n b
Electr® 8biljty

Electron. J. Probab. 26 (2021), article no. 45, 1-30.
ISSN: 1083-6489 https://doi.org/10.1214/21-EJP605
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and their applications”
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Abstract

We study the relationship between functional inequalities for a Markov kernel on a
metric space X and inequalities of transportation distances on the space of probability
measures P(X). Extending results of Luise and Savaré on Hellinger-Kantorovich con-
traction inequalities for the particular case of the heat semigroup on an RCD(K, c0)
metric space, we show that more generally, such contraction inequalities are equiva-
lent to reverse Poincaré inequalities. We also adapt the “dynamic dual” formulation
of the Hellinger-Kantorovich distance to define a new family of divergences on P(X)
which generalize the Rényi divergence, and we show that contraction inequalities
for these divergences are equivalent to the reverse logarithmic Sobolev and Wang
Harnack inequalities. We discuss applications including results on the convergence of
Markov processes to equilibrium, and on quasi-invariance of heat kernel measures in
finite and infinite-dimensional groups.
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1 Introduction

The goal of this paper is to build upon recent results of G. Luise and G. Savaré
[28] on contraction properties of the flow of a heat semigroup in spaces of measures.
There, the authors study a “dynamic dual” formulation of various distances between
probability measures on a metric measure space, including the Kantorovich-Wasserstein
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Transportation inequalities for Markov kernels

and Hellinger distances as well as a family of Hellinger-Kantorovich distances H,
introduced in [27]. They focus on the setting of RCD(K,o0) spaces, in which the
canonical heat semigroup P, generated by the Cheeger energy satisfies a Bakry-Emery
curvature condition; these spaces are, very roughly speaking, more general analogues of
Riemannian manifolds with Ricci curvature bounded from below. Under this assumption,
they obtain contraction inequalities of the form

Hea (o P, 1 ) < Haey (Hos 121) (1.1)

where p P, denotes the dual action of the heat semigroup P; on the probability measure p,
He and HK are the Hellinger and Hellinger-Kantorovich distances respectively, and «/(t)
depends on K. The proof is based on the fact that RCD(K, co) spaces satisfy a reverse
Poincaré inequality of the form

VRSP < gy (P = (Pu) (1.2)

Indeed, the inequality (1.2), with its specific form of the time-dependent constant PZK%
is one of many functional inequalities that are equivalent to the Bakry-Emery curvature
condition; see for instance [2, Proposition 3.3].

The first goal of the present paper is to further study the relationship between reverse
Poincaré inequalities and Hellinger-Kantorovich contraction inequalities. Our first main
result is Theorem 3.7, in which we show that the implication between the two holds in a
much more general setting than RCD(K, co) spaces. We suppose only that we have a
Markov operator P acting on a sufficiently nice metric space X, and we show that if P
satisfies a reverse Poincaré inequality of the form

IVPf* < C(P(f*) = (Pf)?), [ € Lipy(X) (1.3)
then we obtain a Hellinger-Kantorovich contraction of the form

Hea (o P, 1 P) < Ky e (pos 1) (1.4)

for all probability measures g, 11 on X. In particular, (1.4) holds in non-RCD models
where there is a semigroup P; which satisfies (1.3) for each ¢, but with a time-dependent
constant C(¢) that is not of the form appearing in (1.2). We discuss several examples
and applications in Section 4, including subelliptic diffusions arising in sub-Riemannian
geometry, non-symmetric Ornstein-Uhlenbeck operators on Carnot groups, Langevin
dynamics driven by Lévy processes, and others.

Furthermore, in this general setting, we are able to show (also in Theorem 3.7) that
the converse implication holds as well, so that (1.3) and (1.4) are in fact equivalent. They
are also equivalent to a parabolic Harnack inequality. Thus the Hellinger-Kantorovich
contraction can be seen as a new aspect of a well-known family of functional inequalities,
providing additional tools and motivations for their study.

The key tool in all of this is the dynamic dual formulation of the Hellinger-Kantorovich
distance (Definition 3.1), originally introduced in [27], which expresses HK, (u0, 111) as
the supremum of [ ¢;dus — [ ¢oduo over a family of time-dependent functions ¢, :
[0,1] x X — R satisfying a certain Hamilton-Jacobi partial differential inequality in time
and space. This formula extends the so-called Kantorovich duality for the Kantorovich-
Wasserstein distance, and also includes an expression for the Hellinger distance. Having
the distance defined in terms of solutions of a partial differential inequality makes it
particularly convenient to relate it to functional inequalities where the gradient appears,
as we demonstrate in Theorems 3.4 and 3.7. Indeed, this technique also provides an

EJP 26 (2021), paper 45. https://www.imstat.org/ejp
Page 2/30



Transportation inequalities for Markov kernels

extension of the Kuwada duality theorem [25, 27], relating L? gradient estimates to a
Kantorovich-Wasserstein contraction inequality; see Corollary 3.5.

Pursuing this idea in a different direction, in Section 5 we use a dynamic dual
approach to formulate a new family of transportation-cost divergences T, ; on the space
of probability measures, which are of “entropic” type and include the Rényi divergence.
In place of reverse Poincaré inequalities, this family is designed to connect with reverse
logarithmic Sobolev inequalities of the form

PfIVIn Pf]*> <C(P(fInf)— (Pf)In Pf). (1.5)

We note that an equality of the type (1.5) is stronger than an inequality of the type
(1.3), by using (1.5) with 1 + ¢f. After developing some properties of the T, ; diver-
gences, we show in Theorem 5.15 that (1.5) is actually equivalent to a family of entropic
transportation-cost contraction inequalities for T, ;, of the form

To,cc(poP, 1 P) < Ty we (o, p1), k> 0. (1.6)

These two statements are moreover equivalent to a Wang-type parabolic Harnack in-
equality, as well as to an integrated Harnack inequality (see Remark 5.16). Thus, the
reverse log Sobolev inequality (1.5) also has a “transport” aspect. We discuss in Section
6 how (1.6) can be used, in finite or infinite dimensions, to prove certain quasi-invariance
results that were previously obtained via Wang Harnack inequalities or other methods;
see for instance [9].

For other applications, and a general overview of reverse Poincaré and log-Sobolev
inequalities and of the connections with Harnack type inequalities, we refer to the book
[35].

2 General setup and notation

Throughout the paper, unless otherwise specified, (X, d) denotes a complete, proper,
separable metric space which is a length space; in particular, path connected. We
suppose that X is equipped with a strong upper gradient |V f| as defined in [1, Definition
1.2.1]. More precisely, for a measurable function f : X — R we define

V@) =lim sup LD =W

(2.1)
T_>00<d(;v7y)§'r d(.]?, y)

and denote by Lip,(X) the space of all bounded Lipschitz functions on X. Then, we have
the following result:

Lemma 2.1 (Proposition 1.11, [17]). For every f € Lip,(X), |Vf| is a strong upper
gradient in the sense that for each rectifiable curve v : [0, L] — X parametrized by
arc-length we have

L
[f(v(L)) = F(2(0))] S/O [V f1(7(s))ds.

One may also verify that |V f| satisfies the chain rule:

Lemma 2.2.If f : X — R is Lipschitz in a neighborhood of x and ¢ : R — R is
differentiable at f(x), then |V (¢ o f)|(z) = |&'(f ()| |V f|(x).

Let Bx denote the Borel o-algebra of (X, d), and P(X) the set of Borel probability
measures on X. We suppose we are given a Markov probability kernel P : X xBx — [0, 1],
and we denote by Pf, uP the usual action of P on bounded Borel functions f and Borel
probability measures p, i.e.

Pi(z) = /X f)P(e.dy), pP(A) = /X P, A)u(dz).
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In some applications, P will be taken to be a Markov semigroup P;, which may or
may not be symmetric with respect to some reference measure. Our setting is similar to
[25]. This is more general than the setting of [28], which only considered the symmetric
semigroup P; generated by the Cheeger energy with respect to the given gradient and a
given reference measure.

Given p, 1 € P(X), the 2-Kantorovich-Wasserstein distance Wa(uo, p1) is defined as
usual by

Wg(,uo,,ul)Q = iIﬂl_f/d(iL’o,iL‘l)Q w(dzo, dzy), (2.2)

the infimum taken over all couplings 7 € P(X x X) of g, 1. In particular, for point
masses ; = d,, we have W5(dy,,0z,) = d(zo,21). We let P2(X) C P(X) denote the
Wasserstein space of probability measures p having a finite second moment, i.e. for
which [ d(z,20)? p(dz) < oo for some (equivalently, all) z € X.

The 2-Hellinger distance is defined by

2
d d
s [ (/3 [ an @

where m is any measure such that p, 11 are both absolutely continuous with respect to
m; the definition is independent of m. Convergence in Hellinger distance is equivalent to
convergence in total variation, and we have Hey (10, 111)? < 2 for all g, 11 € P(X), with
equality iff g, p1 are mutually singular.

The stated hypotheses on the space X are meant to strike a balance between general-
ity and convenience; one may certainly be able to weaken them in various ways. We have
preferred to keep the emphasis on the techniques and their applications, rather than on
stating the most general abstract theorems. In particular, in Section 6 we already depart
from this setting to consider infinite-dimensional examples based on abstract Wiener
space, where X is a separable Banach space (which is not proper), the test functions are
taken to be the cylinder functions instead of all bounded Lipschitz functions, and the
gradient V is derived from the Malliavin gradient, whose norm is not an upper gradient
with respect to the norm distance on X. This requires only trivial modifications to the
arguments in the earlier sections; we discuss the details in Section 6.

