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SUMMARY & CONCLUSIONS 

Software processes define specific sequences of activities 

performed to effectively produce software, whereas tools 

provide concrete computational artifacts by which these 

processes are carried out. Tool independent modeling of 

processes and related practices enable quantitative assessment 

of software and competing approaches. This paper presents a 

framework to assess an approach employed in modern software 

development known as staged rollout, which releases new or 

updated software features to a fraction of the user base in order 

to accelerate defect discovery without imposing the possibility 

of failure on all users. The framework quantifies process 

metrics such as delivery time and product metrics, including 

reliability, availability, security, and safety, enabling tradeoff 

analysis to objectively assess the quality of software produced 

by vendors, establish baselines, and guide process and product 

improvement. Failure data collected during software testing is 

employed to emulate the approach as if the project were 

ongoing. The underlying problem is to identify a policy that 

decides when to perform various stages of rollout based on the 

software's failure intensity. The illustrations demonstrate how 

alternative policies impose tradeoffs between two or more of 

the process and product metrics. 

1 INTRODUCTION 

Software has transformed modern society in many ways 

enabling a spectrum of products and services. Software 

engineering [1] is a large and vibrant field driving innovations, 

and the processes and tools employed have experienced 

substantial change over a period of decades. An undesirable 

side effect of this evolution has been the proliferation of 

buzzwords that attempt to brand new techniques but often 

confuse many outside of the discipline, impeding organizations' 

from producing high quality software. Terms like agile methods 

[2], DevOps (Development and IT Operations) [3], DevSecOps 

(Development, Security, and IT Operations) [4], site reliability 

engineering (SRE) [5], and continuous integration and 

continuous delivery/deployment (CI/CD) [6] are examples of 

modern software practices that have emerged. The CI/CD 

pipeline forms the backbone of modern day DevOps operations, 

providing a framework for automation that promotes problem 

identification and resolution. DevOps is an emerging set of 

practices, including agile methods, which combines software 

development and operations. Despite these advances, academic 

research has not kept pace with the software industry. For 

example, software reliability growth models [7] were 

developed in the 1970's when the Waterfall Model [8] was 

widely employed. Models of modern software practices are 

needed to capture multiple process and product metrics such as 

reliability, availability, security, and safety as well as tradeoffs 

among these attributes. 

The most prevalent body of research on modern software 

development practices focuses on process related issues [9], 

[10] and case studies [11], [12], which offer empirical evidence 

of DevOps' efficacy. The promises of DevOps are often echoed 

in such studies, and while there is an established body of 

literature on enabling technologies such as cloud computing 

infrastructure [12], [14], few efforts to formally model DevOps 

specific activities [15]-[17] have been carried out.  

This paper develops a framework to quantify the tradeoffs 

among alternative staged rollout policies, which deploy new 

software features to progressively larger fractions of the user 

base. The framework quantifies process metrics such as 

delivery time and product metrics, including reliability, 

availability, security, and safety. Greater modeling rigor is 

achieved by deconstructing the popular definition of DevOps, 

which Bass et al. [3] define as, "a set of practices intended to 

reduce the time between committing a change to a system and 

the change being placed into normal production, while 

ensuring high quality."  Reducing the time between committing 

a change and placing it into production is a performance 

engineering problem, while quality implies reliability 

engineering and related measures. A software failure dataset 

consisting of multiple severities is employed to illustrate the 

assessments enabled by the framework. The results indicate that 

the approach promotes objective comparison of alternative 

staged rollout policies, which can be used to establish baselines, 

assess the maturity of an organization, and inform process 

improvement efforts. 



The remainder of this paper is organized as follows: 

Section 2 describes the modeling framework and defines 

metrics for the tradeoffs considered. Section 3 illustrates the 

approach, examining tradeoffs for a range of policies. Section 4 

concludes prioritizing goals for future research. 

2 MODELING FRAMEWORK 

This section develops a model of staged rollout to 

characterize the tradeoff between (i) the time to deliver new 

functionality and (ii) the downtime incurred. This model 

explicitly specifies the parameters for the underlying decisions, 

enabling reasoning about process improvement and formulation 

of optimal staged rollout policies. 

2.1 Staged rollout of software 

Staged rollout of software [5] has been praised as a strategy 

to field new functionality on an ongoing basis without incurring 

failures that induce system outages, widespread unavailability 

of services, economic losses, and user dissatisfaction. The 

rationale for staged rollout is to publish an updated software 

possessing new functionality for use by a subset of the user base 

to avoid the major problems described above, but also to 

accelerate the discovery of defects. The development team then 

attempts to correct the source of the problem and begins the 

process of staged rollout anew. 

