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Scalable Plug-and-Play ADMM With Convergence
Guarantees

Yu Sun
Brendt Wohlberg

Abstract—Plug-and-play priors (PnP) is a broadly applicable
methodology for solving inverse problems by exploiting statisti-
cal priors specified as denoisers. Recent work has reported the
state-of-the-art performance of PnP algorithms using pre-trained
deep neural nets as denoisers in a number of imaging applications.
However, current PnP algorithms are impractical in large-scale set-
tings due to their heavy computational and memory requirements.
This work addresses this issue by proposing an incremental variant
of the widely used PnP-ADMM algorithm, making it scalable to
problems involving a large number measurements. We theoretically
analyze the convergence of the algorithm under a set of explicit
assumptions, extending recent theoretical results in the area. Addi-
tionally, we show the effectiveness of our algorithm with nonsmooth
data-fidelity terms and deep neural net priors, its fast convergence
compared to existing PnP algorithms, and its scalability in terms
of speed and memory.

Index Terms—Regularized image reconstruction, plug-and-play
priors, deep learning, regularization parameter.

1. INTRODUCTION

LUG-AND-PLAY priors (PnP) is a simple yet flexible

methodology for imposing statistical priors without ex-
plicitly forming an objective function [1], [2]. PnP algorithms
alternate between imposing data consistency by minimizing a
data-fidelity term and imposing a statistical prior by apply-
ing an additive white Gaussian noise (AWGN) denoiser. PnP
draws its inspiration from the proximal algorithms extensively
used in nonsmooth composite optimization [3], such as the
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proximal-gradient method (PGM) [4]-[7] and alternating direc-
tion method of multipliers (ADMM) [8]—[11]. The popularity of
deep learning has led to a wide adoption of PnP for exploiting
learned priors specified through pre-trained deep neural nets,
leading to its state-of-the-art performance in a variety of appli-
cations [12]-[16]. Its empirical success has spurred a follow-up
work that provided theoretical justifications to PnP in various
settings [17]-[25]. Despite this progress, the computation and
memory requirements of current PnP algorithms makes them
impractical in problems with a large number of measurements.
To the best of our knowledge, the only prior work on developing
PnP algorithms for processing large-scale measurements is the
stochastic gradient descent variant of PnP (PnP-SGD), whose
fixed-point convergence was recently analyzed for smooth data-
fidelity terms [20].

In this work, we present a new incremental PnP-ADMM (IPA)
algorithm for dealing with large-scale measurements. As an
extensions of the widely used PnP-ADMM [1], [2], IPA can
integrate statistical information from a data-fidelity term and a
pre-trained deep neural net. However, unlike PnP-ADMM, IPA
can effectively scale to datasets that are too large for traditional
batch processing by using a single element or a small subset
of the dataset at a time. The memory and per-iteration com-
plexity of IPA is independent of the number of measurements,
thus allowing it to deal with very large datasets. Additionally,
unlike PnP-SGD [20], IPA can effectively address problems
with nonsmooth data-fidelity terms, and generally has faster
convergence. We present a detailed convergence analysis of IPA
under a set of explicit assumptions on the data-fidelity term
and the denoiser. Our analysis extends the recent fixed-point
analysis of PnP-ADMM in [23] to partial randomized processing
of data. To the best of our knowledge, the proposed scalable PnP
algorithm and corresponding convergence analysis are absent
from the current literature in this area. Our numerical validation
demonstrates the practical effectiveness of IPA for integrating
nonsmooth data-fidelity terms and deep neural net priors, its
fast convergence compared to PnP-SGD, and its scalability in
terms of both speed and memory. In summary, we establish IPA
as a flexible, scalable, and theoretically sound PnP algorithm
applicable to a wide variety of large-scale problems.

II. BACKGROUND

Consider the problem of estimating an unknown vector x €
R"™ from a set of noisy measurements y € R". It is standard
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practice to formulate the solution as an optimization

argmin f(x) with f(z) := g(z)+ h(x), (1)
xeR™
where g is a data-fidelity term that quantifies consistency with
the observed data y and h is a regularizer that encodes prior
knowledge on x. As an example, consider the nonsmooth /;-
norm data-fidelity term g(x) = ||y — Ax||;, which assumes a
linear observation model y = Ax + e, and the TV regularizer
h(x) = 7||Dz||1, where D is the gradient operator and 7 >
0 is the regularization parameter. Common applications of (1)
include sparse vector recovery in compressive sensing [26], [27],
image restoration using total variation (TV) [28], and low-rank
matrix completion [29].
Proximal algorithms are often used for solving problems of
form (1) when g or h are nonsmooth [3]. For example, one such
standard algorithm, ADMM, can be summarized as

k

zF = proxn/g(m’“’1 + s (2a)
" = prox,yh(zk — sk (2b)
sh =gkl gk 2F , (2¢)

where v > 01is the penalty parameter [11] and proximal operator
is defined as

1

prox,,(z) := argmin {||:c —z|53+ Th(iL’)} 3)
xeR” 2

for any proper, closed, and convex function h [3]. The proximal

operator can be interpreted as a maximum a posteriori probabil-

ity (MAP) estimator for the AWGN denoising problem

n~N(0,7I), (4)

z=x9+mn where o~ pg,,

by setting h(x) = —log(pz, (x)). This perspective inspired the
development of PnP [1], [2], where the proximal operator is
simply replaced by a more general denoiser D : R™ — R" such
as BM3D [30] or DnCNN [31]. For example, the widely used
PnP-ADMM can be summarized as

2k = prox,yg(wk’1 + sk (5a)
xb =D, (2F — ") (5b)
s =gkl 4ok — 2k, (5¢)

where, in analogy with 7 > 0 in (3), we introduce the pa-
rameter o > 0 controlling the relative strength of the denoiser.
Remarkably, this heuristic of using denoisers not associated with
any h within an iterative algorithm exhibited great empirical
success [12]-[15], [25] and spurred a great deal of theoretical
work on PnP algorithms [17]-[24].

A elegant fixed-point convergence analysis of PnP-ADMM
was presented in [23]. By substituting v* = 2% — s¥~1 into
PnP-ADMM, the algorithm is expressed in terms of an operator

P .= %I + %(2@ —1)(2Dy — 1) with

G := prox,, , (6)

where | denotes the identity operator. The convergence of
PnP-ADMM is then established through its equivalence to the
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fixed-point convergence of the sequence v = P(v*~1). The
equivalence of PnP-ADMM to the iterations of the operator (6)
originates from the well-known relationship between ADMM
and the Douglas-Rachford splitting [3], [8], [19], [23].

Scalable optimization algorithms have become increasingly
important in the context of large-scale problems arising in
machine learning and data science [32]. Stochastic and on-
line optimization techniques have been investigated for tradi-
tional ADMM [33]-[37], where Prox., is approximated using
a subset of observations (with or without subsequent lineariza-
tion). Our work contributes to this area by investigating the
scalability of PnP-ADMM that is not minimizing any explicit
objective function. Since PnP-ADMM can integrate powerful
deep neural net denoisers, there is a need to understand its
theoretical properties and ability to process a large number of
measurements.

