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ABSTRACT
Downscaling coarse global and regional climate models allows researchers to access
weather and climate data at finer temporal and spatial resolution, but there remains a
need to compare these models with empirical data sources to assess model accuracy.
Here, we validate a widely used software for generating North American downscaled
climate data, ClimateNA, with a novel empirical data source, 20th century weather
journals kept by Admiralty Island, Alaska homesteader, Allen Hasselborg. Using
Hasselborg’s journals, we calculated monthly precipitation and monthly mean of the
maximum daily air temperature across the years 1926 to 1954 and compared these
to ClimateNA data generated from the Hasselborg homestead location and adjacent
areas. To demonstrate the utility and potential implications of this validation for other
disciplines such as hydrology, we used an established regression equation to generate
time series of 95% low duration flow estimates for the month of August using mean
annual precipitation from ClimateNA predictions and Hasselborg data. Across 279
months, we found strong correlation between modeled and observed measurements
of monthly precipitation (ρ = 0.74) and monthly mean of the maximum daily air
temperature (ρ = 0.98). Monthly precipitation residuals (calculated as ClimateNA
data - Hasselborg data) generally demonstrated heteroscedasticity around zero, but
a negative trend in residual values starting during the last decade of observations may
have been due to a shift to the cold-phase Pacific Decadal Oscillation. Air temperature
residuals demonstrated a consistent but small positive bias, with ClimateNA tending to
overestimate air temperature relative toHasselborg’s journals. The degree of correlation
between weather patterns observed at the Hasselborg homestead site and ClimateNA
data extracted from spatial grid cells across the region varied by wet and dry climate
years. Monthly precipitation from both data sources tended to be more similar across
a larger area during wet years (mean ρ across grid cells = 0.73) compared to dry years
(mean ρ across grid cells = 0.65). The time series of annual 95% low duration flow
estimates for the month of August generated using ClimateNA and Hasselborg data
were moderately correlated (ρ = 0.55). Our analysis supports previous research in
other regions which also found ClimateNA to be a robust source for past climate data
estimates.
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INTRODUCTION
Across many scientific disciplines, researchers rely on the downscaling of coarse global and
regional climate models to access weather and climate data at finer temporal and spatial
resolution (Mote & Salathé, 2010; Xu, Han & Yang, 2019). While weather stations collect
accurate local measurements, they are not evenly distributed and leave many empirical data
gaps across the globe. Statistical downscaling of weather measurements such as rainfall or
air temperature, rather than empirical observations, is one of several methods available for
analyzing climate and hydrologic response in remote regions where station maintenance is
difficult and expensive. ClimateNA is a widely used, publicly available, and user-friendly
software that produces a suite of statistically downscaled monthly and annual climate
variables for point locations across North America that are dynamically adjusted for local
elevation (Wang et al., 2016). The software’s simplicity and wide range of historical and
future time ranges are well suited for correlating climate patterns with questions related
to many environmental science disciplines. A recent study demonstrated that monthly
temperature variables generated by ClimateNA performed well against measured data
from 232 weather stations in southern Alberta, Canada, but some biases existed across
space, season, and elevation (Roberts, Wood & Marshall, 2019). In our present study, climate
data generated by ClimateNA provide the basis for our validation with a novel source of
empirical weather data from sub-arctic Alaska.While global climatemodel performance for
this region has been compared to re-analysis products that combine weather observations
with numerical modeling (for example, see Herzfeld et al., 2007; Walsh et al., 2008), very
few climate model validation efforts are based on independent empirical observations.