3 Hellinger-Kantorovich distances and functional inequalities

3.1 The dynamic dual formulation and basic properties

In this section, we consider the family of Hellinger-Kantorovich distances studied in
[26, 27, 28]. We focus on the so-called dynamic dual formulation of these distances, in
which they may be defined as the supremum of a difference of integrals over a class of
subsolutions of a Hamilton-Jacobi-type equation in time and space variables. This idea
is directly descended from a dynamic dual formulation of the Kantorovich-Wasserstein
distance, introduced in [30]. Using this formulation of these distances, we will see that
Poincaré and reverse Poincaré type inequalities for P lead directly to contraction results
with respect to these distances (Theorem 3.4).

We study the Hellinger-Kantorovich distance via a slightly different parametrization
which is more convenient for our purposes. As above, let Lip,(X) denote the Banach
space of all bounded Lipschitz functions on X. We remark for later use that for any finite
measure g on X, we have Lip,(X) dense in L!(p), and in particular that for any bounded
Borel function f there is a sequence f,, € Lip,(X) with f,, — f p-a.e. and boundedly.
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Definition 3.1. Let a,b > 0. We denote by A, the class of all functions ¢ = ps(z) €
C1([0,1], Lip, (X)) satisfying the differential inequality

Dsips + a| V| + bp? < 0. (3.1)

Then for probability measures p1, s € P(X) we set

Wab(pio, 1) = sup U wlduﬁ/ deuo]- (3.2)
pEALD X X

To avoid confusion, we note that W, ; itself is not a distance on (a subset of) P(X),
but rather the square of a distance.

Lemma 3.2. The squared distances W, satisfy the following basic properties:

1. Ifa<d andb <V then Wy i,y < Wy.
2. For any ¢ > 0, we have Weq op = ¢ 1 Wy .

3. When b > 0, we have W, ;, = b‘ll-Kia/b, where K is the Hellinger-Kantorovich
distance as defined in [28, Definition 2.11].

4. Wiy = %Wf where W5 is the Kantorovich-Wasserstein 2-distance.

5. Wy = Heg, where He, is the Hellinger 2-distance.

Proof. Ttem 1 is clear because when a < ¢’ and b < ¥/, we have A, C A,p. Item 2
holds because ¢ € Acq b if and only if cp € A, . For item 3, in the notation of [28
Eq. (39)] (see also [27, Section 8.4]), we have I-Ki = Wq/4,1, and the general statement
follows using item 2. Item 4 can be found as Proposition 2.10 of [28], but goes back at
least as far as [30, Section 3]; see also other references in [28].

Item 5 is almost Proposition 2.8 of [28], but there is a slight difference because
our class of functions A ; is required to be Lipschitz in space, whereas [28, Eq. (32)]
uses functions which are only bounded. This is easily handled with a straightforward
approximation argument, which we now give for completeness.

Let AP, = {p € C1([0,1], B(X)) : 055 + 2 < 0}. The statement of [28, Proposition
2.8] is that

He3 (10, 1) = sup /wl duy — /1/}0 dpo.

e AP

It is clear that Wp 1 (uo, 1) < He3(po, 1), since Ag; C Af .. Now given ¢ € Apy, it is
clear from a Gronwall-type argument that we must have ¢, < ¢o/(1 + spg) for all s; in
particular we must have ¢y > —1 or else ¢ will have a singularity. Hence

Wo,1 (o, 1) —Sup{/ 1£fdu1 /fduo : f € Lipy(X), f > —1}

and likewise

He%(uo,ul):sup{/1+f /fduo f e ByX )7f>—l}.

Now the result follows by noting that for each f € By(X) with f > —1, we can find a
sequence of bounded Lipschitz functions f,, with f, > —1 and f,, — f boundedly and
(to + p1)-almost everywhere. We then have [ f,, duo — [ f duo, and since the sequence
fn/(1+ fy) is bounded above by 1, Fatou’s lemma also gives limsup,, ., [ % dpg >

Ik ﬁ dp1. From this we conclude that Wy 1 (po, t1) > He%(uo, ). O
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Thus, the (squared) distances W, ; naturally interpolate between the Kantorovich-
Wasserstein distance, which is perhaps the most familiar transportation distance, and
the Hellinger distance, which metrizes convergence in total variation. As will be seen in
the next subsection, this makes it valuable for obtaining inequalities relating these two
distances.

Proposition 3.3. If zg,2; € X and §,,,0,, € P(X) are the corresponding Dirac mea-
sures, then

Wb (04, 02y) = % (2 — 2cos (;{/Bad(xo,xl) A g)) < id(;po,xlf A %
Proof. Fora = % b =2, thisis[27, Eq. (6.31)]; see also [27, Section 8] for the explanation
that the LET distance corresponds to H<?, which is our W, /2,2- Other values of a can
be handled by rescaling the distance d, and general values of a, b are then covered by
Lemma 3.2 2.

We note, however, that the upper bound W ,(0z,,02,) < £ d(zo,21)? A 2 can be
shown much more easily, and is comparable to the exact expression up to a universal
constant multiple (whose value is something like 1.2). The upper bound W, ; (g0, p1) < %
is essentially trivial, and can be seen, for instance, by noting

1
b

Wap < Wop = %WO,I = —Hej

and that Heg(uo,m) < 2 for all p9, 1. The upper bound W, 4(04,, 65,) < ﬁd(xo,xl)Q can
be seen in a similar way by comparing to the Kantorovich-Wasserstein distance W3 .
But it can also be shown directly from the “dynamic dual” definition of W, ;. We give the
argument here, partly for comparison with Proposition 5.12 below.

Let a > 0 and b > 0. Recall that (X,d) is assumed to be a complete length space,
so there exists a constant speed geodesic v : [0,1] — X joining z( to z1: namely,
Yo = Zo, Y1 = x1, and d(7s, ) = |s — t|d(xo,x1). Since V is a strong upper gradient, for
any Lipschitz f : X — R we have that f o v is absolutely continuous and | f(v,)| <
|V f|(7vs)d(xo,x1); see [1, Definition 1.2.1]. Now using the chain rule, we have

er(en) = oleo) = [ ool ds

1
< / Ouoa(7) + Vgl (72 (0, 21)] ds
0

< / [—aVos|(75)% = bps (15)? + [Veps| (vs)d(x0, 1)] ds
0

1 2
1 1
= - \Y% s\'fs)| — d 5 —d 5 2_ b s Vs 2 d
/O [ a( ©s(7s)] %0 (2o 931)) L (zo,21)” = bps(7s)” | ds
by completing the square. Discarding the two negative terms and taking the supremum
over ¢, € A, p, we recover the desired bound. O

3.2 Functional inequalities

Thanks to the form of the dynamic dual definition for W, ;, one obtains a direct
implication between functional inequalities involving the gradient and contractions of
Hellinger-Kantorovich distances. This was the key idea in the results of [28]; here we
make the implication more explicit and collect several cases into a single statement.
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Theorem 3.4. Suppose that for some a > 0 and b,v,6 > 0, the Markov operator P
satisfies the functional inequality

alVPf[?+b(Pf)? <AP|Vf+6P(f%),  f € Lip,(X). (3.3)
Then we have the transportation distance contraction

Wy s (1o P, 11 P) < W b (o, 1), o, 1 € P(X). (3.4)

Proof. Since a > 0, (3.3) implies that the Markovian operator P is a bounded oper-
ator on Lip,(X). Now let ¢ € A, ;. Since ¢ € C'([0,1],Lip,(X)), we have Py, €
C1([0,1], Lip, (X)) as well, and Pd,p, = ds Pp,. Hence

dsPps = Pdyps < P [—7|Vips|? — 6¢2]
—vP|Vp,|* — 6P(42)
—a|VP<,os|2 — b(P<pS)2

IN

where we used the fact that P is positivity preserving, and the assumed inequality (3.3).
This shows that Py, € A, . Thus for 10, u1 € P(X) we have

W, (o P, P) = sup /Pwldm /P%duo
‘FG-A'}/J

< sup / Prdur — / o dpo
d"e-Aab
= a,b(,anlul)

as desired. O

Corollary 3.5. If P satisfies the gradient estimate |VPf|?> < CP|V f|? for some C, then
for any b > 0 we have
Wi p(o P, 1 P) < We (o, f11)-

In particular, taking b = 0 we recover the Kuwada-type duality
Wa(po P, i P)? < CWa(po, ).

The case C =1 of Corollary 3.5 is [27, Theorem 8.24], and when additionally b = 0 it
reduces to [25, Proposition 3.7].