Figure 1 shows a simple state diagram of staged rollout, 

which represents a concrete instance of the framework. 

 
State Dev represents the development state, where software is 

tested by an internal team. An elementary model of the 

traditional approach to software updates simply transitions to 

the Ops state, once the software is deemed satisfactory with 

respect to functional requirements, reliability, and other desired 

attributes, where the Ops state exposes the software to the entire 

base of 𝑛𝑂𝑝𝑠 users. Staged rollout, instead, transitions from the 

Dev state to state 𝑖1, which represents the first stage of staged 

rollout, where the software is published for use by 𝑝𝑖1
 percent 

or 𝑛𝑖1
= 𝑝𝑖1

× 𝑛𝑂𝑝𝑠 of the user base. In general, multiple stages 

of staged rollout between development and full deployment are 

possible. This more general case possesses 𝑚 intermediate 

staged rollout states, it is reasonable to assume that each 

transition from 𝑖𝑗 to 𝑖𝑗+1 increases the fraction of the user base 

exposed to the software such that 𝑝𝑖𝑗
< 𝑝𝑖𝑗+1

 and 𝑛𝑖𝑗
< 𝑛𝑖𝑗+1

. 

Failure in any state transitions to the Dev state, where root cause 

analysis and defect removal are attempted. 

The state model described in Figure 1 enables explicit 

consideration of the tradeoffs between downtime and delivery 

time. Downtime is determined by the state in which the failure 

occurs and is proportional to the fraction of the user base 𝑛𝑖𝑗
 

and mean time to repair (MTTR). Thus, failure in the 𝑗𝑡ℎ state 

of staged rollout (𝑖𝑗) contributes less to downtime than failure 

in the state 𝑖𝑗+1. However, the defect exposure rate in the 𝑗𝑡ℎ 

state of staged rollout (𝜆(𝑖𝑗)) is also less than 𝜆(𝑖𝑗+1), meaning 

that the downtime experienced, and the time required to 

discover and remove all defects are competing constraints. 

Thus, minimizing downtime by remaining in the Dev state until 

all defects have been detected and removed will likely delay 

delivery time. Similarly, unrestrained transition to the Ops state 

immediately after each defect is repaired is likely to exacerbate 

downtime. Therefore, it may not be possible to simultaneously 

minimize downtime and delivery time, posing a multi-objective 

problem. Moreover, organizations implementing staged rollout, 

or their customers will express different levels of tolerance for 

these undesirable outcomes. Subsequently, it is unlikely that a 

single optimal policy or "one size fits all" approach to staged 

rollout exists. Instead, it is necessary to select transition times 

𝑡𝑗,𝑗+1 that balance downtime and delivery time in a manner that 

is satisfactory to the customer. Intuitively, a high failure rate in 

the Dev state is likely to indicate that additional failures will 

occur. Hence, staged rollout should not be performed because 

it would risk greater downtime. Therefore, the problem is to 

select numerical values of transition times 𝑡𝑗,𝑗+1 that achieve the 

desired balance between downtime and delivery time. 

2.2 Software failure data 

This section describes how times series of software failure 

data collected during testing can be used to drive the staged 

rollout model described in Section 3 in order to explicitly 

consider the impact of failures on downtime and delivery time.  

Figure 2 shows the timeline of the SYS1 dataset [7], which 

includes 136 unique defects discovered over 88,682 seconds or 

approximately 24.63 hours of testing. 

 
Figure 2: Timeline of failures during testing in the SYS1 dataset 

Figure 2 indicates that a majority of the failures (nearly 60%) 

occurred during the first 20,000 seconds and less than 10% were 

discovered in the last third of testing after 60,000, suggesting 

that optimal transition times 𝑡𝑗,𝑗+1 may be time-varying. 

2.2.1 Delivery time 

To model the impact of staged rollout on delivery time, we 

assume that one unit of time in the Dev state advances the SYS1 

timeline by one unit, whereas time in the staged rollout and Ops 

state accelerate the rate at which time advances on the SYS1 

timeline proportional to the percentage of the user base. 

