for FBP,
TV, and RED) and 90 (used for FBP-UNet) views from P = 60 measurements with I = 40 dB noise. Each image is labeled with its SNR value with respect to
the ground truth displayed in the left-most column. The visual differences are highlighted in the bounding boxes using green arrows. Note how ColL enables the

recovery of certain details missing in the reconstructions without it.

24.56 dB 28.85 dB
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Fig.9. Visual illustration of reconstruction with and without ColL using the several methods. ColL generates measurement fields corresponding to 360 (for FBP,
TV, and RED) and 135 (used for FBP-UNet) views from P = 90 measurements with / = 40 dB noise. Each image is labeled with its SNR value with respect to
the ground truth displayed in the left-most column. The visual differences are highlighted in the bounding boxes using green arrows.

As shown in the table, ColL consistently achieves significantly
higher SNR values than both No FFM and Pos Enc. Our interpre-
tation is that No FFM is unable to represent the high-frequency
variations in the measurement field, while Pos Enc overfits to
noise by containing too many high-frequency components. We

observe that the sampling pattern in ColL better captures the
nature of the measurements without overfitting to the noise.
Furthermore, ColL also performs better than Random in most
scenarios. In particular, ColL leads to about 2 dB improve-
ments for fewer measurements at higher noise levels (I = 30

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on June 29,2022 at 18:00:49 UTC from IEEE Xplore. Restrictions apply.



1408

FISTA-TV

-,

i

11.49 dB

Sampling Geometry
P=120 & =40 dB

Fig. 10.

IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 7, 2021
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Visual illustration of reconstruction with and without ColL using the several methods. ColL generates measurement fields corresponding to 360 (for

FBP, TV, and RED) and 180 (used for FBP-UNet) views from P = 120 measurements with I = 40 dB noise. Each image is labeled with its SNR value with
respect to the ground truth displayed in the left-most column. The visual differences are highlighted in the bounding boxes using green arrows. Visual examples

reconstructed with and without CoIL using the considered methods.

and P = 60). To better illustrate the difference, a set of visual
examples are presented in Fig. 5, which plots the sinograms and
their FBP reconstructions obtained by each network for P = 120
and I = 40 dB. Specifically, No FFM is able to represent the
general structure of the sinogram but fails in generating the
details; Pos Enc produces strong artifacts in its sinogram due to
its FFM layer. Both Random and CoIL succeed in both represent-
ing the high-frequency details and avoiding strong artifacts in
the generated measurements. However, ColL still quantitatively
outperforms Random in terms of SNR in most scenarios. In
particular, the SNR margin of ColL is greater than 1.5 dB when
the number of views is relatively limited (P = {60, 90}) and the
noise level is high (I = 30). The improvement in the sinogram
quality is also reflected in the SNR values obtained after FBP
reconstruction. Note how ColL significantly differs from other
approaches in the regions highlighted by the bounding boxes.

We have also investigated the evolution of the sinogram
quality for different number of views and noise levels. Fig. 6
plots the SNR of the sinograms obtained by ColL against the
input SNR (I € {30,40,50}) for different number of views
(P € {60,90,120}). The three dotted horizontal lines in the
figure highlight each I value. We first note that ColL generates
sinograms that generally have higher SNR than the noise level
in the measurements. In particular, when I = 30 dB, the average
SNR values are more than 7 dB higher for every P. This high-
lights the ability of ColL to generate high-quality sinograms.
The figure also demonstrates that the SNR values improve as
the number of views increases or noise level decreases. This
highlights that the quality of the ColL fields can be improved
by having more measurements or acquiring those that are less
noisy.

C. Evaluation of Sinogram Interpolation

In this section, we evaluate the interpolation performance
of ColL relative to three interpolation methods: (1) Linear, (2)
Bicubic, and (3) interpolation using a pre-trained CNN (Con-
vNet). ConvNet is implemented by following the work [72],
where separate CNNs are trained to map the sinograms of P =
{60, 90, 120} views to that of 360 views. Note that the training
of ConvNet requires a dataset of ground-truth sinograms, while
ColL is trained exclusively on a single under-sampled sinogram
of the desired object itself.

Table IT summarizes the average SNR values of the sinograms
generated by each aforementioned algorithm with respect to
the ground truth for all projection views (P) and input SNR
values (I). The best SNR values and the results of ColL are
respectively indicated by bold and underlined fonts. Note how
ColL significantly outperforms the two conventional interpo-
lation methods, Linear and Bicubic, in all scenarios, showing
the benefit of using ColL for capturing complex patterns in the
measurements. Additionally, ColL achieves reasonable results
compared to ConvNet, even though, unlike ConvNet, ColL is not
a traditional supervised learning method. The performance gap
between ColL and ConvNet is the smallest when the input SNR
is high, demonstrating that the benefit of ConvNet is primarily
due to its ability to separate noise from the data, achieved via
traditional supervised training.