Proof. Noting that (Pf)? < P(f?) by Jensen’s inequality, the gradient estimate |[VPf|? <
CP|V f|? implies that (3.3) holds with a = 1,y = C,d = b. O

Remark 3.6. Note that, conversely, the estimate

Wa(uoP, i1 P)* < CVVz(uo,m)2

; see [25].
Theorem 3.7. Let C' > 0. The following are equivalent:

implies the gradient estimate |[VPf|? <

1. The reverse Poincaré inequality
IVPfI* < C(P(f*) = (Pf)?),  f € Lipy(X). (RPI)

2. The Hellinger-Kantorovich contraction

C
Hea (1o P, 11 P)? < Hy e (o, p1)* < ZW2(M07M1)2, po, 1 € P(X).  (HKC)
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3. The Harnack type inequality
Pf(z) < Pf(y) + VOd(x,y)VP(f})(z), x,yeX,fe€By(X),f>0. (HPD

We point out, for future use, that the reverse Poincaré inequality (RPI) is equivalent
to the apparently weaker form

[VPfI>? <CP(f?), f€Lipy(X) (3.5)

Indeed, to see that (3.5) self-improves to (RPI), suppose f € Lip,(X), fix an arbitrary
x € X, and let g(y) = f(y) — Pf(x). Then apply (3.5) to g and evaluate at z.
Before we give the proof of the theorem, we state a lemma interesting in itself.

Lemma 3.8. Forany f € By(X), and z,y € X,

|Pf() = Pf(y)I* < 2Hex(d. P, 6, P)* (P(f*)(x) + P(£*)(1)) -

Proof. Let m be a Borel measure such that both §, P and J, P are absolutely continuous
with respect to m. We denote

We have

\Pf(z) = Pf(y)l

= /Pm(x,z) /Pm z)dm(z)

:/\/sz\/P (z,2)f(z)d /\/P (y, 2)\V/ P (y, 2) f(2) dm(z)
/\/Pm(z,z)\/Pm(x,z)f /\/P 2, 2)\/ Pu(y, 2) f(2) dm(z)
| [ VAP / VPl Pl ) () dm(2)
/’\/sz VPr(y 2 ‘\/P (7, 2)f(2) dm(z)
/’\/P (@.2) — /Py, 2 ‘\/P (0, 2)f(2) dm(z)

Therefore, by the Cauchy-Schwarz inequality,

IN

(PF(@) ~ P < Hea(6,P.8,P)* (VPP @) + VPP W)
< 2He(6, P, 6,P)* (P(f*)(z) + P(f*)(y)) - O
We are now ready for the proof of Theorem 3.7.

Proof of Theorem 3.7. (RPI) = (HKC): This follows from Theorem 3.4 with v = 0 and
b =6 = C. We note again that this direction is the essence of [28, Theorem 5.4].
(HKC) — (RPI): Assume that

C
Hea (po P, i P)* < ZW2(M07M1)2-
Then, for every z,y € X,

Heo (5.7, 8,P)° < ()"
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Therefore, from Lemma 3.8 one deduces

|Pf(x) = Pfy)]® < %d(x7y)2(P(f2)(x) +P(f*)())- (3.6)

Similarly, one has

[P(f*)(z) = P(f) (W) < %d(z, y)*(P(f)(@) + P(f)(y)

< Cd(z,y)?[1 fll%

which implies that P(f?) is a continuous function. Since

. |Pf(x) — Pf(y)]
=1 ‘ T Az
VPIl@) =l s iy

we may divide both sides of (3.6) by d(z,y)? and let y — x to obtain
IVPf|(x) < CP(f?)(x)

which, as noted above, self-improves to (RPI).
(RPI) = (HPI) and (HPI) = (RPI): The proof follows from Proposition 1.3 in [36]
so we omit it for conciseness. O

4 Applications to convergence to equilibrium

In this section, we focus on the applications of the transportation type inequalities
proven in Theorem 3.4 as a powerful tool to prove convergence to equilibrium for Markov
semigroups. We will mostly focus on the applications of the transportation inequality

Hea (o P, 1 P)* < %Wz(ﬂo7ul)27
which, according to Theorem 3.7, comes from the reverse Poincaré inequality
IVPFI? < C(P(f*) = (Pf)?).
The original Kuwada duality proved in Corollary 3.5 relating the transportation inequality
W3 (o P, a P)* < CW3 (o, p)?

to the gradient bound
[VPf]? < CP(IVf?)

was already illustrated as a tool to prove convergence to equilibrium in [3], so we will
spend less time on it. Also, our examples will be finite dimensional, though applications
could be given in an infinite dimensional framework as in Section 6. In particular,
applications to stochastic partial differential equations might be the object of a future
work.

4.1 Diffusions with I'; >0

In this section, as an illustration of our general results, we first show how to recover
the results of [28]. Let A be a locally subelliptic diffusion operator (see Section 1.2 in
[4] for a definition of local subellipticity) on a smooth manifold M. For smooth functions
f,9: M — R, we can define the carré du champ operator as the symmetric first-order
bilinear differential form given by:

L(f,g9) == 5 (A(fg) — fAg — gAf). (4.1)

N |
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We write I'(f) for I'(f, f). (When A is the Laplacian on R"™ or on a Riemannian manifold,
we have I'(f) = |V f|?.) We assume that A is symmetric with respect to some smooth
measure u (not necessarily finite), which means that for every pair of smooth and
compactly supported functions f,g € C§°(M),

/ oAfdu= [ fAgdu.
M M

There is an intrinsic distance associated to the operator A that we now describe. An
absolutely continuous curve « : [0,7] — M is said to be subunit for the operator L if for
every smooth function f : M — R we have | f(7(t))| < /(Tf)(y(t)). We then define
the subunit length of v as ¢;(y) = T. Given z,y € M, we indicate then with

S(x,y) :={y:[0,T) = M |~y is subunit for I", v(0) = =, v(T') = y}

and assume that S(z,y) # 0 for every x,y € M. For instance, if L is an elliptic operator
or if I is a sum of squares operator that satisfies Hormander’s condition, then this
assumption is satisfied. Under this assumption,

d(z,y) == inf{ls(y) [ v € S(z,9)} (4.2)

defines a distance on M and (M, d) is by construction a length space. The carré du
champ operator yields a strong upper gradient structure on (M, d) and from Theorem
1.12 in [4] one has

d(z,y) = sup {[f(x) = f(y)l, f € CF(M), [T(f)llc <1}, @,y € M.

We assume that the metric space (M, d) is complete. In that case, from Propositions 1.20
and 1.21 in [4], the operator A is essentially self-adjoint on C§°(M). The semigroup in
L?(M, u1) generated by A will be denoted by (P;):>0. The Bakry I's operator is defined as

La(f.9) = 5 (ACC(f,9)) ~ T(f, Ag) ~ T(9. A1), Fog € CX(M)

Theorem 4.1. Assume that for every f € C*(M), I's(f, f) > 0. Then, for every vi,vs €
PQ(M) andt >0,

1
8t
Therefore, if the invariant measure p is a probability measure which belongs to Ps(M),
then for every x € M andt > 0,

Heo (v1 Py vaPy)? < —Wa (v, 1)

1
Hea (80P, 1)? < oo Wald, 1)?
and when t — 400, d, P, converges to p in total variation for every x € M.

Proof. It follows from Bakry-Emery calculus (see for instance [2, Proposition 3.3 (5)])
that since I'; > 0 one has the following gradient bound that holds for bounded and
Lipschitz functions f,

1
F(Ptf)SE(Pt(fQ)_(Ptf)Q), t>0
which yields the conclusion thanks to Theorem 3.7. O

Example 4.2. An example where the theorem applies is the case where A is the Laplace-
Beltrami operator on a complete Riemannian manifold of non-negative Ricci curvature.
In that case, the invariant measure p is the Riemannian volume measure, and the
assumption I's > 0 is equivalent to the condition that the Ricci curvature of M is
non-negative.
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Remark 4.3. More generally, if A is taken to be the operator generated by the Cheeger
energy as in [28], so that I' = Ch, then the hypothesis of Theorem 4.1 essentially asks
for X to be an RC'D(0,o0) space, and the conclusion is included in [28, Theorem 5.2].
Indeed, the I'; > K condition was already the key idea of the results of [28]. Our purpose
in stating Theorem 4.1 is to draw attention to the consequence that J, P, converges in
total variation to its equilibrium measure, at a rate no slower than 1//%.

Remark 4.4. If ', > q, then, Bakry-Emery calculus also yields the gradient bound
L(Pf) < e 2™ P,(T(f)).

which therefore implies from Theorem 3.4 the following contraction property in the W,

distance:
Wo(n1 Py, 1o Py)? < e 2 Wa (v, 1)?,

This appears in [25] and [32].