In Alaska, air temperatures are expected to rise over time alongside increases in annual
precipitation and extreme precipitation (Lader et al., 2017). In remote regions such as
our study location in Southeast Alaska, USA, downscaled projections of temperature,
precipitation, and snowfall are critical to understanding regional hydrology and ecology
(Bieniek et al., 2016; Littell, McAfee & Hayward, 2018). For example, combining river basin
topography with estimates of monthly precipitation allows for the calculation of various
hydrologic metrics such as percentile flow magnitudes (Wiley & Curran, 2003), which
directly relate to the efficacy of burgeoning hydropower operations (Cherry et al., 2017)
and the population dynamics of many aquatic organisms (Poff et al., 1997; Brown et al.,
2016). The success of culturally and economically valuable fish populations in Alaska such
as Pacific salmon (Oncorhynchus spp.) is inextricably tied to flow regimes (Schoen et al.,
2017; Johnson et al., 2019); therefore, having access to high-quality climate information
is critical for resource managers and users to assess habitat conditions over time and the
potential for future change.

Climate change is occurring rapidly in Southeast Alaska. Regional experts predict
increases in annual average air temperature and precipitation, with less precipitation
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falling as snow during the fall and winter (Shanley et al., 2015; Littell, McAfee & Hayward,
2018; Lader et al., 2020). A key challenge is determining the rate at which these changes
are occurring, thus it is important to compare contemporary climate trends with historical
data sets. Historical climate time series derived from direct measurement methods are
often sparse in remote locations. In these instances, downscaled data can be used to
estimate climate metrics across large scales of time and space, but their local accuracy
is difficult to determine without validation using independent empirical data. This is
especially challenging in topographically complex areas like Southeast Alaska, where
mountains rise from sea level to hundreds of meters above sea level within a few km. This
steep topography promotes orographic lifting, which raises moist air and condenses it
into precipitation. A mosaic of mountains, glaciers, and narrow marine passages create
dynamic micro-climates combining wet and mild coastal zones with drier and colder
continental conditions (Shanley et al., 2015), making it difficult to discern the accuracy
of downscaled climate patterns relative to nearby weather stations. For example, in a
validation study of the North American arctic, modeled climate accuracy was variable
across seasons and better at predicting air temperature than precipitation (Herzfeld et al.,
2007). Since downscaling creates a high-resolution grid of interpolated data, the quality
of digital elevation models used has a direct bearing on data quality. In steep terrain, the
grid cell of a coarse elevation model may span hundreds of meters of elevation change and
lead to misleading or difficult-to-interpret data outputs. ClimateNA addresses this issue
through a combination of bilinear interpolation and elevation adjustments that allows
users to extract data from a specific point in space that is not averaged over an entire grid
cell (Wang et al., 2016).

Considering the difficulty in predicting climate patterns for a geographically complex
region, the extent to which downscaled climate models can be corroborated with
conventional weather measurements will improve the confidence of research and regional
decision-making based mostly on modeling efforts. Here, we present a novel validation
of downscaled climate data from 1926 to 1954 using archived weather journals from
Admiralty Island, Alaska homesteader, Allen Hasselborg. Daily weather observations were
collected by Hasselborg at his homestead adjacent to Mole Harbor and the Mole River,
located on the eastern shoreline of Admiralty Island in Southeast Alaska (Figs. 1 and 2).
During the years 1926–1954 covered by his journals, only 7 weather stations existed in
the region, with the nearest in Juneau approximately 74 km away. Mole Harbor remains
uninhabited to the present day.

Southeast Alaska is situated in the northern portion of the Pacific Coastal Temperate
Rainforest, a generally mild and wet maritime landscape averaging 200 cm of precipitation
per year (O’Neel et al., 2015). The maximum elevation within the 67 km2 Mole River
watershed is 869 m while mean elevation is 303 m. With no glaciers present in its drainage
area, the Mole River is a mostly forested watershed with discharge driven by a combination
of rain and snow runoff (a ‘‘rain-snow-I’’ watershed as defined in Sergeant et al., 2020).
Rain-snow-I watersheds are found throughout the coastal Gulf of Alaska. While maximum
discharge tends to occur in mid-March for this watershed class, the flow regime of the
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Figure 1 Study area. The Mole River watershed (gray polygon) and the location of Allen Hasselborg’s
homestead (black dot).

Full-size DOI: 10.7717/peerj.12055/fig-1

Mole River remains unmeasured and maximum discharge could potentially occur during
any day of the year (Sergeant et al., 2020).