D. Evaluation of Reconstruction Performance

We next highlight the benefit of ColL for image reconstruc-
tion. We trained all our MLPs by using the FFM layer based on
our linear expansion. We implemented FBP by using fbp-op
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TABLE III
THE AVERAGE SNR VALUES OBTAINED WITH AND WITHOUT COIL BY USING FBP, FISTA-TV, GM-RED, AND FBP-UNET IN THE SCENARIOS CORRESPONDING
TO P x I ={60,90,120} x {30,40,50}

# Views Noise Level without ColL with ColL
(P) 9] FBP FISTA-TV ~ GM-RED  FBP-UNet FBP FISTA-TV ~ GM-RED  FBP-UNet
30 0.15 22.66 22.77 23.44 19.45 22.81 23.01 24.17
60 40 9.09 26.08 27.12 23.48 26.95 27.42 27.93

from the ODL package under the default parameter setting. We
used DnCNN [49] to build the deep denoiser within GM-RED.
In every experiment, we selected the network achieving the
highest SNR value from the ones corresponding to five noise
levels o € {5, 10, 15,20,25}. For FBP, FISTA-TV, and GM-
RED, ColL generates the measurement field with 360 projection
views from the test measurements. FBP-UNet corresponds to
our own implementation of the architecture used in [9]. The
network was trained in the usual supervised fashion by directly
predicting the ground truth from the FBP reconstruction using
the /5-loss [11]. For FBP-UNet using ColL, we trained separate
CNN models on the datasets consisting of the measurements
having 1.5 x P = {90,135,180} projection views and used
ColL to generate additional measurements to achieve that num-
ber. As a baseline, we trained a separate FBP-UNet that directly
predicts the ground truth from the test measurements. Note that
the baseline networks correspond to the optimal performance
that FBP-UNet can achieve for the test measurements without
integrating ColL. In order to stabilize FBP-UNet, we trained
these networks using the data with random fluctuations in both
projection views (+15) and noise amount (£5 dB).

Fig. 7 quantitatively evaluates the improvements in imaging
quality due to ColL for all the considered reconstruction algo-
rithms. For each algorithm, we plot the difference between the
SNR obtained with and without CoIL. One can clearly observe
that ColL leads to significant quality improvements for all the
algorithms. Remarkably, for the higher noise level (/ = 30 dB),
the average improvement by ColL can sometimes be as high as
20 dB for FBP. In general, ColL leads to SNR improvements for
all algorithms, including for model-based and DL-based meth-
ods. In particular, for P = 60 and I = 50 dB, FBP-UNet without
ColL achieves 29.52 dB, while FBP-UNet with ColL achieves
30.54 dB, whichis nearly 1 dB improvement. The exact numbers
obtained by each algorithm are summarized in Table III. These
results highlight that ColL is able to accurately represent the
measurement field and generate high-fidelity measurements that
can be used to improve image reconstruction. It can be observed
that the improvements due to ColL are less dramatic for reg-
ularized inversion methods, which we attribute to the strong
influence of the regularizer on the final reconstruction quality,
even when combined with ColL.

Fig. 8 presents visual comparisons of images reconstructed
with and without ColL for P = 60 and I = 40. Each image is
labeled with its SNR with respect to the ground truth and the
visual differences are highlighted by arrows in the bounding
boxes. This comparison highlights visual improvements due to
ColL. For example, consider the visual differences for FBP-
Unet, where one can clearly see additional visual details after
integration of the ColL field. The better reconstruction quality
with ColL is also reflected in the higher SNR values. Additional
visual comparisons in Figs. 9 and 10 also highlight the benefit
of image reconstruction with ColL.

V. CONCLUSION

The ColL methodology developed in this paper is a new
computational-imaging approach that leverages coordinate-
based neural representations. ColL seeks to represent the full
measurement field as a single MLP network trained to map
the measurement coordinates to their sensor responses. This
makes ColL a self-supervised model that can be trained without
any external dataset. Extensive empirical results presented here
demonstrate the improvements due to ColL in the context of
sparse-view CT, highlighting its great potential to work syner-
gistically with existing image reconstruction methods.