4.2 Subelliptic operators

The assumption I'y > 0 requires some form of ellipticity of A. In order to generalize
the previous theorem to truly subelliptic operators, one can make use of the generalized
I'-calculus developed in [8, 5]. In addition to the carré du champ form I" defined in (4.1),
we assume that M is endowed with another smooth symmetric bilinear differential form,
indicated with I'?, satisfying for f,g € C*>(M)

T7(fg,h) = fT%(g,h) + gT?(f, h),
and I'?(f) =T'4(f, f) > 0. Let us assume that:
(H.1) There exists an increasing sequence h;, € C3°(M) such that h; 1 on M, and

IT (i )loo + T2 ()| oo — 0, @s k — oo
(H.2) For any f € C*°(M) one has

L(f,07() =2 (£,T(f))-
Let us then consider
ry(f,9) =

As for ' and T'?, we will freely use the notations s (f) = a(f, f), TZ(f) = TZ(f, f).
Theorem 4.5. Let p; > 0,p2 > 0 and k > 0. Assume that for every f € C*°(M) and

[ATZ(f,9) —T7(f,Ag) —T7(g, Af)]. (4.3)

DN |

v>0,
z K z
Do(f) + VD5 () = (p1 = =) D(f) + paT (). (4.9)
Then, for every vq,vs € Po(M) and t > 0,
1 2
Heg(l/llDt7 I/2Pt)2 S _— (1 + H) WQ(Vl, V2)2.
8t P2

Therefore, if the invariant measure p is a probability measure which belongs to Pa2(M),
then for everyx € M andt > 0,

1 2K
He2(6th7,U/>2 S g (1 + ,02) W2(6w7/1/)2

and when t — +oo, 6, P, converges to u in total variation for every x € M.
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Proof. It follows from Proposition 3.2 in [5] that

r(n) < 5 (14 25) (%) - ()

and thus the conclusion follows from Theorem 3.7. O

Example 4.6. An example where this theorem applies is the case where A is the sub-
Laplacian operator on a compact H-type sub-Riemannian manifold, see [10]. In that case,
the invariant measure p is again the Riemannian volume measure and the assumption
(4.4) is equivalent to the fact that the horizontal Ricci curvature of M is non-negative.
This applies for instance to the sub-Laplacian on the special unitary group SU(2), as well
as to compact quotients of the Heisenberg group H?.

4.3 Non symmetric Ornstein-Uhlenbeck semigroups on Carnot groups

In this section, we show that the method also applies to hypoelliptic and non-
symmetric diffusion operators. In particular we prove a quantitative rate of convergence
for the non-symmetric Ornstein-Uhlenbeck semigroup on a Carnot group.

A Carnot group of step (or depth) N is a simply connected Lie group G whose Lie
algebra can be written

g=V1d..8 Vn,

where
and
Vs, =0, for s > N.

From the above properties, it is of course seen that Carnot groups are nilpotent. The
number

N
D= ZidimVi
=1

is called the homogeneous dimension of G. On g we can consider the family of linear
operators which act by scalar multiplication ¢ on V;. These operators are Lie algebra
automorphisms, due to the grading, and induce Lie group automorphisms A; : G — G
which are called the canonical dilations of G. It is easily seen that there exists on G a
complete and smooth vector field D such that

At — e(ln t)D.

This vector field D is called the dilation vector field on G. If X is a left (or right) invariant
smooth horizontal vector field on G, we have for every f € C*°(G), and ¢ > 0,

X(fOAt) :tXfOAt

Let us now pick a basis V1, ..., V; of the vector space V;. The vectors V; can be seen as
left invariant vector fields on G. In the sequel, these vector fields shall still be denoted
by Vi,..., V4. The left invariant sub-Laplacian on G is the operator:

It is essentially self-adjoint on the space of smooth and compactly supported functions
with respect to the Haar measure p of G. The heat semigroup (P,);>o on G generated by
the sub-Laplacian, defined through the spectral theorem, is then a Markov semigroup.
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There are two different operators on G which are both commonly referred to as
Ornstein—-Uhlenbeck operators; see [29] for a thorough comparison of the two types
and their properties. We are interested here in the non-symmetric Ornstein Uhlenbeck
operator defined by

d
L=) V?—aD
=1

where « > 0. This operator generates a Markov semigroup (Q:):>o which is given by the
Mehler formula

Qif =Py voat (o Ap—ai), t>0.

It is clear that the probability measure 6. P/, is invariant by ); where e denotes the
identity element in G. Note that . P; /. is the heat kernel measure started from e in
G. From known heat kernel estimates in Carnot groups (see [31]), one easily sees that
the invariant measure 6.P; /. € P>(G). The next theorem proves exponentially fast
convergence to equilibrium for Q; with a quantitative rate.

Theorem 4.7. Forevery x € G and t > 0,

90[672at

2
Hez (0,Qt, 06 P /o)™ < 2T —e oty

WZ((S:m 6eP1/a)2~

Proof. We denote by V4 the horizontal gradient on G given by
d
Vol =Y Vi)V,
i=1

The following reverse Poincaré inequality was proved in [6]:

VAP < D) ~ (P,

Since Qif = Py_.—at (f 0 A —at¢), One has

VuQuf = e 'V Py oo (f o Ap-a).

Thus,
Dae~ 21 Dae 20
v < —— P o (fo Aemer)?) = g 2
| HQl‘f| = 2(1 — e,at) l—e—at ((f ) ) 2(1 — efat)Qt(f )
and the conclusion follows as before from Theorem 3.7. O

Remark 4.8. The above proof and [6] show that if G is an H-type group, then the

Da Dae” 20t
constant m can be improved into Zd(1—c=aty -

4.4 Langevin type dynamics driven by Lévy processes

In this subsection, we work in the space X = R" with its usual Euclidean distance
and gradient.

Let (IVi)¢>0 be a Lévy process in R", i.e. a cadlag stochastic process with stationary
and independent increments. We assume that Ny = 0 a.s. and that for every T > 0,

E (SUPte[o,T] |Nt\2) < 4o00. In R", we consider the following stochastic differential
equation with additive noise:

dX? = —VU(X?)dt +dN,, X&=z€R", (4.5)
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where U : R® — R is a C? function. For simplicity, we assume that VU is a Lipschitz
function, so that it is easily proved that (4.5) has a unique solution for any = € R™ which
moreover satisfies for every T' > 0, E (supte[O’T] |X§”|2) < +o0. For t > 0, we denote by
P, the Markov kernel defined by

Pif(x) = E(f(X])),

so that Pi(x,A) = P(X} € A). It is a contraction semigroup in L*°(R"), and from the
square integrability we have that for every u € Po(R™) and ¢ > 0, uP; € P2(R").

4.4.1 Convergence to equilibrium in the Kantorovich-Wasserstein distance

Let V2U denote the Hessian of U.

Theorem 4.9. Assume that there exists a > 0 such that V2U > a (uniformly in the
sense of quadratic forms). Then, there exists a unique probability measure pu in the
Wasserstein space Po(R™) such that for every t > 0, uP; = u. Moreover, for every t > 0,
and v € Py(R™) one has,

Wa(vPy, 1)? < e 2" Wy (v, p)?.

Proof. We proceed in several steps.
Step 1: Proving the Bakry-Emery type estimate.
Let J; = 6;; L be the first variation process associated with equation (4.5). Since

P.f(z) = E(f(X7¥)), by the chain rule we have
VP (@) = E(J; VF(XE)).

Therefore, by the Cauchy-Schwarz inequality,
VP f(@)]> <E (1771 E (IVF(XP)P).

Since E (|Vf(X?)[?) = P(|Vf|*)(z), we are left to estimate E (|J;|?). To this end, we
observe that

dJ; = —V2U(XP)Jedt, Jo=Idgn. (4.6)
From the assumption V2U > a this yields
|TF|2 < e~ 2ot
One concludes E (|.J;]?) < e~2*" and therefore
VP f(2)]? < e 2P|V f]?)(2).
By Kuwada duality (Corollary 3.5), this yields that for every vy, v; € P2(RR"™),
Wo(vo Py, v1 Py)? < e 2 Wy (vg, v1)?. (4.7)

Step 2: Proving the existence and uniqueness of the invariant measure.

Let ¢ > 0. Thanks to (4.7), the map v — v P, is a contraction from P2(RR") into itself.
Since P2(R™) is a complete metric space, one deduces that it admits a unique fixed
point; call it u;. We have then for every ¢ > 0 that p; P; = ;. Composing with P; yields
wie Py Py = puy Ps. Since P, is a semigroup, one has P, P; = P, P;. Therefore, p;Ps Py = . Ps
which means that p; Ps is invariant for P;. By uniqueness this implies u; P; = p:. Using
now the uniqueness of the invariant measure for P; yields u; = ps. As a conclusion, p is
independent of t. We can call it p.

Step 3: Concluding.

Using (4.7) with vy = v and v; = p yields the expected result. O

EJP 26 (2021), paper 45. https://www.imstat.org/ejp
Page 14/30



Transportation inequalities for Markov kernels

4.4.2 Convergence to equilibrium in the Hellinger distance

Our next application shows that in the diffusion case one can prove convergence to
equilibrium in the Langevin dynamics without assuming coercivity of the Hessian of
the potential (i.e. V2U > a > 0). The price to pay is a convergence speed which is not
exponential but polynomial. We now assume that (NV;);>¢ is a Brownian motion in R”. In
that case, the invariant measure of (4.5) is known explicitly, and is given up to a possible
normalization constant by e~V (*)dz.

Theorem 4.10. Assume that the normalized invariant measure dyu = %e‘U(x)dx is a
probability measure with a finite second moment and that V2U > 0 (U convex). Then,
for every x € R"

1
Hea (6, Py, p1)? < ZtW2(5z»/~L)2~
In particular, X converges in total variation to 4 when t — +oo0.

Proof. From the Bismut-Elworthy-Li formula [11, 20], we have for every v € R"

s = 18 (705 [ i),

where, as before, J; = 6;; £ is the first variation process associated with equation (4.5).

From the Cauchy-Schwarz inequality, and the fact that V2U > 0 implies |J;| < 1 a.s., one

has
e At”“””ﬁ) SE(/(X0))E ((/ tuwmzvf)Q)

<E(f(X})*)E (/Ot JSU|2d8>

< to]’E (£(X])?) =t Pu(f?)(x).