Our primary objective was to determine how closely weather observations from
Hasselborg’s journals correlated with monthly climate observations extracted from
ClimateNA (Wang et al., 2016) at the same location and time periods. We then mapped
the degree of correlation between the weather journals and modeled climate data across
varying distances from the homestead site and elevations. We calculated residuals between
observed and modeled values of monthly precipitation and monthly mean of the daily
maximum air temperature to determine whether the accuracy of modeled data changed
over time. To demonstrate the application of this research to other disciplines such as
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Figure 2 The journals of Allen Hasselborg. (A) Example pages from Allen Hasselborg’s weather jour-
nals. In the upper left corner of each page, note that Hasselborg summed total monthly precipitation in
inches. In the third column of each page, Hasselborg provided a symbol describing weather conditions
that day: clear (open circle), cloudy (cross), rain (upward facing arch), or snow (downward facing arch).
(photo credit: lead author, ERW). (B) Hasselborg at his homestead next to Mole River in 1941 (Image ac-
cessed through the Alaska Digital Archives, https://vilda.alaska.edu/digital/collection/cdmg21/id/12774/
rec/23).

Full-size DOI: 10.7717/peerj.12055/fig-2

hydrology and fish biology, we compared streamflow metrics derived from the journals
and modeled data.

MATERIALS & METHODS
Data acquisition
Data were acquired from an interactive climate model platform and Hasselborg’s
handwritten weather journals. The widely used software, ClimateNA (Version 6.2;Wang et
al., 2016), generates statistically downscaled climate estimates for any 4 × 4 km grid cell in
North America, with customizable variables such as spatial coordinates, elevation, and date
range. ClimateNA can generate precipitation and temperature data with monthly to annual
resolution. The software incorporates and interpolates historical data spanning from 1901
to the present day, as well as a suite of general circulation models for future predictions.
Hasselborg’s data were not used to generate historical data in ClimateNA and are therefore
an independent source for model validation. We obtained monthly precipitation and
monthly mean of the daily maximum air temperature values from the approximate GPS
coordinates for Mole Harbor (57.647541, −134.094391). We allowed ClimateNA to
determine elevation automatically. This provided model estimates overlapping with all of
Hasselborg’s recorded years (1926–1954).

Hasselborg recorded daily temperature and precipitation between 1926 and 1954 at
approximately sea-level near the mouth of the Mole River (Figs. 1 and 2). Missing time
periods spanned July–September 1931, August–September 1932, June 1933, and December
1933 to January 1938. Hasselborg’s original handwritten weather journals are archived
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at the Alaska State Library and Archives in Juneau, Alaska, USA (Fig. 2). Journals were
scanned as images and manually transcribed into a Microsoft Excel spreadsheet. The lead
author (ERW) transcribed daily maximum air temperature (converted from ◦F to ◦C) and
monthly precipitation (converted from in to mm). Hasselborg recorded precipitation in
0.25 in fractions, and recorded even and odd integers for temperature in his journals until
1933. It is possible that after a break from journaling from 1933 to 1938, Hasselborg used a
second thermometer or changed his protocol for temperature measurements as nearly all
post-1938 temperatures are even integers. To our knowledge, Hasselborg did not provide
notes on his temperature collection methods. We also do not know if his thermometer was
shielded from sunlight. We hypothesized that he collected maximum daily air temperature
because this is the most logical consistent measurement that could be collected from an
analog thermometer without having to collect measurements at the exact same time each
day. Subsequent analyses in the Results section support this hypothesis. We excluded
unreadable journal days or entries with multiple measurements. We also do not know
for certain whether Hasselborg included snow in his precipitation amounts, but based on
journal pages where he makes separate notes for rain and snow, we believe he intended to
only measure rain. This does not exclude the possibility of some error due to snow falling
into the measurement tool along with rain during winter months.

