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Abstract

In this note, using the Kendall-Cranston coupling, we study on Kahler (resp. quaternion
Kahler) manifolds first eigenvalue estimates in terms of dimension, diameter, and
lower bounds on the holomorphic (resp. quaternionic) sectional curvature.
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1 Introduction

Using probabilistic coupling arguments M.F. Chen and F.Y. Wang [3, 4] proved the
following remarkable theorem on Riemannian manifolds:

Theorem 1.1 (Chen-Wang, [3, 4]). Let (M, g) be a compact Riemannian manifold with
dimension n, diameter D and first eigenvalue \,. Assume that Ric > (n — 1)k with k € R.
Then, for any C? function g : [0, D) — R such that g(0) = 0 and ¢’ > 0 on [0, D) one has

N> sup 2HI0)

re(0,D) g(T’)

where )

0 0
A}c = 4@ + (n— 1)G(/€,T)§,

and G(k,r) is the comparison function (3.1).

For instance, if k = 0, the choice g(r) = sin (5%57) in Theorem 1.1 yields the celebrated
Zhong-Yang [16] estimate A\; > g—i.

In this note we apply in the context of Kahler and quaternion Kahler manifolds

a similar coupling method to improve this first eigenvalue estimate on Kahler and
quaternion Kahler manifolds. We rely on the decomposition of Ricci curvature on
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First eigenvalue estimates

Kahler manifolds into orthogonal Ricci curvature and holomorphic sectional curvature
as follows.
Ric(X,X) = Ric-(X,X) + R(X, X, X, X)/| X%,

where X is a (1, 0)-tangent vector of the holomorphic tangent bundle on a Kéhler manifold
M™. A similar decomposition holds on a quaternion Kahler geometry. It seems worthy
to mention that to obtain Laplacian and Index comparison theorems with model spaces
in Kahler (and quaternion Kahler) geometry, it is necessary that the lower bounds of
orthogonal Ricci curvature and holomorphic (quaternionic) sectional curvature should
be assumed simultaneously, not only a Ricci curvature lower bound (also, see [5]). In
this paper, the main geometric ingredients are new estimates of the index form in those
settings that build on the previous recent work [1].

Acknowledgement: Shortly after this work was posted on arXiv, the authors were
made aware of the references [9, 10] which independently obtained comparable results
under similar assumptions but by using analytic methods. The authors thank the
anonymous referees for a careful reading and remarks that improved the presentation
of the paper.

2 Preliminaries: Kahler and quaternion Kahler manifolds

In this section, for the sake of completeness, we give the definitions we will be using
in this paper. We refer to [1] for more details. Throughout the paper, let (IM, g) be a
smooth complete Riemannian manifold. Denote by V the Levi-Civita connection on IM.

2.1 Kahler manifolds

Definition 2.1. The manifold (M, g) is called a Kdhler manifold, if there exists a smooth
(1,1) tensor J on M that satisfies:

e Foreveryx € M, and X,Y € T,M, ¢,(J.X,Y) = —g.(X, J.Y);
e Foreveryxz € M, J? = —Id7,
e VJ =0.

The map J is called a complex structure.

It is well-known that Kahler manifolds can be seen as the complex manifolds for
which the Chern connection coincide with the Levi-Civita connection, see [11], however
the complex viewpoint will not be necessary to state and prove our results, so we will
always only consider the real structure on a Kéahler manifold and work with the definition
above.

We will be considering the holomorphic sectional curvature and orthogonal Ricci
curvature which are defined as below. A reason to consider those curvature quantities
instead of the more usual Ricci curvature is that in the classical Riemannian comparison
theorems involving a Ricci curvature lower bound, the spaces with respect to which the
comparison is made are usually spheres, Euclidean spaces and hyperbolic spaces. To
develop comparison theorems in the category of Kahler manifolds, it is then necessary
to consider more subtle curvature invariants which are adapted to the additional Kahler
structure. We refer to [12] and [13] for further details about the geometric interpretation
of the holomorphic sectional curvature and orthogonal Ricci curvature.