2

One concludes that for every v € R”,

(VPf(x),0)? = TP P(f) ).

This yields

1
[VPf(z)” < gPt(f2)(x)
which is of the form (3.5). As noted before, this self-improves to (RPI) and thus we have
the expected result by Theorem 3.7. O

Remark 4.11. Theorem 4.10 might also be proven using Theorem 4.1 above. However,
we wanted to illustrate the use of the Bismut-Elworthy-Li formula as a tool to prove
reverse Poincaré inequalities.

5 Rényi-type divergences and functional inequalities

5.1 The dynamic dual formulation and basic properties

The notions discussed in the previous section can be modified to give a dynamic
dual formulation of a family of “entropic” divergences on P(X) x P(X), which we
will denote by 75 ;. In the same way that the (squared) distances W, ; included the
Hellinger distance, the 7, ;, family will include the Rényi divergence (in a different
normalization); and where contractions of W, ;, were equivalent to reverse Poincaré
inequalities, we will show (Theorem 5.15) that contractions of T, ; are equivalent to
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reverse logarithmic Sobolev inequalities, Wang-type Harnack inequalities, and integrated
Harnack inequalities.

Definition 5.1. Let a,b > 0. We denote by &, the class of all positive functions
¢ € CY([0,1],Lip,(X)), bounded and bounded away from 0, satisfying the differential
inequality

Dsips + aps|VIngg|? + bps Inp, < 0. (5.1)

Then for probability measures p1, us € P(X) we set

Tap(po, 1) = sup [/ s01d,u1—/ @()dﬂ()} (5.2)
pEEap X X

(We note here a slight abuse of terminology. The functions 7, ; as defined above do
not actually satisfy the definition of a statistical divergence, but they have renormalized
versions fhb, defined in (5.10) below, which are divergences as shown in Proposition
5.8. However, it will be simpler in most cases to work with T, ; than with Ta,b, and we
will continue to use the term “divergence” for either of the two when no confusion will
result.)

Remark 5.2. By writing ¢, = ¥+, we could formulate Definition 5.1 instead as

Ta (10, 1) = sup {/ e dpy — / ¥ dpg : 05ty + a|Vibs|? + by < 0} :
X X

In this notation the relevant Hamilon-Jacobi differential inequality more closely resem-
bles (3.1), with a Oth order term which is now linear instead of quadratic. However, for
comparison to functional inequalities as in Theorem 5.14 below, the original formulation
of Definition 5.1 will be more convenient.

Notation 5.3. Forb > 0, let p = €’, let ¢ = p/(p — 1) be the conjugate exponent of p, and

set 1
—plTa. (5.3)
q

We will use this notation throughout the rest of the paper when discussing 7y ;. The
reader should keep in mind p, ¢, C, depend implicitly on b.

The following elementary inequality will be used several times.

Cy = lp—q/p —
q

Lemma 5.4. Let b > 0 and define p, q, C,, as in Notation 5.3. Suppose z,w > 0. Then for

all x > 0 we have
24

2Py — gw < Cy

w1
5\ ¢
with equality when x = (> .
pw

Proof. We can suppose without loss of generality that w = 1, for applying this case with
z replaced by z/w and multiplying through by w yields the general case.
Using Young's inequality for products uv < Su” + v9, we have

1
2Py g — (px)l/p(p—l/pz) —rx<aH4 —p P _ g = (2.
q
Young’s inequality becomes equality precisely when «” = v9, which in this case means
pr =p~9/Pz9 or & = p~9/P~129, Since —q/p — 1 = —q this is the desired expression.

Alternatively, one can let y = —pw/z < 0, f(z) = —pz'/?, and write

z e
supz'/Pz — zw = = sup(zy — f(x)) = = f*(y)
x>0 P z>0 p
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where f* denotes the Legendre transformation or Fenchel conjugate of the convex
function f. It is known that f*(y) = —(—y)!79/(1 — ¢) [13, Table 3.1] and this yields the
desired statement. We thank the anonymous referee for this observation. O

Lemma 5.5. Supposea >0, b > 0. Let f : X — R be bounded and 1-Lipschitz. Then for
every k < .~ we have

(o (22:7) am)’
(fX exp (1_szak f2> dﬂo)q_l .

Proof. We consider a function ¢ of the form ¢, = exp(a(s)f? + 3(s)). In order to have
s € Eq,p We Tequire

Tap(po, 1) > Cy (5.4)

0> sips + aps|VIngp[* + by, In g,
= @5 (&' (5)f? + B'(5) + aa(s)* |V f2|* + ba(s) f2 + bB(s)) -
Since |V f| < 1, we have |V f2|2 = (2f|V f])? < 4f2, so it suffices to have

o (s) + 4aa(s)? + ba(s) =

0
B'(s) +08(s) =0

which is satisfied by

kb
o(s) = ebs — dak

B(s) = Boe "

for any k < i and any 5y € R. So with this choice of ¢, we have

Tap(to, 1) Z/ 1 du1*/ o dpg
X X

— ePoe™” _ kb _ 50/ kb o
‘ /)(eXp(ebzlakf)d“l ) P\ T aar ) o
q
(i exp (2478?) dpu)
b )
(Sexp (22 72) dpo)

when we make an optimal choice of 3, as described in Lemma 5.4, with z = ¢? and
noting that 1/p = e°. O

In the previous lemma, when a = 0, the gradient terms vanish, and we can instead
consider a function ¢, of the form ¢, = exp(a(s)f + B(s)) where f need only be bounded
and Lipschitz. This yields the following improvement:

Corollary 5.6. Suppose b > 0, and let f € Lip,(X). Then
_ q
(fx ec ' d,ul)
. . . Ng—1 °
(fx el d/‘O)q

Lemma 5.7. Let b > 0,r > 0. Suppose y : [0,1] — (0,00) is absolutely continuous and
satisfies the differential inequality

To,b(to, p11) > Cy (5.5)

y <ry—bylhy a.e., y(0) = yo > 0. (5.6)
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Then

bs

y(s) < exp (% (1 — e_bs)) ye (5.7)

for all 0 < s < 1, and in particular, following Notation 5.3,

.
y(1) < exp <qb) l”. (5.8)

Proof. Let ((s) = e* Iny(s); then ((s) satisfies ('(s) < re’* a.e. Integrating from 0 to s
yields

C(s) Sty + 7 (" = 1) (5.9)
which rearranges to (5.7). O

Proposition 5.8. For all a > 0 and b > 0, we have T, ;(uo, 1) > Cp, with equality iff
Ho = H1- Thus

1
Top(pto, 1) == In aTa,b(HO,Hl) (5.10)

is a statistical divergence on P(X); that is, Tvmb(,uo, w1) > 0 with equality iff pg = p1.
Proof. The lower bound T, ;(po, 1) > C, follows from Lemma 5.5 with f = 0.
To show equality holds when pp = p; = p, let ¢ € £, Note that in particular, ¢

satisfies 055 + bpsInp, < 0; that is, &, C £ p. So for each z, y(s) = p,(x) satisfies
(5.6) with » =0, and so by Lemma 5.7 and Lemma 5.4 we have

p1(x) = @o(@) < po(2)'/” = o(x) < Cy.

Thus fx(‘Pl — o) dpp < Cp and taking the supremum over ¢, € &, , we have Ty, (i, 1) <
Cy.

Conversely, suppose pg, p1 satisfy Tp (1o, 1) = Cp. Let f : X — R be bounded and
1-Lipschitz. Lemma 5.5 then implies

kb a kb ¢t
(oo (2] ) = ([ (577) o)

for every k < i. When k = 0, both sides equal 1, so we differentiate the inequality at
k = 0 to obtain

e [ P <a-0b [
X X

/XdemS/Xdeuo

since ¢/(¢ — 1) = p = ¢b. The rest is a density argument. Replacing f by f + ¢ for an
arbitrary constant c € R and expanding, we get

which rearranges to

/deu1+2c/ fdu1+c2s/ deuo-f—?C/ Fdyo +
X X X X

Letting ¢ — o0, we see this implies [, f duy = [y fduo for all bounded 1-Lipschitz f,
and by scaling, the same holds for all bounded Lipschitz f. This implies pg = 1. O

We now show that when a = 0, To,b recovers the Rényi divergence, whose definition
we recall:
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Definition 5.9. For g, 1 € P(X) and r > 1, the Rényi divergence of order r is given by

1 dﬂl " 1 d,Ll,l rl
Dr = 71 _— d = 1 —_— d
b llpo) = =5 n/x <dM0) A n/x (duo i

if uy is absolutely continuous with respect to g, and D, (p1 || 10) = oo otherwise.