Before introducing our algorithm, it is worth briefly mention-
ing an emerging paradigm of using deep neural nets for solving
ill-posed imaging inverse problems (see, reviews [38]-[41]).
This work is most related to techniques that explicitly decouple
the measurement model from the learned prior. For example,
learned denoisers have been adopted for a class of algorithms
in compressive sensing known as approximate message passing
(AMP) [42]-[45]. The key difference of PnP from AMP is that it
does not assume random measurement operators. Regularization
by denoising (RED) is a closely related method that specifies
an explicit regularizers that has a simple gradient [46]-[48].
PnP does not seek the existence of such an objective, instead
interpreting solutions as equilibrum points balancing the data-fit
and the prior [19]. By focusing on the partial processing of y, this
work is complementary to the recent approaches that perform
block-coordinate processing of @ either in the context of deep
unrolling [49], [50] or RED [51], [52]. Finally, a recent line
of work has investigated the recovery and convergence guar-
antees for priors specified by generative adversarial networks
(GANs) [53]-[57]. PnP does not seek to project its iterates to
the range of a GAN, instead it directly uses the output of a
simple AWGN denoiser to improve the estimation quality. This
simplifies the training and application of learned priors within
the PnP methodology. Our work contributes to this broad area
by providing new conceptual, theoretical, and empirical insights
into incremental ADMM optimization under statistical priors
specified as deep neural net denoisers.

III. INCREMENTAL PNP-ADMM

Batch PnP algorithms operate on the whole observation vector
y € R™. We are interested in partial randomized processing of
observations by considering the decomposition of R™ into b > 1
blocks
R™ =R™ x R™2 x --- x R™ with
m=mi+mg+---+my.

We thus consider data-fidelity terms of the form

1 b
g(z) = 3> gilw), =R, @
i=1
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Algorithm 1: Incremental Plug-and-Play ADMM (IPA)

Algorithm 2: Minibatch IPA

1: input: initial values °, s € R", parameters
v,0 > 0.

2: fork=1,2,3,... do

3 Choose an index iy, € {1,...,b}

4 28« Gy, (k71 + s#1) where G;, = proX. g,

5.  xF « D, (zF - sk

6 sk skl k- 2k

7: _end for

where each g; is evaluated only on the subset y, € R™¢ of the
full data y.

The proposed IPA algorithm seeks to avoid the direct compu-
tation of prox,, in PnP-ADMM. As shown in Algorithm 1, it
extends stochastic variants of traditional ADMM [33]-[37] by
integrating denoisers D, that are not associated with any h. Its
per-iteration complexity is independent of the number of data
blocks b, since it processes only a single component function g;
at every iteration.

It is important to note that in some applications [58]-[60],
the prox. , step of PnP-ADMM can be efficiently evaluated by
leveraging the structure of the measurement operator (such as
diagonalization by Fourier transform). Nonetheless, IPA pro-
vides flexibility for controlling the number of measurements
1 < m; < m used in every iteration, which makes it a useful
alternative to PnP-ADMM, when the memory/computational
benefits for evaluating prox.,,, (which uses only y, € R™ and
A; € R™i"™) outweigh those of prox,, (which uses y € R™
and A € R™*™),

In principle, IPA can be implemented using different block
selection rules. The strategy adopted for our theoretical anal-
ysis focuses on the usual strategy of selecting indices ij as
independent and identically distributed (i.i.d.) random variables

distributed uniformly over {1,...,b}. An alternative would be
to proceed in epochs of b consecutive iterations, where at the
start of each epoch the set {1,...,b} is reshuffled, and iy, is

selected from this ordered set [61]. In some applications, it might
also be beneficial to select indices 7 in an online data-adaptive
fashion by taking into account the statistical relationships among
observations [62], [63].

Unlike PnP-SGD, IPA does not require smoothness of the
functions g;. Instead of computing the partial gradient Vg;,
as is done in PnP-SGD, IPA evaluates the partial proximal
operator G;. Nonsmooth data-fidelity terms have been exten-
sively used in many applications, including wavelet inpainting,
tensor factorization, feature selection, dictionary learning, and
phase unwrapping [64]-[70]. The maximal benefit of IPA over
PnP-SGD is expected for problems in which G; is efficient to
evaluate. This is a case for a number of functions commonly
used in many applications (see the extensive discussion on
proximal operators in [71]). For example, the proximal operator
of the /5-norm data-fidelity term g;(x) = 1||y; — A;x||3 hasa
closed-form solution

Gi(z) = prox,,, (z) = (I + ’yA;rAi)fl (z + WAIyZ-) ®)

1: input: initial values 2°, s € R™, parameters
7,0 > 0, minibatch size p > 1.
2: fork=1,2,3,... do

3: Choose indices i1, . . ., i, from the set {1, ..., b}.
4: zZF  G(z" ! + sF1) where
G:= >0, Prox, g,
5:  xF « D, (2F - sk
6:  sF sl pak— 2k
7. end for

for v > 0 and z € R™. Prior work has extensively discussed
efficient strategies for evaluating (8) for a variety of linear
operators, including convolutions, partial Fourier transforms,
and subsampling masks [9], [58]-[60]. As a second example,
consider the ¢;-data fidelity term g;(x) = ||y; — A;x||1, which
is nonsmooth. The corresponding proximal operator has a closed
form solution for any orthogonal operator A; and can also be
efficiently computed in many other settings [71].

IPA can also be implemented as a minibatch algorithm,
processing several blocks in parallel at every iteration, thus
improving its efficiency on multi-processor hardware architec-
tures. Algorithm 2 presents the minibatch version of IPA that
averages several proximal operators evaluated over different data
blocks. When the minibatch size p = 1, Algorithm 2 reverts to
Algorithm 1. The main benefit of minibatch IPA is its suitability
for parallel computation of é, which can take advantage of
multi-processor architectures.

Minibatch IPA is related to the proximal average approxima-
tion of G = prox., [72], [73]

b
G(z) = %Zprox,ygi(w) zeR™.
i=1

When Assumption 1, introduced in Section IV, is satisfied, then
the approximation error is bounded for any € R" as

IG(z) — G()|| < 29L .

Minibatch IPA thus simply uses a minibatch approximation G
of the proximal average G. One implication of this is that even
when the minibatch is exactly equal to the full measurement
vector, minibatch IPA is not exact due to the approximation error
introduced by the proximal average. However, the resulting ap-
proximation error can be made as small as desired by controlling
the penalty parameter v > 0.

IV. THEORETICAL ANALYSIS

We now present a theoretical analysis of IPA. We fist present
an intuitive interpretation of its solutions, and then present our
convergence analysis under a set of explicit assumptions.