Correlation analysis
For monthly precipitation and monthly mean of the maximum daily air temperature
measurements, we trimmed the ClimateNA data to account for Hasselborg’s data gaps
(n= 279 usable months for precipitation, n= 274 usable months for temperature), and
calculated a Spearman’s rank correlation coefficient (ρ) for the complete time series of
empirical and modeled data. To assess spatial correlation at increasing distances from
the Mole River watershed, we mapped the correlation between Hasselborg’s monthly
precipitation data and ClimateNA datasets for the wettest year (1939) and the driest
year (1951) found in his journals. Centroid coordinates for each grid cell in the spatial
correlationmap were spaced 0.2 decimal degrees longitude and 0.1 decimal degrees latitude
apart and originated from the Hasselborg homestead.

To determine whether ClimateNA displayed seasonal or annual trends in estimating
observed weather values, residuals were calculated across the entire time series by
subtracting the monthly values for both precipitation and temperature measured by
Hasselborg from those estimated by ClimateNA. To visually assess trends in the time series
of residuals, we implemented a loess smoother, a non-parametric form of local regression
where points are weighted based on their distance from the observation of interest (Jacoby,
2000). Residuals were also averaged across the four meteorological seasons: winter (DJF),
spring (MAM), summer (JJA), and fall (SON).

Application of climate data sources to estimating streamflow
descriptors
Low-duration streamflow was estimated using precipitation, watershed basin area,
and watershed elevation in a regression equation derived from streamflow gage data
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(Wiley & Curran, 2003). To demonstrate the application of our validation to useful
hydrologic estimates, we calculated the annual 95th percentile low-duration flow for
August (AUG95) in ft3/s using the following equation:

AUG95= (1.397×10−9)(A1.16)(P1.367)(E1.896)

Where,
A = watershed drainage area (mi2)
P = mean annual precipitation (in)
E = mean basin elevation (ft)
AUG95 estimates in ft3/s were then converted to m3/s.
The Wiley & Curran (2003) equation typically uses, ‘‘mean annual precipitation

averaged over the drainage basin,’’ but in order to facilitate a more direct streamflow
comparison between ClimateNA data and the Hasselborg journals, we only extracted mean
annual precipitation each year from ClimateNA using the coordinates of the Hasselborg
homestead. This approach assumes that modeled or observed precipitation amounts from
the homestead site were comparable to average conditions across the basin. We did not
estimate low-duration August flow during years where Hasselborg skipped >3 months of
precipitation measurements. Hasselborg skipped one to three months per year for four of
the included years in the data (1931, 1932, 1933, 1946).

RESULTS
We found strong correlation (ρ) between the monthly precipitation time series generated
from modeled (ClimateNA) and empirical (Hasselborg’s journals) climate data (ρ= 0.74,
P << 0.001; Fig. 3). Residual values of modeled - observed monthly precipitation data
ranged from 189 mm to−412 mm with a mean of−14.4 mm (Fig. 3). In general, residuals
demonstrated heteroscedasticity around the zero line for the vertical axis, but there was
evidence of a negative trend in residual values starting during the last decade of data
(Fig. 3). Hasselborg’s precipitation values had a greater range than Climate NA, which
consistently overestimated monthly precipitation when Hasselborg observed less than 50
mm and underestimated when observations were greater than 400 mm (Fig. 3).

There was high correlation between monthly means of the maximum daily air
temperature generated fromClimateNA and observed byHasselborg (ρ= 0.98, P << 0.001;
Fig. 4). The residual values of modeled - observed monthly mean of the maximum daily
temperature data ranged from −3.06 ◦C to 10.44 ◦C with a mean of 0.77 ◦C (Fig. 4).
Residuals demonstrated a consistent but small positive bias, with ClimateNA tending to
overestimate air temperature relative to Hasselborg’s journals (Fig. 4).

