
Quantifying the Impact of Staged Rollout Policies on Software Process

and Product Metrics

Kenan Chen, University of Massachusetts Dartmouth, USA

Zakaria Faddi, University of Massachusetts Dartmouth, USA

Vidhyashree Nagaraju, PhD, University of Tulsa, USA

Lance Fiondella, PhD, University of Massachusetts Dartmouth, USA

Key Words: availability, DevSecOps, process performance, reliability, security

SUMMARY & CONCLUSIONS

Software processes define specific sequences of activities

performed to effectively produce software, whereas tools

provide concrete computational artifacts by which these

processes are carried out. Tool independent modeling of

processes and related practices enable quantitative assessment

of software and competing approaches. This paper presents a

framework to assess an approach employed in modern software

development known as staged rollout, which releases new or

updated software features to a fraction of the user base in order

to accelerate defect discovery without imposing the possibility

of failure on all users. The framework quantifies process

metrics such as delivery time and product metrics, including

reliability, availability, security, and safety, enabling tradeoff

analysis to objectively assess the quality of software produced

by vendors, establish baselines, and guide process and product

improvement. Failure data collected during software testing is

employed to emulate the approach as if the project were

ongoing. The underlying problem is to identify a policy that

decides when to perform various stages of rollout based on the

software's failure intensity. The illustrations demonstrate how

alternative policies impose tradeoffs between two or more of

the process and product metrics.

1 INTRODUCTION

Software has transformed modern society in many ways

enabling a spectrum of products and services. Software

engineering [1] is a large and vibrant field driving innovations,

and the processes and tools employed have experienced

substantial change over a period of decades. An undesirable

side effect of this evolution has been the proliferation of

buzzwords that attempt to brand new techniques but often

confuse many outside of the discipline, impeding organizations'

from producing high quality software. Terms like agile methods

[2], DevOps (Development and IT Operations) [3], DevSecOps

(Development, Security, and IT Operations) [4], site reliability

engineering (SRE) [5], and continuous integration and

continuous delivery/deployment (CI/CD) [6] are examples of

modern software practices that have emerged. The CI/CD

pipeline forms the backbone of modern day DevOps operations,

providing a framework for automation that promotes problem

identification and resolution. DevOps is an emerging set of

practices, including agile methods, which combines software

development and operations. Despite these advances, academic

research has not kept pace with the software industry. For

example, software reliability growth models [7] were

developed in the 1970's when the Waterfall Model [8] was

widely employed. Models of modern software practices are

needed to capture multiple process and product metrics such as

reliability, availability, security, and safety as well as tradeoffs

among these attributes.

The most prevalent body of research on modern software

development practices focuses on process related issues [9],

[10] and case studies [11], [12], which offer empirical evidence

of DevOps' efficacy. The promises of DevOps are often echoed

in such studies, and while there is an established body of

literature on enabling technologies such as cloud computing

infrastructure [12], [14], few efforts to formally model DevOps

specific activities [15]-[17] have been carried out.

This paper develops a framework to quantify the tradeoffs

among alternative staged rollout policies, which deploy new

software features to progressively larger fractions of the user

base. The framework quantifies process metrics such as

delivery time and product metrics, including reliability,

availability, security, and safety. Greater modeling rigor is

achieved by deconstructing the popular definition of DevOps,

which Bass et al. [3] define as, "a set of practices intended to

reduce the time between committing a change to a system and

the change being placed into normal production, while

ensuring high quality." Reducing the time between committing

a change and placing it into production is a performance

engineering problem, while quality implies reliability

engineering and related measures. A software failure dataset

consisting of multiple severities is employed to illustrate the

assessments enabled by the framework. The results indicate that

the approach promotes objective comparison of alternative

staged rollout policies, which can be used to establish baselines,

assess the maturity of an organization, and inform process

improvement efforts.

The remainder of this paper is organized as follows:

Section 2 describes the modeling framework and defines

metrics for the tradeoffs considered. Section 3 illustrates the

approach, examining tradeoffs for a range of policies. Section 4

concludes prioritizing goals for future research.