The applications of ColL in this paper are focused on sparse-
view CT. One can anticipate the use of ColL in other imaging
modalities where the measurements, viewed as a function of
sensing coordinates, exhibit learnable patterns, structures, or
features. For example, we envision applications of ColL in seis-
mic imaging and diffraction tomography, where the measure-
ments exhibit structural patterns relative to transmitter/receiver
locations. On the other hand, it is unclear if the current version of
ColL would be applicable to applications where measurements
are less structured or randomized relative to sensor locations,
which is a common situation in traditional compressive sensing
based on random measurement matrices.

Itis worth mentioning potential limitations of ColL. One limi-
tation is the computational overhead for training the MLP, which
when integrated to an overall imaging pipeline can significantly
reduce the speed of image formation. A partial solution to this
issue is to parallelize the MLP training across multiple GPUs,
thus reducing the ColL training overhead. Another possible
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limitation of ColL is that, by generating additional measure-
ments, it can increase the per-iteration complexity of image
reconstruction algorithms. This suggests that one has to carefully
balance the number of synthesized measurements to achieve the
best imaging performance under the computational constraints.
One potential workaround for this problem in large-scale mea-
surement settings is to replace batch reconstruction algorithms
with their stochastic/online counterparts, as discussed in [18],

(23],

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]
(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[25], [60], [102].

REFERENCES

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based
noise removal algorithms,” Physica D, vol. 60, no. 1-4, pp. 259-268,
Nov. 1992.

M. A. T. Figueiredo and R. D. Nowak, “Wavelet-based image estimation:
An empirical Bayes approach using Jeffreys’ noninformative prior,”
IEEE Trans. Image Process., vol. 10, no. 9, pp. 1322-1331, Sep. 2001.
M. Elad and M. Aharon, “Image denoising via sparse and redundant
representations over learned dictionaries,” IEEE Trans. Image Process.,
vol. 15, no. 12, pp. 3736-3745, Dec. 2006.

A. Danielyan, V. Katkovnik, and K. Egiazarian, “BM3D frames and
variational image deblurring,” IEEE Trans. Image Process., vol. 21, no. 4,
pp. 1715-1728, Apr. 2012.

M. T. McCann, K. H. Jin, and M. Unser, “Convolutional neural networks
for inverse problems in imaging: A review,” IEEE Signal Process. Mag.,
vol. 34, no. 6, pp. 85-95, Nov. 2017.

A. Lucas, M. Iliadis, R. Molina, and A. K. Katsaggelos, “Using deep neu-
ral networks for inverse problems in imaging: Beyond analytical meth-
ods,” IEEE Signal Process. Mag., vol. 35, no. 1, pp. 20-36, Jan. 2018.
G. Ongie, A. Jalal, C. A. Metzler, R. G. Baraniuk, A. G. Dimakis, and
R. Willett, “Deep learning techniques for inverse problems in imaging,”
IEEE J. Sel. Areas Inf. Theory, vol. 1, no. 1, pp. 39-56, May 2020.

G. Wang, J. C. Ye, and B. De Man, “Deep learning for tomographic image
reconstruction,” Nature Mach. Intell., vol. 2, no. 12, pp. 737-748, 2020.
K. H.Jin, M. T. McCann, E. Froustey, and M. Unser, “Deep convolutional
neural network for inverse problems in imaging,” IEEE Trans. Image
Process., vol. 26, no. 9, pp. 4509-4522, Sep. 2017.

E. Kang, J. Min, and J. C. Ye, “A deep convolutional neural network
using directional wavelets for low-dose X-ray CT reconstruction,” Med.
Phys., vol. 44, no. 10, pp. e360—-e375, 2017.

Y. Sun, Z. Xia, and U. S. Kamilov, “Efficient and accurate inversion
of multiple scattering with deep learning,” Opt. Exp., vol. 26, no. 11,
pp. 14678-14688, May 2018.

Y. Han and J. C. Ye, “Framing U-Net via deep convolutional framelets:
Application to sparse-view CT,” [EEE Trans. Med. Imag., vol. 37, no. 6,
pp. 1418-1429, Jun. 2018.

S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg, “Plug-and-play
priors for model based reconstruction,” in Proc. IEEE Glob. Conf. Signal
Process. Inf. Process. (GlobalSIP), Austin, TX, USA 2013, pp. 945-948.
Y. Romano, M. Elad, and P. Milanfar, “The little engine that could:
Regularization by denoising (RED),” SIAM J. Imag. Sci., vol. 10, no. 4,
pp. 1804-1844,2017.

S. Ono, “Primal-dual plug-and-play image restoration,” IEEE Signal.
Process. Lett., vol. 24, no. 8, pp. 1108-1112, Aug. 2017.