When the distributions of precipitation residualswere summarized acrossmeteorological
seasons, ClimateNA was less accurate with a more precise range of values in the summer
relative to the other seasons, when precipitation was generally underestimated and
demonstrated greater variability (Fig. 5). The distributions of seasonal residuals of
temperature demonstrated an opposite pattern to precipitation (Fig. 5). ClimateNA
overestimated the most during winter—and to a lesser extent, spring and fall—while
summer months were most closely correlated.
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Figure 3 Time series and residuals of modeled and observed precipitation data. (A) Monthly precipi-
tation estimated by ClimateNA (orange) compared with monthly precipitation measured by Hasselborg
(blue). (B) Residuals of monthly precipitation. A loess smoothed trend line with span= 0.75 (blue) is in-
cluded along with a dotted reference line at y = 0.

Full-size DOI: 10.7717/peerj.12055/fig-3

The degree of correlation between weather patterns observed at the Hasselborg
homestead site and ClimateNA data extracted from spatial grid cells across the region
varied by wet and dry climate years (Figs. 6 and 7). Monthly precipitation from ClimateNA
tended to be more similar to empirical data collected by Hasselborg across a larger area
during wet years compared to dry years. During the wettest year recorded in Hasselborg’s
journals, 1939, mean ρ = 0.73 (SD = 0.11) across all grid cells (Fig. 6). For the driest
journal year, 1951, mean ρ= 0.65 (SD = 0.14) across all grid cells (Fig. 7). For both years,
correlations between ClimateNA and Hasselborg’s data tended to be strongest in areas of
low to mid-elevation. Correlations were weakest in high elevation areas and icefields across
both years, but correlations were especially weak along the continental mainland during
the dry year of 1951. During 1939, correlations were generally very high for grid cells south
of the Hasselborg homestead.

The time series of annual 95% low duration flow estimates for the month of August
generated using ClimateNA and Hasselborg data were moderately correlated (ρ = 0.55,
P = 0.007; Fig. 8). While the directional trends in both time series were comparable across
time, similar to the spatial correlation maps (Figs. 6 and 7), ClimateNA estimates of low
duration flow tended to be further from estimates using Hasselborg observations during
dry years such as 1951.
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Figure 4 Time series and residuals of modeled and observed temperature data. (A) Monthly mean of
the daily maximum temperature estimated by ClimateNA (orange) compared with Hasselborg (blue). (B)
Monthly mean of the daily maximum temperature residuals. A loess-smoothed trend line with span=
0.75 (blue) is included along with a dotted reference line at y = 0.

Full-size DOI: 10.7717/peerj.12055/fig-4

DISCUSSION
With an ever-growing need to compare the changes in the earth’s climate from historical
times to present-day, validation of climate models with empirical data will continue
to be an essential aspect of environmental research. Historical weather measurements
collected from remote locations have the potential to underestimate actual conditions
(Baudouin, Herzog & Petrie, 2020) and be of questionable quality. To our knowledge,
Hasselborg’s Mole River data set did not include a second observer or provide any
methodological accounting. Despite these limitations, the corroboration of Hasselborg’s
data and downscaled estimates produced from ClimateNA suggests that both sources
are generally reliable. Since our analysis covers only a very small geographic area, we
caution that our results should not be generalized beyond the northern portion of the
Southeast Alaska panhandle. In western North America, there are many more examples
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Figure 5 Boxplots of seasonal residuals. Boxplots of residuals aggregated by meteorological season for
(A) monthly precipitation and (B) monthly mean of the daily maximum temperature. Black lines in the
middle of each box represent median values. The top and bottom lines of each box represent 75th and
25th percentiles, respectively. The ends of the whiskers represent 1.5 x the interquartile range. Individual
letters along the horizontal axis represent months of the year.

Full-size DOI: 10.7717/peerj.12055/fig-5

Figure 6 Spatial correlation of precipitation during a wet year. Correlation between monthly precip-
itation values generated by ClimateNA and Hasselborg weather journals during 1939, the wettest year
recorded in the journals. Grid cell colors correspond to the magnitude of correlation defined in the leg-
end. Grid cells in the spatial correlation map were spaced 0.2 decimal degrees longitude and 0.1 decimal
degrees latitude apart and originated from the Hasselborg homestead.