2 MODELING FRAMEWORK

This section develops a model of staged rollout to

characterize the tradeoff between (i) the time to deliver new

functionality and (ii) the downtime incurred. This model

explicitly specifies the parameters for the underlying decisions,

enabling reasoning about process improvement and formulation

of optimal staged rollout policies.

2.1 Staged rollout of software

Staged rollout of software [5] has been praised as a strategy

to field new functionality on an ongoing basis without incurring

failures that induce system outages, widespread unavailability

of services, economic losses, and user dissatisfaction. The

rationale for staged rollout is to publish an updated software

possessing new functionality for use by a subset of the user base

to avoid the major problems described above, but also to

accelerate the discovery of defects. The development team then

attempts to correct the source of the problem and begins the

process of staged rollout anew.

Figure 1 shows a simple state diagram of staged rollout,

which represents a concrete instance of the framework.

State Dev represents the development state, where software is

tested by an internal team. An elementary model of the

traditional approach to software updates simply transitions to

the Ops state, once the software is deemed satisfactory with

respect to functional requirements, reliability, and other desired

attributes, where the Ops state exposes the software to the entire

base of 𝑛𝑂𝑝𝑠 users. Staged rollout, instead, transitions from the

Dev state to state 𝑖1, which represents the first stage of staged

rollout, where the software is published for use by 𝑝𝑖1
 percent

or 𝑛𝑖1
= 𝑝𝑖1

× 𝑛𝑂𝑝𝑠 of the user base. In general, multiple stages

of staged rollout between development and full deployment are

possible. This more general case possesses 𝑚 intermediate

staged rollout states, it is reasonable to assume that each

transition from 𝑖𝑗 to 𝑖𝑗+1 increases the fraction of the user base

exposed to the software such that 𝑝𝑖𝑗
< 𝑝𝑖𝑗+1

 and 𝑛𝑖𝑗
< 𝑛𝑖𝑗+1

.

Failure in any state transitions to the Dev state, where root cause

analysis and defect removal are attempted.

The state model described in Figure 1 enables explicit

consideration of the tradeoffs between downtime and delivery

time. Downtime is determined by the state in which the failure

occurs and is proportional to the fraction of the user base 𝑛𝑖𝑗

and mean time to repair (MTTR). Thus, failure in the 𝑗𝑡ℎ state

of staged rollout (𝑖𝑗) contributes less to downtime than failure

in the state 𝑖𝑗+1. However, the defect exposure rate in the 𝑗𝑡ℎ

state of staged rollout (𝜆(𝑖𝑗)) is also less than 𝜆(𝑖𝑗+1), meaning

that the downtime experienced, and the time required to

discover and remove all defects are competing constraints.

Thus, minimizing downtime by remaining in the Dev state until

all defects have been detected and removed will likely delay

delivery time. Similarly, unrestrained transition to the Ops state

immediately after each defect is repaired is likely to exacerbate

downtime. Therefore, it may not be possible to simultaneously

minimize downtime and delivery time, posing a multi-objective

problem. Moreover, organizations implementing staged rollout,

or their customers will express different levels of tolerance for

these undesirable outcomes. Subsequently, it is unlikely that a

single optimal policy or "one size fits all" approach to staged

rollout exists. Instead, it is necessary to select transition times

𝑡𝑗,𝑗+1 that balance downtime and delivery time in a manner that

is satisfactory to the customer. Intuitively, a high failure rate in

the Dev state is likely to indicate that additional failures will

occur. Hence, staged rollout should not be performed because

it would risk greater downtime. Therefore, the problem is to

select numerical values of transition times 𝑡𝑗,𝑗+1 that achieve the

desired balance between downtime and delivery time.

2.2 Software failure data

This section describes how times series of software failure

data collected during testing can be used to drive the staged

rollout model described in Section 3 in order to explicitly

consider the impact of failures on downtime and delivery time.

Figure 2 shows the timeline of the SYS1 dataset [7], which

includes 136 unique defects discovered over 88,682 seconds or

approximately 24.63 hours of testing.

Figure 2: Timeline of failures during testing in the SYS1 dataset

Figure 2 indicates that a majority of the failures (nearly 60%)

occurred during the first 20,000 seconds and less than 10% were

discovered in the last third of testing after 60,000, suggesting

that optimal transition times 𝑡𝑗,𝑗+1 may be time-varying.