A. Fixed Point Interpretation

PnP cannot be interpreted using the standard tools from con-
vex optimization, since its solution is generally not a minimizer
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of an objective function. Nonetheless, we develop an intuitive
operator based interpretation.
Consider the following set-valued operator

T =709+ (D, 1) v>0, ©9)

where Jg is the subdifferential of the data-fidelity term and
D,'(x) := {z € R" : & = D,(2)} is the inverse operator of
the denoiser D,. The details for obtaining (9) from (2) are
provided in Appendix C.1. Note that this inverse operator exists
even when D, is not one-to-one [8], [74]. By characterizing
the fixed points of PnP algorithms, it can be shown that their
solutions can be interpreted as vectors in the zero set of T
0 € T(z") =~9g(z") + (D, (z) — =)

& z'czer(T) = {xzecR":0eT(x)}.
Consider the following two sets
zer(0g) == {x € R": 0 € dg(x)} and
fix(D,) == {x € R":x =D (x)},

where zer(Jg) is the set of all critical points of the data-fidelity
term and fix(D, ) is the set of all fixed points of the denoiser.
Intuitively, the fixed points of D, correspond to all vectors that
are not denoised, and therefore can be interpreted as vectors that
are noise-free according to the denoiser.

If * € zer(dg) N fix(D, ), then «* € zer(T), which implies
that * is one of the solutions. Hence, any vector that minimizes
a convex data-fidelity term ¢ and noiseless according to D, is in
the solution set. On the other hand, when zer(dg) N fix(D,) =
&, then x* € zer(T) corresponds to an equilibrium point be-
tween two sets.

This interpretation of PnP highlights one important aspect that
is often overlooked in the literature, namely that, unlike in the
traditional formulation (1), the regularization in PnP depends
on both the denoiser parameter o > 0 and the penalty param-
eter v > 0, with both influencing the solution. Hence, the best
performance is obtained by jointly tuning both parameters for a
given experimental setting. In the special case of D, = prox.,,
with v = o2, we have

fix(Dy) ={x € R": 0 € Oh(x)} and
zer(T) ;= {& € R": 0 € dg(x) + Oh(x)} ,

which corresponds to the optimization formulation (1) whose
solutions are independent of .

B. Convergence Analysis

Our analysis requires three assumptions that jointly serve as
sufficient conditions.

Assumption 1: Each g; is proper, closed, convex, and Lip-
schitz continuous with constant L; > 0. We define the largest
Lipschitz constant as L = max{Ly,..., Ly}.

This assumption is commonly adopted in nonsmooth opti-
mization and is equivalent to existence of a global upper bound
on subgradients [34], [73], [75]. It is satisfied by a large number
of functions, such as the ¢;-norm. The ¢5-norm also satisfies
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Assumption 1 when it is evaluated over a bounded subset of R™.
We next state our assumption on D, .

Assumption 2: The residual R, := | — D, of the denoiser
D, is firmly nonexpansive.

We review firm nonexpansiveness and other related concepts
in the Appendix C. Firmly nonexpansive operators are a subset
of nonexpansive operators (those that are Lipschitz continu-
ous with constant one). A simple strategy to obtain a firmly
nonexpansive operator is to create a (1/2)-averaged operator
from a nonexpansive operator [3]. The residual R, is firmly
nonexpansive if and only if D, is firmly nonexpansive. Itis worth
noting that (a) any explicit or implicit proximal operator is firmly
nonexpansive, and (b) any symmetric matrix with eigenvalues
in [0, 1] is firmly nonexpansive. This implies that many recently
designed denoisers for PnP, such as those discussed in [2], [22],
[76]-[78] automatically satisfy Assumption 2.

The rationale for stating Assumption 2 for R, is based on
our interest in residual deep neural nets. The success of residual
learning in the context of image restoration is well known [31].
Prior work has also shown that Lipschitz constrained residual
networks yield excellent performance without sacrificing stable
convergence [23], [51]. Additionally, there has recently been an
explosion of techniques for training Lipschitz constrained and
firmly nonexpansive deep neural nets [23], [79]-[81].

Assumption 3: The operator T in (9) is such that zer(T) # &.
There also exists 2 < oo such that

" — x| <R forall z* € zer(T).

The first part of the assumptions simply ensures the existence
of a solution. The existence of the bound R often holds in
practice, as many denoisers have bounded range spaces. In
particular, this is true for a number of image denoisers whose
outputs live within the bounded subset [0255]™ C R™.

We will state our convergence results in terms of the operator
S: R™ — R"™ defined as

S:=D,—-G(2D, —1). (10)
Both IPA and PnP-ADMM can be interpreted as algorithms for
computing an element in zer(S), which is equivalent to finding
an element of zer(T) (see details in Appendix C).

We are now ready to state our main result on IPA.

Theorem 1: Run IPA for ¢t > 1 iterations with random
ii.d. block selection under Assumptions 1-3 using a penalty
parameter v > 0. Then, the sequence v* = z* — s¥~! satisfies
(R+2vL)?

t

E < + max{y,7*}C,

1 t
n > Ishl3
k=1

(1)

where C' := 4LR + 12L? is a positive constant.

In order to contextualize this result, we also review the con-
vergence of the traditional PnP-ADMM.

Theorem 2: Run PnP-ADMM for t > 1 iterations under
Assumptions 1-3 using a penalty parameter v > 0. Then, the
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k k k

sequence v* = zF — s¥~1 satisfies

(12)

o~ | =

f " |IS(v")]13 < (Bt L)
— t .
k=1

Both proofs are provided in the Appendix A. The proof of The-
orem 2 is a modification of the analysis in [23], obtained by re-
laxing the strong convexity assumption in [23] by Assumption 1
and replacing the assumption that R, is a contraction in [23]
by Assumption 2. Theorem 2 establishes that the iterates of
PnP-ADMM satisfy ||S(v?)| — 0 as ¢t — oc. Since S is firmly
nonexpansive (see Appendix C.3) and D, is nonexpansive, the
Krasnosel’skii-Mann theorem (see Section 5.2 in [82]) directly
implies that v* — zer(S) and ! = D, (v') — zer(T).

Theorem 1 establishes that in expectation, IPA has a similar
convergence behavior to PnP-ADMM up to an error term that
depends on the penalty parameter . One can precisely control
the accuracy of IPA by setting ~y to a desired level. In practice,
v can be treated as a hyperparameter and tuned to maximize
performance for a suitable image quality metric, such as SNR
or SSIM. Our numerical results in Section V corroborate that
excellent SNR performance of IPA can be achieved without
taking || S(v")||2 to zero, which simplifies practical applicability
of IPA. (Note that the convergence analysis for [PA in Theorem 1
can be easily extended to minibatch IPA with a straightforward
extension of Lemma 1 in Appendix A.2 to several indices, and
by following the steps of the main proof in Appendix A.1.)