Full-size DOI: 10.7717/peerj.12055/fig-6

of inter-model comparisons of climate data (for example, Jiang et al., 2018) instead of
the validation with empirical data presented here. Although a validation of ClimateNA
across broader spatial scales using additional empirical data was beyond the scope of
our study, a logical next step would be to use data from other historical weather stations
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Figure 7 Spatial correlation of precipitation during a dry year. Correlation between monthly
precipitation values generated by ClimateNA and Hasselborg weather journals during 1951, the driest
year recorded in the journals. Grid cell colors correspond to the magnitude of correlation defined in the
legend. Grid cells in the spatial correlation map were spaced 0.2 decimal degrees longitude and 0.1 decimal
degrees latitude apart and originated from the Hasselborg homestead.

Full-size DOI: 10.7717/peerj.12055/fig-7

Figure 8 Using modeled and observed data to estimate low streamflow descriptors. Annual estimates
of 95% low duration flow in August using observed Hasselborg data (blue) and modeled ClimateNA data
(orange).

Full-size DOI: 10.7717/peerj.12055/fig-8

using similar methods. Reviewing publicly available records through the National Weather
Service (https://w2.weather.gov/climate/xmacis.php?wfo=pajk), we determined the nearest
weather station with temperature and precipitation data overlapping with Hasselborg’s
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journals was in Juneau, approximately 74 km away. Other overlapping data are available
fromHaines, Little PortWalter, Petersburg, Sitka, Skagway, and Yakutat and range 100-300
km from the Hasselborg homestead. We do not know the extent to which these data are
independent from ClimateNA generated data.

Similar to the findings of Herzfeld et al. (2007) in the North American arctic, modeled
air temperature data were more strongly correlated with observed data than precipitation.
We also found support for the reliability of ClimateNA estimates in low-lying maritime
environments throughout the northern portion of the Alaska Panhandle (Southeast
Alaska), and correlations across space with Hasselborg’s data were especially strong during
a wet year. In southern Alberta, Canada, Roberts, Wood & Marshall (2019) found that
ClimateNA performed well against air temperature variables collected across 232 weather
stations, but downscaled values tended to overestimate temperature at higher (>2000 m
above sea level) and lower (<1000 m above sea level) elevations. A consistent theme in our
work and others cited herein is that recognizing and potentially correcting model biases
are critical for the practical application of climate downscaling in fields such as ecology
(Roberts, Wood & Marshall, 2019). We are not aware of any other validations of ClimateNA
using historical and independent empirical data.

The southern coastal region of Alaska is undergoing shifts in climate that impact
the ecology of the region (Shanley et al., 2015). As a snow-and rain-driven system, the
Mole River is representative of many low-lying watersheds throughout Southeast Alaska.
Watersheds to the south and west of Mole River are primarily rain-driven, relatively lower
elevation, and more exposed to maritime influence (Sergeant et al., 2020). This may explain
the high correlation between Hasselborg and ClimateNA data in the southern portion of
our study region during the wet year of 1939. Although adjacent watersheds should have
similar climate patterns to the Mole River, we urge researchers to use caution when
applying downscaled climate data to other ecological and physical estimates, especially in
higher elevation watersheds with snow and glacier runoff patterns. While the August low
streamflow descriptor we derived from empirical and modeled data followed the same
general directional patterns over time, there were significant differences in the estimates of
flow magnitude, especially during dry years such as 1951. This might be explained by long-
range atmospheric drivers such as the Pacific Decadal Oscillation (PDO). The negative
trend in modeled precipitation residuals during the final decade of data (1944-1954),
correspond with a shift to a cold-phase PDO. This may be coincidental timing or it may be
due to local variability in topographically complex terrain that is difficult tomodel correctly
during oscillation shifts. In Southeast Alaska, the cold-phase PDO typically translates to
more winter precipitation falling as snow than rain and resulting in higher-than-average
summer discharge (Mantua et al., 1997; Neal, Walter & Coffeen, 2002). Patterns such as
these are important context for researchers applying downscaled climate data and suggest
that further validation research is necessary across a broader range of elevational and
latitudinal gradients.
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