2.2.1 Delivery time

To model the impact of staged rollout on delivery time, we

assume that one unit of time in the Dev state advances the SYS1

timeline by one unit, whereas time in the staged rollout and Ops

state accelerate the rate at which time advances on the SYS1

timeline proportional to the percentage of the user base.

Therefore, staged rollout may be regarded as a modern form of

accelerated life testing (ALT) [18] for software. For example,

Figure 1: State diagram of staged rollout

if the complete user base is composed of 𝑛𝑂𝑝𝑠 = 10,000 users

and staged rollout exposes new functionality to 𝑝𝑖1
= 0.1 or

10% of the user base, then 𝑛𝑖1
= 1,000. Similarly, if 𝑛𝐷𝑒𝑣 =

50, then a simple method to compute the acceleration factor in

each state of staged rollout is the ratio between the number of

users in a state over the baseline in the Dev state such that the

acceleration factor in the staged rollout and Ops states are 𝑎𝑖1
=

𝑛𝑖1

𝑛𝐷𝑒𝑣
= 20 and 𝑎𝑂𝑝𝑠 =

𝑛𝑂𝑝𝑠

𝑛𝐷𝑒𝑣
= 200 respectively. This

simplifying assumption can be improved, since testers are

familiar with the functionality and intentionally stress the

program to expose defects. Modeling these ratios is a research

question that requires staged rollout data. Nevertheless, the

simplifying assumptions made here enable a quantitative

framework upon which to improve.

The preliminary assumption of linear acceleration factors

described above provides a concrete starting point to measure

the cumulative time required to reach the 136th failure.

Specifically, delivery time may be defined as the time to reach

this final failure plus the time to transition from the Dev to Ops

state or 𝑡𝐷𝑒𝑣,𝑖1
+ 𝑡𝑖1,𝑂𝑝𝑠 under the simplifying assumption that

the final defect is repaired immediately. Modeling advances

that explicitly consider the time between defect discovery and

resolution [19] can further enhance the realism of the staged

rollout deployment model.

2.2.2 Downtime

To model the impact of staged rollout on downtime, we

assume that failure in the Dev state does not incur downtime,

since only internal testing is performed at this stage. However,

downtime incurred in the staged rollout and Ops states are

proportional to the fraction of the user base multiplied by the

mean time to repair such that the accumulated downtime

increases by 𝑝𝑖11
× 𝑀𝑇𝑇𝑅 or 𝑝𝑂𝑝𝑠 × 𝑀𝑇𝑇𝑅. This simplifying

assumption may be conservative, since not all users exposed to

the functionality will necessarily experience the failure. Similar

to delivery time, the downtime experienced must be modeled

from staged rollout data and has important implications for

identifying an optimal deployment policy for transition times

𝑡𝑗,𝑗+1, since conservative assumptions may unnecessarily

increase delivery times. Thus, our preliminary model expresses

downtime as the weighted sum 𝑀𝑇𝑇𝑅 × ∑ 𝑝𝑠(𝑖)
𝑛
𝑖=1 , where 𝑠(𝑖)

denotes the state in which the 𝑖𝑡ℎ failure occurs.

2.2.3 Safety and Security

In some cases, failures may produce consequences of

varying severity. Safety and security related failures are two

examples. In either case, failures of higher severity correspond

to greater economic damage or other undesirable outcomes. As

an example, one class of security related failures of widespread

concern is information loss, whether intellectual property

produced by private industry or government secrets related to

national security. In either case, the consequences of

information loss will be proportional to the severity of the loss.

For example, historical documents on the principles for

classification of information [20], assume that Confidential,

Secret, and Top Secret data differ in severity by an order of

magnitude. Thus, if the loss of Confidential information is

assigned unit cost $𝑐 = 1.0, then the corresponding loss of

Secret and Top Secret information are $𝑠 = 10 and $𝑡𝑠 = 100

respectively. Assuming that failure in the Dev state does not

lead to information loss, but that all other states do, the data loss

is ∑ $𝑠𝑒𝑣(𝑖)𝑖∉ 𝐷𝑒𝑣 , where 𝑠𝑒𝑣(𝑖) is the severity of the 𝑖𝑡ℎ failure

occurring in a non Dev state.