Finally, note that the convergence of the IPA iterates can also
be analyzed under assumptions adopted in [23], namely that g;
are strongly convex and R, is a contraction. Such an analysis
leads to the statement

E[llz —2*|2] <n'(2R+49L) + (49L)/(1 —n) , (13)

where 0 < 1 < 1.Equation (13) establishes alinear convergence
to zer(T) up to an error term. A proof of (13) is provided in the
Appendix B. As corroborated by our simulations in Section V,
the actual convergence of IPA holds even more broadly than
suggested by both sets of sufficient conditions. This suggests a
possibility of future analysis of IPA under more relaxed assump-
tions.

V. NUMERICAL VALIDATION

Recent work has shown the excellent performance of PnP for
smooth data-fidelity terms using advanced denoising priors. Our
goal in this section is to extend these studies with simulations
validating the effectiveness of IPA for nonsmooth data-fidelity
terms and deep neural net priors, as well as demonstrating its
scalability to large-scale inverse problems. We consider two
applications of the form y = Ax + e, where e € R denotes
the noise and A € R™*" denotes either a random Gaussian
matrix in compressive sensing (CS) or the transfer function in
intensity diffraction tomography (IDT) [83].

Our deep neural net prior is based on the DnCNN archi-
tecture [31], with its batch normalization layers removed for
controlling the Lipschitz constant of the network via spectral
normalization [84] (see details in Appendix F.1). We train a non-
expansive residual network R, by predicting the noise residual

from its noisy input. While this means that R, is not trained to
be firmly nonexpansive, we observed that nonexpansiveness was
sufficient for empirical convergence. Note also that a nonexpan-
sive R, satisfies the necessary (but not sufficient) condition for
firm nonexpansiveness of D, . It is also worth mentioning that
denoiser design, which is not our main focus, is an active area of
research in the context of PnP. The training data is generated by
adding AWGN to the BSD400 images [85]. The reconstruction
quality is quantified using the signal-to-noise ratio (SNR) in
dB. We pre-train several deep neural net models as denoisers
for o € [1,10], using o intervals of 0.5, and use the denoiser
achieving the best SNR.

A. Integration of Nonsmooth Data-Fidelity Terms and
Pretrained Deep Priors

We first test IPA on non-smooth data-fidelity terms. The
matrix A is generated with i.i.d. zero-mean Gaussian random
elements of variance 1/m, and e as a sparse Bernoulli-Gaussian
vector with the sparsity ratio of 0.1. This means that, in ex-
pectation, ten percent of the elements of y are contaminated
by AWGN. The sparse nature of the noise motivates the usage
of the ¢1-norm g(x) = ||y — Ax||1, since it is less sensitive
to extreme values. The nonsmoothness of ¢;-norm prevents
the usage of gradient-based algorithms such as PnP-SGD. On
the other hand, the application IPA is facilitated by efficient
strategies for computing the proximal operator [28], [86].

Note that the focus of this section is on using CS as a conve-
nient application for demonstrating some of the key properties of
IPA, and is not on achieving the state-of-the-art subsampling in
CS [44], [87]-[90]. For any subsampling rate, the reconstruction
quality of TPA is expected to match that of PnP-ADMM, which
has been extensively studied in prior work. In particular, a recent
work [91] has extensively compared the recovery performance
of PnP relative to several widely-used algorithms in CS.

We set the measurement ratio to be approximately m/n = 0.7
with AWGN of standard deviation 5. Twelve standard images
from Set12 [31] are used in testing, each resized to 64 x 64 pixels
for rapid parameter tuning and testing. We quantify the conver-
gence accuracy using the normalized distance ||S(v*)||3/||v* |3,
which is expected to approach zero as IPA converges to a fixed
point.

Theorem 1 characterizes the convergence of IPA in terms
of ||S(v*)||2 up to a constant error term that depends on 7.
This is illustrated in Fig. 1 for three values of the penalty
parameter v € {y0,70/2,70/4} with 9 = 0.02. The average
normalized distance ||S(v*)||2/||v*||2 and SNR are plotted
against the iteration number and labeled with their respective
final values. The shaded areas represent the range of values
attained across all test images. I[PA is implemented to use a
random half of the elements in y in every iteration to impose the
data-consistency. Fig. 1 shows the improved convergence of IPA
to zer(S) for smaller values of +, which is consistent with our
theoretical analysis. Specifically, the final accuracy improves
approximately 3x (from 1.07 x 107° to 3.59 x 107%) when ~y
is reduced from g to o /4. On the other hand, the SNR values
are nearly identical for all three experiments, indicating that in
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e Y ‘ Y0/2 33.88 dB Yo/ /4 33.68 dB

= 7

as =

= &

28 3.59 x 10°°

10 0
0 iteration 4000 0 iteration 4000 0 iteration 4000

Fig. 1. Illustration of the influence of the penalty parameter v > 0 on the convergence of IPA for a DnCNN prior. The average normalized distance to zer(S)
and SNR (dB) are plotted against the iteration number with the shaded areas representing the range of values attained over 12 test images. The accuracy of IPA
improves for smaller values of . However, the SNR performance is nearly identical, indicating that in practice IPA can achieve excellent results for a range of
fixed y values.

I n=5122, b=300 n=5122, b=600 I n=10242, b=600

IPA (60)

0 time (sec) time (sec) time (sec) 250

Fig. 2. Tllustration of scalability of IPA and several widely used PnP algorithms on problems of different sizes. The parameters n and b denote the image size
and the number of acquired intensity images, respectively. The average SNR is plotted against time in seconds. Both IPA and PnP-SGD use random minibatches
of 60 measurements at every iteration, while PnP-ADMM and PnP-FISTA use all the measurements. The figure highlights the fast empirical convergence of IPA
compared to PnP-SGD as well as its ability to address larger problems compared to PnP-ADMM and PnP-FISTA.

TABLE I
FINAL AVERAGE SNR (DB) AND RUNTIME OBTAINED BY SEVERAL PNP ALGORITHMS ON ALL TEST IMAGES

Simulations Parameters n =512’ n =512’ n = 1024°
(b =300) (b = 600) (b = 600)
Algorithms o o SNR in dB (Runtime)
PnP-FISTA 1 5%107% 22.60 (19.4 min) 22.79 (42.6 min) 23.56 (8.1 hr)
© PPSGD(60) 1 S5x107* 2231 (Zimim)  274G2min 2342 443 min)
~ PwPADMM 25 1 2423(4min) 2440 147 min) 2550 (14 b
IPA (60) 2.5 1 23.65 (1.7 min) 23.88 (2 min) 24.95 (11 min)

practice different v values lead to fixed points of similar quality.
This indicates that IPA can achieve high-quality result without
taking ||S(v*)||2 to zero.

B. Scalability in Large-Scale Optical Tomography

We now discuss the scalability of IPA on intensity diffraction
tomography (IDT), which is a data intensive computational
imaging modality [83]. The goal is to recover the spatial distribu-
tion of the complex permittivity contrast of an object given a set
of its intensity-only measurements. In this problem, A consists
of aset of bcomplex matrices [A1, . . ., Ab]T, where each A;isa
convolution corresponding to the ith measurement y,. We adopt
the fo-norm loss g(x) = ||y — Ax||3 as the data-fidelity term
to empirically compare the performance of IPA and PnP-SGD
on the same problem. PnP-SGD has been implemented with
Nesterov acceleration, as in [20].