Let

R(X,Y,Z,W) =g((VxVy = VyVx = Vixy))Z, W)
be the Riemannian curvature tensor of (IM, g). The holomorphic sectional curvature of
the Kéhler manifold (IM, g, J) is defined as

R(X,JX,JX,X)

HX) ==X xp2

ECP 27 (2022), paper 12. https://www.imstat.org/ecp
Page 2/8



First eigenvalue estimates
The orthogonal Ricci curvature of the Kahler manifold (M, g, J) is defined for a vector
field X such that g(X, X) =1 by
Rict (X, X) = Ric(X, X) — H(X),

where Ric is the usual Riemannian Ricci tensor of (M, g). Unlike the Ricci tensor, Rict
does not admit polarization, so we never consider Ric*(u, v) for u # v.

The table below shows the curvature of the Kahler model spaces C™, CP™ and CH™,
see [1].

Table 1: Curvatures of Kahler model spaces.

M A [ R
C'ITL 0 0
cpm™ 4 2m — 2
cH™ -4 —(2m —2)

2.2 Quaternion Kahler manifolds

Definition 2.2. The manifold (M, g) is called a quaternion Kahler manifold, if there
exists a covering of M by open sets U; and, for each i, 3 smooth (1, 1) tensors I, J, K on
U, such that:

e For every x € U;, and X,Y € T,M, ¢.(I,X,Y) = —¢.(X,L.,Y), ¢.(J.X,Y) =
_gx(X’ le)' gl‘(Kva Y) = _gx(Xv KJLY)/
« Foreveryz € U, I = J2 = K2 = I, K, = —Idg,n;

e Foreveryx € U;,and X € T,M, VxI,VxJ, VxK € span{l, J, K};

» For every x € U; NU;, the vector space of endomorphisms of T;;IM generated by
1., J,, K, is the same for i and j.

On quaternion Kahler manifolds, we will be considering the following curvatures. Let
R(X, Yv, Z7 W) = g((vaY - VYVX - V[ny])Z7 W)

be the Riemannian curvature tensor of (M, g). We define the quaternionic sectional
curvature of the quaternionic Kahler manifold (M, g, J) as

R(X,IX,IX,X) + R(X,JX,JX,X) + R(X,KX, KX, X)
QM) = 9(X, X)2 '

We define the orthogonal Ricci curvature of the quaternionic Kahler manifold
(M, g,1I,J, K) for a vector field X such that g(X, X) =1 by

Rict (X, X) = Ric(X, X) — Q(X),

where Ric is the usual Riemannian Ricci tensor of (IM, g). The table below shows the
curvature of the quaternion-Kahler model spaces H™, HP™ and HH™, see [1].

Table 2: Curvatures of the quaternion Kahler model spaces.

M K [ Ricw |
H™ 0 0
HP™ 12 im —4
HA™ —-12 —(4m —4)
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3 Index form estimates on Kahler and quaternion Kahler mani-
folds

Let (M, g) be a complete Riemannian manifold with real dimension n and denote by d
the Riemannian distance on IM. The index form of a vector field X (with not necessarily
vanishing endpoints) along a geodesic « is defined by

I(, X, X) = / (Vo0 X, V0 X) — (R(, X)X, ') db,

where V is the Levi-Civita connection and R is the Riemann curvature tensor of IM.
We will denote by

Cut(M) = {(z,y) e M x M, « € Cut(y)}.

where Cut(y) denotes the cut-locus of y. For (z,y) ¢ Cut(IM) we denote

n—1
I(z,y) = Y I(1,Y:, Vi)
i=1

where 7 is the unique length parametrized geodesic from z to y and {Y3,---,Y,,_1} are
Jacobi fields such that at both z and y, {7/, Y1, ,Y,_1} is an orthonormal frame.
Throughout the paper, we consider the comparison function:

—2v/k tan @ ifk >0,
G(k,r) =40 if k =0, 3.1)
2 /I tanh Y g 1. <,

3.1 Kahler case

Let (M, g, J) be a complete Kahler with complex dimension m (i.e. the real dimension
is 2m). As above, the holomorphic sectional curvature of M will be denoted by H and
the orthogonal Ricci curvature by Ric*.

Theorem 3.1. Let ky, ks € R. Assume that H > 4k, and that Ric™ > (2m — 2)ky. For
every (z,y) ¢ Cut(IM), one has

I(z,y) < (2m — 2)G(ke,d(x,y)) + 2G(k1, 2d(z,y)).

Remark 3.2. In particular, if k&; > 0 then IM is compact with a diameter < -—2— and if

. . . 2VkL
ko > 0 then IM is compact with a diameter < \/%

Proof. Let (z,y) ¢ Cut(IM) and denote by v : [0,7] — M where r = d(z,y) the unique
length parametrized geodesic from = = v(0) to y = v(r). At z, we consider an orthonor-
mal frame {X;(x), -, X2, ()} such that

Xi(z) =v/(0), Xa(x) = J¥'(0).