3 ILLUSTRATIONS

This section illustrates the proposed approach to assess

alternative staged rollout policies. Section 3.1 provides a

detailed walkthrough for a single policy, clarifying the logic.

Section 3.2 subsequently illustrates tradeoffs between delivery

time and downtime in the context of the SYS1 data set [7] and

examines the impact of policies on delivery time and downtime

in isolation. Section 3.3 illustrates tradeoffs between delivery

time, downtime, and safety through a NASA data set [19].

3.1 Policy evaluation

For the sake of exposition, this section assumes that, for the

staged rollout model described in Figure 1, 𝑀𝑇𝑇𝑅 = 10 and

that 𝑡𝐷𝑒𝑣,𝑖1
= 35 and 𝑡𝑖1,𝑂𝑝𝑠 = 350, which are referred to as

Policy 1.

Figure 3 illustrates the impact of the Policy 1 on the first

250 time units of the SYS1 dataset.

Figure 3: Timeline of failures in the first 250 seconds of testing

The staged rollout process begins in state Dev at 𝑡 = 0.

Since the first failure occurs at time 𝑡1 = 3, the 𝜆𝐷𝑒𝑣 transition

is taken and the timer is reset to the 35 units of time that must

elapse before transitioning to the staged rollout state 𝑖1. The

second failure at 𝑡2 = 33 also triggers the 𝜆𝐷𝑒𝑣 transition and

resets the timer. However, after 35 additional time units without

failure, transition to the staged rollout state occurs at time 𝑡 =
68. The 20-fold acceleration factor achieved by the larger user

base means that only
𝑡3−68

𝑎𝑖1

=
146−68

20
= 3.9 units of time are

needed to reach the third failure at time 𝑡3 = 146, but also

incurs downtime 𝑝𝑖1
× 𝑀𝑇𝑇𝑅 = 0.1 × 10 = 1.0. Thus, only

68 + 3.9 = 71.9 seconds are required to uncover the first three

failures, but at the expense of some downtime, demonstrating

how the quantitative tradeoffs are captured by the model. This

process continues, transitioning to staged rollout at time 181

after no failures in the Dev state, failing at time 𝑡4 = 227 after

2.3 time units and incurring an additional 1.0 unit of downtime.

Continuing this process through all 136 failures shown in

Figure 2 plus the time to transition from Dev to 𝑖1 and 𝑖1 to Ops,

the delivery time and downtime are 6,031.59 and 599.08

respectively.

To illustrate the tradeoffs imposed by alternative policies

on the SYS1 dataset, a similar experiment was performed with

Policy 2, possessing parameters 𝑡𝐷𝑒𝑣,𝑖1
= 125 and 𝑡𝑖1,𝑂𝑝𝑠 =

800, which produced delivery time 15,808.43 and downtime

455.65. Thus, the larger and more conservative transition times

of Policy 2 reduced the downtime by nearly 24%, but more than

doubled the delivery time.

3.2 Tradeoff analysis

The previous example demonstrated how a staged rollout

policy produces a tuple composed of downtime and delivery

time and that no single policy is necessarily optimal with

respect to both of these objectives. Therefore, the example in

this section further explores the tradeoffs between downtime

and delivery time by emulating various policies on the SYS1

data set. For the sake of illustration, two experiments were

conducted. The first applied 100 pairwise combinations of

policies with 𝑡𝐷𝑒𝑣,𝑖𝑖
= {10, 20 … , 100} and 𝑡𝑖1,𝑂𝑝𝑠 =

{10, 20, … , 100} and the downtime and delivery calculated.

The second applied 100 pairwise combinations of policies with

𝑡𝐷𝑒𝑣,𝑖𝑖
= {100, 200 … , 1,000} and 𝑡𝑖1,𝑂𝑝𝑠 =

{100, 200, … , 1,000}.

Figure 4 shows the results of the two experiments

described above. The line indicates Pareto optimal policies.