U. S. Kamilov, H. Mansour, and B. Wohlberg, “A plug-and-play priors
approach for solving nonlinear imaging inverse problems,” IEEE Signal.
Process. Lett., vol. 24, no. 12, pp. 1872—1876, Dec. 2017.

S. A. Bigdeli, M. Zwicker, P. Favaro, and M. Jin, “Deep mean-shift priors
for image restoration,” in Proc. Adv. Neural Inf. Process. Syst. vol. 30,
2017, pp. 763-772.

Z.Wu, Y. Sun, A. Matlock, J. Liu, L. Tian, and U. S. Kamilov, “SIMBA:
Scalable inversion in optical tomography using deep denoising pri-
ors,” IEEE J. Sel. Top. Signal Process., vol. 14, no. 6, pp. 1163-1175,
Oct. 2020.

J. Liu, Y. Sun, C. Eldeniz, W. Gan, H. An, and U. S. Kamilov, “RARE:
Image reconstruction using deep priors learned without ground truth,”
IEEE J. Sel. Top. Signal Process., vol. 14, no. 6, pp. 1088-1099, Oct.
2020.

S. H. Chan, X. Wang, and O. A. Elgendy, “Plug-and-play ADMM
for image restoration: Fixed-point convergence and applications,” IEEE
Trans. Comput. Imag., vol. 3, no. 1, pp. 84-98, Mar. 2017.

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 7, 2021

G. T. Buzzard, S. H. Chan, S. Sreehari, and C. A. Bouman, “Plug-
and-play unplugged: Optimization free reconstruction using consen-
sus equilibrium,” SIAM J. Imag. Sci., vol. 11, no. 3, pp. 2001-2020,
Sep. 2018.

E.K.Ryu,J. Liu, S. Wang, X. Chen, Z. Wang, and W. Yin, “Plug-and-play
methods provably converge with properly trained denoisers,” Proc. 36th
Int. Conf. Mach. Lear. (ICML), vol. 97, pp. 5546-5557, 2019.

Y. Sun, B. Wohlberg, and U. S. Kamilov, “An online plug-and-play
algorithm for regularized image reconstruction,” IEEE Trans. Comput.
Imag., vol. 5, no. 3, pp. 395-408, Sep. 2019.

X. Xu, Y. Sun, J. Liu, B. Wohlberg, and U. S. Kamilov, “Provable con-
vergence of plug-and-play priors with MMSE denoisers,” IEEE Signal
Process. Lett., vol. 27, pp. 12801284, Jul. 2020.

Y. Sun, J. Liu, and U. S. Kamilov, “Block coordinate regularization by
denoising,” in Proc. Adv. Neural Inf. Process. Syst., 2019, pp. 380-390.
J.Zhang and B. Ghanem, “ISTA-Net: Interpretable optimization-inspired
deep network for image compressive sensing,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), 2018, pp. 1828-1837.

Y. Yang, J. Sun, H. Li, and Z. Xu, “Deep ADMM-Net for compressive
sensing MRI,” in Proc. Adv. Neural Inf. Process. Syst., 2016, pp. 10-18.
A.Hauptmann et al., “Model-based learning for accelerated, limited-view
3-D photoacoustic tomography,” IEEE Trans. Med. Imag., vol. 37, no. 6,
pp. 1382-1393, Jun. 2018.

1. Adler and O. Oktem, “Learned primal-dual reconstruction,” /IEEE
Trans. Med. Imag., vol. 37, no. 6, pp. 1322-1332, Jun. 2018.

H. K. Aggarwal, M. P. Mani, and M. Jacob, “MoDL: Model-based deep
learning architecture for inverse problems,” IEEE Trans. Med. Imag.,
vol. 38, no. 2, pp. 394-405, Feb. 2019.

S. A. Hosseini, B. Yaman, S. Moeller, M. Hong, and M. Akcakaya,
“Dense recurrent neural networks for accelerated MRI: History-
cognizant unrolling of optimization algorithms,” I[EEE J. Sel. Top. Signal
Process., vol. 14, no. 6, pp. 1280-1291, Oct. 2020.

1. Y. Chun, Z. Huang, H. Lim, and J. Fessler, “Momentum-Net: Fast and
convergent iterative neural network for inverse problems,” IEEE Trans.
Patt. Anal. Machine Intell., pp. 1-1, 2020.

B. Yaman, S. A. H. Hosseini, S. Moeller, J. Ellermann, K. Ugurbil, and
M. Akgakaya, “Self-supervised learning of physics-guided reconstruc-
tion neural networks without fully sampled reference data,” Magn. Reson.
Med., vol. 84, no. 6, pp. 3172-3191, Jul. 2020.