Lemma 5.10. Let b > 0. If Ty, (po, 1) < oo then i, is absolutely continuous with respect
to Ho-

Proof. Let A C X be a Borel set for which p(A4) = 0. We can then find a sequence of
bounded nonpositive Lipschitz functions f,, such that f,(z) — 0 for a.e. = € A (with
respect to pg + p1), and f,(z) — —oo for a.e. x € A°. Applying Corollary 5.6 to f,,, we

have
_ a 7 q-1
(/ ¢ In dm) < 70’17(%’”1) </ efn d,uo) )
X Cy X

Letting n — oo and using dominated convergence, this becomes

T
(At < B0 gyt — 0

Proposition 5.11. Let b > 0. For all g, 11 € P(X) we have

q
Cy [ (%ﬁ;) dpo, 1 < po

00, p1 & o

To,b(po, p1) = (5.11)

so that
Top (o, 1) = (¢ — 1) Dg(p || po)- (5.12)

Proof. The case 1 < pg is the contrapositive of Lemma 5.10, so suppose p; < o and
let o = Sﬁ. We show Ty, = Cy [ 07 dpuo.
To show Ty, < Cj, [ 0% dpg, let ¢ € &y . Taking y(s) = ¢,(z) and r = 0 in Lemma 5.7,

/P pointwise. Hence

/ w1 dp —/ o dpio =/ (w10 — o) duo
X X X
S/ (so(l)/pg— <P0> dpo
X

< Ob/ 0% duo
X

we have ¢ < 90(1)

by Lemma 5.4. Taking the supremum over ¢ € & yields the desired upper bound.
For the lower bound, if o € L9(ug), take a sequence f,, € Lip,(X) such that e/~ — o9,
po-almost everywhere (hence also y;-almost everywhere) and in L'(pg). Then Corollary

5.6 gives
-, q q-1
Chp (/ et I dm) < To,6(pos p11) (/ efn duo) .
X X

Pass to the limit, applying Fatou’s lemma on the left and L' convergence on the right, to

obtain
-1

b q q
Cy (/ o’ dm) < Top(ko, p11) (/ quﬂo> . (5.13)
X X
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Now observe that ge™® = ¢/p = ¢ — 1 and so [ 0% " dpy = Jx 07 dpy = [y 0% dpo.

Hence (5.13) rearranges to

Cb/ 0% dpo < Top(po, p1)
X

as desired.

If o ¢ L9(p0), then we need to show T (10, 1) = co. Let m > 0 and 4,, = {0 < m}.
Choose f,, € Lip,(X) with ef» — %14, up-a.e. and in L' (y). Then proceeding as in the
previous case, we obtain

Cb/ 0% dpuo < Top(po, p1)-
A

m

Letting m — oo and applying the monotone convergence theorem, we conclude that
To.b(po, 1) = +00. 0

Finally, we estimate the value of T}, ; for point masses.

Proposition 5.12. Suppose a,b > 0, zo,z1 € X. Then

bq 1
Cb exp (ij(p_l)d(l'o,xl)2> S Ta,b<5zo7 611) S Cb exp (M)d(xo, fL'l)Q) (514)
or in terms of Tva,b,
Ve 1) < T (G 0 ) < (o, 31 )2. (5.15)
da(p —1) ’ - PR TS S dab ’

Proof. For the upper bound, suppose ¢ € &, and as in the proof of the upper bound in
Proposition 3.3, let v : [0,1] — X be a constant speed geodesic joining z( to z;. Using
the chain rule, we have

d
%‘PS('}/S) < 85@5(73) + |v<ps|(’73)d(x07x1)
a
= ‘Vg@s‘('}/sf - b‘ﬂs(r)/s) In @5(75) + |V<ps|(ys)d(x07$1)
995(75)
d(zg, z1)?
< ( 210, 1) @s(’ys) - b@s(ys) In @s(%)

by completing the square. So y(s) = ¢s(vs) satisfies the differential inequality (5.6) with
r = d(z0,71)?/4a, and by Lemma 5.7 and Lemma 5.4 we have

pr(an) = o) < exp ( godan,20)?) (o) 7 = o(oo)

1
< Cpexp (md(mo,xl)Q) :

For the lower bound, apply Lemma 5.5 with p; = 0, and f(z) = d(zo, z) A d(zo, z1),
which is bounded and 1-Lipschitz. Since f(xo) = 0, the dug integral in (5.4) equals 1, and

we obtain

kb
Ta,b<5x076931> Z Cb €exp (ebq4akd(x07xl)2>

for any k¥ < 1/4a. Letting k 1 1/4a and recalling that e = p, we have the desired
inequality. O
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Corollary 5.13. For pg, 1 € P(X), we have

1
Tob(po, 1) < Cpinf exp <d(m,y)2> m(dzx,dy). (5.16)
’ T JxxX 4ab

where the infimum is taken over all couplings m € P(X x X) of uo, 1. As a special case,

we have
1
T,4(00) < G [ exp ( qpdlo.)? ) (). (5.17)
x 4ab

Proof. Let ¢ € &, and let 7 be a coupling of yg, 1. Then we have

/Xsm dm—/choduo=/Xxx(sol(y)—%(x))ﬂ(d%dy)

< / Top(0z,6y) m(da, dy)
XxX

1
< / exp (d T, 2) w(dz, ds
b 1ap@ )" ) mldz, dy)

and (5.16) follows by taking the supremum over ¢ and the infimum over . O

5.2 Functional inequalities

In the same way that the Hellinger-Kantorovich contraction property was equivalent
to a reverse Poincaré inequality, it turns out that a similar contraction property for 7, ; is
equivalent to a reverse logarithmic Sobolev inequality, as well as to a Wang-type Harnack
inequality.

For one direction of this equivalence, the key tool is the following general statement,
analogous to Theorem 3.4.

Theorem 5.14. Let a,b,7,d > 0. Suppose that for all f € Lip,(X) with f > 0, we have
a(PfIVIn P> +b(Pf)In Pf < yP(f|VIn f|*) + 6P(f1In f). (5.18)
Then for all ug, 1 € P(X) we have
Ty 5o P, 1 P) < T p(po, po1)- (5.19)
Proof. Suppose that ¢ € £, 5. Then we have

9sPps + aPps|VIn Py, |? + bPps In Po, < 9, P, + vP(ps|VIng,)?) + P (s In ;)
= P (9stps + 705 VIn g, | + 6o In o)
<0

since ¢ € &,,5 and P is positivity preserving. Thus Py, € &, 3, and so

/801 d(u1P) — /@(}d(MOP) = /P<P1 duy — /P@o dpo < Tap(po, 1)

Taking the supremum over ¢ € &, s we have T, s(uo P, 1 P) < T (o, p1). O
Theorem 5.15. Let C' > 0. The following are equivalent:
1. The reverse logarithmic Sobolev inequality

PfIVInPf*> <C(P(flnf)— (Pf)InPf),  f € Lip,(X), f>0. (rLSI)
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2. The family of entropic transportation-cost inequalities
To. ke (po P, p1 P) < Ty we(fo, f1), po, 1 € P(X), w>0. (ETT)

3. The Wang-type Harnack inequality

Pf(z)? <exp (&W) P(f*)(y),

p>1, felip,(X), f>0, =z,yeX.

(WHI)

Proof. (rLSI) = (ETI): Apply Theorem 5.14 witha =«, b= = xC, v = 0.

(ETI) = (WHI): Fix z,y € X, and let m be some finite reference measure so that
0, P, 0, P are absolutely continuous with respect to m, with densities p,, p, respectively.
Let « be arbitrary and let p = ¢, ¢ = p/(p — 1). By Proposition 5.11 and Proposition
5.12 with a = s, b = kC, taking po = 6y, t1 = J, to match notation with other papers, we
have that (ETI) implies the integrated Harnack inequality

q q—1 2
/(py) pydmZ/(py> e deexp<K2CQ4 : (5.20)

Now ¢ — 1 =1/(p — 1) so this may be rewritten as

1/(p=1) p-l 2
T -1 d )
/ (p) P dm < exp < p 3 Cd(z,y) > , p> 1. (5.21)
Py (logp) 4

Since k was arbitrary, (5.21) holds for all p > 1. By an application of Holder’s inequality
(see [9, Lemma 2.11]), (5.21) implies the Wang-type Harnack inequality

p—1 Cd(z,y)?
(logp)? 4

To recover the more usual form of the Wang Harnack inequality (WHI), we would like to

have (5.22) with p%l in the exponent in place of ﬁ. To this end, fix e > 0. Asp — 1,
1

(k’)’g;p)z, so for all sufficiently small p’ > 1 we have (15;;7;})2 <(1+ 6)%

Pf(z)? <exp < ) P(f?)(y), p>1. (5.22)

we have % ~
and thus
P (14 e0Cd(z,y)*
-1 4

Pf(z)" <exp (p, ) P(f")(y). (5.23)
In particular this holds for p’ = p!/" for sufficiently large n. From [34, Proposition 2.1],
with (1 + ¢€)C in place of C, it follows that (5.23) holds for p in place of p/, and letting
¢ — 0 we obtain (WHI).

(WHI) = (rLSI): This is shown, in essence, in [33, Theorem 2.1]. The proof there
is in the setting of a manifold with bounded curvature, and requires some minor changes
to apply in this setting, so we give the details.

Let f be a positive bounded Lipschitz function which is bounded away from 0. Observe
first that (WHI) implies that Pf is continuous. To see this, fix x € X and p > 1. Letting
y — z in (WHI), we see that Pf(z)? < liminf,_,, P(f?)(y). Now as p — 1 we have f? — f
uniformly, and since P is Markovian we also have P(f?) — Pf uniformly. So we can
pass to the limit to conclude Pf(z) < liminf,_,, Pf(y). For the other direction, apply
(WHI) with z and y interchanged. Let y — x to obtain (limsup,_,, Pf(y))" < P(f?)(z),
and then let p — 1.