We denote by Xi,---,Xs, the vector fields obtained by parallel transport of
Xi(x),- -, Xom(x) along . Note that X; =+ and that X, = J7' because VJ = 0.
We introduce the function

i t) = (e, £) + =)
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where
sinvkt  ifk >0,
s(k,t) =<t if k=0,
sinh y/|k|t ifk <0,
and

cos Vkt ifk>0,
ck,t)y=41 ifk=0,
cosh +/|k|t ifk <O0.
We now consider the vector fields defined along y by X5 (7(t)) = j(4k1,t) X, and for

1=3,--+,2m by X’i(fy(t)) :Nj(kg,t)Xi. From the index lemma (Lemma 1.21 in [2]) one
has Z(x,y) < 2™ I(7, X;, X;). We first estimate

I(7, Xa, X2) = / ((VV’XQ, V. Xo) — <R(’7/,X2)X2,V'>) dt
0
< / (3 (4k, t)? + 4kij(4k, t)?)dt = 2G(ky, 2r).
0

Then, by a similar computation one has 377 (v, X;, X;) < (2m — 2)G(ka, 7). O

3.2 Quaternion Kahler case

Let now (M, g, I, J, K) be a complete quaternion Kéhler manifold with quaternionic
dimension m (i.e. the real dimension is 4m). As above, the quaternionic sectional
curvature of M will be denoted by H and the orthogonal Ricci curvature by Rict.
Theorem 3.3. Let k1, ks € R. Assume that Q > 12k, and that Rict > (4m — 4)ks. For
every (z,y) ¢ Cut(DM),

Remark 3.4. In particular, if k&1 > 0 then IM is compact with a diameter < -—7— and if

. ) . 2Vky
ko > 0 then IM is compact with a diameter < ﬁ

Proof. The proof is almost similar to the Kahler case. We can assume m > 2 since
for m = 1 theorem 3.3 reduces to theorem 1.1. Let (z,y) ¢ Cut(MM) and denote by
v : [0,7] = M where r = d(x,y) the unique length parametrized geodesic from x = ~(0)
to y = v(r). At x, we consider an orthonormal frame {X;(z), -, X4mm(z)} such that

Xi(z) =+/(0), Xa(z) = I5/(0), X3(z) = J7'(0), Xa(z) = K+'(0)

We denote by Xi,---,Xy4, the vector fields obtained by parallel transport of
X1(x),- -, X4m(x) along v and consider the vector fields defined along v by

Xo(y(t) = i(4k1, 1) Xo, X3(v(t)) = j(4k1,t) X5, Xa(y(t)) = j(4k1, ) Xs

and fori=5,--- ,4m by )
Xi(v(t)) = i(k2,t) Xi.

Since along 7 one has
VI,V J,VyK €span{l, J, K}

we deduce that along ~ one has

span{ X, X3, X,} = span{Ivy, Jy', Kv'}.
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Moreover {Xo, X3, X4} and {4/, J4/, K7’} are both orthonormal along 7. One deduces

R('Ylv X27 X2v 7/) + R(’Yly X3a X37 '7/) + R(’YI7 X47 X47 ’7,)
=R(Y, Iv', 17,7 )+ R, JY', J¥',7') + R("', K+, K~',)

=Q(Y").
Using then the index lemma as in the Kahler case and similar arguments as in the
proof of theorem 3.1 yields the conclusion. O

4 First eigenvalue estimates

With the index form estimates of the previous section in hands, we can use the
reflection coupling method by M.F. Chen and F.Y. Wang [3, 4] (see also [6, Section 6.7])
to get curvature diameter estimates of the first eigenvalue in Kahler and quaternion
Kahler manifolds.

4.1 Kahler case

Let (M, g, J) be a compact Kahler with complex dimension m. We denote by D the
diameter of M and by \; the first eigenvalue of IM.

Theorem 4.1. Let ky, k> € R. Assume that H > 4k, and that Rict > (2m — 2)ko. For any
C? function g : [0, D] — R such that g(0) = 0 and ¢’ > 0 on [0, D) one has

L
)\1 Z _ Sup kl,k)2g(r)
re(0,D) g(r)

where 5

Ly ky = 4% + ((2m — 2)G(ko,7) + 2G(k1,21)) %
Proof. Let g : [0, D] — R be a C? function such that g(0) = 0 and ¢’ > 0 on [0, D). As in
[3, 4] we will use the coupling by reflection introduced by Kendall [7].