H. K. Aggarwal and M. Jacob, “J-MoDL: Joint model-based deep learn-
ing for optimized sampling and reconstruction,” IEEE J. Sel. Top. Signal
Process., vol. 14, no. 6, pp. 1151-1162, Oct. 2020.

M. Kellman et al., “Memory-efficient learning for large-scale computa-
tional imaging,” IEEE Trans. Comput. Imag., vol. 6, pp. 1403—1414, Sep.
2020.

J. Liu, Y. Sun, W. Gan, X. Xu, B. Wohlberg, and U. S. Kamilov, “SGD-
Net: Efficient model-based deep learning with theoretical guarantees,”
IEEE Trans. Comput. Imag., vol. 7, pp. 598-610, Jun. 2021.

B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng, “NeRF: Representing scenes as neural radiance fields for view
synthesis,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2020, pp. 405-421.
R. Martin-Brualla, N. Radwan, M. SM Sajjadi, J. T. Barron,
A. Dosovitskiy, and D. Duckworth, “NeRF in the wild: Neural radi-
ance fields for unconstrained photo collections,” 2020, pp. 7210-7219,
arXiv:2008.02268.

K. Zhang, G. Riegler, N. Snavely, and V. Koltun, “NeRF : Analyzing and
improving neural radiance fields,” 2020, arXiv:2010.07492.

M. Tancik et al., “Fourier features let networks learn high frequency
functions in low dimensional domains,” in Proc. Adv. Neural Inf. Process.
Syst., 2020, pp. 7537-7547.

A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding al-
gorithm for linear inverse problems,” SIAM J. Imag. Sci., vol. 2, no. 1,
pp. 183-202, 2009.

R. Glowinski and A. Marroco, “Sur I’approximation, par éléments fi-
nis d’ordre un, et la résolution, par pénalisation-dualit€ d’une classe
de problemes de dirichlet non linéaires,” ESAIM: Math. Model. Nu-
mer. Anal. - Modélisation Mathématique et Analyse Numérique, vol. 9,
no. R2, pp. 41-76, 1975.

D. Gabay and B. Mercier, “A dual algorithm for the solution of nonlinear
variational problems via finite element approximation,” Comput. Math.
Appl., vol. 2, no. 1, pp. 1740, 1976.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1-122,
Jul. 2011.

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on June 29,2022 at 18:00:49 UTC from IEEE Xplore. Restrictions apply.



SUN et al.: COIL: COORDINATE-BASED INTERNAL LEARNING FOR TOMOGRAPHIC IMAGING

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

J. J. Moreau, “Proximité et dualité dans un espace Hilbertien,” Bull. Soc.
Math. France, vol. 93, pp. 273-299, 1965.

0. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks
for biomedical image segmentation,” in Proc. Med. Image Comput.
Comput.- Assist. Interv. (MICCAI), 2015, pp. 234-241.

T. Wiirfl et al., “Deep learning computed tomography: Learning
projection-domain weights from image domain in limited angle prob-
lems,” IEEE Trans. Med. Imag., vol. 37, no. 6, pp. 1454-1463, Jun.
2018.

B. Zhu, J. Z. Liu, S. F. Cauley, B. R. Rosen, and M. S. Rosen, “Image
reconstruction by domain-transform manifold learning,” Nature, vol. 555,
no. 7697, pp. 487-492, 2018.

K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a
Gaussian denoiser: Residual learning of deep CNN for image de-
noising,” IEEE Trans. Image Process., vol. 26, no. 7, pp. 3142-3155,
Jul. 2017.

K. Zhang, W. Zuo, and L. Zhang, “FFDNet: Toward a fast and flexible
solution for CNN-based image denoising,” IEEE Trans. Image Process.,
vol. 27, no. 9, pp. 4608-4622, Sep. 2018.

G. Song, Y. Sun, J. Liu, Z. Wang, and U. S. Kamilov, “A new recurrent
plug-and-play prior based on the multiple self-similarity network,” IEEE
Signal Process. Lett., vol. 27, no. 1, pp. 451-455, Feb. 2020.

S. Sreehari et al., “Plug-and-play priors for bright field electron tomogra-
phy and sparse interpolation,” IEEE Trans. Comput. Imag., vol. 2, no. 4,
pp. 408423, Dec. 2016.

K. Zhang, W. Zuo, S. Gu, and L. Zhang, “Learning deep CNN denoiser
prior for image restoration,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), 2017, pp. 3929-3938.

Y. Sun, S. Xu, Y. Li, L. Tian, B. Wohlberg, and U. S. Kamilov, “Regular-
ized fourier ptychography using an online plug-and-play algorithm,” in
Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), 2019,
pp. 7665-7669.