Now, by definition of [V P f| there exists a sequence y,, — z, with y,, # z, such that

W — £|VPf|(z). Suppose first that we can choose y,, so that we have the
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negative sign, i.e. %;fm —|VPf|(x). Set r,, = d(yn, z) for convenience, and let

6 > 0 be arbitrary. Then (WHI) with y = y,, and p = 1 + r, 6 reads

PH0M < oxp (45 +120) ) P00

Subtracting P f(z), dividing by r,,, and breaking up the right side, we have

Pf(x)' 70 — Pf(x) _ exp (g(ra +736)) — 1 rub
- < —— P(f*7) (yn)
rnd _ _ T

We now pass to the limit. Since f is continuous, bounded, and bounded away from 0, we
have f1*72% — fand -1 (f'*™% — f) — §f In f uniformly, and so the same is true when P
is applied. We obtain

SPf(z)InPf(x) < %Pf(x) +0P(fIn f)(z) — |VPf|(x) (5.24)

and now optimizing over § and rearranging yields (rLSI).
Otherwise, there exists a sequence y,, — z such that W — +|VPf|(x). We
apply (WHI) with x and y interchanged and proceed as before to obtain

Pf(yn)l—wné - Pf(yn) < exp (%(T" + 7"7215)) — 1P(fl+rn6)(x)
n o Tn
rnd _

Passing to the limit again yields (5.24). On the left side, we use the fact that since
Pf is continuous, bounded, and bounded away from 0, we have = ((Pf)*"° — Pf) —
0P f1In Pf uniformly. O

Remark 5.16. The Wang Harnack inequality (WHI) is also known to be equivalent to
the integrated Harnack inequality

1/(p—1) 2
/ (p»c> pedm < exp < P 5 Cd(z,y) ) , p>1 (ITHI)
x \Py (r-1) 4

where as above p,,p, are the densities of 4, P, ), P with respect to some reference
measure m; see [9, Lemma 2.11]. Hence (IHI) is also equivalent to (ETI) and (rLSI). In
the proof of Theorem 5.15, we obtained (5.21) which is infinitesimally weaker than (IHI);
the self-improvement comes via the application of [34, Proposition 2.1], applying (WHI)
along a sequence of points between z and y.

A different application of Theorem 5.14 relates a gradient bound for P to another
type of contraction inequality for Ty, ;, analogous to Theorem 3.5.

Proposition 5.17. Suppose that for some C, the operator P satisfies the L' In L-type
gradient estimate

PfIVInPf|>? <CP (f[VInf[?),  f € Lip,(X),f > 0. (5.25)
Then for every k,e > 0 we have
Teo,e(o P, 1 P) < Ty e(po, 1), po, 1 € P(X). (5.26)
In particular, this holds if we have the stronger L'-type gradient estimate

|VPf| < CY?P|Vf|, f€Lip,(X). (5.27)
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Proof. By Jensen’s inequality we have (Pf)In Pf < P(f1n f), and combining this with
(5.25) we have that (5.18) holds with a = x, v = kC, b = § = €. The conclusion then
follows from Theorem 5.14.

To see that (5.27) implies (5.25), using the former together with the bivariate Jensen
inequality for the convex function v (z,y) = x2/y, we obtain

VPP P(Vf]? V5P
pr =Y By SCP(f)

which is equivalent to (5.25) thanks to the chain rule (Lemma 2.2). O

Remark 5.18. It might seem more natural to take ¢ = 0 in (5.26), but in fact that
statement would have no content, as one can show that T; o(po,p1) = +oo for all

o # i1

6 Applications to quasi-invariance

The reverse logarithmic Sobolev inequality (rLSI) has been the object of significant
study in the literature, although not nearly as much as the “forward” logarithmic
Sobolev inequality. One particularly interesting area of application is in proving absolute
continuity of heat kernel measures; especially in the presence of group structure, where
it can be used to show quasi-invariance of a heat kernel measure under group translation.
Such results are commonly obtained through the use of the Wang Harnack inequality
(WHI), which as noted in Section 5.2 is equivalent to (rLSI). In this section, we consider
some examples and show how the entropic transportation-cost inequality (ETI) provides
an alternate route to these conclusions.

Although in this paper we limit our attention to a few specific known results, there
are many other situations where similar questions about absolute continuity could be
considered, especially in stochastic PDE, see [35]. The techniques developed in this
paper may be useful in the study of these problems, and we hope to address this in
future work.

6.1 Subelliptic heat kernels on finite-dimensional Lie groups

Let G be a finite-dimensional connected real Lie group with identity element e, and
suppose that G is equipped with a left-invariant sub-Riemannian geometry: a bracket-
generating left-invariant sub-bundle H C T'G, and a sub-Riemannian metric g which
is a left-invariant inner product on #. We denote by V the horizontal sub-gradient,
and |[Vf| := \/g(Vf,Vf). Let d be the Carnot-Carathéodory distance on G; by the
Chow-Rashevskii theorem, the bracket-generating condition implies that d(z,y) < oo for
all 2,y € G. Let L be the left-invariant sub-Laplacian induced by g, P; = e!* the heat
semigroup generated by L, and p; = do P, the heat kernel measure.

Under these conditions, Hormander’s theorem implies that L is subelliptic and hence
1+ is @ smooth measure for all ¢ > 0. Our purpose here is to remark that at least part of
this conclusion can be recovered using our techniques instead, if one has a reverse log
Sobolev inequality.

Recall that in general, a Borel probability measure p on a topological group G is
said to be quasi-invariant under left translation by an element = € G if y and its left
translation p*(A) = pu(x~!A) are mutually absolutely continuous. If this holds for every
x in some subgroup H C G, we say u is quasi-invariant under left translation by H.

Proposition 6.1. Suppose, under the above assumptions, that P, satisfies the reverse
logarithmic Sobolev inequality

P fIVPfI? < C(t)(P(fInf) — (Pf) In P.f). (6.1)
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Then for all t > 0, py is quasi-invariant under translation by every x € G. As a con-
sequence, L is absolutely continuous with respect to left Haar measure and has full
support.

Proof. By Theorem 5.15, (6.1) implies the entropic transportation-cost inequality

Towew) (0P, pa Py) < Ty oy (o, pa), &> 0.

Taking jio = de, pt1 = d, and applying Lemma 5.12 to bound 7, ,.c«)(de, d.), we find that
Top (e, uf) < 0o, and so Lemma 5.10 implies that ;7 < py; the opposite relation py < uf
follows by symmetry.

The consequence that p; is absolutely continuous with respect to left Haar measure
is a standard fact about locally compact groups; see for instance [14, Ch. 7, §1.9,
Proposition 11]. O

By the results in [5], the reverse log Sobolev inequality holds in sub-Riemannian
manifolds satisfying a generalized curvature-dimension inequality of the type introduced
in [8]. It was shown in [8] that such inequalities hold for step two Carnot groups and
the three-dimensional model groups $U(2) and $IL(2), and in [7] for three-dimensional
solvable groups.

6.2 Abstract Wiener space

The phenomenon of quasi-invariance is more interesting in groups that are not locally
compact, such as infinite dimensional vector spaces or Lie groups. Here, the smoothness
of a measure cannot be described in terms of absolute continuity to Haar measure, since
Haar measure does not exist, and so quasi-invariance provides a more “intrinsic” notion
of regularity.

In this subsection, we consider the very classical example of abstract Wiener space.
As this and similar infinite-dimensional models do not fit exactly into the setting defined
in Section 2, we shall briefly discuss how to adapt the results of Sections 3 and 5
in this case, as a prototype for later examples. We give basic definitions here to fix
notation; for further background on abstract Wiener space and Gaussian measures on
infinite-dimensional spaces, we refer to [12, 24].

An abstract Wiener space consists of a real separable Banach space W equipped
with a centered non-degenerate Gaussian Borel measure u. We denote by H C W
the associated dense Cameron-Martin space, into which the continuous dual W* is
naturally embedded. A smooth cylinder function is a function F' : W — R of the form
F(z) = o(fi(x),..., fu(z)) for some n, where ¢ € Cy°(R") is a smooth function with all
partial derivatives bounded, and fi,..., f, € W* C H; unless otherwise specified, we
assume without loss of generality that fi,..., f, are orthonormal in H. We let Cyl(WV)
denote the space of all such functions; this will be used in place of Lip, (W) as a space of
test functions. It is a standard fact that C'yl(W) is dense in LP(u) for 1 < p < cc.

The Malliavin gradient DF : W — H of a cylinder function is defined by (DF)(x) =
Y1 (@) (f1(2), ..., fu(x))fi, so that when the f; are orthonormal in H we have

IDF ()% = Z 0io(fr(@), - (@) = [Vo(fr(@),. .., fal@)) .

Note that |DF| g is not a strong upper gradient on W with respect to the distance
induced by its norm || - ||w .