Therefore, staged rollout may be regarded as a modern form of 

accelerated life testing (ALT) [18] for software. For example, 

Figure 1: State diagram of staged rollout 



if the complete user base is composed of 𝑛𝑂𝑝𝑠 = 10,000 users 

and staged rollout exposes new functionality to 𝑝𝑖1
= 0.1 or 

10% of the user base, then 𝑛𝑖1
= 1,000. Similarly, if 𝑛𝐷𝑒𝑣 =

50, then a simple method to compute the acceleration factor in 

each state of staged rollout is the ratio between the number of 

users in a state over the baseline in the Dev state such that the 

acceleration factor in the staged rollout and Ops states are 𝑎𝑖1
=

𝑛𝑖1

𝑛𝐷𝑒𝑣
= 20 and 𝑎𝑂𝑝𝑠 =

𝑛𝑂𝑝𝑠

𝑛𝐷𝑒𝑣
= 200 respectively. This 

simplifying assumption can be improved, since testers are 

familiar with the functionality and intentionally stress the 

program to expose defects. Modeling these ratios is a research 

question that requires staged rollout data. Nevertheless, the 

simplifying assumptions made here enable a quantitative 

framework upon which to improve. 

The preliminary assumption of linear acceleration factors 

described above provides a concrete starting point to measure 

the cumulative time required to reach the 136th failure. 

Specifically, delivery time may be defined as the time to reach 

this final failure plus the time to transition from the Dev to Ops 

state or 𝑡𝐷𝑒𝑣,𝑖1
+ 𝑡𝑖1,𝑂𝑝𝑠 under the simplifying assumption that 

the final defect is repaired immediately. Modeling advances 

that explicitly consider the time between defect discovery and 

resolution [19] can further enhance the realism of the staged 

rollout deployment model. 

2.2.2 Downtime 

To model the impact of staged rollout on downtime, we 

assume that failure in the Dev state does not incur downtime, 

since only internal testing is performed at this stage. However, 

downtime incurred in the staged rollout and Ops states are 

proportional to the fraction of the user base multiplied by the 

mean time to repair such that the accumulated downtime 

increases by 𝑝𝑖11
× 𝑀𝑇𝑇𝑅 or 𝑝𝑂𝑝𝑠 ×  𝑀𝑇𝑇𝑅. This simplifying 

assumption may be conservative, since not all users exposed to 

the functionality will necessarily experience the failure. Similar 

to delivery time, the downtime experienced must be modeled 

from staged rollout data and has important implications for 

identifying an optimal deployment policy for transition times 

𝑡𝑗,𝑗+1, since conservative assumptions may unnecessarily 

increase delivery times. Thus, our preliminary model expresses 

downtime as the weighted sum 𝑀𝑇𝑇𝑅 × ∑  𝑝𝑠(𝑖)
𝑛
𝑖=1 , where 𝑠(𝑖) 

denotes the state in which the 𝑖𝑡ℎ failure occurs. 

2.2.3 Safety and Security 

In some cases, failures may produce consequences of 

varying severity. Safety and security related failures are two 

examples. In either case, failures of higher severity correspond 

to greater economic damage or other undesirable outcomes. As 

an example, one class of security related failures of widespread 

concern is information loss, whether intellectual property 

produced by private industry or government secrets related to 

national security. In either case, the consequences of 

information loss will be proportional to the severity of the loss. 

For example, historical documents on the principles for 

classification of information [20], assume that Confidential, 

Secret, and Top Secret data differ in severity by an order of 

magnitude. Thus, if the loss of Confidential information is 

assigned unit cost $𝑐 = 1.0, then the corresponding loss of 

Secret and Top Secret information are $𝑠 = 10 and $𝑡𝑠 = 100 

respectively. Assuming that failure in the Dev state does not 

lead to information loss, but that all other states do, the data loss 

is ∑ $𝑠𝑒𝑣(𝑖)𝑖∉ 𝐷𝑒𝑣 , where 𝑠𝑒𝑣(𝑖) is the severity of the 𝑖𝑡ℎ failure 

occurring in a non Dev state. 

3 ILLUSTRATIONS 

This section illustrates the proposed approach to assess 

alternative staged rollout policies. Section 3.1 provides a 

detailed walkthrough for a single policy, clarifying the logic. 

Section 3.2 subsequently illustrates tradeoffs between delivery 

time and downtime in the context of the SYS1 data set [7] and 

examines the impact of policies on delivery time and downtime 

in isolation. Section 3.3 illustrates tradeoffs between delivery 

time, downtime, and safety through a NASA data set [19]. 

3.1 Policy evaluation 

For the sake of exposition, this section assumes that, for the 

staged rollout model described in Figure 1, 𝑀𝑇𝑇𝑅 = 10  and 

that 𝑡𝐷𝑒𝑣,𝑖1
= 35 and 𝑡𝑖1,𝑂𝑝𝑠 = 350, which are referred to as 

Policy 1. 