K. Zhang, W. Zuo, and L. Zhang, “Deep plug-and-play super-resolution
for arbitrary blur Kernels,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), 2019, pp. 1671-1681.

R. Ahmad et al., “Plug-and-play methods for magnetic resonance imag-
ing: Using denoisers for image recovery,” IEEE Signal Process. Mag.,
vol. 37, no. 1, pp. 105-116, Jan. 2020.

T. Meinhardt, M. Moeller, C. Hazirbas, and D. Cremers, “Learning
proximal operators: Using denoising networks for regularizing inverse
imaging problems,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), 2017,
pp. 1799-1808.

T. Tirer and R. Giryes, “Image restoration by iterative denoising and
backward projections,” IEEE Trans. Image Process., vol. 28, no. 3,
pp. 1220-1234, Mar. 2019.

A. M. Teodoro, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “A
convergent image fusion algorithm using scene-adapted Gaussian-
mixture-based denoising,” IEEE Trans. Image Process., vol. 28, no. 1,
pp. 451-463, Jan. 2019.

Y. Sun, J. Liu, Y. Sun, B. Wohlberg, and U. Kamilov, “Async-RED:
A provably convergent asynchronous block parallel stochastic method
using deep denoising priors,” in Proc. Int. Conf. Learn. Representations
(ICLR), 2021.

G. Mataev, P. Milanfar, and M. Elad, “DeepRED: Deep image prior
powered by RED,” in Proc. IEEE Int. Conf. Comput. Vis. Workshops
(ICCVW), 2019.

C. Metzler, P. Schniter, A. Veeraraghavan, and R. Baraniuk, “prDeep:
Robust phase retrieval with a flexible deep network,” in Proc. 35th Int.
Conf. Mach. Learn. (ICML), 2018, pp. 3501-3510.

E. T. Reehorst and P. Schniter, “Regularization by denoising: Clarifica-
tions and new interpretations,” IEEE Trans. Comput. Imag., vol. 5, no. 1,
pp. 52-67, Mar. 2019.

R. Cohen, M. Elad, and P. Milanfar, “Regularization by denoising
via fixed-point projection (RED-PRO),” SIAM J. Imag. Sci., vol. 14,
no. 3, pp. 1374-1406, 2021.

K. Gregor and Y. LeCun, “Learning fast approximation of sparse coding,”
in Proc. 27th Int. Conf. Mach. Learn. (ICML), 2010, pp. 399—406.

S. Biswas, H. K. Aggarwal, and M. Jacob, “Dynamic MRI using model-
based deep learning and SToRM priors: MoDL-SToRM,” Magn. Reson.
Med., vol. 82, no. 1, pp. 485-494, Jul. 2019.

A. Bora, A. Jalal, E. Price, and A. G. Dimakis, “Compressed sensing
using generative models,” Proc. 34th Int. Conf. Mach. Learn. (ICML),
vol. 70, pp. 537-546, 2017.

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

1411

V. Shah and C. Hegde, “Solving linear inverse problems using gan priors:
An algorithm with provable guarantees,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process. (ICASSP), 2018, pp. 4609-4613.

A.Jalal, L. Liu, A. G. Dimakis, and C. Caramanis, “Robust compressed
sensing using generative models,” in Proc. Adv. Neural Inf. Process.
Syst., 2020, pp. 713-727.

N. Shlezinger, J. Whang, Y. C. Eldar, and A. G. Dimakis, “Model-Based
Deep Learning,” 2020, arXiv:2012.08405.

H.Lee, J. Lee, and S. Cho, “View-interpolation of sparsely sampled Sino-
gram using convolutional neural network,” in Medical Imaging 2017:
Image Processing, M. A. Styner and E. D. Angelini, Eds., vol. 10133,
Bellingham, WA, USA: SPIE, 2017, pp. 617-624.

H. Lee, J. Lee, H. Kim, B. Cho, and S. Cho, “Deep-neural-network-
based Sinogram synthesis for sparse-view CT image reconstruction,”
IEEE Trans. Radiat. Plasma Med. Sci., vol. 3, no. 2, pp. 109-119,
Mar. 2019.

R. Anirudh, H. Kim, J. J. Thiagarajan, K. Aditya Mohan, K. Champley,
and T. Bremer, “Lose the views: Limited angle CT reconstruction via
implicit Sinogram completion,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), 2018, pp. 6343-6352.

M. U. Ghani and W. C. Karl, “Fast enhanced CT metal artifact reduction
using data domain deep learning,” IEEE Trans. Comput. Imag., vol. 6,
pp. 181-193, Aug. 2020.