In the simulation, we follow the experimental setup in [83]
under AWGN corresponding to an input SNR of 20 dB. We select

Back-propagation

(1111w

D 3x3 Conv. D RelLU

Residual Learning

Fig. 3. Illustration of the architecture of DnCNN used in all experiments.
Vectors & and @ denote the denoised image and ground truth, respectively.
The neural net is trained to remove the AWGN from its noisy input image. We
also constrains the Lipschitz constant of R, to be smaller than 1 by using the
spectral normalization technique in [84]. This provides a necessary condition
for the satisfaction of Assumption 2.

six images from the CAT2000 dataset [92] as our test examples,
each cropped to n pixels. We assume real permittivity functions,
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TABLE II
PER-ITERATION MEMORY USAGE SPECIFICATION FOR RECONSTRUCTING 1024 x 1024 IMAGES

Algorithms PnP-ADMM IPA (Ours)
Variables size memory size memory
{4} real 102410245600 938GB 102451024 60 094GB
imaginary 1024 x 1024 x 600 9.38 GB 1024 x 1024 x 60 0.94 GB
(v} TR R Sas R O T e e
others combined S Giagn S Giies
Total 37.63 GB 3.88 GB
TABLE III
OVERVIEW OF SEVERAL EXISTING PNP/RED ALGORITHMS
Algorithms Nonsmooth Online
PnP-ADMM [1], [2], [17], [23] v X
PnP-ISTA/PnP-FISTA [18], [20], [93] X X
PnP-SPGM [20] X v
RED-SD [46] X X
RED-ADMM [46], [94] v X
prDeep [95] v X
RED-PG/RED-APG [94] v X
SIMBA/On-RED [96], [97] X v
IPA (proposed) v v
TABLE IV

PER-ITERATION MEMORY USAGE SPECIFICATION FOR RECONSTRUCTING 512 %512 IMAGES

Algorithms IPA (60) PnP-ADMM (300) PnP-ADMM (600)
Variables size memory size memory size memory
(A} real 512 x 512 x 60 0.23 GB 512 x 512 x 300 1.17 GB 512 x 512 x 600 2.34 GB
i imaginary T ELE K BIS RGO GE T T VGRS R s s G
v R b G s s G SAGET R YR o VeGE T
others combined e B GoaGE S GosaET
Total 0.97 GB 4.72 GB 9.41 GB
100 30
el 0 70,/20 Y0,/400
B 19.66 dB 19.67 dB %
a3 S
= 2
2 W @
28 v
== 3.80x104 2.75x104
105 7.16x10-5 0
0 iteration 800 O iteration 800 0 iteration 800

Fig. 4. TIllustration of the convergence of IPA for a DnCNN prior under drastically changed -y values. The average normalized distance to zer(S) and SNR (dB)
are plotted against the iteration number with the shaded areas representing the range of values attained over 12 test images. In practice, the convergence speed
improves with larger values of «. However, IPA still can achieve same level of SNR results for a wide range of  values.

but still consider complex valued measurement operator A that Fig. 2 illustrates the evolution of average SNR against runtime
accounts for both absorption and phase [83]. Due to the large for several PnP algorithms, namely PnP-ADMM, PnP-FISTA,
size of data, we process the measurements in epochs using PnP-SGD, and IPA, for images of size n € {512 x 512,1024 x
minbatches of size 60. 1024} and the total number of intensity measurements b €
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PnP-ADMM (5)
DnCNN

IPA (5)
v

IPA (5)
BM3D
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IPA (5)

PnP-ADMM (full)
DnCNN DnCNN

Fig. 5.

Visual examples of the reconstructed House (upper) and Parrot (bottom) images by IPA and PnP-ADMM. The first and last columns correspond to

PnP-ADMM under DnCNN with 5 fixed measurements and with the full 60 measurements, respectively. The second, third, and fourth column correspond to
IPA with a small minibatch of size 5 under TV, BM3D, and DnCNN, respectively. Each image is labeled by its SNR (dB) with respect to the original image, and
the visual difference is highlighted by the boxes underneath. Note that IPA recovers the details lost by the batch algorithm with the same computational cost and

achieves the same high-quality results as the full batch algorithm.

{300, 600}. The final values of SNR as well as the total runtimes
are summarized in Table I. The table highlights the overall best
SNR performance in bold and the shortest runtime in light-green.
In every iteration, PnP-ADMM and PnP-FISTA use all the
measurements, while IPA and PnP-SGD use only a small subset
of 60 measurements. IPA thus retains its effectiveness for large
values of b, while batch algorithms become significantly slower.
Moreover, the scalability of IPA over PnP-ADMM becomes
more notable when the image size increases. For example,
Table I highlights the convergence of IPA to 24.95 dB within 11
minutes, while PnP-ADMM takes 1.4 hours to reach a similar
SNR value. Note the rapid progress of PnP-ADMM in the first
few iterations, followed by a slow but steady progress until its
convergence to the values reported in Table I. This behavior
of ADMM is well known and has been widely reported in the
literature (see Section 3.2.2 “Convergence in Practice” in [11]).
We also observe faster convergence of IPA compared to both
PnP-SGD and PnP-FISTA, further highlighting the potential
of IPA to address large-scale problems where partial proximal
operators are easy to evaluate.

Another key feature of IPA is its memory efficiency due to
incremental processing of data. The memory considerations in
optical tomography include the size of all the variables related to
the desired image @, the measured data {y, }, and the variables
related to the forward model {A;}. Table II records the total
memory (GB) used by IPA and PnP-ADMM for reconstructing
a 1024 x 1024 pixel permittivity image, with the smallest value
highlighted in light-green. PnP-ADMM requires 37.63 GB of
memory due to its batch processing of the whole dataset, while
IPA uses only 3.88 GB—nearly one-tenth of the former—by

adopting incremental processing of data. In short, our numeri-
cal evaluations highlight both fast and stable convergence and
flexible memory usage of IPA in the context of large-scale optical
tomographic imaging.