The heat semigroup F; on W is the convolution semigroup induced by the rescaled
measure i, namely P,F(z) = [ F(z + v/ty) u(dy). When F is a cylinder function of the
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form F(z) = o(f1(x),..., fo(z)), we have P F(x) = pyp(fi(x),..., fu(x)) where p; is the
standard heat semigroup on R"”; in particular, P, F' is again a cylinder function.
We recall that p; satisfies the reverse Poincaré inequality
Vppl? < —(pe® — (0:0)?), ¢ € C°(R™) (6.2)

and the reverse logarithmic Sobolev inequality

| =

2
pep|VInpp|? < Z(pulplng) —ppnpp), ¢ € CP(R"), >0, (6.3)

These follow, for instance, by standard I'-calculus from the elementary commutation
Vprp = p V. See for instance [2, Proposition 3.3], taking p = 0. Note that the constants
in these inequalities are dimension-independent. As such, evaluating at (f1(x),..., fu(z)),
x € W, we obtain the corresponding inequalities for P; on (W, u):

1
IDPF|G < -(PF? = (PF)?),  FeCyl(W) (6.4)
2
P, F|DInP.F|% < E(Pt(FlnF) — PFInPF), FeCyl(W),F>0. (6.5)

We modify Definitions 3.1 and 5.1 and by taking our class of test functions to be
smooth cylinder functions of space and time, e.g. functions F; : [0,1] x W — R of the
form Fs = ¢(s, fi(z),..., fa(2)), ¢ € C5°([0,1] xR™). Let Cyl([0, 1] x W) denote the space
of such functions. Then we redefine

Aap = {Fs € Cyl([0,1] x W) : OsFs + a|| DF||3, + bF2 < 0}
Eap = {Fs € Cyl([0,1] x W) : F > 0,0,F, + aF,||DIn F,||3; + bF? < 0}

and define W, ;, T, ;, accordingly on P(WV). We have Wy ; and Ty 4 related to Hellinger and
Rényi divergences in the same way as before. Moreover we can follow the proof of the
upper bound in Proposition 5.12, taking v(s) = sz1 + (1 — s)xo and noting |%F(W(3))| <
IDF(y(s)||zllx1 — xol||m, to conclude

1
Ty (22 8,) < Chexp (M||$o - :c1||§,> . (6.6)

Now Theorem 5.15 allows us to recover the classical Cameron-Martin quasi-invar-
iance theorem [16]. For ¢t > 0, let pu; = u(fl/Q -) = 6o P; be the rescaling of the Gaussian
measure i, and for h € H let u? = u(t=*/?(- — h)) = 6, P, be its translation by h. We then
obtain:

Proposition 6.2 (Cameron-Martin theorem). For allt > 0 and h € H, the measures
e, p are mutually absolutely continuous.

Proof. The logic is the same as in the proof of Proposition 6.1. Since the reverse
logarithmic Sobolev inequality holds, Theorem 5.15 and (6.6) imply that for any x > 0,
we have

t
TO,Qn/t(,U/ta,u?) < T 974 (00, 0n) < Copypexp <8/{2h”%) < 00 (6.7)

Thus by Lemma 5.10 we have u? < p;, and the reverse statement p; < pu? follows by
symmetry. O

We also obtain a quantitative estimate on the L? norm of the density du! /du;, which
is perhaps most convenient to consider in the form of (5.21):

— p—1
dp \ Y p—1 |Ial%
= d < . 6.8
</w (du?) . =P Qogp)? 2t ©6)
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As the left side is known to exactly equal exp (ﬁ %) (so that (IHI) is sharp), (6.8)
becomes sharp as p — 1.

One may also apply the reverse logarithmic Sobolev inequality for the Ornstein—
Uhlenbeck Q,, which is the symmetric Markov semigroup on L?(;) generated by the

Dirichlet form £(F, F) = [, IDF||3; dp. It satisfies

2

625 —_

QFIDMQ.F|} < 57— (Qu(FInF) = QF nQ.F). 6.9)
See for instance [2, Section 3], noting that the carré du champ of Q, is T'(F, F) = |DF||%,
without a factor of % Carrying out the above computations with @), and noting that
Qs = u‘fise’izs, one obtains exactly the same results for ¢ < 1.

Finally, we remark that the Cameron-Martin quasi-invariance theorem can also be
obtained using the Hellinger-Kantorovich contraction property of Theorem 3.7. Indeed,
the reverse Poincaré inequality (6.4) for P, implies

1
Hea (e, 1i)* < 11Dl (6.10)
since the Kantorovich-Wasserstein distance between point masses in this setting cor-
responds to the Cameron-Martin distance; this can be checked directly from the dy-
namic dual definition as in Proposition 3.3. Unfortunately, (6.10) has no content unless
# A3 < 2, so to work around this, choose an integer n so large that n=25||h[|3, < 2.

Applying (6.10) with h/n in place of h, we conclude that He2 (p, u? / ") < 2 and in particu-
lar that gy, pf’/ " are not mutually singular. By the Feldman-H4jek dichotomy theorem
for Gaussian measures [22, 21, 23, 15], they must therefore be mutually absolutely

continuous, which we denote by u; ~ u? /m. Repeating this argument n times, we have

h/n 2h/n
Mt ~ e~ [y ~
desired.

Although this argument uses only the reverse Poincaré inequality, which is a priori
weaker than the reverse logarithmic Sobolev inequality used in Proposition 6.2, the
conclusion is also weaker as it does not yield any quantitative information about the
distance between the measures i, uf.

We note that some proofs of the Feldman-Hd4jek dichotomy theorem, including
Feldman'’s original proof [22, 21], make use of the Cameron-Martin quasi-invariance
theorem, which would seem to make the above argument circular. However, it is possible
to prove the dichotomy theorem directly, without assuming quasi-invariance—see for
example [15]—and this breaks the cycle.

-~ ul, and since ~ is an equivalence relation, we have y; ~ ul as

6.3 Infinite dimensional Heisenberg-like groups

The ideas of the previous two subsections come together in the study of infinite-
dimensional groups where the semigroup in question is not elliptic. In [9], the authors
considered infinite-dimensional Heisenberg-like groups, introduced in [19], with their
hypoelliptic heat kernels and corresponding heat semigroups. These groups carry a
natural sub-Riemannian geometry analogous to the Heisenberg group and other Carnot
groups of step two. They use generalized curvature-dimension inequalities to show that
these spaces satisfy a reverse logarithmic Sobolev inequality. From this, they derive a
Wang-type Harnack inequality, and use this to show quasi-invariance of the heat kernel
measure under the group translation. In this section, we show that as in the case of
Gaussian measures, transport inequalities provide an alternate route from reverse log
Sobolev to quasi-invariance in this setting. We only sketch the argument here, as the
details are closely analogous to those for the Gaussian case.
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We follow the notation of [9] and refer the reader there for complete definitions,
background, and further references. Let (W, H, u) be an abstract Wiener space and C
a finite-dimensional inner product space. Suppose that g = W x C is equipped with
a continuous Lie bracket [, ] satisfying [W, W] = C and [g, C] = 0. The corresponding
Banach Lie group G is given by G = W x C equipped with the nonabelian group operation
gi1-92 = g1+ g2+ %[gl, g2] defined by the Baker-Campbell-Hausdorff formula. Then
gom = H x Cis a dense Lie subalgebra of g, called the Cameron-Martin Lie subalgebra,
and likewise Gy = H x C C G is a dense subgroup of G.

If B; is a standard Brownian motion on (W, 1), we may define a left-invariant Brownian
motion g; on G by the formula g, = (Bt, % fg[Bs, st]). Let v; = Law(got) be the heat
kernel measure induced by g;. By analogy with the finite-dimensional Heisenberg group,
one expects the measure v; to be “smooth” in some sense. One cannot express this
smoothness in terms of a density with respect to Lebesgue or Haar measure because the
latter do not exist in infinite dimensions, but another reasonable notion of smoothness
would be for v, to be quasi-invariant under left translation by elements of the Cameron-
Martin subgroup G¢eps. The main result of [9] is that this is in fact the case. (We
also mention [18] where the same statement was shown through different means, by
producing a density of v; with respect to the measure p x m, where p is the Gaussian
measure on W and m is Lebesgue measure on C.)

It is shown in [9] that the group G can be approximated by finite-dimensional projec-
tion groups G p, each of which is a nilpotent Lie group of step 2. This leads to a notion of
smooth cylinder functions F' : G — R which can be differentiated in directions X € goyy,
and thus a horizontal gradient Vg F : G — H can be defined for such functions. If
v :[0,1] = Gear is an absolutely continuous horizontal path, then its derivative 4’ can be
identified as a curve in H, and we have the chain rule %F(y(s)) =(VaF"(s)),v(s)u-
Moreover, G¢js is a length space with respect to the horizontal distance d¢),, and so
the estimates on W, 4(d0,dg), Ta,5(d0, 64) from Propositions 3.3 and 5.12 go through for
g € Geny, with d = deyy.

Now [9, Proposition 4.8] shows, by means of generalized curvature-dimension inequal-
ities as introduced in [8], that each projection group Gp satisfies a reverse logarithmic
Sobolev inequality, with a uniform constant of the form C/t where C depends only on the
structure of G, and not on the projection. This can be restated as the following reverse
logarithmic Sobolev inequality for cylinder functions on G:

and so as in Proposition 6.2 above, we recover a version of the main quasi-invariance
result of [9] and [18]:

Proposition 6.3. For each t > 0, the heat kernel measure v; on G is quasi-invariant
under left translation by elements of G¢ .

Moreover, the bounds on Tj ;(v, v ) in (ETI) yield L? bounds on the Radon-Nikodym
derivative dvy /dv, as in the proof of Theorem 5.15, which are asymptotically equivalent
to the integrated Harnack inequalities of [9, Section 5.2] as p — 1 and ¢ — oc.
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