M. U. Ghani and W. C. Karl, “Data and image prior integration for im-
age reconstruction using consensus equilibrium,” IEEE Trans. Comput.
Imag., vol. 7, pp. 297-308, 2021.

M. U. Ghani, “Data and image domain deep learning for computational
imaging,” Ph.D. dissertation, Boston Univ., Boston, MA, USA, 2021.
B. E. H. Claus, Y. Jin, L. A. Gjesteby, G. Wang, and B. De Man,
“Metal-artifact reduction using deep-learning based Sinogram comple-
tion: Initial results,” in Proc. 14th Int. Meeting Fully Three-Dimensional
Image Reconstruction Radiol. Nucl. Med., 2017, pp. 631-634.

Q. De Man et al., “A two-dimensional feasibility study of deep learning-
based feature detection and characterization directly from CT sinograms,”
Med. Phys., vol. 46, no. 12, pp. 790-800, 2019.

Y. Han, L. Sunwoo, and J. C. Ye, “k-space deep learning for accelerated
MRL,” IEEE Trans. Med. Imag., vol. 39, no. 2, pp. 377-386, Feb. 2020.
M. Akgakaya, S. Moeller, S. Weingirtner, and K. Ugurbil, “Scan-specific
robust artificial-neural-networks for K-space interpolation (RAKI) recon-
struction: Database-free deep learning for fast imaging,” Magn. Reson.
Med., vol. 81, no. 1, pp. 439-453, 2019.

A. Shocher, N. Cohen, and M. Irani, “‘Zero-shot’ super-resolution us-
ing deep internal learning,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), 2018, pp. 3118-3126.

L.P.Zuckerman, E. Naor, G. Pisha, S. Bagon, and M. Irani, “Across scales
and across dimensions: Temporal super-resolution using deep internal
learning,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2020, pp. 52-68.
D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep image prior,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Salt Lake City, UT,
USA, 2018, pp. 9446-9454.

J. Liu, Y. Sun, X. Xu, and U. S. Kamilov, “Image restoration using total
variation regularized deep image prior,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process. (ICASSP), 2019, pp. 7715-7719.

Y. Gandelsman, A. Shocher, and M. Irani, “ ‘Double-DIP’: Unsupervised
image decomposition via coupled deep-image-priors,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), 2019, pp. 11026-11035.
V. Sitzmann, J. N. P. Martel, A. W. Bergman, D. B. Lindell, and
G. Wetzstein, “Implicit neural representations with periodic activa-
tion functions,” Proc. Adv. Neural Inf. Process. Syst., vol. 34, 2020,
pp. 7462-7473.

Z. Chen and H. Zhang, “Learning implicit fields for generative shape
modeling,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
2019, pp. 5939-5948.

J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove,
“DeepSDF: Learning continuous signed distance functions for shape
representation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), 2019, pp. 165-174.

V. Sitzmann, M. Zollhofer, and G. Wetzstein, “Scene representation
networks: Continuous 3D-structure-aware neural scene representations,”
Proc. Adv. Neural Inf. Process. Syst., vol. 33, pp. 1121-1132, 2019.

P. P. Srinivasan, B. Deng, X. Zhang, M. Tancik, B. Mildenhall, and
J. T. Barron, “NeRV: Neural reflectance and visibility fields for relighting
and view synthesis,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), 2021, pp. 7495-7504.

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on June 29,2022 at 18:00:49 UTC from IEEE Xplore. Restrictions apply.



1412

[911

[92]

[93]

[94]

[95]
[96]

[971

[98]
[99]
[100]

[101]

[102]

K. Park et al., “Nerfies: Deformable neural radiance fields,” in Proc. IEEE
Int. Conf. Comp. Vis. (ICCV), 2021.

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and
M. S. Feld, “Optical diffraction tomography for high resolution live cell
imaging,” Opt. Exp., vol. 17, no. 1, pp. 266277, Dec. 2009.

U. S. Kamilov et al., “Learning approach to optical tomography,” Optica,
vol. 2, no. 6, pp. 517-522, Jun. 2015.

T.-A. Pham er al., “Versatile reconstruction framework for diffraction
tomography with intensity measurements and multiple scattering,” Opt
Exp., vol. 26, no. 3, pp. 2749-2763, Feb. 2018.

K. Hornik et al., “Multilayer feedforward networks are universal approx-
imators,” Neural Netw., vol. 2, no. 5, pp. 359-366, 1989.