Figure 4: Tradeoff between downtime and delivery time for

alternative staged rollout policies

The denser set of points in the upper left of Figure 4

correspond to the first experiment, while the remaining points

were produced by the second experiment. Figure 4 indicates

that policies with lower downtime possess higher delivery times

and that lowering delivery time tended to increase downtime.

Each point corresponds to a policy and the shading indicates the

value of 𝑡𝐷𝑒𝑣,𝑖1
. Values of 𝑡𝐷𝑒𝑣,𝑖1

= 10 resulted in greater

downtime, which agrees with intuition because more failures in

the staged rollout and Ops state occurred. Shading the policies

according to the value of 𝑡𝑖1,𝑂𝑝𝑠 produced similar results.

Figure 4 also shows that the range of delivery times

(1793.71 , 58148.42) is wider than the range of downtimes

(140.35, 746.05). However, these ranges are a function of the

numerical parameters chosen for the sake of illustration and

assumptions. For example, delivery time is determined by the

duration of the failure data and acceleration factors in staged

rollout states, whereas downtime is influenced by MTTR. Since

the time of the last failure in the SYS1 dataset is 𝑡136 = 88,682,

the minimum delivery time compressed the testing schedule by

a factor of 49.44 (88,682/1,793.71) to only 2.02% (1,793.71/
88,682) of the original time, while the maximum delivery time

only compressed the testing schedule by a factor of 1.53 to

65.6%. However, decreasing delivery time from the largest to

smallest values also increased downtime by a factor of 5.32

(746.05/140.35).

Ultimately, the selection of a policy depends on the

subjective preference of the organization or their customer.

Downtime may incur loss of sales and customers, fines by

regulators, or other negative consequences, while late delivery

also possesses negative consequences such as reduced market

capture.

Figures 5 and 6 provide alternative perspectives on the

impact of the state transition times of staged rollout policies on

delivery and downtime respectively.

Figure 5: Impact of staged rollout policy on delivery time

Figure 6: Impact of staged rollout policy on downtime

Figure 5 indicates that increasing 𝑡𝐷𝑒𝑣,𝑖1
 and 𝑡𝑖1,𝑂𝑝𝑠 both

increase delivery time, but that increasing 𝑡𝐷𝑒𝑣,𝑖1
 increases

delivery time more quickly. This observation also agrees with

intuition because progress on the testing timeline proceeds most

slowly in the 𝐷𝑒𝑣 state. Similarly, Figure 6 indicates that

increasing 𝑡𝐷𝑒𝑣,𝑖1
 and 𝑡𝑖1,𝑂𝑝𝑠 both decrease downtime, but that

increasing 𝑡𝐷𝑒𝑣,𝑖1
 decreases downtime more quickly because

failures in the 𝐷𝑒𝑣 state do not to incur downtime.

3.3 Safety and Security

Figure 7 shows tradeoffs between severity, downtime, and

delivery time for alternative staged rollout policies in the

context of a NASA data set [19], which is similar to the timeline

given in Figure 2 but also assigned one of three levels of

severity to each defect discovered.

Figure 7: Tradeoff between severity, downtime, and delivery time

for alternative staged rollout policies

Here, severity indicates the accumulated consequences of

failures in the staged rollout or 𝑂𝑝𝑠 state of low, medium, and

high severity incurring costs of $𝑙 = 1.0, $𝑚 = 10 and $ℎ =
100 respectively. The primary observation is that lowering the

accumulated severity of unsafe failures requires increasing the

delivery time because policies that require more time between

failure before transitioning to later states of staged rollout

correspond to more conservative strategies that spend more

time in earlier states with smaller acceleration factors. Figure 7

also indicates that lowering the accumulated severity of unsafe

failures is positively correlated with decreased downtime, since

downtime is associated with the staged rollout and Ops state,

where failures also incur a penalty according to their severity.

Plots similar to Figures 5 and 6 were created to assess the

impact of transition times 𝑡𝐷𝑒𝑣,𝑖1
 and 𝑡𝑖1,𝑂𝑝𝑠 on delivery time,

downtime, and severity. However, the results of this analysis

were similar to the trends observed in Figures 5 and 6.