VI. CONCLUSION

This work provides several new insights into the widely
used PnP methodology in the context of large-scale imaging
problems. First, we have proposed IPA as a new incremen-
tal PnP algorithm. IPA extends PnP-ADMM to randomized
partial processing of measurements and extends traditional
optimization-based ADMM by integrating pre-trained deep neu-
ral nets. Second, we have theoretically analyzed IPA under a
set of realistic assumptions, showing that in expectation IPA
can approximate the convergence behavior of PnP-ADMM
to a desired precision by controlling the penalty parameter.
Third, our simulations highlight the potential of IPA to handle
nonsmooth data-fidelity terms, large number of measurements,
and deep neural net priors. We observed faster convergence
of IPA compared to several baseline PnP methods, including
PnP-ADMM and PnP-SGD, when partial proximal operators
can be efficiently evaluated. IPA can thus be an effective
alternative to existing algorithms for addressing large-scale
imaging problems. For future work, we would like to explore
strategies to further relax our assumptions and explore dis-
tributed variants of IPA to enhance its performance in parallel
settings.
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APPENDIX

We adopt monotone operator theory [74], [82] for a unified
analysis of IPA. In Appendix A, we present the convergence
analysis of IPA. In Appendix B, we analyze the convergence
of the algorithm for strongly convex data-fidelity terms and
contractive denoisers. In Appendix C, we discuss interpretation
of IPA’s fixed-points from the perspective of monotone operator
theory. For completeness, in Appendix D, we discuss the conver-
gence results for traditional PnP-ADMM [23]. In Appendix E,
we summarize the major similarities and differences of varia-
tions of PnP and RED algorithms. In Appendix F, we provide
additional technical details of our deep neural net architecture,
the computation of proximal operators, and results of additional
simulations. Additionally, in Supplement I, we provide the back-
ground material used in our analysis, and summarize the major
similarities. In Supplement II, we provide additional numerical
results on the comparison with different image priors, the results
on the validation of the firmly nonexpansiveness of our denoising
neural network, the performance of IPA with different minibatch
sizes and the detailed derivations on how the dual formulation
was evaluated to estimate the solution of proximal operator used
in our intensity diffraction tomography experiment.

For the sake of simplicity, we use | - || to denote the standard
ly-norm in R™. We will also use D(-) instead of D, () to denote
the denoiser, thus dropping the explicit notation for o.

A. Convergence Analysis of IPA

In this section, we present one of the main results in this
paper, namely the convergence analysis of IPA. A fixed-point
convergence of averaged operators is well-known under the
name of Krasnosel’skii-Mann theorem (see Section 5.2 in [82])
and was recently applied to the analysis of PnP-SGD [20].
Additionally, PnP-ADMM was analyzed for strongly convex
data-fidelity terms g and contractive residual denoisers R, [23].
Our analysis extends these results to I[PA by providing an explicit
upper bound on the convergence. In Appendix A.1, we present
the main steps of the proof, while in Appendix A.2 we prove
two technical lemmas useful for our analysis.

1) Proof of Theorem 1: Appendix C.3 establishes that S de-
fined in (10) is firmly nonexpansive. Consider any v* € zer(S)
and any v € R", then we have

|[v —v* — S'U||2
= |lv —v*|| — 2(Sv — Sv*)T(v — v*) + || Sv||?
< v —v*|* = |ISv|?, (14)

where we used the firm nonexpansiveness of S and Sv* = 0.
The direct consequence of (14) is that

[v—v" = Sv| <lv—v.

We now consider the following two equivalent representations
of IPA for some iteration k& > 1

2k = Gik (mk—l + slcfl)
xk = D(zk _ sk-—l)

st =gt 4ok — 2+

(15a)

rrF1l = D(vk—l)
& 2P =G; (22F 1t — vk
ok 1

i (15b)
= bl gk gkl

where ¢, is a random variable uniformly distributed over
{1,...,b}, G; = prox,,, is the proximal operator with re-
spect to g;, and D is the denoiser. To see the equivalence be-
tween (15a) and (15b), simply introduce the variable v* = z*¥ —
sk~ Linto (15b) [23]. Itis straightforward to verify that (15a) can

also be rewritten as

vF ="t =S, (v* ) withS;, :=D-G; (2D 1) .

(16)
Then, for any v* € zer(S), we have that
[v* — "2
— o — v — SoF Y2 4 |Suk !l — S, vk 1|2

+ Q(S’Uk_l _ Sik'uk_l)T(vk_l — vt — S,Uk—l)

< okt — |2 - [SuF ) + S0t — 8y, 0t
+2/Sv* ! = 8 o [t — 07

< bt = v — S 4 St — 8002

+2(R+2vL)||Sv* ! — S, v,

where in the first inequality we used Cauchy-Schwarz and (14),
and in the second inequality we used Lemma 2 in Appendix A.2.
By taking the conditional expectation on both sides, invoking
Lemma 1 in Appendix A.2, and rearranging the terms, we get

[Sv 112 < o — |2 = E [[v* — o [ 0]
+4yLR +129*L*.

Hence, by averaging over ¢t > 1 iterations and taking the total
expectation, we obtain

t
1 _
SISt
k=1

The final result is obtained by noting that

(R+2vL)?
t

E < +4yLR + 124*L* .

4yLR +127°L? < max{v,7?}(4LR + 12L?) .

2) Lemmas Useful for the Proof of Theorem 1: This section
presents two technical lemmas used in our analysis in Ap-

pendix A.1.
Lemma 1: Assume that Assumptions 1-3 hold and let ¢, be a
uniform random variable over {1, ...,b}. Then, we have that

E [||Si,v — Sv||’] < 44°L?, v eR™.

Proof: Let z; = G;(x) and z = G(x) for any 1 <i<b
and x € R"™. From the optimality conditions for each proximal
operator

Gix = prox,,, (z) = © —vg,(2:), g;(2:) € gi(2:)
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and

such that

where we used Proposition 7 in Supplement I-B. By using
the bound on all the subgradients (due to Assumption 1 and
Proposition 8 in Supplement I-B), we obtain

1Gi(x) — G(z)|| = [[prox,,, (@) — prox,,(z)||

=lgi(zi) —g(2)| <L,

where L > 0 is the Lipschitz constant of all g;s and g. This
inequality directly implies that

|ISv — S;v|| = ||G(2Dv — v) — G;(2Dv — v)|| < 2L .
Since, this inequality holds for every 7, it also holds in expecta-
tion.

Lemma 2: Assume that Assumptions 1-3 hold and let the
sequence {v"} be generated via the iteration (16). Then, for any
k > 1, we have that

|[v* —v*|| < (R+2vL) forall v* € zer(S).

Proof: The optimality of the proximal operator in (16) implies

that there exists g;, (2*) € dg;, (2*) such that
Zk =G (2‘,131@71 o ,Uszl)

k=1 _ k-1

ik

& 2z — 2 =~g, (29).

By applying v* = v¥71 — S, (vF71) =vF "t 28 — 2k 1o
the equality above, we obtain

k-1 k k

x vF =g, (2F) & o =2 —qg, (2F).

Additionally, for any v* € zer(S) and z* = D(v*), we have that
S(v*) =D(v*) - G(2D(v*) —v") =" — G(2z" —v") =0
= z'—v" =~g(x’) forsome g(z*) € dg(x*).

Thus, by using Assumption 3 and the bounds on all the subgradi-

ents (due to Assumption 1 and Proposition 8 in Supplement I-B),
we obtain

k k-1

—g;,(z") — " —g(2")|
< et — 2|+ 290 < (R+2vL) .

[o" =" = [l

B. Analysis of IPA for Strongly Convex Functions

In this section, we perform analysis of IPA under a different set
of assumptions, namely under the assumptions adopted in [23].