N. Rahaman et al., “On the spectral bias of neural networks,” in Proc.
Int. Conf. Mach. Learn., 2019, pp. 5301-5310.

A. Jacot, F. Gabriel, and C. Hongler, “Neural tangent Kernel: Conver-
gence and generalization in neural networks,” Proc. Adv. Neural Inf.
Process. Syst., vol. 31, pp. 8571-8580, 2018.

D. Kingma and J. Ba, “ADAM: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Representations (ICLR), 2015.

C. McCollough, “TU-FG-207A-04: Overview of the low dose CT grand
challenge,” Med. Phys., vol. 43, no. 6, pp. 3759-3760, 2016.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic
Imaging. Piscataway, NJ, USA: IEEE, 1988.

J. Adler and O. Oktem, “Solving ill-posed inverse problems using iter-
ative deep neural networks,” Inverse Problems, vol. 33, no. 12, 2017,
Art. no. 124007.

Y. Sun, Z. Wu, X. Xu, B. Wohlberg, and U. S. Kamilov, “Scalable plug-
and-play ADMM with convergence guarantees,” IEEE Trans. Comput.
Imag., vol. 7, pp. 849-863, Jul. 2021.

Yu Sun (Student Member, IEEE) received the B.Eng.
degree in electronics and information from Sichuan
University, Chengdu, China, in 2015, and the M.S.
degree in data analytics and statistics in 2017 from
Washington University in St. Louis, St. Louis, MO,
USA, where he is currently working toward the Ph.D.
degree with the Computational Imaging Group. Dur-
ing his Ph.D., he worked as an Intern with Nvidia Co-
operation in 2021. His research interests include com-
putational imaging, machine learning, deep learning,
and optimization.

Jiaming Liu (Student Member, IEEE) received the
B.Sc. degree in electronic and information engineer-
ing from the University of Electronic Science and
Technology of China, Chengdu, China, in 2017, and
the M.S. degree in electrical and engineering from
Washington University in St. Louis, St. Louis, MO,
USA.

He is currently working toward the Ph.D. degree
with the Computational Imaging Group. He worked
as an Intern with Los Alamos National Laboratory
in 2021. His research interests include deep learning,

image processing, computational imaging and optimization.

IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 7, 2021

Mingyang Xie received the B.Sc. degree in computer
science from Washington University, in St. Louis,
MO, USA, in 2021. He is currently working toward
the Ph.D. degree in computer science with the Uni-
versity of Maryland, College Park, MD, USA. His
research interests include computational imaging and
deep learning.

Brendt Wohlberg (Senior Member, IEEE) received
the B.Sc. (Hons.) degree in applied mathematics, and
the M.Sc. (applied science) and Ph.D. degrees in
electrical engineering from the University of Cape
Town, Cape Town, South Africa, in 1990, 1993, and
1996, respectively. He is currently a Staff Scientist
with Theoretical Division, Los Alamos National Lab-
oratory, Los Alamos, NM, USA. His primary re-
search interests include signal and image processing
inverse problems and computational imaging. He was
a co-recipient of the 2020 SIAM Activity Group on
Imaging Science Best Paper Prize. He was an Associate Editor for the IEEE
TRANSACTIONS ON IMAGE PROCESSING from 2010 to 2014, and for the IEEE
TRANSACTIONS ON COMPUTATIONAL IMAGING from 2015 to 2017, and was the
Chair of the Computational Imaging Special Interest Group (now the Computa-
tional Imaging Technical Committee) of the IEEE SIGNAL PROCESSING SOCIETY
from 2015 to 2017. He is currently an Associate Editor for the SIAM Journal
on Imaging Sciences, and the Editor-in-Chief of the IEEE TRANSACTIONS ON
COMPUTATIONAL IMAGING.

&

Ulugbek S. Kamilov (Senior Member, IEEE) re-
ceived the B.Sc. and M.Sc. degrees in communi-
cation systems, and the Ph.D. degree in electrical
engineering from EPFL, Lausanne, Switzerland, in
2008,2011, and 2015, respectively. He is an Assistant
Professor and the Director of Computational Imaging
Group (CIG), Washington University in St. Louis,
MO, USA. From 2015 to 2017, he was a Research
Scientist with Mitsubishi Electric Research Labora-
tories (MERL), Cambridge, MA, USA. His primary
research area focuses on computational imaging with
a focus on signal and image processing, machine learning, and large-scale
optimization.

Dr. Kamilov is an Associate Editor of IEEE TRANSACTIONS ON COMPUTA-
TIONAL IMAGING and a member of Computational Imaging Technical Committee
of the IEEE Signal Processing Society. He was a recipient of the IEEE Signal
Processing Society’s 2017 Best Paper Award.

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on June 29,2022 at 18:00:49 UTC from IEEE Xplore. Restrictions apply.