Figure 3 illustrates the impact of the Policy 1 on the first 

250 time units of the SYS1 dataset. 

 

 

 

 

 

 
Figure 3: Timeline of failures in the first 250 seconds of testing 

The staged rollout process begins in state Dev at 𝑡 = 0. 

Since the first failure occurs at time 𝑡1 = 3, the 𝜆𝐷𝑒𝑣 transition 

is taken and the timer is reset to the 35 units of time that must 

elapse before transitioning to the staged rollout state 𝑖1. The 

second failure at 𝑡2 = 33 also triggers the 𝜆𝐷𝑒𝑣 transition and 

resets the timer. However, after 35 additional time units without 

failure, transition to the staged rollout state occurs at time 𝑡 =
68. The 20-fold acceleration factor achieved by the larger user 

base means that only 
𝑡3−68

𝑎𝑖1

=
146−68

20
= 3.9 units of time are 

needed to reach the third failure at time 𝑡3 = 146, but also 

incurs downtime 𝑝𝑖1
×  𝑀𝑇𝑇𝑅 = 0.1 ×  10 = 1.0. Thus, only 

68 + 3.9 = 71.9 seconds are required to uncover the first three 

failures, but at the expense of some downtime, demonstrating 

how the quantitative tradeoffs are captured by the model. This 

process continues, transitioning to staged rollout at time 181 

after no failures in the Dev state, failing at time 𝑡4 = 227 after 

2.3 time units and incurring an additional 1.0 unit of downtime. 

Continuing this process through all 136 failures shown in 

Figure 2 plus the time to transition from Dev to 𝑖1 and 𝑖1 to Ops, 

the delivery time and downtime are 6,031.59 and 599.08 

respectively.  



To illustrate the tradeoffs imposed by alternative policies 

on the SYS1 dataset, a similar experiment was performed with 

Policy 2, possessing parameters 𝑡𝐷𝑒𝑣,𝑖1
= 125 and 𝑡𝑖1,𝑂𝑝𝑠 =

800, which produced delivery time 15,808.43 and downtime 

455.65. Thus, the larger and more conservative transition times 

of Policy 2 reduced the downtime by nearly 24%, but more than 

doubled the delivery time. 

3.2 Tradeoff analysis 

The previous example demonstrated how a staged rollout 

policy produces a tuple composed of downtime and delivery 

time and that no single policy is necessarily optimal with 

respect to both of these objectives. Therefore, the example in 

this section further explores the tradeoffs between downtime 

and delivery time by emulating various policies on the SYS1 

data set. For the sake of illustration, two experiments were 

conducted. The first applied 100 pairwise combinations of 

policies with 𝑡𝐷𝑒𝑣,𝑖𝑖
= {10, 20 … , 100} and 𝑡𝑖1,𝑂𝑝𝑠 =

{10, 20, … , 100} and the downtime and delivery calculated. 

The second applied 100 pairwise combinations of policies with 

𝑡𝐷𝑒𝑣,𝑖𝑖
=  {100, 200 … , 1,000} and 𝑡𝑖1,𝑂𝑝𝑠 =

{100, 200, … , 1,000}. 

Figure 4 shows the results of the two experiments 

described above. The line indicates Pareto optimal policies. 

 
Figure 4: Tradeoff between downtime and delivery time for 

alternative staged rollout policies 

The denser set of points in the upper left of Figure 4 

correspond to the first experiment, while the remaining points 

were produced by the second experiment. Figure 4 indicates 

that policies with lower downtime possess higher delivery times 

and that lowering delivery time tended to increase downtime. 

Each point corresponds to a policy and the shading indicates the 

value of 𝑡𝐷𝑒𝑣,𝑖1
. Values of 𝑡𝐷𝑒𝑣,𝑖1

= 10 resulted in greater 

downtime, which agrees with intuition because more failures in 

the staged rollout and Ops state occurred. Shading the policies 

according to the value of 𝑡𝑖1,𝑂𝑝𝑠 produced similar results.  

Figure 4 also shows that the range of delivery times 

(1793.71 , 58148.42) is wider than the range of downtimes 

(140.35, 746.05). However, these ranges are a function of the 

numerical parameters chosen for the sake of illustration and 

assumptions. For example, delivery time is determined by the 

duration of the failure data and acceleration factors in staged 

rollout states, whereas downtime is influenced by MTTR. Since 

the time of the last failure in the SYS1 dataset is 𝑡136 = 88,682, 

the minimum delivery time compressed the testing schedule by 

a factor of 49.44 (88,682/1,793.71) to only 2.02% (1,793.71/
88,682) of the original time, while the maximum delivery time 

only compressed the testing schedule by a factor of 1.53 to 

65.6%. However, decreasing delivery time from the largest to 

smallest values also increased downtime by a factor of 5.32 

(746.05/140.35). 