Assumption4: Each g; is proper, closed, strongly convex with
constant M; > 0, and Lipschitz continuous with constant L; >
0. We define the smallest strong convexity constant as M =
min{M;,..., M} and the largest Lipschitz constant as L =
max{Lq,..., Ly}

This assumption further restricts Assumption 1 to strongly
convex functions.

IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 7, 2021

Assumption 5: The residual R, := | — D, of the denoiser
D, is a contraction. It thus satisfies

IRz — Ry|| < ellz -yl

for all z,y € R” for some constant 0 < e < 1.
This assumption replaces Assumption 2 by assuming that the
residual of the denoiser is a contraction. Note that this can be
practically imposed on deep neural net denoisers via spectral
normalization [80]. We can then state the following.

Theorem 3: Run IPA for t > 1 iterations with random
i.i.d. block selection under Assumptions 3-5 using a fixed
penalty parameter v > 0. Then, the iterates of IPA satisfy

4yL

E [|&* —a*|] <n*(2R+4vL) + =y

0< 1.
1 <

Proof: Tt was shown in Theorem 2 of [23] that under Asump-

tions 4 and 5, we have that
[(1=8)z — (1= S)yll <nllz -yl amn

with

o 1+ e+ eyM + 22y M
U 1+~vM + 2eyM ’

for all ,y € R™, where S is given in (10). Hence, when
€

S S——
YM(1 + € — 2¢2)

the operator (I — S) is a contraction. Using the reasoning in

Appendix A, the sequence v* = z¥ — s#~! can be written as

=2z —s
vF =Pt -8, (v withS; :=D-G; (2D —1).
(18)

Then, for any v* € zer(S), we have that
lo" — |2
=[|(1=8)v" ! = (1 = 8)v7||?

+2((1 = S)v* 1 — (1= 8)v")T((I - S;, )v* 1~

(1= 8)v" ) + (1= 8;, )v" " — (1= 8)o* 1|2
<Pl = o)+ 2n o = 0[S, 0" - S0t

+ [IS;, v* ! — SvF 2

where we used the Cauchy-Schwarz inequality and the fact that
(I = S) is n-contractive. By taking the conditional expectation
on both sides, invoking Lemma 1 in Appendix A.2, and com-
pleting the square, we get
. 2
E [0 — v"[PJo" ] < (nllo" ! — v +27L)° .

Then, by applying the Jensen inequality and taking the total
expectation, we get

E " — v*[] < (0" —v*|] + 29L .

By iterating this result and invoking Lemma 2 from Ap-
pendix A.2, we obtain

E [|[v* —v*|] < n"(R+2yL) + (29L)/(1 — 7).

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on June 29,2022 at 18:14:41 UTC from IEEE Xplore. Restrictions apply.



SUN et al.: SCALABLE PLUG-AND-PLAY ADMM WITH CONVERGENCE GUARANTEES 859

Finally by using the nonexpansiveness of (1/(1+ €))D (see
Lemma 9 in [23]) and the fact that * = D(v*), we obtain
2vL
Efla* — 2] < (1+6) | (R+20) + {1
4vL
< nF(2R+ 4vL) + 1% .
This concludes the proof.

C. Fixed Point Interpretation

Fixed points of PnP algorithms have been extensively dis-
cussed in the recent literature [18], [19], [23]. Our goal in this
section is to revisit this topic in a way that leads to a more
intuitive equilibrium interpretation of PnP. Our formulation has
been inspired from the classical interpretation of ADMM as
an algorithm for computing a zero of a sum of two monotone
operators [8].

1) Equilibrium Points of PnP Algorithms: It is known that
a fixed point (x*, z*, s*) of PnP-ADMM (and of all PnP algo-
rithms [18]) satisfies

- =G(z"+s") and " =D(z" —s"), (19)

with £* = z*, where G = ProX. . Consider the inverse of D at
x € R™, which is a set-valued operator D™ *(z) := {z € R" :
x = D,(z)}. Note that the inverse operator exists even when D
isnotabijection (see Section 2 of [74]). Then, from the definition
of D™ and optimality conditions of the proximal operator, we
can equivalently rewrite (19) as follows
s*€y0g(z*) and —s* €D '(z) —=x".

This directly leads to the following equivalent representation of
PnP fixed points

0eT(z*) = vdg(x*) + (D Hx*) —z*).  (20)

Hence, a vector «* computed by PnP can be interpreted as
an equilibrium point between two terms with v > 0 explicitly
influencing the balance.

2) Equivalence of Zeros of T and S: Define v* := z* — s*
for a given fixed point (z*, 2*, s*) of PnP-ADMM and consider
the operator

S=D-G(2D 1) with G =prox,,,

which was defined in (10). Note that from (19), we also have
" = D(v*) and v* = &* — s* (due to z* = x*). We then have
the following equivalence

0 € T(a") =1dg(a") + (D' (@") — a")

|

=

* D(ZIJ* _ S*)

= G(2z* — v*)
= D(v*)

& S(v*) =D(v*) — G(2D(v") —v*) =0,

xr
xr
xr
xr

where we used the optimality conditions of the proximal op-
erator G. Hence, the condition that v* = z* — s* € zer(S) is
equivalent to * = D(v*) € zer(T).

3) Firm Nonexpansiveness of S: We finally would like to
show that under Assumptions 1-3, the operator S is firmly non-
expansive. Assumption 2 and Proposition 6 in Supplement I-B
imply that D and G are firmly nonexpansive. Then, Proposi-
tion 4 in Supplement I-A implies that (2D — I) and (2G — |) are
nonexpansive. Thus, the composition (2G — 1)(2D — 1) is also
nonexpansive and

(1-8) = %I‘F%(zG*l)(?D*l) 21
is (1/2)-averaged. Then, Proposition 4 in Supplement I-A im-
plies that S is firmly nonexpansive.

D. Convergence Analysis of PnP-ADMM

The following analysis has been adopted from [23]. For
completeness, we summarize the key results useful for our own
analysis by restating them under the assumptions in Section IV.

1) Equivalence Between PnP-ADMM and PnP-DRS: Anel-
egant analysis of PnP-ADMM emerges from its interpretation
as the Douglas—Rachford splitting (DRS) algorithm [23]. This
equivalence is well-known and has been extensively studied in
the context of convex optimization [8]. Here, we restate the
relationship for completeness.

Consider the sequences of DRS (top) and ADMM (bottom)

wkfl — D(’Ukil)
2k = G(2zF ! — vk )
ok

where G := prox,, is the proximal operator and D is the
denoiser. To see the equivalence between them, simply introduce
the variable change v* = z¥ — s*~! into DRS. Note also the
DRS sequence can be equivalently written as

vF =Pt Sk ) with S:=D-G((2D-1).
To see this simply rearrange the terms in DRS as follows
vF = ol 4 G(2zh ! — k1) - gkl
- [D(kal) ~G(@2D(v* ) — vk’l)] .