The argument is easy to explain in the absence of cut-locus. Indeed, for the sole
sake of the explanation, assume first that Cut(IM) = (). From Theorem 2.3.2 in [15] and
Theorem 3.1, if (X,,Y});>0 is the Kendall’s mirror coupling started from (z, y) then, by
denoting p; = d(X,Y;) we have that:

dps < 2dB + ((2m — 2)G(ka, pt) + 2G (K1, 2p¢)) dt,

where (53;);>0 is a Brownian motion on R with (8);, = 2¢t. Using then Itd’s formula and
the fact that g is non decreasing, we obtain

t

a(pe) < 9lpo) +2 / 4 (p:)dB, + 4 / g (pa)ds
T / ((2m — )Gk, po) + 26(k1,20,)) ¢ (pa)ds
< glpo) +2 / g (ps)dB. + / Chs 120(ps)ds

< g(po) + 2/0 g (ps)dfBs — 5/0 g(ps)ds,

where § = —sup,.¢ (g p) %ﬁfm By taking expectations, we obtain therefore
t
E(g(p1)) < E(g(p0)) ~ 3 [ Blg(p.))ds.
0
ECP 27 (2022), paper 12. https://www.imstat.org/ecp

Page 6/8



First eigenvalue estimates

Thanks to Gronwall’s inequality this yields

E(g(pt)) < E(g(po))e "

On the other hand, let us now consider an eigenfunction ® associated to the eigen-
value )\, i.e. A® = —)\;®. One has

e M D(x) — @(y)| = [B(B(Xe) — D(V2))]
< B(|2(X¢) — (Y2)))
< [IVO[| o E(d(Xe, V) = [Vl E(pr).

Thanks to our assumptions on g, there exists a constant C' > 0 so that for every r € [0, D],
g(r) > %r. We obtain therefore

e M @(z) — D(y)| < ClIVE||E(9(pr)) < ClIVPlocg(d(a, y))e*".

Since it is true for every ¢ > 0 one concludes that \; > 6.

In the absence of cut locus issues the Kendall coupling is easily constructed using
stochastic differential equations and the above argument is complete. To handle cut-
locus issues, it is possible to instead construct the Kendall coupling (X, Y;) as a limit
of coupled random walks, see [8] and [14]. In particular, a similar argument as in [8,
Lemma 11] yields as above

E(o(p0) < Ela(m) =5 | Blg(pn)ds

and the conclusion follows then as before. O

Remark 4.2. Theorem 4.1 can be used to improve the lower bound of Theorem 1.1 in
some situations like for example the complex projective space CP™ in Table (1). Indeed
H > 4k, and Rict > (2m — 2)ko imply the Ricci lower bound Ric > 4k; + (2m — 2)ks and
we always have

(2m — 2)G(ka,7) + 2G(k1,2r) < (2m — 1)G (4k1 +27(ZniI 2) ks 7 r) |

by concavity of k — G(k,r).

4.2 Quaternion Kahler case

Let now (M, g,1, J, K) be a complete quaternion Kahler with quaternionic dimension
m. As before, we denote by D the diameter of IM and by \; the first eigenvalue of IM.
Using the coupling by reflection as in the previous section, we obtain the following
result.

Theorem 4.3. Let k1, ks € R. Assume that Q > 12k, and that Rict > (4m — 4)ks. For
any C? function g : [0, D) — R such that g(0) = 0 and ¢’ > 0 on [0, D) one has

AL > — sup Ekl,lmg(?”)
~ ey 9(r)

where )

5 9] 3]
‘Ck1,k2 = 4@ + ((4m - 4)G(k2, r)+ 6G(k1, 27‘)) s

Remark 4.4. As in the Kahler case, Theorem 4.3 can be used to improve Theorem 1.1 in
some situations like the quaternionic projective space HP™ in Table (2). Indeed Q) > 12k,
and Rict > (4m — 4)ko imply the Ricci lower bound Ric > 12k; + (4m — 4)ks and we have

12]61 + (4TTL — 4)k2 r
4m — 1 )

(4m — 4)G(ka,7) + 6G(k1,2r) < (2m — 1)G <
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