Ultimately, the selection of a policy depends on the 

subjective preference of the organization or their customer. 

Downtime may incur loss of sales and customers, fines by 

regulators, or other negative consequences, while late delivery 

also possesses negative consequences such as reduced market 

capture. 

Figures 5 and 6 provide alternative perspectives on the 

impact of the state transition times of staged rollout policies on 

delivery and downtime respectively. 

 
Figure 5: Impact of staged rollout policy on delivery time 

 
Figure 6: Impact of staged rollout policy on downtime 

Figure 5 indicates that increasing 𝑡𝐷𝑒𝑣,𝑖1
 and 𝑡𝑖1,𝑂𝑝𝑠 both 



increase delivery time, but that increasing 𝑡𝐷𝑒𝑣,𝑖1
 increases 

delivery time more quickly. This observation also agrees with 

intuition because progress on the testing timeline proceeds most 

slowly in the 𝐷𝑒𝑣 state. Similarly, Figure 6 indicates that 

increasing 𝑡𝐷𝑒𝑣,𝑖1
 and 𝑡𝑖1,𝑂𝑝𝑠 both decrease downtime, but that 

increasing 𝑡𝐷𝑒𝑣,𝑖1
 decreases downtime more quickly because 

failures in the 𝐷𝑒𝑣 state do not to incur downtime. 

3.3 Safety and Security  

Figure 7 shows tradeoffs between severity, downtime, and 

delivery time for alternative staged rollout policies in the 

context of a NASA data set [19], which is similar to the timeline 

given in Figure 2 but also assigned one of three levels of 

severity to each defect discovered. 

 
Figure 7: Tradeoff between severity, downtime, and delivery time 

for alternative staged rollout policies 

Here, severity indicates the accumulated consequences of 

failures in the staged rollout or 𝑂𝑝𝑠 state of low, medium, and 

high severity incurring costs of $𝑙 = 1.0, $𝑚 = 10 and $ℎ =
100 respectively. The primary observation is that lowering the 

accumulated severity of unsafe failures requires increasing the 

delivery time because policies that require more time between 

failure before transitioning to later states of staged rollout 

correspond to more conservative strategies that spend more 

time in earlier states with smaller acceleration factors. Figure 7 

also indicates that lowering the accumulated severity of unsafe 

failures is positively correlated with decreased downtime, since 

downtime is associated with the staged rollout and Ops state, 

where failures also incur a penalty according to their severity. 

Plots similar to Figures 5 and 6 were created to assess the 

impact of transition times 𝑡𝐷𝑒𝑣,𝑖1
 and 𝑡𝑖1,𝑂𝑝𝑠 on delivery time, 

downtime, and severity. However, the results of this analysis 

were similar to the trends observed in Figures 5 and 6. 

Moreover, the impact of transition times on severity was similar 

to the trends observed in Figure 7, where increasing 𝑡𝐷𝑒𝑣,𝑖1
 

decreased severity more rapidly than 𝑡𝑖1,𝑂𝑝𝑠 because failures in 

the Dev state did not contribute to the cumulative severity 

experienced by the end of testing. 

4 CONCLUSIONS AND FUTURE WORK 

This paper presented a framework to assess the staged 

rollout approach performed in agile methods, DevOps, 

DevSecOps, site reliability engineering, and continuous 

integration and continuous delivery/deployment (CI/CD). The 

approach enables objective assessment of process and product 

metrics for vendors to strive for improvement and customers to 

measure the quality of software produced by their suppliers. 

The approach was demonstrated with data traditionally 

employed by software defect and vulnerability discovery, 

tracking, and resolution models. The illustrations examined 

how alternative policies impose tradeoffs between two or more 

of the process and product metrics. 

Future research will extend the models upon which policies 

are based to further formalize the security dimension of the 

tradespace as well as to determine if more than one intermediate 

staged rollout state can improve tradeoffs between process and 

product metrics. Techniques that automate the staged rollout 

decision-making process such as reinforcement learning will 

also be explored to solve constrained optimization problems 

such as minimizing downtime while achieving a specified 

delivery date or alternative combinations of primary objectives 

and constraints. 
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