Moreover, the impact of transition times on severity was similar

to the trends observed in Figure 7, where increasing 𝑡𝐷𝑒𝑣,𝑖1

decreased severity more rapidly than 𝑡𝑖1,𝑂𝑝𝑠 because failures in

the Dev state did not contribute to the cumulative severity

experienced by the end of testing.

4 CONCLUSIONS AND FUTURE WORK

This paper presented a framework to assess the staged

rollout approach performed in agile methods, DevOps,

DevSecOps, site reliability engineering, and continuous

integration and continuous delivery/deployment (CI/CD). The

approach enables objective assessment of process and product

metrics for vendors to strive for improvement and customers to

measure the quality of software produced by their suppliers.

The approach was demonstrated with data traditionally

employed by software defect and vulnerability discovery,

tracking, and resolution models. The illustrations examined

how alternative policies impose tradeoffs between two or more

of the process and product metrics.

Future research will extend the models upon which policies

are based to further formalize the security dimension of the

tradespace as well as to determine if more than one intermediate

staged rollout state can improve tradeoffs between process and

product metrics. Techniques that automate the staged rollout

decision-making process such as reinforcement learning will

also be explored to solve constrained optimization problems

such as minimizing downtime while achieving a specified

delivery date or alternative combinations of primary objectives

and constraints.

ACKNOWLEDGMENTS

This material is based upon work supported by the National

Science Foundation under Grant Number (#1749635). Any

opinions, findings, and conclusions or recommendations

expressed in this material are those of the authors and do not

necessarily reflect the views of the National Science

Foundation.

REFERENCES

1. R.S. Pressman, Software Engineering: A Practitioner's

Approach. Palgrave Macmillan, 2005.
2. R. Martin, Agile Software Development: Principles,

Patterns, and Practices, Prentice Hall, 2002.
3. L. Bass, I. Weber, and L. Zhu, DevOps: A Software

Architect’s Perspective. Addison-Wesley Professional,

2015.
4. K. Carter, "Francois Raynaud on DevSecOps," IEEE

Software, vol. 34, no. 5, pp. 93-96, 2017.
5. B. Beyer, C. Jones, J. Petoff, and R. Murphy, Site

Reliability Engineering: How Google Runs Production

Systems. O’Reilly Media, Inc., 2016.
6. J. Humble and D. Farley, Continuous Delivery: Reliable

Software Releases through Build, Test, and Deployment

Automation. Pearson Education, 2010.
7. M. Lyu, Handbook of Software Reliability Engineering,

2nd ed., New York, NY: McGraw-Hill, 1996.
8. W. Royce, "Managing the development of large software

systems: Concepts and techniques," in International

Conference on Software Engineering, 1987.
9. C.-P. Bezemer, S. Eismann, V. Ferme, J. Grohmann, R.

Heinrich, P. Jamshidi, W. Shang, A. van Hoorn, M.

Villaviencio, J. Walter et al., “How is performance

addressed in devops? A survey on industrial practices,”

arXiv preprint arXiv:1808.06915, 2018.
10. R. Jabbari, N. bin Ali, K. Petersen, and B. Tanveer,

“Towards a benefits dependency network for devops based

on a systematic literature review,” Journal of Software:

Evolution and Process, vol. 30, no. 11, p. e1957, 2018.
11. L. Riungu-Kalliosaari, S. Makinen, L. Lwakatare, J.

Tiihonen, and T. Mannist, “DevOps adoption benefits and

challenges in practice: A case study,” in International

Conference on Product-Focused Software Process

Improvement. Springer, 2016, pp. 590–597.
12. M. Senapathi, J. Buchan, and H. Osman, “Devops

capabilities, practices, and challenges: Insights from a case

study,” in Proceedings of the 22nd International

Conference on Evaluation and Assessment in Software

Engineering 2018, 2018, pp. 57–67.

13. W. Pourmajidi, A. Miranskyy, J. Steinbacher, T. Erwin,

and D. Godwin, “Dogfooding: Use IBM cloud services to

monitor IBM cloud infrastructure,” arXiv preprint

arXiv:1907.06094, 2019.