2) Convergence Analysis of PnP-DRS and PnP-ADMM: 1t
was established in Appendix C.3 that S defined in (10) is firmly
nonexpansive.

Consider a single iteration of DRS v™ = v — Swv. Then, for
any v* € zer(S), we have

ot —v*||? = ||Jv — 0> — 2(Sv — S'u*)T('u —v*) + ||Sv|?

<|lv—v"|* — [Sv]?,

— k1

where we used Sv* = 0 and firm nonexpansiveness of S. By
rearranging the terms, we obtain the following upper bound at
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iteration k > 1

ISv 2 < [l =[P~ o =P 22)

By averaging the inequality (22) over ¢ > 1 iterations, we obtain

t
1 X
T3St <
k=1

where used the bound on ||[v° — v*|| < (R + 2yL) that can
be easily obtained by following the steps in Lemma 2 in Ap-
pendix A.2.

This result directly implies that ||Sv?|| — 0 as ¢ — 0. Addi-
tionally, Krasnosel’skii-Mann theorem (see Section 5.2 in [82])
implies that v* — zer(S). Then, from continuity of D, we have
that ' = D(v") — zer(T) (see also Appendix C.2). This com-
pletes the proof.

[0 —v|* _ (R+29L)
t - t

E. Variants of PnP/RED Algorithms

Several variants of PnP/RED algorithms are summarized in
Table III, focusing on two properties (a) the ability to handle
nonsmooth data-fidelity terms, and (b) the ability to handle
online/minibatch processing of the measurements. The table
highlights the way IPA complements existing work by address-
ing both (a) and (b).

F. Additional Technical Details

In this section, we present several technical details of our ex-
periments. Section VI-F1 discusses the architecture and training
of the DnCNN prior. Section VI-F2 explains the computation of
the proximal operators used in our experiments. Section VI-F3
presents extra details and validations that complement the ex-
periments in Section V with additional insights for IPA.

1) Architecture and Training of the DnCNN Prior: Fig. 3
illustrates the architectural details of the DnCNN prior used in
our experiments. In total, the network contains 7 layers, of which
the first 6 layers consist of a convolutional layer and a rectified
linear unit (ReLU), while the last layer is just a convolution.
A skip connection from the input to the output is implemented
to enforce residual learning. The output images of the first 6
layers have 64 feature maps while that of the last layer is a
single-channel image. We set all convolutional kernels to be
3 x 3 with stride 1, so that intermediate images have the same
spatial size as the input image. We generated 11 101 training
examples by adding AWGN to 400 images from the BSD400
dataset [85] and extracting patches of 128 x 128 pixels with
stride 64. We trained DnCNN to optimize the mean squared
error by using the Adam optimizer [98].

We use the spectral normalization technique in [84] to control
the global Lipschitz constant (LC) of DnCNN. In the training,
we constrain the residual network R, to have LC smaller than
1. Since the firm non-expansiveness implies non-expansiveness,
this provides a necessary condition for R, to satisfy Assump-
tion 2. The training of DnCNN with and without spectral normal-
ization takes 4 and 1.82 hours, respectively, on the same hard-
ware. Thus, for about 2x increase in the denoiser pre-training
time, one can make IPA/PnP-ADMM convergent.
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2) Computation of Proximal Operators: In the CS experi-
ments, the measurement matrix A is a random matrix, and the
data-fidelity term is based on the ¢;-norm: ||Ax — y||;. While
closed form solution of the proximal operator is inaccessible
in this setting, we can efficiently approximate the proximal
solution in the dual domain by using projected gradient method
(PGM) [28], a derivation of which can be found in the supple-
ment. Note that the closed-form solution is also unavailable for
other /1 -based proximal operators [28], [99]. The stopping crite-
ria for the PGM algorithm are that either that the total iterations
exceeds 200, or that the relative change between two iterates is
below 1 x 10~%. Detailed derivations are in Supplement II-C.

For intensity diffraction tomography (IDT), we adopted the
linearized forward model developed in [83], which is based
on the Fourier transform. For the ' measurement, the for-
ward model for the 2-dimensional case is described as A; =
FiH ;F', where F' and F" denote the discrete Fourier trans-
form and its imverse, respectively, and H ; corresponds to light
transfer function of the i** illumination. Under the fs-norm,
we can directly derive the closed-form solution of the proximal
operator in the Fourier space [9], [58].

3) Extra Details and Validations for Optical Tomography:
All experiments were run on the machine equipped with an Intel
Core 17 Processor that has 6 cores of 3.2 GHz and 32 GBs of
DDR memory. We trained all neural nets using NVIDIA RTX
2080 GPUs. We define the SNR (dB) used in the experiments as

[[]]e,

SNR(a 2 201 _
(&) mfé{ "gm(w—ambneg)}’

where @ is the estimate and x is the ground truth.

For intensity diffraction tomography, we implemented an
epoch-based selection rule due to the large size of data. We
randomly divide the measurements (along with the correspond-
ing forward operators) into non-overlapping chunks of size 60
and save these chunks on the hard drive. At every iteration,
IPA loads only a single random chunk into the memory while
the full-batch PnP-ADMM loads all chunks sequentially and
process the full set of measurements. This leads to the lower per
iteration cost and less memory usage of IPA than PnP-ADMM.
Table IV shows extra examples of the memory usage specifi-
cation for reconstructing 512 x 512 pixel permittivity images.
These results follow the same trend observed in Table II. We also
conduct some extra validations that provide additional insights
into IPA. In these simulations, we use images of size 254 x 254
pixels from Set 12 as test examples. We assume real permittivity
functions with the total number of measurement b = 60.

Fig. 4 illustrates the evolution of the convergence of IPA for
different values of the penalty parameter. We consider three
different values of v € {~0,70/20,7/400} with -y = 20. The
average normalized distance ||S(v*)||3/||v*||3 and SNR are
plotted against the iteration number and labeled with their re-
spective final values. The shaded areas represent the range of
values attained across all test images. IPA randomly selects 5
measurements in every iteration to impose the data-consistency.
Fig. 4 complements the results in Fig. 1 by showing the fast
convergence speed in practice with larger values of 7. On the
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other hand, this plot further demonstrates that IPA is stable in
terms of the SNR results for a wide range of  values.

Our final simulation compares the reconstruction perfor-
mance of IPA using TV, BM3D, and DnCNN. Since TV has
a proximal operator, it serves as a baseline. The reconstruction
performance of IPA on House and Parrot are presented in Fig. 5,
while average SNR values for additional images are presented
in Table I of the supplementary material. We include the results
of PnP-ADMM using 5 fixed measurements and the full batch
as reference. First, note the significant improvement of IPA over
PnP-ADMM under the same computational budget. Second,
using learned priors in IPA leads to better reconstruction than
other priors. For instance, DnCNN outperforms TV and BM3D
by 0.7 dB in SNR. Finally, the agreement between IPA and the
full batch PnP-ADMM highlights the nearly optimal performace
of IPA at a lower computational cost and memory usage.
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