14. K. Hwang, X. Bai, Y. Shi, M. Li, W. Chen, and Y. Wu,

“Cloud performance modeling with benchmark evaluation

of elastic scaling strategies,” IEEE Transactions on

Parallel and Distributed Systems, vol. 27, no. 1, pp. 130–

143, 2015.

15. F. Zhao, X. Niu, S. Huang, and L. Zhang, “Reproducing

scientific experiment with cloud devops,” arXiv preprint

arXiv:1910.13397, 2019.

16. C. Bansal, S. Renganathan, A. Asudani, O. Midy, and M.

Janakiraman, “Decaf: Diagnosing and triaging

performance issues in large-scale cloud services,” arXiv

preprint arXiv:1910.05339, 2019.

17. M. Guerriero, M. Ciavotta, G. P. Gibilisco, and D.

Ardagna, “A model driven devops framework for QoS-

aware cloud applications,” in IEEE International

Symposium on Symbolic and Numeric Algorithms for

Scientific Computing, 2015, pp. 345–351.

18. W. Nelson, Accelerated Testing: Statistical Models, Test

Plans, and Data Analysis. John Wiley & Sons, 2009, vol.

344.

19. M. Nafreen, V. Nagaraju, M. Luperon, Y. Shi, T. Wandji,

and L. Fiondella, Connecting Software Reliability Growth

Models to Software Defect Tracking, in International

Symposium on Software Reliability Engineering, Coimbra,

Portugal, pp. 138-147, Nov 2020.

20. A. Quist, “Security Classification of Information. volume

2, Principles for Classification of Information,” Retrieved

September, vol. 30, p. 2004, 1993.

BIOGRAPHIES

Kenan Chen

Department of Electrical and Computer Engineering

University of Massachusetts - Dartmouth

285 Old Westport Road

North Dartmouth, MA 02747, USA

e-mail: kchen3@umassd.edu

Kenan Chen is a Computer Engineering major at the University

of Massachusetts Dartmouth (UMassD).

Zakaria Faddi

Department of Electrical and Computer Engineering

University of Massachusetts - Dartmouth

285 Old Westport Road

North Dartmouth, MA 02747, USA

e-mail: zfaddi@umassd.edu

Zakaria Faddi is a double major in Electrical and Computer

Engineering at UMassD.

Vidhyashree Nagaraju, PhD

Tandy School of Computer Science

University of Tulsa

800 South Tucker Drive

Tulsa, OK, 74107, USA

e-mail: vidhyashree-nagaraju@utulsa.edu

Vidhyashree Nagaraju is an assistant professor in the Tandy

School of Computer Science at the University of Tulsa. She

received her PhD (2020) in Computer Engineering from

UMassD.

Lance Fiondella, PhD

Department of Electrical and Computer Engineering

University of Massachusetts - Dartmouth

285 Old Westport Road

North Dartmouth, MA 02747, USA

e-mail: lfiondella@umassd.edu

Lance Fiondella (S'07-M'12-SM'20) received the Ph.D. degree

in computer science & engineering from the University of

Connecticut, Storrs, CT, USA, in 2012.

He is an associate professor of Electrical and Computer

Engineering at the University of Massachusetts Dartmouth and

the Director of the UMassD Cybersecurity Center, a NSA/DHS

designated Center of Academic Excellence in Cyber Research

(CAE-R). His peer-reviewed conference papers have been the

recipient of 12 awards, including five as first author and seven

with his students as first author. His research has been funded

by the Department of Homeland Security, NASA, U.S.

Department of Defense, and National Science Foundation,

including a CAREER Award. He is an associate editor of the

Military Operations Research Journal and the North American

Regional Editor of the International Journal of Performability

Engineering.

Dr. Fiondella served as the vice-chair of IEEE Standard 1633:

Recommended Practice on Software Reliability from 2013-15

and a three-year term as a Member of the Administrative

Committee of the IEEE Reliability Society from 2015-2017. He

presently serves as a technical committee chair of the Annual

IEEE Symposium on Technologies for Homeland Security.

mailto:kchen3@umassd.edu
mailto:zfaddi@umassd.edu
mailto:vidhyashree-nagaraju@utulsa.edu
mailto:lfiondella@umassd.edu

